《基本不等式》典型例题

合集下载

基本不等式习题及答案

基本不等式习题及答案

基本不等式习题及答案基本不等式习题及答案不等式是数学中重要的概念之一,它描述了数值之间的大小关系。

在初等数学中,我们学习了许多基本的不等式,它们在解决实际问题和推导其他数学知识时起着重要的作用。

在本文中,我们将探讨一些基本的不等式习题,并给出相应的答案。

1. 习题一:证明对于任意的正实数a和b,有(a+b)² ≥ 4ab。

解答:我们可以使用平方差公式来证明这个不等式。

根据平方差公式,我们有(a+b)² = a² + 2ab + b²。

由于a和b都是正实数,所以a²和b²都大于等于0。

因此,我们只需要证明2ab大于等于0即可。

由于a和b都是正实数,所以它们的乘积ab也是正实数。

根据乘法的性质,正实数的乘积仍然是正实数,因此2ab大于等于0。

所以,我们证明了(a+b)²≥ 4ab。

2. 习题二:证明对于任意的正实数a,b和c,有(a+b)(b+c)(c+a) ≥ 8abc。

解答:我们可以使用AM-GM不等式来证明这个不等式。

根据AM-GM不等式,对于任意的正实数x和y,有(x+y)/2 ≥ √(xy)。

将x替换为a+b,y替换为b+c,我们有(a+b+b+c)/2 ≥ √((a+b)(b+c))。

进一步简化得到(a+2b+c)/2 ≥ √((a+b)(b+c))。

同样地,将x替换为b+c,y替换为c+a,我们有(b+c+c+a)/2 ≥ √((b+c)(c+a))。

进一步简化得到(2b+2c+a)/2 ≥ √((b+c)(c+a))。

将x替换为c+a,y替换为a+b,我们有(c+a+a+b)/2 ≥ √((c+a)(a+b))。

进一步简化得到(2c+2a+b)/2 ≥ √((c+a)(a+b))。

将上述三个不等式相乘,我们得到((a+2b+c)/2)((2b+2c+a)/2)((2c+2a+b)/2) ≥ (√((a+b)(b+c)))(√((b+c)(c+a)))(√((c+a)(a+b)))。

基本不等式题型练习含答案

基本不等式题型练习含答案

基本不等式题型练习含答案题目1:解不等式2x + 5 > 9。

解答1: 2x + 5 > 9 首先,将不等式两边都减去5。

2x > 4 然后,将不等式两边都除以2。

x > 2 所以,不等式的解集为x > 2。

题目2:解不等式3 - 2x ≤ 7。

解答2: 3 - 2x ≤ 7 首先,将不等式两边都减去3。

-2x ≤ 4 然后,将不等式两边都除以-2。

注意,因为除以负数会改变不等号的方向,所以需要将不等号反转。

x ≥ -2 所以,不等式的解集为x ≥ -2。

题目3:解不等式4x + 3 < 19。

解答3: 4x + 3 < 19 首先,将不等式两边都减去3。

4x < 16 然后,将不等式两边都除以4。

x < 4 所以,不等式的解集为x < 4。

题目4:解不等式5 - 3x > 8。

解答4: 5 - 3x > 8 首先,将不等式两边都减去5。

-3x > 3 然后,将不等式两边都除以-3。

注意,因为除以负数会改变不等号的方向,所以需要将不等号反转。

x < -1 所以,不等式的解集为x < -1。

题目5:解不等式2x - 1 ≤ 5x + 3。

解答5: 2x - 1 ≤ 5x + 3 首先,将不等式两边都减去2x。

-1 ≤ 3x + 3 然后,将不等式两边都减去3。

-4 ≤ 3x 最后,将不等式两边都除以3。

-4/3 ≤ x 所以,不等式的解集为x ≥ -4/3。

题目6:解不等式4 - 2x ≥ 10 - 3x。

解答6: 4 - 2x ≥ 10 - 3x 首先,将不等式两边都加上3x。

4 + x ≥ 10 然后,将不等式两边都减去4。

x ≥ 6 所以,不等式的解集为x ≥ 6。

题目7:解不等式2(3x + 1) > 4x + 6。

解答7: 2(3x + 1) > 4x + 6 首先,将不等式两边都展开。

基本不等式经典例题(含知识点和例题详细解析)-(1)

基本不等式经典例题(含知识点和例题详细解析)-(1)

基本不等式经典例题(含知识点和例题详细解析)-(1)基本不等式专题知识点:1. (1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”) (3)若*,R b a ∈,则22?+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”)若0x <,则12x x+≤- (当且仅当1x =-时取“=”)若0x ≠,则11122-2x x x x x x+≥+≥+≤即或 (当且仅当b a =时取“=”)4.若0>ab ,则2≥+ab b a (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 5.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”)注意:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用应用一:求最值例:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x解:(1)y =3x 2+12x 2 ≥23x 2·12x2 =6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x ·1x=2;当x <0时, y =x +1x = -(- x -1x)≤-2x ·1x=-2∴值域为(-∞,-2]∪[2,+∞)解题技巧技巧一:凑项例已知54x <,求函数14245y x x =-+-的最大值。

基本不等式例题

基本不等式例题

1、已知正数a, b满足a + b = 1,则下列不等式中成立的是?A. ab ≤ 1/4B. ab ≥ 1/4C. ab < 1/4D. ab > 1/2(答案:B)2、设x, y为正实数,且x + y = 2,则下列不等式中正确的是?A. xy ≤ 1B. xy ≥ 1C. xy < 1D. xy > 2(答案:A)3、若a, b, c为正数,且a + b + c = 3,则下列不等式中不成立的是?A. a2 + b2 + c2 ≥ 3B. abc ≤ (a + b + c)3 / 27C. (a + b + c)/3 ≥√(abc)D. a3 + b3 + c3 ≥ 9(答案:D)4、已知x > 0, y > 0,且x + y = 4,则下列不等式中错误的是?A. 1/x + 1/y ≥ 1B. xy ≤ 4C. √(xy) ≤ (x + y)/2D. x2 + y2 ≥ 8(答案:A)5、设a, b为正实数,且a + b = 5,则下列不等式中正确的是?A. ab ≤ 25/4B. ab ≥ 25/4C. ab < 25/4D. ab > 10(答案:A)6、若x, y为正数,且xy = 100,则下列不等式中不成立的是?A. x + y ≥ 20B. x2 + y2 ≥ 200C. 1/x + 1/y ≤ 1/10D. x + y ≤ 50(答案:D)7、已知a, b, c为正数,且a + b + c = 1,则下列不等式中正确的是?A. a3 + b3 + c3 ≥ 3(abc)2B. a2b + b2c + c2a ≤ 1/3C. abc ≥ (a + b + c)3 / 27D. 1/a + 1/b + 1/c ≤ 1(答案:B)8、设x, y为正实数,且x + y = 6,则下列不等式中错误的是?A. xy ≤ 9B. x2 + y2 ≥ 18C. √(xy) ≥ 3D. 1/x + 1/y ≤ 1/3(答案:D)9、若a, b为正数,且ab = 8,则下列不等式中不成立的是?A. a + b ≥ 4B. a2 + b2 ≥ 16C. 1/a + 1/b ≤ 1/2D. √(a) + √(b) ≤ 4(答案:D)10、已知x, y, z为正数,且x + y + z = 3,则下列不等式中正确的是?A. xyz ≤ 1B. x2 + y2 + z2 ≥ 3C. √(xyz) ≥ (x + y + z)/3D. 1/x + 1/y + 1/z ≥ 3(答案:B)。

基本不等式经典题目

基本不等式经典题目

基本不等式经典题目基本不等式:经典题目1. 证明柯西不等式:若 \(x_1, x_2, \dots, x_n\) 和 \(y_1, y_2, \dots, y_n\) 是两个 n 维实数序列,则有$$\left(\sum_{k=1}^n x_ky_k\right)^2 \le\left(\sum_{k=1}^n x_k^2\right)\left(\sum_{k=1}^ny_k^2\right)$$2. 证明赫尔德不等式:若 \(p\) 和 \(q\) 是大于 \(1\) 的实数且满足\(\frac{1}{p} + \frac{1}{q} = 1\),则对于任意 n 维实数序列\(x_1, x_2, \dots, x_n\) 和 \(y_1, y_2, \dots, y_n\),都有$$\left|\sum_{k=1}^n x_ky_k\right| \le\left(\sum_{k=1}^n |x_k|^p\right)^{1/p}\left(\sum_{k=1}^n|y_k|^q\right)^{1/q}$$3. 证明明可夫斯基不等式:对于任意p ≥ 1 和 n 维实数序列 \(x_1, x_2, \dots,x_n\),都有$$\left(\sum_{k=1}^n |x_k|^p\right)^{1/p} \le\sum_{k=1}^n |x_k|$$4. 证明切比雪夫不等式:对于任意实数 \(a\) 和 n 维实数序列 \(x_1, x_2, \dots, x_n\),都有$$P(|X - E(X)| \ge a) \le \frac{V(X)}{a^2}$$其中 \(X\) 为序列 \(x_1, x_2, \dots, x_n\) 的随机变量,\(E(X)\) 为期望,\(V(X)\) 为方差。

5. 证明马尔科夫不等式:对于任意实数 \(a > 0\) 和 n 维非负实数序列 \(x_1, x_2, \dots, x_n\),都有$$P(X \ge aE(X)) \le \frac{E(X)}{a}$$其中 \(X\) 为序列 \(x_1, x_2, \dots, x_n\) 的随机变量。

基本不等式经典例题(学生用)

基本不等式经典例题(学生用)

基本不等式知识点:1. (1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤ (当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab ba ≥+2 (2)若*,Rb a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”)(3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”)3.若0x >,则12x x +≥ (当且仅当1x =时取“=”)若0x <,则12x x +≤- (当且仅当1x =-时取“=”)若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”)4.若0>ab ,则2≥+a bb a(当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a bb a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=”)5.若R b a ∈,,则2)2(222ba b a +≤+(当且仅当b a =时取“=”)注意:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用 应用一:求最值例:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x技巧一:凑项例 已知54x <,求函数14245y x x =-+-的最大值。

