光纤水听器综述
光纤水听器原理探究
光纤水听器原理及应用探究水听器是通过接收声波对水下目标进行探测、定位与识别的传感器.随着现代战争环境的日趋复杂化,为适应水声学应用特别是水下反潜战的需要,在光纤技术不断发展的基础上,光纤水听器作为一种重要的光纤压力传感器,应运而生. 光纤水听器是一种基于光纤、光电子技术上的新型水声传感器,因其在军事、民用各领域应用广泛,目前光纤水听器在国内外发展迅速,已经到达实用状态.光纤水听器的信号的传感与传输皆基于光纤技术,具有体积小、重量轻、灵敏度高、频带响应宽、抗电磁干扰、耐恶劣环境、结构轻巧、易于遥测和构成大规模阵列等特点。
光纤水听器是利用声波信号凋制光束来进行声/光转换.实现水下声信号检测的一种器件。
主要有两大类型:一类是调制型光纤水听器,主要包括强度调制型和相位调制型.利用光纤作为感应元件,通过调制光纤中的光束实现水下信号的检测;另一类是混合型光纤水听器,感应元件采用反射镜、光栅、光纤等器件。
目前,强度调制型光纤水听器主要有微弯型、受抑全内反射型和网络型三种。
相位调制型光纤水听器是根据Mach—Zehnder干涉仪原理制成的,因而不仅灵敏度高,而且动态范围大目前普遍认为,相位调制型光纤水听器是最有发展前途的水听器。
干涉型光纤水听器原理干涉型光纤水听器是基于光学干涉仪的原理构造的.图 (a) 是基于Michelson 光纤干涉仪光纤水听器原理图。
激光光源(S)发出的光经光纤定向耦合器(DC)分为 2 路:一路构成光纤干涉仪的传感臂,接受声波调制;另路则构成参考臂,提供参考相位,2 束波经后端反射膜反射后返回光纤定向耦合器,发生干涉,其光信号经光电探测器(PIN)后转换为电信号,经处理就可拾取声波信息。
图(b) 是基于Mach-Zehnder 光纤干涉仪光纤水听器的原理图。
从激光光源发出的光耦合进光纤后,由光纤定向耦合器DC1 分成空间分离的2 路光束,分别称为信号和参考光束,再经光纤定向耦合器DC2 重新相干混合,分别在输出端产生干涉,经光电探测器转换后拾取声信号。
光纤水听器在海洋中的应用
光纤水听器在海洋中的应用光纤水听器是一种建立在光纤、光电子技术基础上的水下声信号传感器。
它通过高灵敏度的光学相干检测,将水声振动转换成光信号,通过光纤传至信号处理系统提取声信号信息。
它具有灵敏度高,频响特性好等特点。
由于采用光纤作信息载体,适宜远距离大范围监测。
在美国最为先进的新型核潜艇——“弗吉尼亚”级潜艇中,为了提高反潜、反舰和远程侦察能力,装备了大孔径阵列光纤声学传感器系统,即光纤水听器。
它利用光纤和激光技术把目标在水中传播的声音信号转化为光学信息,从而使“弗吉尼亚”级潜艇能够精准识别和跟踪目标。
光纤水听器就像人类洞察汪洋的一双“慧眼”,难怪美国海军研究实验室光纤水听器的研究人员曾经自豪地说:“属于光纤水听器技术的时代已经到来!”一、光纤水听器的优势看似安宁的海洋,其实从来都不平静。
声波是目前人类知道的唯一能够在水中远距离传播的物质,而光和电磁波在水中传播时很快就会被吸收。
声波不仅可以在水里传得很远,而且当声波遇到海洋中的物体时,会被反射回来,不同频率的声波,在水中被吸收和反射的程度也不相同。
人们根据声波的这一特性发明了声呐,用来进行水中探测、定位和通信。
但近年来随着武器装备的迅速发展和消噪技术的不断进步,各类静音效果良好的核动力潜艇以及aip潜艇先后列装各国海军,利用传统声呐装置进行侦听的难度大大增加。
反潜作战成为当今世界各国海军公认的最大难题之一。
光纤水听器主要用于海洋声学环境中的声传播、噪声、混响、海底声学特性、目标声学特性等的探测,是现代海军反潜作战、水下兵器试验、海洋石油勘探和海洋地质调查的先进探测手段。
2009年2月初,英国“前卫”号弹道导弹核潜艇与法国“凯旋”号核潜艇在大西洋深海上演了“深情一吻”。
当时两艘潜艇均在水下航行,而且艇上带着核导弹,碰撞发生时,潜艇上共有约250名乘员,可竟然无人利用声呐装置发现对方。
其实,自冷战时代起,美国和西方国家就经常派潜艇近距离监视苏联的大型海上军事演习,双方潜艇发生相撞事件时有发生。
光纤水听器的概述
二、分类及基本原理
1.1、基于微弯损耗原理的光纤水听器
“微弯”指的是在扰模器的作用下,导致光纤中的 传输模以辐射模的形式而损耗。基于这种基本原理, 提出了多种光纤水听器的结构。此方法的主要缺点 是水听器的性能极大地受到广元强度稳定性的影响。
二、分类及基本原理
1.1.1、柱状结构的微弯型光纤水听器
二、分类及基本原理
按其原理分类
调幅型光纤水听器
强度型光纤水听器, 不适合成阵
调相型光纤水听器
即干涉型光纤水听 器,已经由实验 转向应用
偏振型光纤水听器
光纤光栅水听器, 国内外研究热点, 不适合成阵
二、分类及基本原理
1、强度型(调幅型)光纤水听器
基于强度调制原理的光纤传感器在工程实际应用和科学研究中扮演 着极其重要的角色,于其成本低,信号处理简便等优点受到开发者 和使用者的青睐。随着研究的深入和半导体光电技术的进一步发展, 强度调制型光纤水听器正在逐步走向实用化和商品化,目前已经实 现了包括位移及表面形状、压力、盐度与温度、产品质量在线监测 等多种物理和化学量的监测问题,强度调制型光纤水听器在军事反 潜、地震波检测、石油勘探以及在传感技术领域发挥着重要的作用。
二、分类及基本原理
2.1、基于Michelson干涉仪光纤水听器
由激光器发出的激光经3dB光纤耦合器分为两路:一路构成光纤干 涉仪的传感臂,接受声波的调制,另一路则构成参考臂,提供参考相位。 两束波经后端反射膜反射后返回光纤耦合器,发生干涉,干涉的光信号 经光电探测器转换为电信号,经过信号处理就可以拾取声展现状
2
主 要 内 容
5
光纤水听器的分类及基本原理
3 4
光纤水听器的基本特点
光纤水听器的探头设计 光纤水听器的发展前景
光纤水听器的原理与应用
制形式有光纤微弯式 、光纤绞合式 、受抑全内反射式
及光栅式等[2 ] .
