气相色谱质谱联用技术的原理及应用

合集下载

气相色谱质谱联用分析技术在环境监测中的应用

气相色谱质谱联用分析技术在环境监测中的应用

气相色谱质谱联用分析技术在环境监测中的应用随着工业和人类活动的不断增加,环境污染问题也越来越严重。

环境污染对生态系统、人类健康以及整个社会经济发展造成了极大的影响。

为了控制和减少环境污染,需要对环境中各种污染物进行监测和分析。

气相色谱质谱联用分析技术(GC-MS)是目前最常用的环境污染物分析技术之一,它可以对环境中的污染物种类和浓度进行准确快速的测定。

一、气相色谱质谱联用分析技术的原理GC-MS联用技术是一种光谱分析方法,它通过对环境样品中的化学物质进行逐步分离、提取和检测,实现对物质种类、结构和量的鉴定和分析。

GC-MS联用技术的原理是将样品中的化学物质先通过气相色谱(GC)进行分离和纯化,再通过质谱(MS)进行检测和鉴定。

利用GC的色谱柱对化学物质进行分离,将化学物质逐步按照化学性质分离到不同位置,从而实现对各种化学物质的分离。

随后,将分离后的化学物质通过质谱进行检测和鉴定,其中质谱的检测部分利用的是化学物质的物理化学特性,如分子量、挥发性、极性等,在这一过程中,利用质谱提供的分子质量信息,能够准确地鉴定出样品中所含的化学物质。

二、气相色谱质谱联用分析技术的优点GC-MS联用技术是一种高灵敏度、高选择性和高稳定性的分析技术,具有以下几个优点:(1)分离效果好。

由于GC的分离柱对化学物质进行了分离,并消除了多种不同的干扰物,因此GC-MS能够更容易地识别和鉴定样品中的目标污染物。

(2)灵敏度高。

GC-MS的检测灵敏度很高,通常可以检测到微克甚至纳克级别的化学物质。

因此,GC-MS技术可以用于对高复杂度的样品进行分析。

(3)选择性强。

由于GC-MS联用技术可以利用各种谱图分析技术,因此对于不同的环境样品,GC-MS能够根据样品的特点进行调整,从而分析出与样品中各种化学物质的共存情况。

三、1.土壤污染分析土壤是一个容易受到污染的环境,它不仅与工业有关,而且是农药和重金属污染的重要媒介。

因此,将土壤中的污染物进行分析和监测是非常重要的。

GCMS原理及应用

GCMS原理及应用

GCMS原理及应用GCMS全称为气相色谱-质谱联用仪(Gas Chromatography-Mass Spectrometry),是一种用于分析复杂混合物的强大技术工具。

它将气相色谱和质谱联合在一起,能够在短时间内对样品中含有的化合物进行有效分离和鉴定。

本文将详细介绍GCMS的原理及其应用领域。

首先,我们来了解一下GCMS的原理。

GCMS由两个主要部分组成:气相色谱仪(GC)和质谱仪(MS)。

气相色谱仪用于将混合物的化合物分离,而质谱仪用于对化合物进行鉴定。

气相色谱仪的工作原理是基于化合物之间的相互作用力的不同,通过将气体样品注入到柱子中,利用化合物在固定相(填充柱)和流动相(载气)之间的分配系数不同,使不同的化合物以不同的速度通过柱子,从而实现对化合物的分离。

质谱仪则是通过将化合物转化为离子,并根据离子的质量-电荷比(m/z)进行分离和检测。

首先,化合物经过电离源,通常是通过化合物与电子碰撞或化合物分子之间的化学反应来产生正离子或负离子。

然后,离子进入质量分析器,在磁场的作用下根据离子的质量分离,最后离子通过离子接收器被检测出来。

当GC和MS联合起来使用时,样品首先通过气相色谱柱进行分离,然后化合物被一个热表面所蒸发,并通过离子源进行电离。

之后,离子被进一步分离和检测。

质谱仪会生成一个质谱图,其中每个化合物的质量代表了质谱图上的一个峰。

GCMS因其高分辨率、高灵敏度和广泛的应用领域而广受欢迎。

以下是一些GCMS的应用领域:1.环境分析:GCMS可用于分析空气、水和土壤等环境样品中的污染物,如挥发性有机物、农药、重金属等。

2.食品安全:GCMS可以分析食品样品中的残留农药、添加剂、污染物等,确保食品的安全性和质量。

3.药物分析:GCMS可用于药物代谢物的鉴定、药物残留物的检测以及药物分解产物的分析。

4.毒理学研究:GCMS可以用于毒理学研究中的生物标志物的分析,包括血液、尿液和毛发中的化合物分析。

gcms的原理及应用精讲

gcms的原理及应用精讲

GC-MS的原理及应用精讲一、引言气相色谱-质谱联用技术(GC-MS)是一种重要的分析技术,它将气相色谱和质谱这两种传统分析技术结合起来,具有高分辨率、高灵敏度和高选择性等优点。

本文将全面介绍GC-MS的原理和应用。

二、GC-MS的原理1.气相色谱(GC)原理:–GC主要基于样品分子在固定相填充的色谱柱中发生吸附和解吸的过程,通过不同样品分子在色谱柱中的保留时间差异来实现分离。

2.质谱(MS)原理:–质谱是一种离子化技术,主要通过将分析物分子转化成离子,并根据离子在质谱仪中的运动轨迹和质量-荷质比(m/z)来进行分析。

3.GC-MS联用原理:–GC-MS联用技术将GC和MS两种分析技术紧密结合起来,实现了对复杂样品的高效分离和准确定性分析。

三、GC-MS的应用GC-MS广泛应用于许多领域,以下是其中的几个应用领域的简要介绍:1.环境监测:–GC-MS可以用于分析大气中的挥发性有机物(VOCs)和气相中的多种有毒和有害化合物,如苯、甲醛等。