技巧二:凑系数例: 当时,求(82)y x x =-的最大值。

变式:设230<<x ,求函数)23(4x x y -=的最大值。

技巧三: 分离换元 例:求2710(1)1x x y x x ++=>-+的值域。

例:求函数2y =的值域。

高中数学必修5基本不等式精选题目(附答案)

高中数学必修5基本不等式精选题目(附答案)

高中数学必修5基本不等式精选题目(附答案)高中数学必修5基本不等式精选题目(附答案)1.重要不等式当a ,b 是任意实数时,有a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 2.基本不等式(1)有关概念:当a ,b 均为正数时,把a +b2叫做正数a ,b 的算术平均数,把ab 叫做正数a ,b 的几何平均数.(2)不等式:当a ,b 是任意正实数时,a ,b 的几何平均数不大于它们的算术平均数,即ab ≤a +b2,当且仅当a =b 时,等号成立.(3)变形:ab ≤? ????a +b 22≤a 2+b 22,a +b ≥2ab (其中a >0,b >0,当且仅当a=b 时等号成立).题型一:利用基本不等式比较大小1.已知m =a +1a -2(a >2),n =22-b 2(b ≠0),则m ,n 之间的大小关系是( ) A .m >n B .m <="">D .不确定2.若a >b >1,P =lg a ·lg b ,Q =12(lg a +lg b ),R =lg a +b 2,则P ,Q ,R 的大小关系是________.题型二:利用基本不等式证明不等式3.已知a ,b ,c 均为正实数,求证:2b +3c -a a +a +3c -2b 2b +a +2b -3c3c ≥3.4.已知a ,b ,c 为正实数,且a +b +c =1,求证:? ????1a -1? ????1b -1? ??1c -1≥8.题型三:利用基本不等式求最值5.已知lg a +lg b =2,求a +b 的最小值.6.已知x >0,y >0,且2x +3y =6,求xy 的最大值.7.已知x >0,y >0,1x +9y =1,求x +y 的最小值.8.已知a >0,b >0,2a +1b =16,若不等式2a +b ≥9m 恒成立,则m 的最大值为( )A .8B .7C .6D .5题型四:利用基本不等式解应用题9.某单位决定投资3 200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元,求:(1)仓库面积S 的最大允许值是多少?(2)为使S 达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?巩固练习:1.下列结论正确的是( ) A .当x >0且x ≠1时,lg x +1lg x ≥2 B .当x >0时,x +1x≥2 C .当x ≥2时,x +1x 的最小值为2 D .当0<="">x 无最大值2.下列各式中,对任何实数x 都成立的一个式子是( ) A .lg(x 2+1)≥lg(2x ) B .x 2+1>2x C.1x 2+1≤1 D .x +1x ≥23.设a ,b 为正数,且a +b ≤4,则下列各式中正确的一个是( ) A.1a +1b <1 B.1a +1b ≥1 C.1a +1b <2D.1a +1b ≥24.四个不相等的正数a ,b ,c ,d 成等差数列,则( ) A.a +d2>bcB.a +d2<bc< p="">C.a+d2=bc D.a+d2≤bc5.若x>0,y>0,且2x+8y=1,则xy有()A.最大值64B.最小值1 64C.最小值12D.最小值646.若a>0,b>0,且1a+1b=ab,则a3+b3的最小值为________.7.(2017·江苏高考)某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是________.8.若对任意x>0,xx2+3x+1≤a恒成立,则a的取值范围是________.9.(1)已知x<3,求f(x)=4x-3+x的最大值;参考答案:1.解:因为a>2,所以a-2>0,又因为m=a+1a-2=(a-2)+1a-2+2,所以m≥2(a-2)·1a-2+2=4,由b≠0,得b2≠0,所以2-b2<2,n=22-b2<4,综上可知m>n.2.解:因为a>b>1,所以lg a>lg b>0,所以Q=12(lg a+lg b)>lg a·lg b=P;Q=12(lg a+lg b)=lg a+lg b=lg ab<lg< p="">a+b2=R.所以P<q<r.< p="">3.[证明]∵a,b,c均为正实数,∴2ba+a2b≥2(当且仅当a=2b时等号成立),3c a+a3c≥2(当且仅当a=3c时等号成立),3c 2b +2b3c ≥2(当且仅当2b =3c 时等号成立),将上述三式相加得? ????2b a +a 2b +? ????3c a +a 3c +? ????3c 2b +2b 3c ≥6(当且仅当a =2b =3c时等号成立),∴? ????2b a +a 2b -1+? ????3c a +a 3c -1+? ????3c 2b +2b 3c -1≥3(当且仅当a =2b =3c 时等号成立),即2b +3c -a a +a +3c -2b 2b +a +2b -3c 3c ≥3(当且仅当a =2b =3c 时等号成立).4.证明:因为a ,b ,c 为正实数,且a +b +c =1,所以1a -1=1-a a =b +c a ≥2bc a . 同理,1b -1≥2ac b ,1c -1≥2abc . 上述三个不等式两边均为正,相乘得? ????1a -1? ????1b -1? ????1c -1≥2bc a ·2ac b ·2abc =8,当且仅当a =b =c =13时,取等号.5.解:由lg a +lg b =2可得lg ab =2,即ab =100,且a >0,b >0,因此由基本不等式可得a +b ≥2ab =2100 =20,当且仅当a =b =10时,a +b 取到最小值20. 6.解:∵x >0,y >0,2x +3y =6,∴xy =16(2x ·3y )≤16·?2x +3y 22=16·? ????622=32,当且仅当2x =3y ,即x =32,y =1时,xy 取到最大值32. 7.解:∵1x +9y =1,∴x +y =(x +y )·? ??1x +9y=1+9x y +y x +9=y x +9xy +10,又∵x >0,y >0,∴y x +9xy +10≥2y x ·9xy +10=16,当且仅当y x =9xy ,即y =3x 时,等号成立.由y =3x ,1x +9y=1,得x =4,y =12,即当x =4,y =12时,x +y 取得最小值16.8.解析:选C 由已知,可得6? 2a +1b =1,∴2a +b =6? ????2a +1b ·(2a +b )=6? ?5+2a b +2b a ≥6×(5+4)=54,当且仅当2a b =2b a 时等号成立,∴9m ≤54,即m ≤6,故选C.9.[解] (1)设铁栅长为x 米,一堵砖墙长为y 米,而顶部面积为S =xy ,依题意得,40x +2×45y +20xy =3 200,由基本不等式得3 200≥240x ×90y +20xy =120xy +20xy ,=120S +20S .所以S +6S -160≤0,即(S -10)(S +16)≤0,故S ≤10,从而S ≤100,所以S 的最大允许值是100平方米,(2)取得最大值的条件是40x =90y 且xy =100,求得x =15,即铁栅的长是15米.练习:1.解析:选B A 中,当0<="">lg x ≥2不成立;由基本不等式知B 正确;C 中,由对勾函数的单调性,知x +1x 的最小值为52;D 中,由函数f (x )=x -1x 在区间(0,2]上单调递增,知x -1x 的最大值为32,故选B.2.解析:选C 对于A ,当x ≤0时,无意义,故A 不恒成立;对于B ,当x =1时,x 2+1=2x ,故B 不成立;对于D ,当x <0时,不成立.对于C ,x 2+1≥1,∴1x 2+1≤1成立.故选C. 3.解析:选B 因为ab ≤?a +b 22≤? ??422=4,所以1a +1b ≥21ab ≥214=1.4.解析:选A 因为a ,b ,c ,d 成等差数列,则a +d =b +c ,又因为a ,b ,c ,d 均大于0且不相等,所以b +c >2bc ,故a +d2>bc .5.解析:选D 由题意xy =? ????2x +8y xy =2y +8x ≥22y ·8x =8xy ,∴xy ≥8,即xy 有最小值64,等号成立的条件是x =4,y =16.6.解析:∵a >0,b >0,∴ab =1a +1b ≥21ab ,即ab ≥2,当且仅当 a =b =2时取等号,∴a 3+b 3≥2(ab )3≥223=42,当且仅当a =b =2时取等号,则a 3+b 3的最小值为4 2.7.解析:由题意,一年购买600x 次,则总运费与总存储费用之和为600x ×6+4x =4? ??900x +x ≥8900x ·x =240,当且仅当x =30时取等号,故总运费与总存储费用之和最小时x 的值是30.8.解析:因为x >0,所以x +1x ≥2.当且仅当x =1时取等号,所以有xx 2+3x +1=1x +1x +3≤12+3=15,即x x 2+3x +1的最大值为15,故a ≥15. 答案:15,+∞(2)已知x ,y 是正实数,且x +y =4,求1x +3y 的最小值. 9.解:(1)∵x <3,∴x -3<0,∴f (x )=4x -3+x =4x -3+(x -3)+3 =-43-x +(3-x )+3≤-243-x·(3-x )+3=-1,当且仅当43-x=3-x ,即x =1时取等号,∴f (x )的最大值为-1. (2)∵x ,y 是正实数,∴(x +y )? ????1x +3y =4+? ????y x +3x y ≥4+2 3.当且仅当y x =3xy ,即x =2(3-1),y =2(3-3)时取“=”号.又x +y =4,∴1x +3y ≥1+32,故1x +3y 的最小值为1+32.</q<r.<></lg<></bc<>。

高一基本不等式例题

高一基本不等式例题

高一基本不等式例题
1. 解不等式:2x + 3 > 7
解:将不等式两边减去3,得到:2x > 4
再将不等式两边除以2,得到:x > 2
因此,解集为 x > 2。

2. 解不等式:3x - 5 ≤ 10
解:将不等式两边加上5,得到:3x ≤ 15
再将不等式两边除以3,得到:x ≤ 5
因此,解集为x ≤ 5。

3. 解不等式:(x - 1)(x + 2) ≥ 0
解:首先可以通过求解方程 (x - 1)(x + 2) = 0 来找到不等式的关键点:x = 1 或 x = -2。

再通过数线法来表示这个不等式,将数轴分为三个区间:(-∞, -2),(-2, 1),(1, +∞)。

在每个区间上选择一个点进行代入判断,例如选取 x = 0,代入不等式得到 (0 - 1)(0 + 2) = -2 < 0,因此 (0 - 1)(0 + 2) < 0,所以 x 不属于解集。