微弯光纤水听器是根据光纤微弯损耗导致光功
率变化的原理而制成的光纤水听器. 其原理如图 2
所示 :两个活塞式构件受声压调制 ,它们的顶端是一
带凹凸条纹的圆盘 ,受活塞推动而压迫光纤 ,光纤由
于弯曲而损耗变化 ,这样输出光纤的光强受到调制 ,
是有 :
Δφs
≈
2πnνl ·Δl
c
l
=
k ·p ,
(4)
其中 k 是比例系数. (4) 式说明干涉仪由水声引起
的相位差变化与声压变化成正比 ,该式是干涉型光
纤水听器拾取声信号的理论基础.
2. 2 强度型光纤水听器原理
强度型光纤水听器基于光纤中传输光强被声波
调制的原理 ,该型光纤水听器研究开发较早 ,主要调
2 光纤水听器原理
光纤水听器按原理可分为干涉型 、强度型 、光栅
型等. 干涉型光纤水听器关键技术已经逐步发展成 熟 ,在部分领域已经形成产品 ,而光纤光栅水听器则 是当前光纤水听器研究的热点. 2. 1 干涉型光纤水听器原理
干涉型光纤水听器是基于光学干涉仪的原理构
造的. 图 1 是基于几种典型光学干涉仪的光纤水听 器的原理示意图. 图 1 (a) 是基于 Michelson 光纤干 涉仪光纤水听器的原理示意图. 由激光器发出的激 光经 3dB 光纤耦合器分为两路 :一路构成光纤干涉 仪的传感臂 ,接受声波的调制 ,另一路则构成参考 臂 ,提供参考相位. 两束波经后端反射膜反射后返回 光纤耦合器 ,发生干涉 ,干涉的光信号经光电探测器 转换为电信号 ,经过信号处理就可以拾取声波的信 息. 图 1 ( b) 是基于 Mach2Zehnder 光纤干涉仪光纤 水听器的原理示意图. 激光经 3dB 光纤耦合器分为 两路 ,分别经过传感臂与参考臂 ,由另一个耦合器合 束发生干涉 ,经光电探测器转换后拾取声信号. 图 1 (c) 是基于 Fabry2Perot 光纤干涉仪光纤水听器 的原理示意图. 由两个反射镜或一个光纤布拉格光 栅等形式构成一个 Fabry2Perot 干涉仪 ,激光经该干 涉仪时形成多光束干涉 ,通过解调干涉的信号得到 声信号. 图 1 (d) 是基于 Sagnac 光纤干涉仪光纤水听 器的原理示意图. 该型光纤水听器的核心是由一个 3 ×3 光纤耦合器构成的 Sagnac 光纤环 ,顺时针或逆 时针传播的激光经信号臂时对称性被破坏 ,形成相 位差 ,返回耦合器时干涉 ,解调干涉信号得到声信 号.