2.食品安全:–GC-MS可以用于检测食品中的农药残留、添加剂、污染物等有害物质,保障食品安全。

3.医药研发:–GC-MS可用于分析药物的组成和结构,研究药物的代谢途径和药物相互作用等,对药物研发起到重要作用。

4.毒物分析:–GC-MS是一种常用的毒物分析技术,可用于检测尿液、血液和组织中的毒物,对毒物中毒事件的调查和诊断具有重要意义。

5.石油化工:–GC-MS可用于分析石油和石油化工产品中的各种成分,如烃类、芳香化合物、杂质等。

四、GC-MS的优势和不足1.优势:–高分辨率:GC-MS具有很高的分离能力,可以有效分离复杂的混合样品。

–高灵敏度:GC-MS能够检测到很低浓度的目标分析物。

–高选择性:GC-MS对分析物具有较高的选择性,能够准确确定目标分析物。

–定性和定量分析:GC-MS可以同时进行目标物的定性和定量分析。

2.不足:–离子化技术的选择性:质谱分析中使用的不同离子化技术对不同化合物的离子化效果可能存在差异。

气相色谱-质谱联用 原理和应用介绍

气相色谱-质谱联用 原理和应用介绍

气相色谱法质谱联用气相色谱法–质谱法联用(英语:–,简称气质联用,英文缩写)是一种结合气相色谱和质谱地特性,在试样中鉴别不同物质地方法.地使用包括药物检测(主要用于监督药物地滥用)、火灾调查、环境分析、爆炸调查和未知样品地测定.也用于为保障机场安全测定行李和人体中地物质.另外,还可以用于识别物质中以前认为在未被识别前就已经蜕变了地痕量元素.已经被广泛地誉为司法学物质鉴定地金标方法,因为它被用于进行“专一性测试”.所谓“专一性测试”就是能十分肯定地在一个给定地试样中识别出某个物质地实际存在.而非专一性测试则只能指出试样中有哪类物质存在.尽管非专一性测试能够用统计地方法提示该物质具体是那种物质,但存在识别上地正偏差.目录历史仪器设备吹扫和捕集质谱检测器地类型分析全程扫描选择地离子检测离子化类型电子离子化化学离子化串联应用环境检测和清洁刑事鉴识执法方面地应用运动反兴奋剂分析社会安全食品、饮料和香水分析天体化学医药参考文献参考书目外部链接历史用质谱仪作为气相色谱地检测器是上个世纪年代期间由和首先开发地.当时所使用地敏感地质谱仪体积庞大、容易损坏只能作为固定地实验室装置使用.价格适中且小型化地电脑地开发为这一仪器使用地简单化提供了帮助,并且,大大地改善了分析样品所花地时间.年,美国电子联合公司(, . 简称)美国模拟计算机供应商地先驱在开始开发电脑控制地四极杆质谱仪. 地指导下[]开始开发电脑控制地四极杆质谱仪.到了年,和地分部合作售出多台四极杆残留气体分析仪.年,仪器公司(,简称)组建就绪,年初就给斯坦福大学和普渡大学发送了第一台地最早雏型.最后重新命名为菲尼根公司()并且继续持世界系统研发、生产之牛耳.年,当时最尖端地高速()单元在不到秒地时间里,完成了火灾助燃物地分析,然而,如果使用第一代至少需要分钟.到年使用四极杆技术地电脑化地仪器已经化学研究和有机物分析地必不可少地仪器.今天电脑化地仪器被广泛地用在水、空气、土壤等地环境检测中;同时也用于农业调控、食品安全、以及医药产品地发现和生产中.气质联用色谱是由两个主要部分组成:即气相色谱部分和质谱部分.气相色谱使用毛细管柱,其关键参数是柱地尺寸(长度、直径、液膜厚度)以及固定相性质(例如,%苯基聚硅氧烷).当试样流经柱子时,根据个组分分子地化学性质地差异而得到分离.分子被柱子所保留,然后,在不同时间(叫做保留时间)流出柱子.流出柱子地分子被下游地质谱分析器做俘获,离子化、加速、偏向、最终分别测定离子化地分子.质谱仪是通过把每个分子断裂成离子化碎片并通过其质荷比来进行测定地.把气相色谱和质谱这两部分放在一起使用要比单独使用那一部分对物质地识别都会精细很多很多倍.单用气相色谱或质谱是不可能精确地识别一种特定地分子地.通常,经质谱仪处理地需要是非常纯地样品,而使用传统地检测器地气相色谱(如,火焰离子化检测器)当有多种分子通过色谱柱地时间一样时(即具有相同地保留时间)不能予以区分,这样会导致两种或多种分子在同一时间流出柱子.在单独使用质谱检测器时,也会出现样式相似地离子化碎片.将这两种方法结合起来则能减少误差地可能性,因为两种分子同时具有相同地色谱行为和质谱行为实属非常罕见.因而,当一张分子识别质谱图出现在某一特定地分析地保留时间时,将典型地增高了对样品种感兴趣地被分析物地确定性.吹扫和捕集在分析挥发性化合物时,可以用吹扫和俘获(,)浓缩器系统导入样品. 提取目标被分析物,并与水混合,然后导入气密性室.用惰性气体,比如氮气()往水中鼓泡;这就叫做吹扫.挥发性化合物运动到水上方地顶空().并被压力梯度驱使(由引入吹扫气体所引起)流出气密室.这些挥发性化合物被沿着顶线抽往“阱”.阱是一个装有吸附材料地、处于室温下地柱子.它将通过把这些挥发性化合物转化成液相而保持住.然后,加热给阱样品化合物经过一个挥发性界面被引入柱,阱在这里相当一个分流进样系统.质谱检测器地类型和气相色谱()联合使用地地质谱地最常见类型是四极杆质谱仪,有时根据惠普(现在地安捷伦)地商品名叫做“质量选择检测器”().其他相对普遍地是离子阱质谱仪.另外,扇形磁场质谱仪气质联用中也有使用,然而,这些特别地仪器价格昂贵,体积庞大不适用于高通量服务地实验室.气质联用中还可能遇到地其他地质谱检测器有:飞行时间检测器(,)、串联四极杆检测器(,)(请见下面内容.)或在离子阱地情况下这里指地是质谱级数.分析典型地质谱检测有两种途径:全程扫描和选择性离子检测(,).典型地能够根据对仪器地设定,分别地或同时地执行这两种功能.全程扫描当以全程扫描方式收集数据时,确定一个质量片段目标范围并输入仪器.一个典型地检测质量片段地广度范围可以是质荷比()到质荷比.扫描范围地确定很大程度上决定于分析者预期试样中所含地物质,同时要考虑容易和其他可能地干扰成分.不应设定成寻找太低质量地片段,否则,会测到空气(发现如质荷比为地氮气),二氧化碳( )或其他可能地干扰.另外,如果选择一个很大地扫描范围,由于每次扫描必需测定很宽地质量范围,所耗费地时间长,结构每秒钟扫描地次数减少,从而降低仪器地灵敏度.全程扫描对于测定试样中地未知化合物有用.当需要证实或解析试样中地化合物时,它比能提供更多地信息.在开发仪器方法地时候,通常首先用全程扫描模式分析被测试地溶液确定保留时间和质量碎片指纹图,然后,转向仪器方法.选择地离子检测当在仪器方法中输入选择监测(,)某种离子片段时,仅有那些质量地片段被质谱仪监测.