根据数线法的原理,我们可以得出不等式的解集为 (-∞, -2] ∪ [1, +∞)。

4. 解不等式:|x - 3| < 2
解:根据绝对值的定义,将不等式分为两种情况:
当 x - 3 ≥ 0 时,不等式化简为:x - 3 < 2,解得:x < 5。

当 x - 3 < 0 时,不等式化简为:-(x - 3) < 2,解得:x > 1。

因此,解集为 1 < x < 5。

基本不等式30题解析

基本不等式30题解析

基本不等式30题解析一、多选题1.(23-24高一下·山东济宁·阶段练习)已知正实数,x y 满足2x y xy +=,则()A .16xy ≥B .29x y +≥C .6x y +>D .1831x y+≥-2.(21-22高一下·全国·开学考试)下列不等式一定成立的是()A .()21lg lg 04x x x ⎛⎫+≥> ⎝⎭B .()lgeln 21lg x x x+>>C .()21012x x x ≥>+D .()1121x x <∈+R 【答案】AD【分析】结合对数函数的单调性利用基本不等式判断A ,举反例判断BC ,根据指数函数的有界性判断D.3.(23-24高一上·安徽芜湖·阶段练习)已知,a b 均为实数,则()222a b a b ab+++的可能值为()A .43B .34C .1D .24.(22-23高一下·陕西西安·阶段练习)若62,63a b ==,则下列不等关系正确的有()A2B .114a b+>C .2212a b +>D .14ab <【答案】BCD【分析】根据题意分析可知()1,,0,1a b a b +=∈,结合不等式性质以及基本不等式逐项5.(23-24高三下·河南·阶段练习)已知位于第一象限的点(),a b 在曲线1x y+=上,则()A .()()111a b --=-B .4ab ≥C .49a b +≤D .221223a b +≥6.(23-24高一下·云南·阶段练习)已知p q 、为函数()lg f x x t =-的两个不相同的零点,则下列式子一定正确的是()A .222p q +<B .228p q +>C .33log log 0p q ⋅<D .1pq =由图可知,当0t >时,直线设p q <,则01p q <<<,由由()lg 0f q q t =-=,可得lg 对于A 选项,222p q pq +>=对于B 选项,2222p q p ++>对于C 选项,33log log 1p <=对于D 选项,由上可知1pq =故选:CD.7.(2024高三·全国·专题练习)已知x ≥1,则下列函数的最小值为2的有()A .22x y x =+B .2y =C .13y x x=-D .411y x x =-++【答案】ACD 【详解】因为x ≥1,所以+≥2(当且仅当x =2时取等号);y ==+>2,等号取不到;因为函数y =3x -在[1,+∞)上单调递增,所以3x -≥2;因为x ≥1,所以y =x -1+=x +1+-2≥4-2=2(当且仅当x =1时取等号).故选ACD.8.(2024高三·全国·专题练习)(多选)已知△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c .若b =1,且a 2-c 2=2,则下列结论正确的是()A .a <32B .tan A +3tanC =0C .角B 的最大值为3πD .△ABC 的外接圆面积的最小值为π9.(23-24高一下·重庆·阶段练习)如图所示,在ABC 中,4BC =,且M 点为BC 边的中点,则下列结论正确的有()A .设G 是AM 的中点,则0GA GB GC ++=B .sin sin BAM ACCAM AB∠=∠C .若π3BAC ∠=,则AM的最小值为D .若π6BAM ∠=,则AC 边的最小值为2【详解】对于B ,分别在ABM 和ACM △中由正弦定理可得sin sin sin sin AMB BAMAC CM AMC CAM ⎧=⎪⎪∠∠⎨⎪=⎪∠∠⎩,因为2πBM CM AMB AMC ==⎧⎨∠+∠=⎩,则sinsin AB CAMAC BAM ∠=∠,正确;对于C ,在ABC 中,由余弦定理可得2216b c bc +-=,所以22162b c bc bc +=+≥,则16bc ≤,当且仅当4bc ==时取等,又2AB AC AM +=,所以AM AM ===,当且仅当4b c ==时取等,故AM 最大值为对于D ,在ABM 中,由正弦定理可得242πsin 6R==,故ABM 的外接圆圆O 的半径为2R =,则点A 在优弧 BM上运动,则AC 的最小值为2OC R R -=-=-,正确.故选:BD10.(2024·贵州毕节·二模)已知252100a b ==,则下列式子中正确的有()A .211a b+=B .121a b+=C .8ab >D .29a b +>【答案】BCD 【分析】由指对互化得到25log 100a =,2log 100b =,进而结合对数运算性质和基本不等式的应用即可求解.【详解】11.(2024·江苏·一模)已知,x y ∈R ,且123x =,124y =,则()A .y x >B .1x y +>C .14xy <D <【答案】ACD 【分析】用对数表示x ,y ,利用对数函数的性质、对数的计算、基本不等式等即可逐项计算得到答案.【详解】12.(23-24高一下·安徽宿州·开学考试)若正实数,a b 满足1a b +=,则下列选项中正确的是()A .ab 有最大值14B .122a b->C .14a b+的最小值是10D【答案】AB 【分析】利用均值不等式和“1”的妙用判断ACD ,由12a b b -=-讨论b 的范围判断B 即可.【详解】选项A :因为,a b 为正实数,所以2124a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当12a b ==时等号成立,所以ab 有最大值14,A 说法正确;选项B :由1a b +=可得12a b b -=-,因为,a b 为正实数,所以01b <<,1121b -<-<,所以1212222a b b --<=<,B 说法正确;选项C :由题意可得()14144559a b a b a b a b b a ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当4a bb a =,即13a =,23b =时等号成立,所以14a b +的最小值是9,C 说法错误;选项D :由A 得212a b =++=+≤,当且仅当12a b ==,不存在最小值,D 说法错误;故选:AB13.(23-24高一上·江苏连云港·期末)下列各函数中,最小值为2的是()A .2610y x x =-+B .3y x =-+C .1y xx=+D .2y =14.(23-24高三下·广东·阶段练习)若0a >,0b >,8a b +=,则下列不等式恒成立的是()A 4≤B 4+≥C .2232a b +≥D .1498a b +≥【详解】15.(23-24高一下·河南信阳·阶段练习)已知0x >,0y >,且24x y +=,则()A .ln ln ln2x y +≤B .248x y +<C .1294x y +≥D .324e e x x y-≥16.(23-24高一下·内蒙古鄂尔多斯·开学考试)下列函数中,最小值是4的有()A .()134x f x x=++B .()f x =C .()()31011f x x x x=+<<D .()f x =17.(23-24高三下·重庆大足·阶段练习)设正实数0x >,0y >,且满足3x y xy ++=,则()A .413x y +≥B .9xy ≤C .2218x y +≤D .1123x y +≥18.(2024·贵州贵阳·一模)已知0,0a b >>,且2a b +=,则()A .22a b+≥B .112a b+≥C .22log log 1a b +≤D .222a b +≥【答案】ABCD【分析】首先结合选项变形,再根据基本不等式,即可判断选项.19.(2024·河南信阳·一模)已知正数,m n 满足322m n+=,则()A .12mn ≥B .222m n +≥C .32m n +≥D .2,(0,),()2m n m n mn mn-∃∈+∞≥20.(23-24高一上·广东茂名·期中)下面命题正确的是()A .“1a >”是“11a<”的充分不必要条件B .命题“x ∃∈R ,使20x ax a ++<”是假命题,则实数a 的取值范围为04a ≤≤C .不等式21x>的解集是(),2-∞D .设a +∈R ,则24a a+的最小值为4.21.(23-24高三上·湖南常德·期末)已知0a b >>,则下列不等式一定成立的是()A .11a ba b >++B .2ab a b +C .()ln 2a b ab ++>D .111ln 1ln a b<22.(23-24高一上·江苏无锡·阶段练习)已知0a b >>,则下列不等式可能成立,也可能不成立的是()A .22()(1)a b b +>+B .11b b a a ->-2223.(23-24高一上·浙江·期末)设正实数,a b满足2a b+=,则()A.11a b+的最小值为2B.1122a b a b+++的最大值为23C2D.3ab b-的最大值为1424.(23-24高三下·河北·阶段练习)已知正数,a b 满足()()111a b --=,则下列选项正确的是()A .111a b+=B .25ab b+³C .4a b +≥D .228a b +≥25.(22-23高一上·江苏宿迁·期中)已知3824a b ==,则a ,b 满足的关系是()A .111a b+=B .112a b+=C .()()22112a b -+-<D .()()22112a b -+->26.(23-24高一上·河北石家庄·期末)下列说法正确的是()A .若a b >,则22a b >B .44ππcos sin 882-=27.(23-24高一上·安徽马鞍山·期末)若,m n 均为正数,且满足22m n +=,则()A .mn的最大值为12B .11m n+的最小值为3+C .24m n +的最小值为4D .2mm n+的最小值为1+28.(23-24高三下·云南昆明·阶段练习)已知0a b >>,下列说法正确的是()A .11a b b a+>+B .2b a a b+>C .若0c >,则b b ca a c+<+D .若c d >,则a c b d->-【答案】ABC29.(23-24高三上·海南·期末)已知0,0a b >>,且4a b ab +-=,则()A .3a b +≥B .104ab <≤或94ab ≥C .221(1)(1)2a b -+-≤D .11413a b <+≤或114a b+≥试卷第21页,共21页30.(23-24高一上·浙江杭州·期中)已知0,0a b >>,且1a b +=,则()A .41ab >B .2728a b +≥C .41912a b +≥D 2≤。