光纤激光水听器的基本原理,国内外光纤激光水听器的研究进展以及发展趋势
光纤激光水听器的基本原理,国内外光纤激光水听器的研究进展以及发展趋势一、引言声波是人类已知的唯一能在海水中远距离传输的能量形式。
水听器(Hydrophone)是利用在海洋中传播的声波作为信息载体对水下目标进行探测以及实现水下导航、测量和通信的一类传感器。
由于水下军事防务上的要求和人类开发利用海洋资源的迫切需要,水听器技术得到空前的发展。
传统的水听器包括电动式、电容式、压电式、驻极体式,等等。
20世纪70年代以来,伴随着光导纤维及光纤通信技术的发展,光纤水听器逐渐成为新一代的水声探测传感器。
与传统水听器相比,其最大优点是对电磁干扰的天然免疫能力。
此外,光纤水听器还具有噪声水平低、动态范围大、水下无电、稳定性和可靠性高、易于组成大规模阵列等优点。
现有的光纤水听器包括光强度型、干涉型、偏振型、光栅型等。
其中,光纤激光水听器(FLH)就是一种光栅型水听器,但由于它的传感元件光纤激光器(又称有源光纤光栅)相比于无源光纤光栅具有高功率和极窄线宽的特点,配合上基于光纤干涉技术的解调方法,它的微弱信号探测能力相比于普通的无源光纤光栅水听器可以提高几个数量级。
压电式水听器和干涉式光纤水听器是目前应用最广泛的水声探测器件。
与干涉式光纤水听器相比,压电式水听器技术更加成熟,结构和制作工艺更简单,大规模生产时一致性可以得到相对较好的控制。
但是,防漏电、耐高温、长距离传输、动态范围大则是光纤水听器最大的优势。
尤其在一些特殊领域(例如高温高压的深井油气勘探领域)有着比压电水听器更为广阔的应用前景。
与干涉式光纤水听器相比,光纤激光水听器的最大优势在于易复用,即“串联即成阵”。
同时,受弯曲半径影响,干涉式光纤水听器的体积较大,水听器直径通常大于1cm。
而由于光纤激光型水听器结构简单,传感单元仅为一根光纤的尺寸,光纤激光水听器外径可细至4~6mm。
当然,受光纤激光器本身弦振动及系统1/f噪声影响,加速度响应较大、低频段噪声相对较高是目前光纤激光型水听器存在的主要问题之一,有。
光纤水听器
SENSOR HEAD ISOLATOR
FBG 1
FBG 2 A/D AMP PD IMG
系统光路图
二 光纤光栅水听器
衰减/dB
FBG 1 移动方向
FBG 2移动方向
波长/nm
光纤布拉格光栅自解调示意图
•
系统信号解调采用双光纤光栅互相进行 解调,实现了自解调测量。实验表明,该水声 传感器具有灵敏度高、结构简单、线性度 好和动态响应范围大(100 dB 以上) 等优点。
二 光纤光栅水听器
光强调制法
激光光强调制法FBG 水听器系统结构
二 光纤光栅水听器
• FBG 增敏法
• 对FBG 进行声增敏聚合物的封装, 将弹性聚合物材料与 FBG 紧密结合, 可以增大FBG 的灵敏度, 使波长漂移更加 明显。 • 文献表明, 这种增敏方法可以使FBG 探头的压力灵敏度增 大到17.3nm/MPa,约为裸纤FBG 压力灵敏度的2000 倍, 因此可以方便的检测出FBG 波长随声压的漂移。
二 光纤光栅水听器
• 一种匹配光栅结构水听器
• 为了提高光纤光栅水听器的灵敏度、低成 本的实现解调以及减少温度对声场探测的 影响,介绍一种新型的光纤布拉格光栅水 声传感器探头结构和相应的波长解调方法。
二 光纤光栅水听器
FBG 2 刚性结构 FBG 1 弹性材料
匹配光栅水听器探头横截面图
二 光纤光栅水听器
一 水听器的研究现状和发展方向
• 现有的水听器大都是压电陶瓷材料,输出阻抗 高,无法与信号采集设备的输入端匹配,需要通 过一个变压器进行阻抗变换。压电陶瓷感应的声 波信号非常微弱,无法远距离传输,必须每隔几 个传感器就设置一个采集站,或者采用对每个压 电传感器进行原位数模转换的方案。然而,无论 哪个方案,仪器的供电、密封、防止海水的腐蚀 都是一个非常困难的问题。
光纤水听器原理
光纤水听器原理光纤水听器是一种利用光纤传感技术来实现水声信号的检测和传输的设备。
它主要由光纤传感器、光源、光电探测器和信号处理系统组成。
光纤传感器将水声信号转化为光信号,经过光纤传输到光电探测器,再由信号处理系统将光信号转化为电信号进行分析和处理。
光纤传感器是光纤水听器的核心部件,它利用光纤的折射特性来实现水声信号的检测。
光纤传感器一般由两根光纤组成,一根作为发送光纤,另一根作为接收光纤。
当水声信号通过水体传播时,会引起水体中的压力和密度的变化,进而改变光纤的折射率。
这种变化会导致光信号在光纤中的传播速度和路径发生改变,最终被接收光纤接收到。
光源是将电能转化为光能的设备,一般采用激光器或LED作为光源。
激光器具有高亮度、窄线宽和方向性好等特点,适合用于长距离传输。
而LED虽然功率较低,但价格便宜,适合用于短距离传输。
光电探测器是将接收到的光信号转化为电信号的设备,常用的光电探测器有光电二极管和光电三极管。
光电二极管是最简单和最常用的光电探测器,其光电转换效率较高,响应速度较快。
而光电三极管具有较高的增益和较低的噪声,适合用于较弱的光信号检测。
信号处理系统负责对接收到的光信号进行放大、滤波、调制和解调等处理,以提取出水声信号的相关信息。
信号处理系统一般由前端放大器、滤波器、调制解调器和模数转换器等组成。
前端放大器用于放大光电探测器输出的微弱电信号,滤波器则用于滤除杂散信号。
调制解调器则将电信号转化为数字信号,方便后续的数字处理。
光纤水听器的工作原理可以用以下几个步骤来描述:首先,光源发出一束光线,经过发送光纤传输到水中。