地优点是由于每次扫描时,仪器仅寻找少量片段(比如,三个片段)其监测限较低.每秒钟能进行更多次地扫描.由于仅仅监测所感兴趣地几个质量片段,基质干扰典型地低,为进一步确证潜在地阳性结果地可能性,相对重要地是与已知参比标准进行比较确定各种离子片段地离子比.离子化类型在分子通过柱子后,流经连接管线进入质谱仪,然后,被用各种方法离子化,每一次仅用其中地一种方法.一旦样品被达成碎片后,将被监测.通常用电子倍增二极管检测.电子倍增二极管将离子化地质量片段转化成电信号后进行测定. 离子化技术是不依赖于使用全程扫描还是地.电子离子化到目前为止,最常用地也许是标准形式地离子化过程是电子离子化(,).分子进入(其源为四极杆或离子阱地离子阱本身),在那里他们被由灯丝射出饿电子所轰击.这里地灯丝不很像标准电灯泡里地灯丝.电子以特定地、可以重复地方式将分子击成片段.这一“硬离子化”技术导致产生更多低质荷比()地碎片,如果,仍存在地话,也非常少接近分子质量单位地物种.质谱专家所说地“硬离子化”是使用分子电子轰击,而所谓“软质子化”是由导入地气体和分子碰撞使分子带电荷.分子片段地模式依赖于应用于系统地电子地能量,典型地是(电子伏特).使用能方便所产生地谱图和制造商提供地图库软件或美国国家标准研究所()开发地图库软件里地标准质谱进行比较.图库地搜索使用匹配算法,比如基于几率地匹配和基于点积地匹配.化学离子化:在化学质谱法中,是将一种气体,典型地是甲烷或氨气引入质谱仪中.根据所选择地技术(正或负),该试剂气体将与电子和被分析物发生作用引起感兴趣地分子地‘软’离子化.较软地化学离子化与硬地化学离子化相比将较低程度地造成分子碎片化.使用化学离子化地主要益处之一是产生紧密对应于感兴趣地被分析物地分子量地质量碎片.正地化学离子化在正地化学离子化(,)中试剂气体与目标分子相互作用,最经常是进行质子交换.这将产生相对大量地该物种.负地化学离子化在负化学离子化中(,)试剂气体降低自由电子对目标被分析物地碰撞.该降低了地能量典型地使大地碎片不再继续断裂,保持其大地含量.仪器分析地最初目地是为一种物质定量.这要通过在产生地谱图中比较各原子质量间地相对浓度来实现.有可能通过两种方法实现定量分析.比较法和从头分析法.比较分析地关键是将所获得地被分析物地谱图与谱库里地谱图进行比较,在谱库中是否存在具有和该物质特征一致地样品地谱图.这种比较最好靠电脑来执行,因为由于标度地变化,会产生很多视觉上地扭曲.电脑同时还能关联更多地数据,(比如,由气相色谱测定地保留时间),以至获得更精确地结果.另一种方法是测量各质谱峰地相对峰高.在该方法中,将最高地质谱峰指定为,其他地峰根据对最高峰地相对比例标出其百分相对高度.将所有地大于相对高度地峰都进行标注.通常通过母体峰来确定未知化合物地总质量.用母体峰地总质量值与所推测地该化合物中所含元素地化学式相适配.对于具有许多同位素地元素,可以用谱图中地同位素模式确定存在地元素.一旦化学式与谱图相匹配,就能确定分子结构和成键方式,而且,必需和记录地特点相一致.典型地,这种测定是通过和仪器配备地程序自动进行地,仪器给出样品中可能存在地元素地列表.“全谱”分析考虑谱图中所有地峰.与之相反,选择性离子检测(,)仅仅监测于特定物质相关地峰.这种方法是根据在特定地保留时间,一组离子是一个特定地化合物地特征地假设.这是一种快速、有效地分析方法,特别是分析者对样品有些预知地信息或仅仅是寻找几种特定地物质这种优点就更为突出.当在一个获得地色谱峰中所搜集到地离子地信息量降低时,该分析地敏感度升高.所以,分析能满足检测较小量地化合物,但是关于该化合物测定结果地确定性程度下降.串联当第二相质谱片段加入时,例如,在四极杆仪器中使用第二个四极杆,就叫做串联地().有时可用于在高地试样基质背景下为小量地目标化合物定量.第一个四极杆()与碰撞室()以及另一个四极杆()相连.根据分析操作地模式,两个四极杆都可被用于扫描或静态模式.分析地类型包括产物离子扫描、前体离子扫描.选择地反应监视(,)(有时也叫多反应监视(,))和中性丢失扫描().例如,当以静态模式前,(像在中那样,仅仅观察一个质量),而是以扫描模式,我们取得一幅叫做产物离子谱地谱图(也叫“子”谱).从这张谱图上,我们可以选择一个突出地产物离子,它可能是选定地前体离子地产物离子.这种配对地方法叫“跃迁()”它构成了地基础.是高度特异性地并且几乎完全消除了基质背景.应用环境检测和清洁在环境方面,正在成为跟踪持续有机物污染所选定地工具.设备地费用已经显著地降低,并且,同时其可靠性也已经提高.这样就是该仪器更适合用于环境监测研究.对于一些化合物,如某些杀虫剂和除草剂地敏感度不够,但对大多数环境样品地有机物分析,其中包括许多主要类型地杀虫剂,它是非常敏感和有效地.刑事鉴识分析人身体上地小颗粒帮助将罪犯与罪行建立联系.用进行火灾残留物地分析地分析方法已经很好地确立了起来.甚至,美国试验材料学会确定了火灾残留物地分析标准.在这种分析中,特别有用,因为试样中常常含有非常复杂地基质,并且,法庭上使用地结果要求要有高地精确度.执法方面地应用在麻醉毒品地监测方面地应用逐渐增多,甚至,最终会取代嗅药犬.也普遍地用于刑侦毒理学在嫌疑人、受害者或死者地生物标本中发现药物和毒物.运动反兴奋剂分析也是用于运动反兴奋剂实验室,在运动员地尿样中测试是否存在被禁用地体能促进类药物地主要工具,例如,测定合成代谢类固醇类药物.社会安全.后开发地爆炸物监测系统已经成为全美国飞机场设施地一部分.这些监测系统地操作依赖大量地技术,其中,许多是基于地.美国联邦航空管理局仅授权三家制造商提供这些系统,其中之一是公司,以前叫,它生产爆炸物检测器(是一个基于爆炸物检测线.另外两家制造商是,现在被' 收买,和,它是地一部分.食品、饮料和香水分析食品和饮料中包含大量芳香化合物.一些是天然就存在于原材料中另外一些是在加工时形成地.广泛地用于分析这些化合物,它们包括:酯、脂肪酸、醇、醛、萜类等.也用于测定由于腐坏和掺假所造成地污染物,这些污染物可能是有害地,而且,常常由政府有关部门对其实行控制.例如,杀虫剂.医药十几种先天性代谢疾病,也叫先天性代谢缺陷(,)现在都可以通过新生儿筛检试验测到,特别是使用气相色谱-质谱法进行监测.可以测定尿中地化合物,甚至该化合物在非常小地浓度下都可被测出.这些化合物在正常人体内不存在,但出现在患代谢疾病地人群中.因而,该方法日益成为早期诊断地常用方法,这样及早指定治疗方案最终导致更好地预后.目前能用在出生时,通过尿液监测测出种以上遗传性代谢异常.。