高考数学《基本不等式》真题练习含答案

高考数学《基本不等式》真题练习含答案

高考数学《基本不等式》真题练习含答案一、选择题1.函数y =2x +22x 的最小值为( )A .1B .2C .22D .4 答案:C解析:因为2x >0,所以y =2x +22x ≥22x ·22x =22 ,当且仅当2x =22x ,即x =12时取“=”.故选C.2.若a >0,b >0且2a +b =4,则1ab的最小值为( )A .2B .12C .4D .14答案:B解析:∵a >0,b >0,∴4=2a +b ≥22ab (当且仅当2a =b ,即:a =1,b =2时等号成立),∴0<ab ≤2,1ab ≥12 ,∴1ab 的最小值为12.3.下列结论正确的是( )A .当x >0且x ≠1时,lg x +1lg x≥2B .当x ∈⎝⎛⎦⎤0,π2 时,sin x +4sin x的最小值为4 C .当x >0时,x +1x ≥2D .当0<x ≤2时,x -1x无最大值答案:C解析:当x ∈(0,1)时,lg x <0,故A 不成立,对于B 中sin x +4sin x≥4,当且仅当sinx =2时等号成立,等号成立的条件不具备,故B 不正确;D 中y =x -1x在(0,2]上单调递增,故当x =2时,y 有最大值,故D 不正确;又x +1x ≥2x ·1x=2(当且仅当x =1x即x =1时等号成立).故C 正确. 4.下列不等式恒成立的是( )A .a 2+b 2≤2abB .a 2+b 2≥-2abC .a +b ≥2|ab |D .a +b ≥-2|ab | 答案:B解析:对于A ,C ,D ,当a =0,b =-1时,a 2+b 2>2ab ,a +b <2ab ,a +b <-2|ab | ,故A ,C ,D 错误;对于B ,因为a 2+b 2=|a |2+|b |2≥2|a |·|b |=2|ab |≥-2ab ,所以B 正确.故选B.5.若x >0,y >0,x +2y =1,则xy2x +y的最大值为( )A .14B .15C .19D .112答案:C解析:x +2y =1⇒y =1-x 2 ,则xy2x +y =x -x 23x +1 .∵x >0,y >0,x +2y =1,∴0<x <1.设3x +1=t (1<t <4),则x =t -13,原式=-t 2+5t -49t =59 -⎝⎛⎭⎫t 9+49t ≤59 -2481 =19 ,当且仅当t 9 =49t ,即t =2,x =13 ,y =13 时,取等号,则xy 2x +y 的最大值为19 ,故选C.6.已知a >0,b >0,c >0,且a 2+b 2+c 2=4,则ab +bc +ac 的最大值为( )A .8B .4C .2D .1 答案:B解析:∵a 2+b 2≥2ab ,a 2+c 2≥2ac ,b 2+c 2≥2bc ,∴2(a 2+b 2+c 2)≥2(ab +bc +ca ),∴ab +bc +ca ≤a 2+b 2+c 2=4.7.若直线x a +yb=1(a >0,b >0)过点(1,1),则a +b 的最小值等于( )A .2B .3C .4D .5 答案:C解析:因为直线x a +y b =1(a >0,b >0)过点(1,1),所以1a +1b=1.所以a +b =(a +b )·⎝⎛⎭⎫1a +1b =2+a b +b a ≥2+2a b ·b a =4,当且仅当a b =b a 即a =b =2时取“=”,故选C.8.若向量a =(x -1,2),b =(4,y ),a 与b 相互垂直,则9x +3y 的最小值为( ) A .12 B .2 C .3 D .6 答案:D解析:∵a ⊥b ,∴a ·b =(x -1,2)·(4,y )=4(x -1)+2y =0,即2x +y =2, ∴9x +3y =32x +3y ≥232x +y =232 =6,当且仅当2x =y =1时取等号,∴9x +3y 的最小值为6.9.用一段长8 cm 的铁丝围成一个矩形模型,则这个模型面积的最大值为( ) A .9 cm 2 B .16 cm 2 C .4 cm 2 D .5 cm 2 答案:C解析:设矩形模型的长和宽分别为x cm ,y cm ,则x >0,y >0,由题意可得2(x +y )=8,所以x +y =4,所以矩形模型的面积S =xy ≤(x +y )24 =424 =4(cm 2),当且仅当x =y =2时取等号,所以当矩形模型的长和宽都为2 cm 时,面积最大,为4 cm 2.故选C.二、填空题10.已知a ,b ∈R ,且a -3b +6=0,则2a +18b 的最小值为________.答案:14解析:∵a -3b +6=0,∴ a -3b =-6,∴ 2a +18b =2a +2-3b ≥22a ·2-3b =22a -3b=22-6 =14 .当且仅当2a =2-3b ,即a =-3,b =1时,2a +18b 取得最小值为14.11.已知函数f (x )=4x +ax(x >0,a >0)在x =3时取得最小值,则a =________.答案:36解析:∵x >0,a >0,∴4x +a x ≥24x ·ax=4 a ,当且仅当4x =a x ,即:x =a 2 时等号成立,由a2 =3,a =36.12.[2024·山东聊城一中高三测试]已知a >0,b >0,3a +b =2ab ,则a +b 的最小值为________.答案:2+3解析:由3a +b =2ab , 得32b +12a=1, ∴a +b =(a +b )⎝⎛⎭⎫32b +12a =2+b 2a +3a2b ≥2+2b 2a ·3a 2b =2+3 (当且仅当b 2a =3a2b即b =3 a 时等号成立).[能力提升]13.[2024·合肥一中高三测试]若a ,b 都是正数,则⎝⎛⎭⎫1+b a ⎝⎛⎭⎫1+4ab 的最小值为( ) A .7 B .8C .9D .10 答案:C解析:⎝⎛⎭⎫1+b a ⎝⎛⎭⎫1+4a b =5+b a +4ab≥5+2b a ·4a b =9(当且仅当b a =4ab即b =2a 时等号成立).14.(多选)已知a >0,b >0,且a +b =1,则( )A .a 2+b 2≥12B .2a -b >12C .log 2a +log 2b ≥-2D . a + b ≤2 答案:ABD解析:对于选项A ,∵a 2+b 2≥2ab ,∴2(a 2+b 2)≥a 2+b 2+2ab =(a +b )2=1,∴a 2+b 2≥12,正确;对于选项B ,易知0<a <1,0<b <1,∴-1<a -b <1,∴2a -b >2-1=12,正确;对于选项C ,令a =14 ,b =34 ,则log 214 +log 234 =-2+log 234 <-2,错误;对于选项D ,∵2 =2(a +b ) ,∴[2(a +b ) ]2-( a + b )2=a +b -2ab =( a - b )2≥0,∴ a + b ≤2 ,正确.故选ABD.15.(多选)已知a ,b ,c 为正实数,则( )A .若a >b ,则ab <a +c b +cB .若a +b =1,则b 2a +a 2b 的最小值为1C .若a >b >c ,则1a -b +1b -c ≥4a -cD .若a +b +c =3,则a 2+b 2+c 2的最小值为3 答案:BCD解析:因为a >b ,所以a b -a +c b +c =c (a -b )b (b +c ) >0,所以ab >a +c b +c ,选项A 不正确;因为a +b =1,所以b 2a +a 2b =⎝⎛⎭⎫b 2a +a +⎝⎛⎭⎫a 2b +b -(a +b )≥2b +2a -(a +b )=a +b =1,当且仅当a =b =12 时取等号,所以b 2a +a 2b的最小值为1,故选项B 正确;因为a >b >c ,所以a -b >0,b -c >0,a -c >0,所以(a -c )⎝ ⎛⎭⎪⎫1a -b +1b -c =[](a -b )+(b -c )⎝ ⎛⎭⎪⎫1a -b +1b -c =2+b -c a -b +a -b b -c≥2+2b -c a -b ·a -bb -c=4,当且仅当b -c =a -b 时取等号,所以1a -b +1b -c ≥4a -c,故选项C 正确;因为a 2+b 2+c 2=13 [(a 2+b 2+c 2)+(a 2+b 2)+(b 2+c 2)+(c 2+a 2)]≥13(a 2+b 2+c 2+2ab +2bc +2ca )=13 [(a +b )2+2(a +b )c +c 2]=13 (a +b +c )2=3,当且仅当a =b =c =1时等号成立,所以a 2+b 2+c 2的最小值为3,故选项D 正确.16.某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________.答案:30解析:一年的总运费为6×600x =3 600x(万元).一年的总存储费用为4x 万元. 总运费与总存储费用的和为⎝⎛⎭⎫3 600x +4x 万元.因为3 600x +4x ≥2 3 600x ·4x =240,当且仅当3 600x =4x ,即x =30时取得等号,所以当x =30时,一年的总运费与总存储费用之和最小.。

基本不等式练习题(含答案)

基本不等式练习题(含答案)