当水声信号通过水体传播时,会引起光纤折射率的变化,从而改变光信号在光纤中的传播速度和路径。
这种改变会导致光信号部分从发送光纤转移到接收光纤,最终被光电探测器接收到。
接收到的光信号经过信号处理系统的处理,最终得到水声信号的相关信息。
光纤水听器具有很多优点,如高灵敏度、宽频响范围、抗干扰能力强等。
英国PA医用光纤水听器FOH
光纤水听器是一种建立在光纤、光电子技术基础上的水下声信号传感器。
它通过高灵敏度的光学相干检测,将水声振动转换成光信号,通过光纤传至信号处理系统提取声信号信息。
光纤水听器具有灵敏度高,频响特性好等特点。
由于采用光纤作信息载体,适宜远距离大范围监测。
深圳市一测医疗测试技术有限公司是一家专注于医疗器械测试产品和技术的研发、销售与服务为一体的“国家高新技术企业”,我们拥有自主研发的国家发明专利技术并且代理了众多国外先进专业测试产品,如膜式水听器、光纤水听器、水听器校准、吸声材料、声场测试水处理系统等。
光纤水听器FOH:灵敏度高,抗电磁干扰,价格便宜,可测量同一个点的温度和压力,并描绘出压力和温度变化曲线。
光纤水听器非常适合高强度声输出的测量。
技术参数:构成:10um 的材料附着在玻璃上,构成光纤,直径为 10um;校准:250kHz to 50MHz 可校准;灵敏度:平行传感器: 150mV/MPa at 3MHz;锥形传感器:100mV/MPa at 3MHz;灵敏度变化范围:+/-3dB;能量承受范围:10kPa to 15MPa。
以上就是深圳一测医疗给大家介绍英国PA光纤水听器FOH相关信息,如果您还想了解更多的相关事项可以拨打我们的热线电话,可以点击我们的官网在线实时咨询我们,或者关注我们的官方微信公众号,我们会有专业的工作人员为您解答。
我们通过与国际优秀的医疗器械测试仪器制造商和专业实验室的广泛深入合作以及国内行业专家的紧密交流与协作,并严格按照ISO9001:2015质量管理体系要求为医疗器械产业在研发、生产,监督、检验,在用售后、培训,教学与研究等各领域客户提供完善的医疗器械测试整体解决方案和专业的技术服务。
公司秉承“热情、专注、高效、负责”的经营理念,以“专业专注,精益求精”为服务宗旨,力求解决医疗器械测试过程中的各种繁杂问题,而不仅仅是一次测试,从而保障患者得到安全有效的诊断和治疗。
光纤水听器原理与应用综述
光纤水听器原理与应用综述光纤水听器(Fiber Optic Hydrophone)是一种利用光纤传感技术来检测和测量水中声波的设备。
它是通过将光纤传感器嵌入水下环境中,借助光纤的特性来检测水中的声波信号并转化为光信号,最后通过光纤传输到接收器进行信号分析和处理。
光纤水听器的原理基于压电效应。
当水中有声波通过时,声波将引起水的压力变化,并通过压电效应对光纤产生变形。
光纤中的压电传感器将压力变化转化为光的强度变化,即声波信号转化为光信号。
这种光信号通过光纤传输到接收器,再经过光电转换器转化为电信号进行分析和处理。
光纤水听器具有多个优点。
首先,光纤水听器具有高灵敏度和宽频率响应范围。
其灵敏度可达到零点几帕斯卡,而频率响应可达到几百兆赫兹,适用于各种声波信号检测和测量。
其次,光纤水听器具有较好的抗干扰能力,由于光纤本身的特性,其信号传输受到外界电磁干扰影响较小。
此外,光纤水听器还具有体积小、重量轻、安装方便等特点。
光纤水听器在海洋学、水声学、海洋资源勘探等领域具有广泛的应用。
首先,在海洋学领域,光纤水听器可用于测量海洋中的声波,监测海洋环境的变化和海洋生物的声音。
可以用于研究海洋动物的迁徙、繁殖和行为,对研究海洋生态系统和保护海洋生物资源具有重要的意义。
其次,在水声学领域,光纤水听器可用于声学通信和水声定位等应用。
光纤水听器可以对水下通信信号进行接收和传输,并可以通过测量音波传播的时间和距离,实现水下目标的定位和追踪。
再次,在海洋资源勘探领域,光纤水听器可用于探测海底石油、天然气等资源的存在,并进行相关的勘探工作。
然而,光纤水听器也存在一些挑战和限制。
首先,光纤水听器目前的灵敏度和频率响应范围仍有一定的局限性,对于低频信号的检测和测量效果有待提高。
其次,光纤水听器在实际应用中需要保持水下环境的稳定和光纤的保护,以确保光纤传感器的正常工作和长期使用。
综上所述,光纤水听器是一种利用光纤传感技术来检测和测量水中声波的设备,具有高灵敏度、宽频率响应等优点。
光纤水听器探头结构设计综述
(a)二阶声低通滤波式 9 10
(b)四阶声低通滤波式
(c)带侧支声低通滤波式
1- 圆柱型声低通滤波器 2- 支撑骨架:
3- 弹性层; 4- 传感臂; 5- 参考臂;
6- 保护层: 7- 端面反射镜; 8- 耦合器; 9- 激光器; 10- 光电探测器
(d)实物 图3声低通滤波式结构示意图及实物图
2.2平面型声压标量光纤水听器
弱"空天地海一体化”专题遗;!
光纤水听器探头结构设计综述
易朗宇,沈燕青,徐红霞,韩银 (中国电子科技集团公司第七研究所,广东广卅510310)
【摘 要】 【关键词】
研究了国内外声压标量光纤水听器、声压祎弋 C光纤水听器、惯性式矢量光纤水听器写卜:流光纤水听器 探头结构设计方案,分析其设计思路.对比了不同结构的性能优劣,提出了灵敏度提高措施,对新型探头 的设计具有参考价值。 光纤水听器;灵敏度;探头结构
一Leabharlann 一耦外层
空
光
气
纤
腔
合
外
器
左
光
艸
纤
性
筒
.