GC-MS工作原理

GC-MS工作原理

GC-MS工作原理引言概述:气相色谱-质谱联用技术(GC-MS)是一种广泛应用于化学分析领域的技术,它结合了气相色谱和质谱两种分析方法,能够高效地进行复杂混合物的分离和鉴定。

GC-MS的工作原理是基于样品分子在气相色谱柱中的分离和质谱仪器中的质谱分析,通过分析样品分子的质谱图谱,可以确定样品的成分和结构。

本文将详细介绍GC-MS的工作原理及其应用。

一、气相色谱分离1.1 气相色谱柱1.2 样品进样1.3 柱温控制二、质谱分析2.1 离子化2.2 质谱检测2.3 质谱图谱三、数据处理3.1 质谱数据获取3.2 数据分析3.3 结果解读四、应用领域4.1 环境监测4.2 食品安全4.3 药物分析五、发展趋势5.1 自动化技术5.2 多维气相色谱-质谱联用5.3 高分辨率质谱技术正文内容:一、气相色谱分离1.1 气相色谱柱:GC-MS中的气相色谱柱通常是由不同类型的固定相填料组成,样品分子在柱中根据其化学性质和分子大小进行分离。

不同的柱类型和填料可以实现不同的分离效果,如环境分析常用的DB-5柱用于分离挥发性有机物。

1.2 样品进样:样品进样是GC-MS分析的第一步,通常采用进样口将样品气体化后注入气相色谱柱中进行分离。

进样量和进样方式对分析结果有重要影响,需要根据样品特性进行合适的选择。

1.3 柱温控制:气相色谱柱的温度控制对样品分离效果至关重要,通过控制柱温可以调节样品在柱中的停留时间,从而实现不同成分的分离。

温度程序是根据样品特性和分析要求进行设计的。

二、质谱分析2.1 离子化:在质谱仪器中,样品分子首先被离子化,通常采用电子轰击或化学离子化等方式将分子转化为离子。

离子化过程会产生多种离子种类,其中主要的离子种类会被选择进行检测。

2.2 质谱检测:离子化后的离子进入质谱检测器进行检测,根据不同离子的质荷比和丰度进行分析。

常用的检测器包括飞行时间质谱仪(TOF-MS)和四极杆质谱仪(Q-MS),不同检测器有不同的检测灵敏度和分辨率。

气相色谱质谱GCMS联用技术及其应用精

气相色谱质谱GCMS联用技术及其应用精

气相色谱-质谱(GC-MS)联用技术及其应用(精)气相色谱-质谱(GC-MS)联用技术是一种非常强大的分析工具,它结合了气相色谱的分离能力和质谱的鉴定能力,广泛应用于化学、生物、环境等领域。

以下是关于GC-MS联用技术的介绍和应用。

一、气相色谱-质谱联用技术气相色谱-质谱联用技术是将气相色谱与质谱联接在一起的一种技术。

气相色谱是一种分离和分析复杂混合物的方法,它利用不同物质在固定相和移动相之间的分配平衡进行分离。

质谱则是一种鉴定化合物的方法,它通过将化合物离子化并分析其碎片离子来鉴定化合物的结构。

GC-MS联用技术将气相色谱的分离能力和质谱的鉴定能力相结合,可以实现复杂混合物中各组分的分离和鉴定。

在GC-MS联用技术中,样品首先通过气相色谱进行分离,然后通过接口将分离后的组分引入质谱进行分析和鉴定。

接口是GC-MS联用技术的关键之一,它需要能够将气相色谱分离后的组分进行有效地转移和导入质谱,同时还需要保持样品在转移过程中的稳定性和一致性。

二、气相色谱-质谱联用技术的应用GC-MS联用技术的应用非常广泛,以下是一些主要的应用领域:1.化学分析:GC-MS联用技术在化学分析领域应用最为广泛,它可以用于鉴定化合物的结构、测定化合物的分子量、研究化合物的反应机理等。

2.生物研究:GC-MS联用技术在生物研究领域也有广泛的应用,它可以用于鉴定生物体内的代谢产物、研究生物酶的催化反应、分析生物组织的成分等。

3.环境科学:GC-MS联用技术在环境科学领域的应用也十分重要,它可以用于检测环境中的有害物质、研究污染物的迁移和转化规律、评估环境污染的影响等。

4.食品科学:GC-MS联用技术在食品科学领域的应用也十分广泛,它可以用于检测食品中的添加剂、农药残留、有害物质等,保障食品的安全性和卫生质量。

5.医药领域:GC-MS联用技术在医药领域也有广泛的应用,它可以用于研究药物代谢、药物疗效及副作用等。

三、总结气相色谱-质谱联用技术是一种非常强大的分析工具,它的应用领域非常广泛,涉及到化学、生物、环境、食品、医药等多个领域。

气相色谱质谱联用技术的原理及应用

气相色谱质谱联用技术的原理及应用
份流失。
分流进样注意事项
• 分流进样时为了保证分流比的概念真实有 效,样品(溶剂+被分析物)必须与载气充 分混合,形成一个均匀的混合物。如果进 样量过大,溶剂会膨胀为很大的体积,致 使进样口衬管过载。其结果必将导致样品 从吹扫出口流出而造成样品损失,同时也 会造成载气输入管路的污染。
进样(气化)室温度
质谱电离方式
• 离子源的作用是将被分析的样品分子电离成带电的离子,并使这些离 子在离子光学系统的作用下,会聚成有一定几何形状和一定能量的离 子束,然后进入质量分析器被分离。
• • EI电子电离源:主要分析挥发性样品,GC-MS 标准质谱图NIST谱库。
国际上统一用70eV,在这一电子能的作用下可形成最多的离子,可形 成相对大的分子离子峰和强的碎片离子峰(与分子结构有关)。有些 化合物的分子离子不出现或很弱。MS source temperature 230 ℃。 • • CI化学电离源:软电离技术,EI有些分析不了,CI可以分析易气化样品 的分析,GC-MS 非标准质谱图,不能谱库检索。 • FAB快原子轰击源:极性强,分子量大难气化的样品的分析。 • ESI电喷雾电离源:液相色谱质谱联用仪,软电离方式,适合于分析极 性强的大分子有机化合物。 • APCI大气压化学电离源:中等极性的有机化合物,是ESI的补充,得准 分子离子,单电荷离子。
• 柱温提高,会使各组分的挥发靠拢,不利于分离, 柱温不能太低,被测组分在两相间扩散速率大为减 小,分配不能迅速达到平衡,峰形变宽,柱效下降, 并延长了分析时间。
程序升温选择பைடு நூலகம்则
• 在使最难分离的组分能尽可能好的分离的情况下,尽可能采取较 低的柱温,但以保留时间适宜,峰形不拖尾为度。
• 对于高沸点混合物(300-400℃),希望在较低的柱温下(低于其 沸点100-200℃)分析,为改善液相传质速率,可用低固定液含量 (质量分数1%-3%)的色谱柱,使液膜薄一些,但允许最大进样 量减小,因此应采用高灵敏度检测器。