基本不等式1.函数y =x +1x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞)D .(2,+∞)2.下列不等式:①a 2+1>2a ;②a +b ab≤2;③x 2+1x 2+1≥1,其中正确的个数是( ).A .0B .1C .2D .33.若a >0,b >0,且a +2b -2=0,则ab 的最大值为( ). A.12 B .1 C .2 D .4 4.(2011·重庆)若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .4 5.已知t >0,则函数y =t 2-4t +1t的最小值为________.利用基本不等式求最值【例1】►(1)已知x >0,y >0,且2x +y =1,则1x +1y 的最小值为________; (2)当x >0时,则f (x )=2xx 2+1的最大值为________. 【训练1】 (1)已知x >1,则f (x )=x +1x -1的最小值为________. (2)已知0<x <25,则y =2x -5x 2的最大值为________.(3)若x ,y ∈(0,+∞)且2x +8y -xy =0,则x +y 的最小值为________.利用基本不等式证明不等式【例2】►已知a >0,b >0,c >0,求证:bc a +ca b +abc ≥a +b +c .【训练2】 已知a >0,b >0,c >0,且a +b +c =1. 求证:1a +1b +1c ≥9.利用基本不等式解决恒成立问题【例3】►(2010·山东)若对任意x >0,xx 2+3x +1≤a 恒成立,则a 的取值范围是________.【训练3】 (2011·宿州模拟)已知x >0,y >0,xy =x +2y ,若xy ≥m -2恒成立,则实数m 的最大值是________.考向三 利用基本不等式解实际问题【例3】►某单位建造一间地面面积为12 m 2的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x 不得超过5 m .房屋正面的造价为400元/m 2,房屋侧面的造价为150元/m 2,屋顶和地面的造价费用合计为5 800元,如果墙高为3 m ,且不计房屋背面的费用.当侧面的长度为多少时,总造价最低?(2010·四川)设a >b >0,则a 2+1ab +1a (a -b )的最小值是( ).A .1B .2C .3D .4双基自测1.答案 C2.解析 ①②不正确,③正确,x 2+1x 2+1=(x 2+1)+1x 2+1-1≥2-1=1.答案 B 3.解析 ∵a >0,b >0,a +2b =2,∴a +2b =2≥22ab ,即ab ≤12.答案 A4.解析 当x >2时,x -2>0,f (x )=(x -2)+1x -2+2≥2 (x -2)×1x -2+2=4,当且仅当x -2=1x -2(x >2),即x =3时取等号,即当f (x )取得最小值时,x=3,即a =3.答案 C5.解析 ∵t >0,∴y =t 2-4t +1t =t +1t -4≥2-4=-2,当且仅当t =1时取等号.答案 -2【例1】解析 (1)∵x >0,y >0,且2x +y =1, ∴1x +1y =2x +y x +2x +y y =3+y x +2x y ≥3+2 2.当且仅当y x =2xy 时,取等号.(2)∵x >0,∴f (x )=2x x 2+1=2x +1x≤22=1,当且仅当x =1x ,即x =1时取等号.答案 (1)3+22 (2)1【训练1】.解析 (1)∵x >1,∴f (x )=(x -1)+1x -1+1≥2+1=3 当且仅当x=2时取等号.(2)y =2x -5x 2=x (2-5x )=15·5x ·(2-5x ),∵0<x <25,∴5x <2,2-5x >0,∴5x (2-5x )≤⎝ ⎛⎭⎪⎫5x +2-5x 22=1,∴y ≤15,当且仅当5x =2-5x ,即x =15时,y max =15.(3)由2x +8y -xy =0,得2x +8y =xy ,∴2y +8x =1,∴x +y =(x +y )⎝ ⎛⎭⎪⎫8x +2y =10+8y x +2x y =10+2⎝ ⎛⎭⎪⎫4y x +x y ≥10+2×2×4y x ·x y =18, 当且仅当4y x =xy ,即x =2y 时取等号,又2x +8y -xy =0,∴x =12,y =6,∴当x =12,y =6时,x +y 取最小值18.答案 (1)3 (2)15 (3)18【例2】证明 ∵a >0,b >0,c >0,∴bc a +ca b ≥2 bc a ·ca b =2c ;bc a +abc ≥2bc a ·ab c =2b ;ca b +ab c ≥2 ca b ·ab c =2a .以上三式相加得:2⎝ ⎛⎭⎪⎫bc a +ca b +ab c ≥2(a+b +c ),即bc a +ca b +abc ≥a +b +c .【训练2】 证明 ∵a >0,b >0,c >0,且a +b +c =1,∴1a +1b +1c =a +b +ca +a +b +c b +a +b +c c =3+b a +c a +a b +c b +a c +b c =3+⎝ ⎛⎭⎪⎫b a +a b +⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫c b +b c≥3+2+2+2=9,当且仅当a =b =c =13时,取等号.解析 若对任意x >0,x x 2+3x +1≤a 恒成立,只需求得y =xx 2+3x +1的最大值即可,因为x >0,所以y =x x 2+3x +1=1x +1x +3≤12 x ·1x=15,当且仅当x =1时取等号,所以a 的取值范围是⎣⎢⎡⎭⎪⎫15,+∞答案 ⎣⎢⎡⎭⎪⎫15,+∞【训练3】解析 由x >0,y >0,xy =x +2y ≥2 2xy ,得xy ≥8,于是由m -2≤xy 恒成立,得m -2≤8,m ≤10,故m 的最大值为10.答案 10【例3.解 由题意可得,造价y =3(2x ×150+12x ×400)+5 800=900⎝ ⎛⎭⎪⎫x +16x +5800(0<x ≤5),则y =900⎝ ⎛⎭⎪⎫x +16x +5 800≥900×2x ×16x +5 800=13 000(元),当且仅当x =16x ,即x =4时取等号.故当侧面的长度为4米时,总造价最低.【示例】.正解 ∵a >0,b >0,且a +b =1, ∴1a +2b =⎝ ⎛⎭⎪⎫1a +2b (a +b )=1+2+b a +2a b ≥3+2b a ·2a b =3+2 2.当且仅当⎩⎪⎨⎪⎧a +b =1,b a =2a b,即⎩⎨⎧a =2-1,b =2-2时,1a +2b 的最小值为3+2 2.【试一试】尝试解答] a 2+1ab +1a (a -b )=a 2-ab +ab +1ab +1a (a -b )=a (a -b )+1a (a -b )+ab +1ab ≥2 a (a -b )·1a (a -b )+2 ab ·1ab =2+2=4.当且仅当a (a -b )=1a (a -b )且ab =1ab ,即a =2b 时,等号成立.答案 D。

(完整版)基本不等式及其应用知识梳理及典型练习题(含标准答案)

(完整版)基本不等式及其应用知识梳理及典型练习题(含标准答案)

基本不等式及其应用1.基本不等式若a>0,,b>0,则a +b 2≥ab ,当且仅当时取“=”.这一定理叙述为:两个正数的算术平均数它们的几何平均数.注:运用均值不等式求最值时,必须注意以下三点:(1)各项或各因式均正;(一正)(2)和或积为定值;(二定)(3)等号成立的条件存在:含变数的各项均相等,取得最值.(三相等)2.常用不等式(1)a 2+b 2≥ab 2(a ,b ∈R ).2a b +()0,>b a 注:不等式a 2+b 2≥2ab 和2b a +≥ab 它们成立的条件不同,前者只要求a 、b 都是实数,而后者要求a 、b 都是正数.其等价变形:ab≤(2b a +)2. (3)ab ≤22⎪⎭⎫ ⎝⎛+b a (a ,b ∈R ). (4)b a +a b ≥2(a ,b 同号且不为0). (5)22⎪⎭⎫ ⎝⎛+b a ≤a 2+b 22(a ,b ∈R ). (6)ba ab b a b a 1122222+≥≥+≥+()0,>b a (7)abc ≤。