内层光纤
内层%纤
(a )单臂缠绕式
(b )推挽式
(c)含空气腔式
图1弹性筒芯轴型结构示意图
刚性臂式结构采用四层结构(如图2所示),将干 涉仪参考臂绕制在刚性支架上,再涂覆一层弹性体, 外侧绕制传感臂以接收声压信号“。
传感臂 参考臂
无边缘支捧
有边缘支掉
图2刚性臂式结构示意图
平面型声压标量光纤水听器也常采用迈克尔逊干 涉仪或者马赫-曾德尔干涉仪作为敏感元件,通过将干 涉臂盘绕至弹性平面上,实现声压对臂长的调制。若 将干涉仪两臂分别盘绕至平面两侧,则可形成推挽式 结构。该结构主要有周围支撑碟式、中央支撑碟式、 平板式等形式。
光纤水听器
光纤水听器一:光纤水听器原理光纤水听器是一种建立在光纤、光电子技术基础上的水下声信号传感器。
它通过高灵敏度的光学相干检测,将水声振动转换成光信号,通过光纤传至信号处理系统提取声信号信息。
它具有灵敏度高,频响特性好等特点。
由于采用光纤作信息载体,适宜远距离大范围监测。
(一)光纤水听器的特点:1、灵敏度高,频响特性好;2、动态范围大;3、抗电磁干扰与信号串扰能力强;4、适于远距离传输与组阵;5、信号传感与传输一体化,提高系统可靠性;6、工程应用条件降低.(二)光纤水听器种类:光纤水听器是利用声波信号凋制光束来进行声/光转换.实现水下声信号检测的一种器件。
光纤水听器的种类很多,主要有两大类型:一类是调制型光纤水听器.利用光纤作为感应元件,通过调制光纤中的光束实现水下信号的检测;另一类是混合型光纤水听器,感应元件采用反射镜、光栅、光纤等器件。
研究最多的还是调制型光纤水听器.这类水听器又分为强度调制型和相位调制型两种。
目前,强度调制型光纤水听器主要有微弯型、受抑全内反射型和网络型三种。
相位调制型光纤水听器是根据Mach—Zehnder干涉仪原理制成的,因而不仅灵敏度高,而且动态范围大。
美国海军实验室、英国普菜西舰用设备公司和普莱西电子研究所对这种水听器的研究已达到相当的水平。
目前普遍认为,相位调制型光纤水听器是最有发展前途的水听器。
最近,美国海军研究学院研制出一种新型结构的相位调制型光纤水听器。
这是一种特殊结构的水听器,在弹性膜片上有4个扁球形柔性应变外壳。
扁球形外壳 的特点是将单端测量的压力转换成能被壳表面完全探测的差分应变。
这种扁球形外壳光纤水听器较之其它水听器(如平板、圆盘或圆柱体水听器)的优点是用— 个干涉仪就可测量出整个外壳表面上的不同灵敏度。
从已开发的干涉仪光纤水听器的结构来看,主要有心轴型、互补型和平面型等几种。
(三)基本结构:目前,干涉型光纤水听器技术最为成熟,其基本原理:由激光器发出的激光经光纤耦合器分为两路,一路构成光纤干涉仪的传感臂,接受声波的调制,另一路则构成参考臂,不接受声波的调制,或者接受声波调制与传感臂的调制相反,接受声波调制的光信号经后端反射膜反射后返回光纤耦合器,发生干涉,干涉的光信号经光电探测器转换为电信号,由信号处理就可以获取声波的信息。
光纤水听器的原理与应用
光纤水听器的原理与应用一、原理介绍光纤水听器是一种基于光纤技术的水声探测设备,可以通过光纤传输水下声波信号,并将其转化为电信号进行分析和处理。
其原理基于光纤的光机械、电机械特性以及水声传播的特性。
1. 光纤传输原理光纤是由光导纤维组成的,具有非常低的损耗和高的传输带宽。
当光信号通过光纤时,光纤的材料会对光信号进行衰减和散射,但总体上仍能够传输较长距离的信号。
2. 水声传播原理水声传播是指声波在水中的传播过程。
由于水的密度和压缩性较大,声速远远大于空气中的声速。
水中的声波信号可以通过传播介质的变化来传递信息。
3. 光纤水听器的原理光纤水听器利用光纤传输的特点和水下声波传播的特性,将水下声波信号转化为光信号,并通过光纤将其传输到接收端。
在接收端,光信号会再次转化为电信号,以供分析和处理。
二、应用领域光纤水听器在海洋科学研究、水生态环境监测、传感器网络等领域具有广泛的应用价值。
1. 海洋科学研究光纤水听器可以用于海洋动力学、声学海洋学等科学研究领域。
通过光纤水听器,科学家可以实时获取水中的声波信号,进而研究海洋中的生物、地球物理特性等,对海洋环境进行监测与研究。
2. 水生态环境监测光纤水听器可以用于水生态环境监测,对水体中的声波信号进行实时监测和分析。
这对于生物多样性研究、水污染监测、海洋生态保护等方面具有重要意义。
3. 传感器网络光纤水听器可以作为传感器网络的重要组成部分,用于实时监测海洋、湖泊、河流等水域中的声波信号。
通过部署大规模的光纤水听器网络,可以建立实时的水声监测系统,助力相关应用领域的研究和工程应用。
三、光纤水听器的优势相比传统的水声探测设备,光纤水听器具有以下优势:1.高灵敏度:光纤水听器能够捕捉到较低强度的水下声波信号,并将其转化为电信号进行分析。
2.高带宽:光纤传输具有较高的带宽,能够实现高速的数据传输和处理。
3.长距离传输:光纤水听器可以将声波信号长距离地传输到接收端,适用于大范围的水声监测。
光纤水听器工作原理
温馨小提示:本文主要介绍的是关于光纤水听器工作原理的文章,文章是由本店铺通过查阅资料,经过精心整理撰写而成。
文章的内容不一定符合大家的期望需求,还请各位根据自己的需求进行下载。
本文档下载后可以根据自己的实际情况进行任意改写,从而已达到各位的需求。
愿本篇光纤水听器工作原理能真实确切的帮助各位。