气相色谱质谱联用技术在食品安全检测中的应用

气相色谱质谱联用技术在食品安全检测中的应用

气相色谱质谱联用技术在食品安全检测中的应用随着人们对健康饮食的需求越来越高,对食品安全的关注度也越来越高,食品安全检测成为保障人民健康的重要一环。

而气相色谱质谱联用技术(GC-MS)是目前食品安全检测领域中应用最为广泛、检测效果最佳的技术之一。

一、GC-MS技术的基本原理GC-MS技术是指将气相色谱技术与质谱技术相结合,利用气相色谱将混合物中的成分逐一分离,然后通过质谱对分离后的物质进行分子结构鉴定。

GC-MS技术具有分离能力高、灵敏度高、可靠性高、重现性好等优点,被广泛应用于食品、农药、环境污染物、医药等领域的分析和检测中。

二、GC-MS在食品安全检测中的优势1.能够快速准确检测有害物质食品中可能存在的有害物质较多,如农药、添加剂、重金属等,而GC-MS技术具有高灵敏度、高分辨率、高检出率等优势,能够在短时间内、准确地检测出这些有害物质。

2.提高食品质量检测标准食品质量安全是人民群众关注的重点,而借助GC-MS技术的高可靠性和高重复性,检测结果的准确性能够得到有效保障,有利于提高食品质量检测标准。

3.有利于快速处理食品中的待检物质食品中待检物质数量繁多且复杂,但通过GC-MS技术,能够快速、高效地处理这些物质,有效提高工作效率,缩短检测时间。

三、应用GC-MS技术对食品中有害物质的检测和监管1.检测各类农药残留农药残留是食品中最常见的安全隐患之一,各级监管部门对不同类别食品的农药残留量均有相关检测和抽检标准。

GC-MS技术在对各类农药残留的检测中具有很高的检出率和可靠性,能够为食品安全的监管提供有力的技术支持。

2.检测添加剂及其他有害物质食品中常使用的添加剂有色素、防腐剂、甜味剂等,使用不当会对人体造成损害。

GC-MS技术可用于检测这些有害物质的残留量,以保障消费者的健康。

3.监管食品中的重金属部分大型食品企业会在其生产过程中大量使用重金属反渗透制水等设备,如果不能妥善处理这些金属离子,会直接影响到食品中重金属的含量。

气质联用色谱仪的原理及应用

气质联用色谱仪的原理及应用

气质联用色谱仪的原理及应用
气质联用色谱仪的原理及应用:
一、气质联用的原理:
气相色谱-质谱联用技术,简称气质联用,即将气相色谱仪与质谱仪通过接口组件进行连接,以气相色谱作为试样分离、制备的手段,将质谱作为气相色谱的在线检测手段进行定性、定量分析,辅以相应的数据收集与控制系统构建而成的一种色谱-质谱联用技术。

气相色谱技术是利用一定温度下不同化合物在流动相(载气)和固定相中分配系数的差异,使不同化合物按时间先后在色谱柱中流出,从而达到分离分析的目的。

质谱技术是将汽化的样品分子在高真空的离子源内转化为带电离子,经电离、引出和聚焦后进入质量分析器,在磁场或电场作用下,按时间先后或空间位置进行质荷比(质量和电荷的比,m/z)分离,最后被离子检测器检测。

二、基本应用:
气质联用仪被广泛应用于复杂组分的分离与鉴定,其具有GC的高分辨率和质谱的高灵敏度,是生物样品中药物与代谢物定性定量的有效工具。

质谱仪的基本部件有:离子源、滤质器、检测器三部分组成,它们被安放在真空总管道内。

接口:由GC出来的样品通过接口进入到质谱仪,接口是气质联用系统的关键。

GC-MS主要由以下部分组成:色谱部分、气质接口、质谱仪部分(离子源、质量分析器、检测器)和数据处理系统。

GCMS的原理与应用

GCMS的原理与应用

GCMS的原理与应用GCMS是气相色谱-质谱联用技术(Gas Chromatography-Mass Spectrometry)的简称。

它是将气相色谱(GC)和质谱(MS)两种技术结合起来,常用于化学、环境、食品、药物等领域中物质的分析鉴定。

1.样品制备:待测样品首先经过适当的预处理,如提取、萃取、稀释等,以获得适合于GC分析的样品。

2.进样:经过制备的样品通过自动进样器进入色谱柱,通常使用静态头空进样或注射进样器进行进样。

3.色谱分离:样品进入气相色谱柱,不同组分由于其化学性质的差异,在柱中持有不同的时间,完成分离。

4.离子化:柱出口的化合物进入质谱仪中,通过离子源(通常采用电子轰击离子化)将化合物转化为离子。

5.质谱分析:离子被加速和分离,进入质谱分析区分析质量/电荷比。

离子的相对丰度记录下来,形成母离子谱图和质谱图。

6.数据处理:通过比对数据库中的质谱图和物质库中的质谱图进行对比,确定样品中各个化合物的成分和含量。

1.环境监测:GCMS可以用于环境空气、水体、土壤等样品中对有机污染物进行分析,如挥发性有机化合物(VOCs)、多环芳烃(PAHs)等的检测与定量;同时可以用来监测不同环境条件下的气体排放和水体污染等。

2.食品安全:GCMS可以用于食品中的风味与香气组分分析、添加剂、农残、防腐剂、有毒物质和致癌物质等的检测,如残留农药、重金属、酸价、脂肪酸等的分析与定量。

3.药物分析:GCMS可以用于药物的有效成分分析和药物代谢产物的分析。

可用于药物残留、药物代谢物的分析、药物研究和药物质量控制等方面。

4.石油化工:GCMS可以用于石油化工产品的分析与鉴定,如石油及其衍生物、石油醚、环境中的石油污染等的分析。

5.化学研究:GCMS可以用于化学研究中的物质分离、分析和定量,如异构体分析、反应活性物质的鉴定等。

总之,GCMS作为一种重要的分析技术,广泛应用于多个领域,能够对复杂样品中的化合物进行有效分离、鉴定和定量分析,具有高灵敏度、高选择性和快速分析的优点,为科学研究和实际应用提供了重要的技术支持。

气相色谱质谱联用技术的原理及应用

气相色谱质谱联用技术的原理及应用

检测与记录
检测器检测离子信号,通过记 录器记录离子的强度和质荷比。
数据处理与分析
数据预处理
对原始数ห้องสมุดไป่ตู้进行整理、清洗和格式转换, 以便后续的数据分析和挖掘。
定量分析
根据标准曲线或已知浓度的标准品, 对样品中的化合物进行定量分析,计
算各组分的浓度。
定性分析
通过比对标准谱库,对样品中的化合 物进行定性分析,确定化合物的种类 和结构。
校准标准
使用已知浓度的标准物质进行校准,确保仪器准确度和精密度符 合要求。
实验操作步骤
分离
样品在气相色谱柱中进行分离, 不同组分依次流出。
质量分析
带电粒子通过质量分析器进行 质量分离,得到不同质荷比的 离子。
进样
将处理好的样品通过进样针注 入进样口,开始实验。
离子化
样品在离子源中经过离子化处 理,转化为带电粒子。
结果报告
将实验结果整理成报告形式,包括实 验数据、图表、结论等,以便于理解 和应用。
05
气相色谱质谱联用技术的最新进展与
展望
新技术发展
1 2 3
新型检测器技术
随着科学技术的进步,新型检测器技术如电子捕 获检测器、光离子化检测器等不断涌现,提高了 检测的灵敏度和选择性。
微型化技术
微型化技术使得气相色谱质谱联用仪器的体积更 小,操作更加简便,适用于现场快速检测和便携 式应用。
多模式检测技术
通过开发多模式检测技术,如串联质谱、多级质 谱等,可以实现更复杂的化合物结构和未知物的 分析。
应用拓展
环境监测
气相色谱质谱联用技术 广泛应用于环境监测领 域,如大气、水体、土 壤中有机污染物的检测。
食品安全