(),,0a b c >(8)≥;(),,0a b c>3.利用基本不等式求最大、最小值问题(1)求最小值:a>0,b>0,当ab为定值时,a+b,a2+b2有,即a+b≥,a2+b2≥.(2)求最大值:a>0,b>0,当a+b为定值时,ab有最大值,即;或a2+b2为定值时,ab有最大值(a>0,b>0),即.设a,b∈R,且a+b=3,则2a+2b的最小值是()A.6B.42C.22D.26解:因为2a>0,2b>0,由基本不等式得2a+2b≥22a·2b=22a+b=42,当且仅当a=b=32时取等号,故选B.若a>0,b>0,且a+2b-2=0,则ab的最大值为()A.12B.1 C.2 D.4解:∵a>0,b>0,a+2b=2,∴a+2b=2≥22ab,即ab≤12.当且仅当a=1,b=12时等号成立.故选A.小王从甲地到乙地往返的时速分别为a和b(a<b),其全程的平均时速为v,则()A.a<v<abB.v=abC.ab<v<a+b2 D.v=a+b2解:设甲、乙两地之间的距离为s.∵a<b,∴v=2ssa+sb=2aba+b<2ab2ab=ab.又v -a =2ab a +b -a =ab -a 2a +b >a 2-a 2a +b=0,∴v >a.故选A. (2014·上海)若实数x ,y 满足xy =1,则x 2+2y 2的最小值为________.解:由xy =1得x 2+2y 2=x 2+2x 2≥22,当且仅当x =±42时等号成立.故填22.点(m ,n )在直线x +y =1位于第一象限内的图象上运动,则log 2m +log 2n 的最大值是________.解:由条件知,m >0,n >0,m +n =1,所以mn ≤⎝ ⎛⎭⎪⎫m +n 22=14, 当且仅当m =n =12时取等号,∴log 2m +log 2n =log 2mn ≤log 214=-2,故填-2.类型一 利用基本不等式求最值(1)求函数y =(x >-1)的值域.解:∵x >-1,∴x +1>0,令m =x +1,则m >0,且y ==m ++5≥2+5=9,当且仅当m =2时取等号,故y min =9.又当m →+∞或m →0时,y →+∞,故原函数的值域是[9,+∞).(2)下列不等式一定成立的是( )A.lg>lg x (x >0)B.sin x +≥2(x ≠k π,k ∈Z )C.x 2+1≥2||x (x ∈R )D.1x 2+1>1(x ∈R ) 解:A 中,x 2+14≥x (x >0),当x =12时,x 2+14=x.B 中,sin x +1sin x ≥2(sin x ∈(0,1]);sin x+1sin x≤-2(sin x∈[-1,0)).C中,x2-2|x|+1=(|x|-1)2≥0(x∈R).D中,1x2+1∈(0,1](x∈R).故C一定成立,故选C.点拨:这里(1)是形如f(x)=ax2+bx+cx+d的最值问题,只要分母x+d>0,都可以将f(x)转化为f(x)=a(x+d)+ex+d+h(这里ae>0;若ae<0,可以直接利用单调性等方法求最值),再利用基本不等式求其最值.(2)牢记基本不等式使用条件——一正、二定、三相等,特别注意等号成立条件要存在.(1)已知t>0,则函数f(t)=t2-4t+1t的最小值为.解:∵t>0,∴f(t)=t2-4t+1t=t+1t-4≥-2,当且仅当t=1时,f(t)min=-2,故填-2.(2)已知x>0,y>0,且2x+8y-xy=0,求:(Ⅰ)xy的最小值;(Ⅱ)x+y的最小值.解:(Ⅰ)由2x+8y-xy=0,得+=1,又x>0,y>0,则1=+≥2=,得xy≥64,当且仅当x=4y,即x=16,y=4时等号成立.(Ⅱ)解法一:由2x+8y-xy=0,得x=,∵x>0,∴y>2,则x+y=y+=(y-2)++10≥18,当且仅当y-2=,即y=6,x=12时等号成立.解法二:由2x+8y-xy=0,得+=1,则x+y=·(x+y)=10++≥10+2=18,当且仅当y=6,x=12时等号成立.类型二利用基本不等式求有关参数范围若关于x的不等式(1+k2)x≤k4+4的解集是M,则对任意实常数k,总有()A.2∈M,0∈MB.2∉M,0∉MC.2∈M,0∉MD.2∉M,0∈M解法一:求出不等式的解集:(1+k2)x≤k4+4⇒x≤=(k2+1)+-2⇒x≤=2-2(当且仅当k2=-1时取等号).解法二(代入法):将x=2,x=0分别代入不等式中,判断关于k的不等式解集是否为R.故选A.点拨:一般地,对含参的不等式求范围问题通常采用分离变量转化为恒成立问题,对于“恒成立”的不等式,一般的解题方法是先分离然后求函数的最值.另外,要记住几个常见的有关不等式恒成立的等价命题:(1)a>f(x)恒成立⇔a>f(x)max;(2)a<f(x)恒成立⇔a<f(x)min;(3)a>f(x)有解⇔a>f(x)min;(4)a<f(x)有解⇔a<f(x)max.已知函数f(x)=e x+e-x,其中e是自然对数的底数.若关于x的不等式mf(x)≤e-x+m-1在(0,+∞)上恒成立,求实数m的取值范围.解:由条件知m(e x+e-x-1)≤e-x-1在(0,+∞)上恒成立.令t=e x(x>0),则t>1,且m≤-t-1t2-t+1=-1t-1+1t-1+1对任意t>1成立.∵t-1+1t-1+1≥2(t-1)·1t-1+1=3,∴-1t -1+1t -1+1≥-13,当且仅当t =2,即x =ln2时等号成立.故实数m 的取值范围是⎝ ⎛⎦⎥⎤-∞,-13. 类型三 利用基本不等式解决实际问题围建一个面积为360 m 2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2 m 的进出口,如图所示,已知旧墙的维修费用为45元/m ,新墙的造价为180元/m ,设利用的旧墙的长度为x (单位:元),修建此矩形场地围墙的总费用为y (单位:元).(1)将y 表示为x 的函数;(2)试确定x ,使修建此矩形场地围墙的总费用最小,并求出最小总费用. 解:(1)如图,设矩形的另一边长为a m ,则y =45x +180(x -2)+180·2a =225x +360a -360.由已知xa =360,得a =360x ,所以y =225x +3602x -360(x ≥2).(2)∵x ≥0,∴225x +3602x ≥2225×3602=10800,∴y =225x +3602x -360≥10440,当且仅当225x =3602x ,即x =24时等号成立.答:当x =24 m 时,修建围墙的总费用最小,最小总费用是10440元.如图,为处理含有某种杂质的污水,要制造一个底宽2 m 的无盖长方体的沉淀箱,污水从A孔流入,经沉淀后从B孔排出,设箱体的长度为am,高度为b m,已知排出的水中该杂质的质量分数与a,b的乘积ab成反比.现有制箱材料60 m2,问a,b各为多少m时,经沉淀后排出的水中该杂质的质量分数最小(A,B孔面积忽略不计).解法一:设y为排出的水中杂质的质量分数,根据题意可知:y=kab,其中k是比例系数且k>0.依题意要使y最小,只需ab最大.由题设得:4b+2ab+2a≤60(a>0,b>0),即a+2b≤30-ab(a>0,b>0).∵a+2b≥22ab,∴22·ab+ab≤30,得0<ab≤32.当且仅当a=2b时取“=”号,ab最大值为18,此时得a=6,b=3.故当a=6 m,b=3 m时经沉淀后排出的水中杂质最少.解法二:同解法一得b≤30-aa+2,代入y=kab求解.1.若a>1,则a+的最小值是()A.2B.aC.3D.解:∵a>1,∴a+=a-1++1≥2+1=2+1=3,当a=2时等号成立.故选C.2.设a,b∈R,a≠b,且a+b=2,则下列各式正确的是()A.ab<1<a2+b22 B.ab<1≤a2+b22 C.1<ab<a2+b22 D.ab≤a2+b22≤1解:运用不等式ab ≤⎝ ⎛⎭⎪⎫a +b 22⇒ab ≤1以及(a +b )2≤2(a 2+b 2)⇒2≤a 2+b 2(由于a ≠b ,所以不能取等号)得,ab <1<a 2+b 22,故选A.3.函数f (x )=在(-∞,2)上的最小值是( )A.0B.1C.2D.3解:当x <2时,2-x >0,因此f (x )==+(2-x )≥2·=2,当且仅当=2-x 时上式取等号.而此方程有解x =1∈(-∞,2),因此f (x )在(-∞,2)上的最小值为2,故选C.4.()要制作一个容积为4 m 3,高为1 m 的无盖长方体容器,已知该容器的底面造价是每平方M20元,侧面造价是每平方M10元,则该容器的最低总造价是( )A.80元B.120元C.160元D.240元解:假设底面的长、宽分别为x m , m ,由条件知该容器的最低总造价为y =80+20x +≥160,当且仅当底面边长x =2时,总造价最低,且为160元.故选C.5.下列不等式中正确的是( )A.若a ,b ∈R ,则b a +a b ≥2b a ·ab =2B.若x ,y 都是正数,则lg x +lg y ≥2lg x ·lg yC.若x <0,则x +4x ≥-2x ·4x =-4D.若x ≤0,则2x +2-x ≥22x ·2-x =2解:对于A ,a 与b 可能异号,A 错;对于B ,lg x 与lg y 可能是负数,B 错;对于C ,应是x +4x =-⎣⎢⎡⎦⎥⎤(-x )+4-x ≤-2(-x )·4-x=-4,C 错;对于D ,若x ≤0,则2x +2-x ≥22x ·2-x =2成立(x =0时取等号).故选D.6.()若log 4(3a +4b )=log 2,则a +b 的最小值是( )A.6+2B.7+2C.6+4D.7+4解:因为log4(3a+4b)=log2,所以log4(3a+4b)=log4(ab),即3a+4b=ab,且即a>0,b>0,所以+=1(a>0,b>0),a+b=(a+b)=7++≥7+2=7+4,当且仅当=时取等号.故选D.7.若对任意x>0,≤a恒成立,则a的取值范围是.解:因为x>0,所以x+≥2(当且仅当x=1时取等号),所以有=≤=,即的最大值为,故填a≥.8.()设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx-y-m +3=0交于点P(x,y),则|P A|·|PB|的最大值是________.解:易知定点A(0,0),B(1,3).且无论m取何值,两直线垂直.所以无论P与A,B重合与否,均有|P A|2+|PB|2=|AB|2=10(P在以AB为直径的圆上).所以|P A|·|PB|≤12(|P A|2+|PB|2)=5.当且仅当|P A|=|PB|=5时,等号成立.故填5.9.(1)已知0<x<,求x(4-3x)的最大值;(2)点(x,y)在直线x+2y=3上移动,求2x+4y的最小值.解:(1)已知0<x<,∴0<3x<4.∴x(4-3x)=(3x)(4-3x)≤=,当且仅当3x=4-3x,即x=时“=”成立.∴当x=时,x(4-3x)取最大值为.(2)已知点(x,y)在直线x+2y=3上移动,所以x+2y=3.∴2x+4y≥2=2=2=4.当且仅当即x=,y=时“=”成立.∴当x=,y=时,2x+4y取最小值为4.10.已知a>0,b>0,且2a+b=1,求S=2-4a2-b2的最大值.解:∵a>0,b>0,2a+b=1,∴4a2+b2=(2a+b)2-4ab=1-4ab.且1=2a+b≥2,即≤,ab≤,∴S=2-4a2-b2=2-(1-4ab)=2+4ab-1≤.当且仅当a=,b=时,等号成立.11.如图,动物园要围成相同的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.(1)现有可围36 m长网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大?(2)若使每间虎笼面积为24 m2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋总长度最小?解:(1)设每间虎笼长为x m,宽为y m,则由条件,知4x+6y=36,即2x+3y=18.设每间虎笼的面积为S,则S=xy.解法一:由于2x+3y≥2=2,∴2≤18,得xy≤,即S≤.当且仅当2x=3y时等号成立.由解得故每间虎笼长为4.5 m,宽为3 m时,可使每间虎笼面积最大.解法二:由2x+3y=18,得x=9-y.∵x>0,∴0<y<6.S=xy=y=(6-y)y.∵0<y<6,∴6-y>0.∴S≤=.当且仅当6-y=y,即y=3时,等号成立,此时x=4.5.故每间虎笼长4.5 m,宽3 m时,可使每间虎笼面积最大. (2)由条件知S=xy=24.设钢筋网总长为l,则l=4x+6y.解法一:∵2x+3y≥2=2=24,∴l=4x+6y=2(2x+3y)≥48,当且仅当2x=3y时,等号成立.由解得故每间虎笼长6 m,宽4 m时,可使钢筋网总长度最小.解法二:由xy=24,得x=.∴l=4x+6y=+6y=6≥6×2=48,当且仅当=y,即y=4时,等号成立,此时x=6.故每间虎笼长6 m,宽4 m时,可使钢筋网总长度最小.11/ 11。

基本不等式典型例题

基本不等式典型例题

基本不等式典型例题1、 两个不等式:()222,a b ab a b R +≥∈当且仅当a b =时,等号成立;()0,02a b a b +≤>>当且仅当a b =时,等号成立。