本店铺将会继续努力、改进、创新,给大家提供更加优质符合大家需求的文档。
感谢支持!(Thank you for downloading and checking it out!)光纤水听器工作原理一、光纤水听器概述光纤水听器定义光纤水听器是一种基于光纤传感技术的声波检测装置,它利用光纤的高灵敏度和抗干扰性能,将光信号与声信号进行有效转换,实现对水下声场的实时监测。
光纤水听器主要由光纤、光源、光探测器、信号处理单元等组成。
当声波作用于光纤水听器时,会引起光纤中光强的变化,通过检测光强的变化可以得到声波的频率、强度等信息。
光纤水听器的应用领域光纤水听器在多个领域具有广泛的应用,主要包括:海洋资源勘探:光纤水听器可用于海洋石油勘探、海底矿产资源调查等领域,通过监测声波信号,帮助科学家和工程师发现潜在的资源。
水下目标探测:光纤水听器可作为潜艇、水下无人机等水下航行器的声呐系统,用于探测水下目标,提高航行安全。
水声通信:光纤水听器可用于水下无线通信系统,通过声波传递信息,实现水下设备之间的通信。
海洋环境监测:光纤水听器可监测海洋声场环境,分析海洋生物的活动、海流速度等信息,为海洋环境保护提供数据支持。
声学研究:光纤水听器可用于声学实验室,研究声波在海洋中的传播特性,为声学理论的发展提供实验依据。
综上所述,光纤水听器作为一种高性能的声波检测装置,在多个领域具有广泛的应用前景,为科学研究和工程实践提供了强大的支持。
二、光纤水听器工作原理光纤水听器是一种基于光纤传感技术的设备,主要用于水下声波信号的探测和接收。
本文将介绍光纤水听器的工作原理,主要包括光纤传感技术基础和光纤水听器的工作原理两个部分。
光纤水听器—马翠满
军事应用
资源勘探
水声物理研究等其他应用
光纤水听器用于水声物理研 究,以研究海洋环境中的声 传播、 海洋噪声、 混响、 海底声学特性以及目标声学 特性等。由光纤水听器也可 以制作鱼探仪 ,用于海洋捕 捞等作业。由光纤水听器构 成的水下声系统 ,还可以通 过记录海洋生物发出的声音 , 以研究海洋生物以及实现对 海洋环境的监测等
基于反射系数的调制光纤水听器
这种水听器是在声压信号的作用下 ,造成水中 光纤端面处的光反射系数的改变而实现对水声信 号的检测
基于耦合效率调制的光纤水听器
干涉型光纤水听器
干涉型光纤水听器的基本原理是:在一段单模 光纤中传输的相干光 ,因外界声场的作用, 而产生相位调制。 目前光纤传感器中采用四种不同的干涉测量 结构 ●迈克耳逊干涉型光纤水听器、 ●马赫 -曾德干涉型光纤水听器、 ● 法布里 - 珀罗干涉型光纤水听器、 ●萨格奈克干涉型光纤水听器。
光纤水听器
——马翠满
主要内容
概述
光纤水听器是一种新 型声纳器件,由于它 的高灵敏度,宽频带 范围等特点,在有些 领域有可能取代压电 陶瓷构成的水听器, 是海防不可或缺的传 感器
分类与工作原理
强度型光纤水听器
强度型光纤水听器基于微弯损耗原理,根据光纤微弯损 耗导致光纤中的传输模以辐射模的形式损耗,进而导致 光功率变化原理制成。
谢谢!
迈克耳逊干涉型光纤水听器
马赫 – 曾德干涉型水听器
这种光纤水听器结构的特点是 ,灵敏度 比较高 ,并且激光光源和光探测器不在 同一侧 ,避免了返回光对光源的影响。
法布里 - 珀罗干涉型光纤水听器
光纤光栅型光纤水听器
发展与应用ቤተ መጻሕፍቲ ባይዱ
光纤水听器及其阵列的研究和发展始于20世纪70年 代末。目前至少有英、美、法、意、韩、日等多个国家 致力于这方面的研究。近年来它已受到各国军方的高度 重视。 光纤水听器及其阵列已成为被动声纳水下部分的发展 方向,是未来海洋探测、监听微弱声场信号最有生命力 的反潜战武器,其中最有代表性的是美国的工作。 我国的光纤水听器研究也已取得较大进展, 在若干 技术指标上已达到目前国际水平, 但是主要处于理论和 实验室的层面
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光纤水听器及阵列综述马宏兰周美丽(天津师范大学电子与通信工程学院)摘要:为适应水声学应用特别是水下反潜战的需要 ,在光纤技术不断发展的基础上 ,光纤水听器应运而生。
光纤水听器是一种基于光纤、光电子技术上的新型水下声传感器 ,因其在军事、民用各领域应用广泛 ,目前光纤水听器在国内外发展迅速 ,已经到达实用状态。
全光光纤水听器系统的湿端采用全光实现,信号传感与传输皆基于光纤技术。
具有抗电磁干扰、重量轻和造价低等优点。
文章简述了光纤水听器的发展历史、现状 ,论述了光纤水听器阵列的原理及其应用前景。
关键词:光纤水听器多路复用技术阵列0引言:在光纤水听器的实际应用中,由于水下声场的复杂性,单元水听器很难获得目标的详细信息,因而需要将数百乃至上千个探测基元组成大的阵列,以获得更多水声场信息,通过水听器阵列完成声场信号的波束形成,实现对水下目标的定位与指向。
在2003年8月下水的美国最新型攻击核潜艇上,装备的舷侧阵就由2 700个光纤水听器基元组成【1】。
对于大规模的光纤水听器阵列,多达数十上百基元的光纤水听器光信号都是由同一根光纤传输的,在实际系统中,这种性能就是由光纤水听器的多路复用技术实现的。
可见多路复用是光纤水听器的核心技术。