气相色谱质谱联用在食品检验中的应用

气相色谱质谱联用在食品检验中的应用

气相色谱质谱联用在食品检验中的应用作者:杜娟来源:《中国食品》2024年第14期食品检验是确保食品不含有害化学物质和生物污染物的重要手段,检测内容包括食品中的农药残留、食品添加剂、有害化学物质,以及食品中自然存在的有害成分等。

气相色谱质谱联用技术(GC-MS)因其高效、精准的特性,成为检测食品中复杂成分的理想选择,在食品安全监管中发挥着重要作用。

本文主要探讨了气相色谱质谱联用技术在食品检验中的具体应用,并归纳了应用过程中的几点注意事项。

一、氣相色谱质谱联用技术概述(一)基本原理气相色谱质谱联用技术的气相色谱部分借助色谱柱及固定相的化学性质分离样品中的各挥发性组分。

这些组分在载气(如氦、氮等)的带动下,依据其与固定相的相互作用程度以不同速率通过色谱柱,实现时间上的分离。

随后,色谱柱出口的组分会被引入到质谱仪中,电离化合物使其生成带电的离子,离子在电磁场作用下会根据其质荷比被加速并分离,生成一个质谱图。

该图记录了不同质荷比的离子的相对丰度,提供了化合物的分子质量及其结构信息。

常用的电离方法包括电子撞击和化学电离。

电子撞击法是利用高能电子束轰击样品分子,使其电离断裂成多个片段,从而为化合物的结构分析提供参考;化学电离法则是引入一个反应离子源,使样品分子在较为温和的条件下电离,从而获得分子整体的质荷比信息。

(二)优势分析气相色谱质谱联用技术具有分离能力强、灵敏度高、结构信息丰富和多组分分析等优势。

气相色谱柱采用了特殊涂层的毛细管,这种涂层可根据不同化学性质优化分离过程。

每种化合物在通过色谱柱时,由于其独有的沸点和极性差异,与固定相的相互作用程度会有所不同,因此在柱中的迁移速度也会存在差异。

这使得复杂的样品混合物被有效地分离为单一组分,进而为后续的质谱分析提供清晰的目标物质。

通过调整色谱柱的长度、直径、温度,以及载气的流速等参数,可对分离过程进行优化调整,以确保气相色谱在处理极为复杂的样品混合物时依然能保持高效的分离性能,减少样品间的交叉污染和峰的重叠。

化学分析中的质谱联用技术应用

化学分析中的质谱联用技术应用

化学分析中的质谱联用技术应用质谱联用技术是一种将质谱与其它分析技术联用的技术。

该技术可以用于化学分析中的许多领域,例如环境分析、食品分析和药学等。

随着技术的不断发展和改进,质谱联用技术在这些领域中的应用也越来越广泛。

一、质谱联用技术的基本原理质谱联用技术基本原理是将另一种分析技术与质谱连接起来,将两种分析技术的优点结合起来,互相弥补缺点。

该技术主要分为三种:气相色谱-质谱联用技术、液相色谱-质谱联用技术和毛细管电泳-质谱联用技术。

其中,气相色谱-质谱联用技术是最常用的一种。

在质谱联用技术中,样品通过荧光检测器、紫外检测器等分析技术预处理后,再送入质谱仪进行分析。

样品分子通过荧光检测器等离子源与电子发生碰撞,从而形成分子离子。

接着,质谱仪将分子离子进行检测和分析。

二、质谱联用技术在环境分析中的应用环境分析是质谱联用技术最常见的应用之一。

为了评估环境污染的程度和环境变化, 这种技术常常采用气相色谱-质谱联用技术。

气相色谱-质谱联用技术结合了气相色谱的分离能力和质谱的检测能力来分析环境中存在的化学物质。

因为气相色谱只能检测分子的相对分子质量,而质谱提供了详细的分子结构信息,所以两种技术结合起来可以对分析物进行更加准确的定量和定性分析。

该技术可应用于环境中重金属、农药、有机物等污染物的检测和分析,可帮助人们了解不同区域的环境污染情况。

另外,质谱联用技术还可应用于土壤和水体中有毒化合物的分析。

三、质谱联用技术在食品分析中的应用该技术还可应用于食品分析中,以检测和分析食品中存在的化学成分和添加剂。

质谱联用技术在食品分析中的主要应用是检测食品中的残留物和添加剂。

例如,该技术可用于检测农药残留,以保证食品安全。

另外,该技术还可用于检测食品中的抗生素、激素、防腐剂等物质残留,并确定其浓度和来源。

四、质谱联用技术在药学中的应用质谱联用技术在药学中的应用也非常广泛,可以用于检测药品的含量、质量和纯度。

在制药工业中,质谱联用技术被广泛应用于药物分离和鉴定过程中,它可以检测到微量的化合物,并能够进行定量分析。

气相色谱质谱联用的原理及应用

气相色谱质谱联用的原理及应用
现状
目前,GC-MS技术已经广泛应用于各个领域,如食品、药品、环境监测、生物医学等。随着科技的不断进步, GC-MS技术也在不断发展,如提高检测灵敏度、降低检测限等。
未来发展趋势
自动化和智能化
随着机器人技术和人工智能的发展, 未来GC-MS技术将更加自动化和智能 化,提高分析效率和质量。
微型化和便携化
与液相色谱技术结合
通过与液相色谱技术结合,气相色谱质谱联用技术可以实 现对复杂样品中极性化合物、热不稳定化合物等的有效分 联用技术还可以与光谱技术(如红外光谱、 拉曼光谱等)结合,实现对化合物结构信息的获取,提高 鉴定的准确性。
技术在各领域的应用拓展
环境监测领域
特点
GC-MS具有高分离效能、高灵敏度、 高可靠性等优点,广泛应用于化学、 生物、环境等领域。
发展历程与现状
发展历程
自20世纪50年代气相色谱技术的发明以来,经过多年的发展,气相色谱技术逐渐成熟。1957年,美国科学家斯 宾塞和雷德首次将质谱仪与气相色谱仪联用,实现了对复杂混合物的分离和检测。经过60多年的发展,GC-MS 技术已经成为一种成熟的分析方法。
THANKS
感谢观看
水质检测
通过气相色谱质谱联用技术可以 检测水中的农药残留、重金属、 内分泌干扰物质等有害物质,保 障水质安全。
在食品检测中的应用
食品添加剂的检测
气相色谱质谱联用技术可以用于检测食品中的防腐剂、色素、抗氧化剂等添加 剂,确保食品的安全性。
农药残留的检测
该技术可以检测果蔬、谷物等农产品中的农药残留,保障消费者的健康权益。
气相色谱质谱联用技术可用于环 境样品中挥发性有机物、半挥发 性有机物等的检测,为环境监测
提供有力支持。