2、 常用变形:())10,0a b a b +≥>>()()22,2a b ab a b R +⎛⎫≥∈ ⎪⎝⎭())230,02ab a b a b a b +≤≤>>+ 例1、1.若实数满足2a b +=,求33a b +的最小值2.若44log log 2x y +=,求11x y+的最小值例2、 已知x >0,y >0,且x 1+y 9=1,求x+y 的最小值. 解:利用“1的代换”, ∵x 1+y 9=1,∴x+y=(x+y)·(x 1+y 9)=10+yx x y 9+.∵x >0,y >0, ∴y x x y 9+≥2yx x y 9∙=6.当且仅当y x x y 9=,即y=3x 时,取等号. 又x 1+y 9=1,∴x=4,y=12.∴当x=4,y=12时,x+y 取得最小值16. 变式训练1.已知正数a,b,x,y 满足a+b=10,yb x a +=1,x+y 的最小值为18,求a,b 的值2.已知,x y 为正实数,且21x y +=,则21x y +的最小值为例3、已知0<x <31,求函数y=x(1-3x)的最大值; 解:∵0<x <31,∴1-3x >0. ∴y=x(1-3x)= 31·3x(1-3x)≤31[2)31(3x x -+]2=121,当且仅当3x=1-3x ,即x=61时,等号成立.∴x=61时,函数取得最大值121. 变式训练1.当x >-1时,求f(x)=x+11+x 的最小值. 2.当04x <<时,求()82y x x =-的最大值3.求函数y=133224+++x x x 的最小值.例4、求f(x)=3+lgx+xlg 4的最小值(0<x <1) 解:∵0<x <1,∴lgx <0,x lg 4<0.∴-x lg 4>0.∴(-lgx)+(-x lg 4)≥2)lg 4)(lg (x x --=4. ∴lgx+x lg 4≤-4.∴f(x)=3+lgx+x lg 4≤3-4=-1.当且仅当lgx=xlg 4,即x=1001时取得等号. 则有f(x)=3+lgx+xlg 4 (0<x <1)的最小值为-1. 变式训练1.已知x <45,求函数y=4x-2+541-x 的最大值. 2.求函数y=x+x1的值域例5、1.已知,,a b c 为不全相等的正实数,求证:a b c ++> 2.已知0,0,0a b ab >>>,求证()224a b a b b a ⎛⎫++≥ ⎪⎝⎭ 3.设(),,0,a b c ∈∞,且1a b c ++=,求证1111118a b c ⎛⎫⎛⎫⎛⎫---≥⎪⎪⎪⎝⎭⎝⎭⎝⎭1.若,且,则下列不等式中,恒成立的是( ). A. B. C. D.2.已知,则的最小值是( ). A.2 B. C.4 D.53.下列结论正确的是( ).A.当且时,;B.当时,;C.当时,的最小值为2;D.当时,的最小值为24.设,若是与的等比中项,则的最小值为( ).A.8B.4C.1D.5.224,x y +=则xy 的最大值是( ) A .12B. 1C. 2D. 4 6.若0a <,则1a a +( ) A .有最小值2 B. 有最大值2C. 有最小值-2D. 有最大值-2。

基本不等式的题目

基本不等式的题目

基本不等式的题目1. 求解不等式|x+2| > 5。

解:首先,去掉绝对值,得到两个不等式,x+2 > 5 或 x+2 < -5。

解第一个不等式:x > 5 - 2 = 3。

解第二个不等式:x < -5 - 2 = -7。

综合来看,解集为x < -7 或 x > 3。

2. 求解不等式3x+4 ≤ 2x-3。

解:首先,将不等式中的项移到一边,得到3x-2x ≤ -3-4,即x ≤ -7。

3. 求解不等式2x+5 ≥ 3(x-4)。

解:首先,将不等式中的项展开,得到2x+5 ≥ 3x-12。

接下来,将x的项移到一边,得到2x-3x ≥ -12-5,即-x ≥ -17。

由于-x的系数是负数,所以将不等号翻转,得到x ≤ 17。

4. 求解不等式|2x-1| ≤ 3。

解:首先,去掉绝对值,得到两个不等式,2x-1 ≤ 3 或 2x-1 ≥ -3。

解第一个不等式:2x ≤ 3+1 = 4,即x ≤ 2。

解第二个不等式:2x ≥ -3+1 = -2,即x ≥ -1。

综合来看,解集为 -1 ≤ x ≤ 2。

5. 求解不等式x²-7x+10 > 0。

解:首先,将不等式中的二次项系数和常数项用因式分解的方式表示,得到(x-2)(x-5) > 0。

接下来,考虑两个因子相乘大于零的情况:当 x-2 > 0 且 x-5 > 0 时,即 x > 2 且 x > 5,但这个条件不成立;当 x-2 < 0 且 x-5 < 0 时,即 x < 2 且 x < 5,这时不等式成立;综合来看,解集为 2 < x < 5。

以上是五道基本不等式的题目解答,希望对你有帮助!。

新课标必修5数学基本不等式经典例题(含知识点和例题详细解析)范文

新课标必修5数学基本不等式经典例题(含知识点和例题详细解析)范文

应用一:求最值 例:求下列函数的值域•••值域为(—a, — 2] U [2 , + a)解题技巧技巧一:凑项例 已知x,求函数y =4x-2的最大值。

4 4x —5解:因4x -5 ::: 0 ,所以首先要“调整”符号,又 (4x -2) 要进行拆、凑项,*51r 1 ) /x5-4x 0, y=4x-2- 5-4x -44x —5I5—4x 丿当且仅当5-4x -,即X =1时,上式等号成立,故当X =1时,y max=1。

5-4x技巧二:凑系数例:当 -■' - 1时,求y =x(8 -2x)的最大值。

解析:由 匚二U 》知,。

‘一工、-,利用均值不等式求最值,必须和为定值或积为定值, 此题为两个式子积的形式,但其和不是定值。

注意到2x • (8 - 2x)二8为定值,故只需将 y=x(8-2x)凑上一个系数即可。

y == l[2x * (8 — 2打]—店卩=8当,即x = 2时取等号 当x = 2时,y = x(8-2x)的最大值为8。

解: (1)y = 3x 2 值域为[6 , + a)⑵当x > 0时, 当x V 0时, 1y = x +_ =x3—23 = 11+2x1°)戸3x 2 +示1 x • =2 ;1y = x + _ >2x 1x • = — 21(—x — _ ) < — 2x不是常数,所以对4X-23变式:设0 ::: x ,求函数y =4x(3 -2x)的最大值。

2解:c 3 _ _ -•/ 0 ::: X .飞-2X 0 ••• y2 y= 4x(3-2x) =2 2x(3-2x)<22x 3「2x当且仅当2x=3—2x,即x=3^f0,- i时等号成立。

4 < 2丿技巧三:分离技巧四:换元2,「亠x+7x十10 “心亠例:求y (x • -1)的值域。

x +1解析一:本题看似无法运用均值不等式,不妨将分子配方凑出含有(X + 1 )的项,再将其分离。

基本不等式典型例题

基本不等式典型例题

基本不等式典型例题一、利用基本不等式求最值1. 例1:已知x > 0,求y = x+(1)/(x)的最小值。

- 解析:对于基本不等式a + b≥slant2√(ab)(a,b>0,当且仅当a = b时等号成立)。

- 在y=x+(1)/(x)中,a = x,b=(1)/(x),因为x>0,所以(1)/(x)>0。

- 根据基本不等式y=x+(1)/(x)≥slant2√(x×frac{1){x}} = 2。

- 当且仅当x=(1)/(x)(x > 0),即x = 1时等号成立。

所以y的最小值为2。

2. 例2:已知x <0,求y=x+(1)/(x)的最大值。

- 解析:因为x<0,则-x>0。

- 此时y=x+(1)/(x)=-<=ft[(-x)+(1)/(-x)]。

- 对于-x和(1)/(-x),根据基本不等式a + b≥slant2√(ab)(a,b>0),这里a=-x,b = (1)/(-x),则(-x)+(1)/(-x)≥slant2√((-x)×frac{1){-x}}=2。

- 所以y =-<=ft[(-x)+(1)/(-x)]≤slant - 2,当且仅当-x=(1)/(-x),即x=-1时等号成立。

所以y的最大值为-2。

二、基本不等式在实际问题中的应用1. 例3:用篱笆围一个面积为100m^2的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短?最短的篱笆是多少?- 解析:设矩形菜园的长为x m,宽为y m,则xy = 100。

- 篱笆的周长C=2(x + y)。

- 根据基本不等式x + y≥slant2√(xy),因为xy = 100,所以x +y≥slant2√(100)=20。

- 则C = 2(x + y)≥slant40。

- 当且仅当x=y时等号成立,由xy = 100且x=y,可得x=y = 10。

专题复习:高中数学必修5基本不等式经典例题(学生用)

专题复习:高中数学必修5基本不等式经典例题(学生用)

基本不等式应用一:求最值例:求下列函数的值域(1)y =3x 2+12x 2(2)y =x +1x解题技巧技巧一:凑项例已知54x ,求函数14245y x x 的最大值。

技巧二:凑系数例:当时,求(82)y x x 的最大值。

变式:设230x ,求函数)23(4x x y 的最大值。

技巧三:分离换元例:求2710(1)1x x y x x 的值域。

技巧五:在应用最值定理求最值时,若遇等号取不到的情况,结合函数()af x x x 的单调性。

例:求函数2254x y x 的值域。

技巧六:整体代换(“1”的应用)多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。

例:已知0,0x y ,且191x y ,求x y 的最小值。

技巧七例:已知x ,y 为正实数,且x 2+y 22=1,求x 1+y 2的最大值.技巧八:已知a ,b 为正实数,2b +ab +a =30,求函数y =1ab 的最小值.技巧九、取平方例: 求函数152152()22y x x x 的最大值。