1 光纤水听器的开发自1976年美国Bucar等人发表第一篇有关光纤水听器的论文【2】以来, 各工业发达国家的海军研究部门以及有关的研究和工业部门都在积极从事光纤水听器的研究和开发,尤其以美国最为突出。
美国海军研究实验室、美国海军研究生院和Litton制导和控制公司等先后研究开发了Maeh一Zehnder、Michelson干涉仪的光纤水听器, 主要结构有心轴型、互补型(推挽式) 、平面型和椭球弯张式等光纤水听器。
这些结构水听器达到的归一化灵敏度(△。
/ 。
△P)为适应水声学应用特别是水下反潜战的需要 ,在光纤技术不断发展的基础上 ,光纤水听器应运而生。
光纤水听器是一种基于光纤、光电子技术上的新型水下声传感器 ,因其在军事、民用各领域应用广泛 ,目前光纤水听器在国内外发展迅速 ,已经到达实用状态。
各国对光纤水听器的研究投入了大量人力和物力,技术也日益娴熟。
2、多路复用的阵列体系结构阵列体系分为以下六大部分,其中时分/ 波分混合复用技术是其关键有效手段。
1 ) 频分复用(FDM) 【3】相位产生载波(PGC)问询的体系结构—美国海军研究实验室已用此方案对总数48 个单元水听器成网组成的阵列成功地进行了海上试验, 证实了这种体系结构的低阐值检测能力和低的串扰。
】2) 时分复用(TDM) 相位产生载波问询的体系结构—美国海军研究实验室已作了10 单元的光纤水听器阵列演示, 证实了其低的光背景噪声和低的串扰。
3) 时分复用(TDM)光程匹配差分延迟外差(DDH) 法问询的体系结构—这种传感器的差分延迟外差法问询方法是英国Plessey公司创造的, 它简化了阵列结构, 但要求长相干光源。
英国Plessey公司和美国海军研究实验室已作了4 单元水听器复用的阵列演示, 具有低的光串扰, 相位噪声性能受光源的频率噪声和干涉仪不平衡的限制4) 时分复用(TDM)光程匹配差分干涉测量(PMDD问询的体系结构—这种阵列由在线迈克尔逊干涉型水听器组成, 美国海军研究实验室已在现场作了试验。
此阵列具有低的光串扰和阵列简单的特点。
5) 时分复用(TDM)光程匹配差分干涉测量(PMDI)问询的反射测量阵列—这种采用光纤半反射接头的反射测量阵列是英国Plessey公司首先开发的,1988年美国海军实验室和英国Plessey公司都对6 单元水听器的这种反射阵列作了海上试验, 1990年英国Plessey公司为在英吉利海峡部署作15单元水听器的静态水下监视系统的试验。
6) 时分/ 波分混合复用结构—波分复用技术可能使上述常规的多路复用方法增加阵列复接水听器数量, 因此是关键而有效的手段。
美国海军研究实验室在1990年对用波分复用复接两个平行的时分复用相位产生载波问询的光纤水听器子阵列作了演示。
一个子阵列由835n m 波长的10 个传感器组成,另一个由790nm波长的4个传感器组成。
3设计系统复用技术的原则选择何种复用技术,不仅依靠已有的技术基础,还依赖所采用光源的性能、信号检测方式、偏振控制方式等,只有各项技术相互协调的系统才有可能成为一个成功的系统。
在设计一个复用系统时,还需要考虑以下一些设计原则【3】:使单根或一对光纤的复用数尽可能多;最大程度地利用光功率,保证光能量低损耗地在各传感器间有效分配;尽可能减小各传感器基元间的串扰;保证复用后的传感器与单个传感器性能组阵前后相当;保持系统湿端全光化。
4国内外研究现状与趋势声矢量传感技术是在最近十年间备受水声界关注的研究焦点之一【4】。
从上世纪五十年代中期美国学者发表的有关使用惯性传感器直接测量水中质点振速的经典论文以来,到在上世纪七八十年代前苏联的学者利用其研制成功的声矢量传感器(复合水听器)开展海洋环境噪声研究,直至上世纪九十年代声矢量传感器技术研究热潮才逐渐兴起。
如1989年俄国学者出版了世界上第一部有关声矢量传感技术的专著“声学矢量-相位方法”,较全面的论述了声矢量传感器技术的原理和应用。
2003年出版的“海洋矢量声学”发展了海洋环境噪声的声压标量场特性的研究,提出了基于声矢量传感器的海上实验、数据处理以及理论分析等一整套方法。
目前,美国和俄罗斯在矢量水听器研制应用方面处于领先地位。
上世纪70年代,美国就矢量水听器成功应用于远程浮标声纳AN/SSQ-53系统和DIFAR定向浮标中,在战略拖曳阵中SURTASS中也采用了矢量水听器。
目前美国的研究主要集中在新型矢量传感器、矢量舷侧阵声纳、矢量舰壳声纳以及矢量水雷声引信方面,并且还在探索矢量水听器在拖曳线列声纳中的应用,甚至开发了矢量信号处理专用的DSP模块。
前苏联在上世纪80年代也开始研制拖曳矢量线列阵声纳,先后有БГА11-9-17/5、БГА10-4、БГА5-3/2、БГА24-9-6/4等型号的矢量线列阵。
当前俄罗斯的矢量水听器还在海岸预警声纳、海洋环境噪声测量和水雷引信等方面得到应用。
在我国,压电矢量水听器的研究也有多年历史,开展这方面工作较多的主要有哈尔滨工程大学、西北工业大学、中船重工715所和中科院声学所。
国内的相关工作可追溯到上世纪九十年代初有关声压梯度水听器和双水听器声强测量等研究工作,但真正较深入开始研究的时间在1998年以后。
1998年松花湖实验和2000年大连海试是国内最早的两次关于声矢量传感器技术的外场实验,随后的2002年密云水库实验和2003年东海、南海声矢量传感器线阵实验。
多年前,我国还通过对俄引进,全面展开压电矢量水听器的工程应用研究。