气相色谱质谱联用仪原理和应用

气相色谱质谱联用仪原理和应用

气相色谱质谱联用仪原理和应用
气相色谱质谱联用仪(GC-MS)是通过将气相色谱仪和质谱
仪联用而形成的分析仪器。

它的原理是首先将待分析的样品通过气相色谱分离成不同的组分,然后将这些组分引入质谱仪进行分析和识别。

气相色谱质谱联用仪的主要组成部分包括样品进样系统、气相色谱柱、色谱分离柱、检测器、质谱分析系统等。

在分析过程中,样品首先被进样系统引入气相色谱柱中,通过气相色谱柱的分离作用,将样品中的各个组分分离出来。

然后,这些分离出来的组分依次进入质谱分析系统中。

质谱分析系统通过碎裂样品中的分子,测量和记录它们的质量-荷质谱图谱,根据分离出的分子的质谱图谱可以进行精确的组分鉴定和定量分析。

气相色谱质谱联用仪的应用非常广泛。

它在环境监测、食品安全、药物检测、毒品鉴定等领域发挥着重要作用。

例如,在环境监测中,可以用来检测大气中的有机污染物、土壤和水中的有害物质等。

在食品安全领域,可以用于检测食品中的农药残留、有害物质和食品添加剂等。

在药物检测和毒品鉴定中,可以用来鉴定药物或毒品中的成分和含量。

总而言之,气相色谱质谱联用仪通过将气相色谱和质谱两种分析技术有效结合,提高了分析的灵敏度、选择性和可靠性,广泛应用于化学、生物、环境等领域的分析和研究工作中。

gcms气相色谱质谱联用仪原理

gcms气相色谱质谱联用仪原理

gcms气相色谱质谱联用仪原理gcms气相色谱质谱联用仪是一种高度集成的分析仪器,它结合了气相色谱和质谱的优点,能够高效、精准地分析样品的成分。

在以下内容中,我们将分别介绍气相色谱原理、质谱原理以及联用原理。

1.气相色谱原理气相色谱法是一种常用的分离和分析方法,其主要原理是利用样品中各组分在固定相和移动相之间的分配平衡来实现分离。

在色谱柱中,固定相是固体或液体,移动相是气体或液体。

样品在进样口中气化后,被载气带入色谱柱。

由于各组分在固定相和移动相之间的分配系数不同,因此它们在色谱柱中的移动速度也会不同,从而实现各组分的分离。

在气相色谱中,色谱柱是关键部件。

根据样品中各组分的沸点、极性和化学性质等参数,可以选择适合的色谱柱类型。

常用的色谱柱有填充柱和毛细管柱两种类型。

填充柱内部装有固体或液体固定相,而毛细管柱则由内壁涂有固定相的空心玻璃或金属毛细管构成。

2.质谱原理质谱法是一种用于分析分子和离子的方法,其主要原理是通过测量离子质量与电荷之比来确定离子的分子量。

在质谱仪中,样品首先被离子化,生成带电粒子束,然后这些粒子在电场和磁场中受到作用力,按照质量/电荷比发生偏转。

通过测量不同偏转角度的离子束强度,可以得到样品的质谱图。

质谱仪的主要部件包括离子源、分析器和检测器。

离子源可以将样品分子电离成离子,分析器可以将不同质量的离子分离,检测器则用于检测并记录每个离子的强度。

通过分析样品的质谱图,可以获得样品的分子量、分子式、分子结构等信息。

3.联用原理gcms气相色谱质谱联用仪是将气相色谱和质谱联用的一种仪器。

通过将这两种技术的优势结合起来,可以获得更为精准和高效的成分分析结果。

在gcms联用仪中,气相色谱和质谱的联接是通过接口实现的。

这个接口将气相色谱的出口与质谱的入口连接起来,使样品在气相色谱分离后可以直接进入质谱进行检测。

接口通常采用不分流或分流进样方式,以避免样品在接口处发生二次加热或分解。

gcms气相色谱质谱联用仪的主要应用范围包括环境监测、食品药品安全、临床诊断、化学化工等领域。

gc ms的分析原理

gc ms的分析原理

gc ms的分析原理
GC-MS(气相色谱质谱联用)是一种广泛应用于化学分析的技术。

它将气相色谱和质谱两种方法结合起来,以提高化合物的分离和鉴定能力。

GC-MS的分析原理基于化合物在气相色谱柱中的分离和质谱仪器中的离子化及检测。

首先,样品被注入气相色谱柱,在高温和惰性气体的作用下,它们被分离成单个化合物,各自在柱上占据不同的位置。

然后,这些化合物进入质谱仪的质谱室。

在质谱室,分子进入电子轰击源,通常使用电子束来使它们离子化。

离子化的分子进入质谱仪的质量分析器,在磁场和电场的作用下,离子按它们的质荷比进行曲线运动。

最终,离子被探测器探测到,产生质谱图。

通过与已知的标准物质进行比对,质谱图可以用于鉴定样品中的化合物。

每个化合物都具有其独特的质谱图,这样的识别可以用于确定化合物的确切身份。

GC-MS是一种高灵敏度和高选择性的分析技术,它被广泛应用于环境、食品、药物、化妆品等领域。

它可以用于定量分析和定性分析,对于识别复杂混合物中的化合物非常有用。

gcms的原理及应用

gcms的原理及应用

GC-MS的原理及应用前言气相色谱-质谱联用仪器(GC-MS)是一种广泛应用于化学分析领域的分析技术,它结合了气相色谱和质谱技术的优点,能够提供高灵敏度、高选择性和高分辨率的化学分析结果。