应用二:利用均值不等式证明不等式例:已知a 、b 、c R ,且1a b c 。

求证:1111118a b c 应用三:均值不等式与恒成立问题例:已知0,0x y 且191x y ,求使不等式x y m 恒成立的实数m 的取值范围。

应用四:均值定理在比较大小中的应用:例:若)2lg(),lg (lg 21,lg lg ,1b aR b a Q b a P b a ,则R Q P ,,的大小关系是 .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修五典题精讲典题精讲例1(1)已知0<x <31,求函数y=x(1-3x)的最大值; (2)求函数y=x+x1的值域. 思路分析:(1)由极值定理,可知需构造某个和为定值,可考虑把括号内外x 的系数变成互为相反数;(2)中,未指出x >0,因而不能直接使用基本不等式,需分x >0与x <0讨论.(1)解法一:∵0<x <31,∴1-3x >0. ∴y=x(1-3x)= 31·3x(1-3x)≤31[2)31(3x x -+]2=121,当且仅当3x=1-3x ,即x=61时,等号成立.∴x=61时,函数取得最大值121. 解法二:∵0<x <31,∴31-x >0. ∴y=x(1-3x)=3x(31-x)≤3[231x x -+]2=121,当且仅当x=31-x,即x=61时,等号成立. ∴x=61时,函数取得最大值121. (2)解:当x >0时,由基本不等式,得y=x+x 1≥2xx 1∙=2,当且仅当x=1时,等号成立. 当x <0时,y=x+x 1=-[(-x)+)(1x -]. ∵-x >0,∴(-x)+)(1x -≥2,当且仅当-x=x -1,即x=-1时,等号成立. ∴y=x+x1≤-2. 综上,可知函数y=x+x 1的值域为(-∞,-2]∪[2,+∞). 绿色通道:利用基本不等式求积的最大值,关键是构造和为定值,为使基本不等式成立创造条件,同时要注意等号成立的条件是否具备.变式训练1当x >-1时,求f(x)=x+11+x 的最小值. 思路分析:x >-1⇒x+1>0,变x=x+1-1时x+1与11+x 的积为常数.解:∵x >-1,∴x+1>0.∴f(x)=x+11+x =x+1+11+x -1≥2)1(1)1(+∙+x x -1=1. 当且仅当x+1=11+x ,即x=0时,取得等号. ∴f(x)min =1.变式训练2求函数y=133224+++x x x 的最小值. 思路分析:从函数解析式的结构来看,它与基本不等式结构相差太大,而且利用前面求最值的方法不易求解,事实上,我们可以把分母视作一个整体,用它来表示分子,原式即可展开. 解:令t=x 2+1,则t≥1且x 2=t-1.∴y=133224+++x x x =1113)1(3)1(22++=++=+-+-t t t t t t t t . ∵t≥1,∴t+t 1≥2tt 1∙=2,当且仅当t=t 1,即t=1时,等号成立. ∴当x=0时,函数取得最小值3.例2已知x >0,y >0,且x 1+y9=1,求x+y 的最小值. 思路分析:要求x+y 的最小值,根据极值定理,应构建某个积为定值,这需要对条件进行必要的变形,下面给出三种解法,请仔细体会.解法一:利用“1的代换”, ∵x 1+y9=1, ∴x+y=(x+y)·(x 1+y 9)=10+yx x y 9+. ∵x >0,y >0,∴y x x y 9+≥2yx x y 9∙=6. 当且仅当yx x y 9=,即y=3x 时,取等号.又x 1+y9=1,∴x=4,y=12. ∴当x=4,y=12时,x+y 取得最小值16. 解法二:由x 1+y 9=1,得x=9-y y . ∵x >0,y >0,∴y >9. x+y=9-y y +y=y+999-+-y y =y+99-y +1=(y-9)+99-y +10. ∵y >9,∴y-9>0. ∴999-+-y y ≥299)9(-∙-y y =6. 当且仅当y-9=99-y ,即y=12时,取得等号,此时x=4.∴当x=4,y=12时,x+y 取得最小值16.解法三:由x 1+y9=1,得y+9x=xy, ∴(x-1)(y-9)=9.∴x+y=10+(x-1)+(y-9)≥10+2)9)(1(--y x =16,当且仅当x-1=y-9时取得等号.又x 1+y9=1, ∴x=4,y=12.∴当x=4,y=12时,x+y 取得最小值16.绿色通道:本题给出了三种解法,都用到了基本不等式,且都对式子进行了变形,配凑出基本不等式满足的条件,这是经常需要使用的方法,要学会观察,学会变形,另外解法二,通过消元,化二元问题为一元问题,要注意根据被代换的变量的范围对另外一个变量的范围的影响.黑色陷阱:本题容易犯这样的错误:x 1+y 9≥2xy 9①,即xy6≤1,∴xy ≥6. ∴x+y≥2xy ≥2×6=12②.∴x+y 的最小值是12.产生不同结果的原因是不等式①等号成立的条件是x 1=y9,不等式②等号成立的条件是x=y.在同一个题目中连续运用了两次基本不等式,但是两个基本不等式等号成立的条件不同,会导致错误结论.变式训练已知正数a,b,x,y 满足a+b=10,y b x a +=1,x+y 的最小值为18,求a,b 的值. 思路分析:本题属于“1”的代换问题.解:x+y=(x+y)(y b x a +)=a+x ay y bx ++b=10+xay y bx +. ∵x,y >0,a,b >0,∴x+y≥10+2ab =18,即ab =4.又a+b=10,∴⎩⎨⎧==8,2b a 或⎩⎨⎧==.2,8b a 例3求f(x)=3+lgx+x lg 4的最小值(0<x <1). 思路分析:∵0<x <1,∴lgx <0,xlg 4<0不满足各项必须是正数这一条件,不能直接应用基本不等式,正确的处理方法是加上负号变正数.解:∵0<x <1,∴lgx <0,x lg 4<0.∴-xlg 4>0. ∴(-lgx)+(-x lg 4)≥2)lg 4)(lg (xx --=4. ∴lgx+x lg 4≤-4.∴f(x)=3+lgx+xlg 4≤3-4=-1. 当且仅当lgx=xlg 4,即x=1001时取得等号.则有f(x)=3+lgx+xlg 4 (0<x <1)的最小值为-1. 黑色陷阱:本题容易忽略0<x <1这一个条件.变式训练1已知x <45,求函数y=4x-2+541-x 的最大值. 思路分析:求和的最值,应凑积为定值.要注意条件x <45,则4x-5<0. 解:∵x <45,∴4x-5<0. y=4x-5+541-x +3=-[(5-4x)+x 451-]+3 ≤-2x x 451)45(-∙-+3=-2+3=1. 当且仅当5-4x=x451-,即x=1时等号成立. 所以当x=1时,函数的最大值是1.变式训练2当x <23时,求函数y=x+328-x 的最大值. 思路分析:本题是求两个式子和的最大值,但是x·328-x 并不是定值,也不能保证是正值,所以,必须使用一些技巧对原式变形.可以变为y=21(2x-3)+328-x +23=-(x x 238223-+-)+23,再求最值.解:y=21(2x-3)+328-x +23=-(x x 238223-+-)+23, ∵当x <23时,3-2x >0, ∴x x 238223-+-≥xx 2382232-∙-=4,当且仅当x x 238223-=-,即x=-21时取等号. 于是y≤-4+23=25-,故函数有最大值25-. 例4如图3-4-1,动物园要围成相同的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.图3-4-1(1)现有可围36 m 长网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大?(2)若使每间虎笼面积为24 m 2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋总长度最小?思路分析:设每间虎笼长为x m ,宽为y m ,则(1)是在4x+6y=36的前提下求xy 的最大值;而(2)则是在xy=24的前提下来求4x+6y 的最小值.解:(1)设每间虎笼长为x m ,宽为y m ,则由条件,知4x+6y=36,即2x+3y=18.设每间虎笼的面积为S ,则S=xy.方法一:由于2x+3y≥2y x 32⨯=2xy 6,∴2xy 6≤18,得xy≤227,即S≤227. 当且仅当2x=3y 时等号成立.由⎩⎨⎧=+=,1832,22y x y x 解得⎩⎨⎧==.3,5.4y x 故每间虎笼长为4.5 m ,宽为3 m 时,可使面积最大.方法二:由2x+3y=18,得x=9-23y. ∵x >0,∴0<y <6. S=xy=(9-23y)y=23 (6-y)y. ∵0<y <6,∴6-y >0.∴S≤23[2)6(y y +-]2=227. 当且仅当6-y=y,即y=3时,等号成立,此时x=4.5.故每间虎笼长4.5 m,宽3 m 时,可使面积最大.(2)由条件知S=xy=24.设钢筋网总长为l,则l=4x+6y.方法一:∵2x+3y≥2y x 32∙=2xy 6=24,∴l=4x+6y=2(2x+3y)≥48,当且仅当2x=3y 时,等号成立.由⎩⎨⎧==,24,32xy y x 解得⎩⎨⎧==.4,6y x 故每间虎笼长6 m ,宽4 m 时,可使钢筋网总长最小. 方法二:由xy=24,得x=y 24. ∴l=4x+6y=y 96+6y=6(y 16+y)≥6×2y y⨯16=48,当且仅当y 16=y ,即y=4时,等号成立,此时x=6.故每间虎笼长6 m,宽4 m 时,可使钢筋总长最小.绿色通道:在使用基本不等式求函数的最大值或最小值时,要注意:(1)x,y 都是正数;(2)积xy (或x+y )为定值;(3)x 与y 必须能够相等,特别情况下,还要根据条件构造满足上述三个条件的结论.变式训练某工厂拟建一座平面图为矩形且面积为200 平方米的三级污水处理池(平面图如图3-4-2所示),由于地形限制,长、宽都不能超过16米,如果池外周壁建造单价为每米400元,中间两道隔墙建造单价为每米248元,池底建造单价为每平方米80元,池壁的厚度忽略不计,试设计污水处理池的长和宽,使总造价最低,并求出最低造价.图3-4-2思路分析:在利用均值不等式求最值时,必须考虑等号成立的条件,若等号不能成立,通常要用函数的单调性进行求解.解:设污水处理池的长为x 米,则宽为x 200米(0<x≤16,0<x200≤16),∴12.5≤x≤16. 于是总造价Q(x)=400(2x+2×x 200)+248×2×x 200+80×200. =800(x+x 324)+16 000≥800×2xx 324∙+16 000=44 800, 当且仅当x=x 324 (x >0),即x=18时等号成立,而18∉[12.5,16],∴Q(x)>44 800. 下面研究Q(x)在[12.5,16]上的单调性.对任意12.5≤x 1<x 2≤16,则x 2-x 1>0,x 1x 2<162<324.Q(x 2)-Q(x 1)=800[(x 2-x 1)+324(1211x x -)] =800×212112)324)((x x x x x x --<0, ∴Q(x 2)>Q(x 1).∴Q(x)在[12.5,16]上是减函数.∴Q(x)≥Q(16)=45 000.答:当污水处理池的长为16米,宽为12.5米时,总造价最低,最低造价为45 000元.问题探究问题某人要买房,随着楼层的升高,上下楼耗费的精力增多,因此不满意度升高.当住第n 层楼时,上下楼造成的不满意度为n.但高处空气清新,嘈杂音较小,环境较为安静,因此随着楼层的升高,环境不满意度降低.设住第n 层楼时,环境不满意程度为n8.则此人应选第几楼,会有一个最佳满意度. 导思:本问题实际是求n 为何值时,不满意度最小的问题,先要根据问题列出一个关于楼层的函数式,再根据基本不等式求解即可.探究:设此人应选第n 层楼,此时的不满意程度为y.由题意知y=n+n 8.∵n+n 8≥2248=⨯n n ,当且仅当n=n 8,即n=22时取等号.但考虑到n ∈N *,∴n≈2×1.414=2.828≈3,即此人应选3楼,不满意度最低.。

相关文档
最新文档