相对于传统压电矢量水听器,干涉型光纤矢量水听器灵敏度高,信号经光纤传输损耗小(km),无串扰,能在恶劣的水下、地下环境中实现长期、稳定工作。
还有很重要的一点是,结合现有的光纤通讯技术,光纤矢量水听器可以方便地组建拖曳阵、舷侧阵、岸基阵等各种水下全光阵列和大范围光纤传感网。
光纤矢量水听器的这些优良特性为解决浅海低频的水声研究和应用的许多问题提供了理想的技术途径。
2003年7月国防科大研制的光纤矢量水听器,在中船重工715所水声一级计量站进行了灵敏度及指向性测试,测试声压灵敏度达到-140dB,指向性为“8”字指向性,串扰小于-20dB。
2003年8月国防科大研制的四分量光纤矢量水听器在青岛外海域进行了海上试验,并成功实现了矢量三维定向和匹配场三维定位。
光纤水听器的研究还在深入,要了解研究的空间还很大,越来越多的领域也逐步将光纤水听器引用并发展。
5应用前景)光纤水听器为解决水声研究提供了许多技术途径,比如光纤矢量水听器适用于单点测量获取海洋水下声学三维矢量信息和一维声压信息,为解决浅海低频的水声研究和应用的许多问题提供了理想的解决方法,从而在以下一些重要的领域展示了广阔的应用前景:(1)岸基固定海域水下声场探测;(2)潜艇或水面舰艇拖曳阵列;(3)机动阵列、声纳浮标、潜标等;(4)UUV、鱼雷、自主攻击水雷等小平台为载体的水声探测;(5)石油、天然气勘探中的地震波检测。
6未来展望光纤水听器研究始于七十年代末美国海军实验室,二十多年来,美、法、英、日、挪威、意大利等国相继投入大量人力和物力,使该技术在理论研究和应用开发上都有了长足的进步。
在前几十年里,开发了反潜力所需的各种光纤水听器系统,并进行了一系列的海上试验。
1996年在英国技术权威在一流技术杂志上发表总结性文章【5】.,认为光纤水听器技术性能价格比完全能与传统技术匹敌,再加上光纤技术带给光纤水听器的长距离、大容量传输能力和低功耗工作优势,该技术军民应用前景一片光明。
2001年撰文【6】.指出当前光纤水听器阵列正向大规模时分与密集波分复用方向发展,以满足未来声呐系统大规模组阵的需要(阵元数大于1000)结论:光纤水听器的应用已经成为各国研究开发的主要技术,没、法、日等国已取得显著成效。
在我国,前些年的光纤水听器研究主要建立在空分复用系统之上。
在这些系统中,充分利用了光纤体积小的优点,在2 mm×2 mm的截面内可以容纳64根光纤,以每根光纤传输路信号,即可满足中等规模光纤水听器阵列应用的要求。
随着工作的进展,大规模阵列的研究和试验己列入相关重大项目。
在这些项目中,空分、波分及时分多路多重复用已成为必不可少的技术手段。
目前,多路复用技术已被一些重大项目技术方案采用。
结束语:本文总结了目前分布式光纤水听器阵列技术中多路复用技术的研究进展状况【7】, 着重介绍了发展较为成熟、实际系统中应用较广泛的时分多路复用、频分多路复用以及相干多路复用技术。
在未来军事领域应用的光纤水听器阵列将向着多节点, 大监控范围的方向发展, 每个阵列将包含上千个节点, 几百公里的监控范围, 而且要求这种系统是低成本、高性能、高可靠性的, 这样的系统必须通过多路复用和相应的信号处理技术来实现。
鉴于未来战争的需要, 我国对光纤水听器也进行了研究。
由于水听器在现代战争中均是以阵列的形式应用, 分布式传感阵列是光纤水听器应用的最终发展方向, 因此我们在进行单元光纤水听器研究的同时必须要考虑阵列技术的有关特点, 考虑到研究的单元水听器技术在向阵列形式发展时会遇到的问题, 在尽量提高单元水听器灵敏度的同时还要尽量提高整个系统多路复用的能力, 为将来光纤水听器最终实现在实际中应用奠定坚实的基础。
现今,光纤水听器研究已经取得巨大进展与成果,多路复用技术已越来越多的运用在实际中,在军事领域应用广泛并且已取得重大成果。
参考文献【1】DANDRIDGE A,TVETEN A B-et a1.Development ofⅡle fiber opticwide apernlrc amy:f}啪initial dt=、,clopment t0production【R】.NRL ReView,Optical sciences,2004.【2】【3】DANDRrNGEA.The deVelopmentoffiberoptic sensorsystems【J】.Proc ofsPIE,1994,2(360)154-161.`【4】cRANCH G A,NASH P J.LaTge-scale remotely interogated引T暑Iys of矗ber-optic interf白啪e由ric senso体forlmderwatcr∞ol璐ticapplications【J】.IEEE Sensors Joumal,2003,3(5):l 9-30【5】孙贵青, 李启虎. 声矢量传感器研究进展[J]. 声学学报,2004,(6): 481~490【6】 ,IEE Proc-SonarNaving,1996,(3):204-208【7】Geoffrey and Philip ,IEEE,Journal of Light Wave Technology,2001,19(5):687-699【8】高学民军用光纤传感器电子工业部第23 研究所内部资料1991。