本文将介绍GC-MS的原理及其在不同领域的应用。

1. GC-MS的原理1.1 气相色谱(GC)原理气相色谱是一种基于物质在固定相和流动相之间分配系数差异而进行分离的技术。

样品在流动相中被输送到柱中,柱中的固定相通过柱温控制下与流动相相互作用,从而使不同组分在柱中停留时间不同,实现分离。

1.2 质谱(MS)原理质谱是一种测量化学物质质量的技术,它利用质谱仪将化学物质分子转化为离子,并通过离子的质量和相对丰度来确定化学物质的组成。

1.3 GC-MS联用原理GC-MS联用仪器将气相色谱和质谱相结合,实现了气相色谱分离和质谱检测的一体化。

GC-MS联用的基本原理是将气相色谱柱的输出直接连接到质谱仪,通过固定相的分离和质谱的检测相结合,实现对样品的高效分离和灵敏的化学分析。

2. GC-MS的应用2.1 环境分析GC-MS在环境监测中广泛应用,例如大气中的有机污染物和挥发性有机物的测定、水体中的环境激素和有机污染物的分析等。

通过GC-MS的高灵敏度和高选择性,可以对环境中微量有害物质进行快速准确的鉴定和测定。

2.2 食品安全检测食品安全是一个全球性的关注点,GC-MS在食品安全检测领域起着重要的作用。

例如,通过GC-MS可以对食品中的农药残留、食品添加剂和禁用物质进行分析和检测,保障食品质量和人们健康。

2.3 药物分析GC-MS在药物分析中具有广泛应用。

它可以用于药物中有害物质的检测和纯度的鉴定,对药物的质量进行评估。

同时,GC-MS也可以用于药物代谢产物的分析,了解药物在体内的转化过程,为药物的研发和治疗提供重要的参考。

2.4 毒物分析毒物分析是GC-MS的另一个重要应用领域。

通过GC-MS可以对人体内的毒物或化学物质进行鉴定和定量分析,起到重要的法医学和毒理学作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020/3/29
———
分流进样注意事项
• 分流进样时为了保证分流比的概念真实有 效,样品(溶剂+被分析物)必须与载气充 分混合,形成一个均匀的混合物。如果进
样量过大,溶剂会膨胀为很大的体积,致
使进样口衬管过载。其结果必将导致样品
从吹扫出口流出而造成样品损失,同时也 会造成载气输入管路的污染。
2020/3/29
• c. 极性与非极性混合物—极性固定液。极性越 小的组分出越早出峰。
• d. 易形成氢键物质—极性或氢键型固定液。不 易形成氢键的组分先出峰,易形成氢键的组分 后出峰。
• e. 复杂难分离样品—多种固定液混合。
2020/3/29
———
常用毛细管柱固定液
2020/3/29
———
样品的处理
• 样品要求溶解在有机溶剂(如丙酮、正己烷、氯仿、苯等)中; 溶剂应具有较低的沸点,从而使其容易与样品分离。尽可能避免 用水、二氯甲烷和甲醇做溶剂,因为它们对延长色谱柱的使用寿 命不利。另外,如果用毛细管柱分析,应注意样品的浓度不要太 高,以免造成柱超载,通常样品的浓度为mg/ml级或更低。
2020/3/29
———
色谱柱程序升温条件
• 程序升温条件是影响样品分离度的最主要因素。根 据样品的挥发性等改变;程序升温慢可改善分离效 果,但会增加分析的时间;柱温不能高于固定液的 最高使用温度,否则固定液挥发流失;应综合考虑。
气相色谱质谱联用的原理 及应用
李自丹 2010207449
———
主要内容
• 1 气质联用的原理 • 2常见的气质联用仪器及色谱柱 • 3样品处理 • 4气质联用参数设置 • 5气质联用对本课题组的意义
2020/3/29
———
气质联用的原理
• 气相色谱是一种物理的分离方法。利用被测物质各 组分在不同两相间分配系数(溶解度)的微小差异, 当两相作相对运动时,这些物质在两相间进行反复 多次的分配,使原来只有微小的性质差异产生很大 的效果,而使不同组分得到分离。实际为通过样品 组份沸点之间的差异先后进柱,然后在气体流动相 和固定相之间分配系数的差异进一步分离。
• 不分流(splitless) 痕量组分分析;脉冲组分不分 流(pulse splitless)允许更大进样量。
• 良好的分流比可以防止柱内某些成分含量过高,造 成柱超载形成拖尾峰影响分离,使出峰时间相近的 成分能够较好的分离。
• 分流不改变样品浓度,只改变峰的信号强度。
• Split ratio (分流比) 10:1即为 11份,1份进柱子,10 份流失。
• 样品中不能含有水,盐类等物质; • GC所能直接分离的样品应是可挥发的、且是热稳定的,沸点一般
不超过500℃,分子量小于500; • 样品含量在ppb-ppm级,样品不得少于20 uL; • 需要进行衍生化处理的样品,需合理选择衍生化方法。
2020/3/29
———
样品的衍生化
• 衍生化目的:改善待测物质的气相色谱性质、热稳定性、分子质量、 质谱行为,引入卤素原子或吸电子基团,通过一些特殊的衍生化方法 可以拆分一些难分离的手性化合物。
• 常用的衍生化方法: • 硅烷化衍生化 • (1)BSTFA和BTA衍生化胺基和羟基 • (2)MTBSTFA常用于药物、类固醇类检测 • (3)MSTFA是最常用的硅烷化试剂(苹果酸、富马酸、柠檬酸等) • (4)单糖硅烷化时用一般用三甲基硅烷咪唑(甘露糖、半乳糖、海
藻糖等) • 酰化衍生化 • (1)乙酰化(体内药物筛选,大多数的临床药物) • (2)三氟乙酰化/五氟丙酰化/七氟丁酰化(苯丙胺类和麻黄碱类) • 烷基化衍生化(农药和杀虫剂)
2020/3/29
———
气质联用参数设置 ----进样方式
• 动进样(auto-injector)和手动进样; • 自动进样包括填充柱进样口、毛细柱分流/
无分流进样口、冷柱头进样、程序升温 (PTV)进样口、大体积进样、阀进样。
2020/3/29
———
是否分流?
• 分流(split) 主要组分分析;脉冲分流(pulse split)允许更大进样量;
• 柱长:25—30m 中长柱:分离10—50个组份的样品。 50m 长柱:分离大于50个组份或包含有难分离物质对的复杂样品。
• 加倍柱长,恒温分析时间则加倍但峰分辨率仅增大40%。如果分析只 是比较好但不是特别好的,有比增加柱长度更好的办法来分析结果, 如考虑更薄的膜,优化载气流量或用程序升温等。
2020/3/29
———
6890N/5973C
2020/3/29
———
色谱柱
• 常用的色谱柱包括毛细管柱和填充柱。
2020/3/29
———
毛细管柱的参数及选择原则
• 内径:0.25mm 最常用的内径规格。有较高的柱效,负荷量较低,必 须分流进样或无分流进样。用于复杂多组份样品分析。
• 大口径,多固定相大样品容量,分离能力降低,流失较大。
———
进样(气化)室温度
• 考虑样品的稳定性?样品是否能够气化? 一般在200~250℃
• 考虑样品中各组分的沸点,设定温度使样 品瞬间汽化。
• 进样后要有足够的气化温度,使液体式样 迅速气化后被载气带入柱中。在保证样品 不分解的情况下,适当提高气化温度对分 离及定量有利,尤其当进样量大时更是如 此。一般选择气化温度比柱温高30-70℃。
• 膜厚: 0.25—0.33um 标准液厚 一般商品柱的标准液膜。对于流出达 300℃的大多数样品(包括蜡、甘油三酯、甾族化合物等)能够很好 的分析。
•2020/毛3/29细管固定液
———
毛细管柱的固定液选择原则 ---“相似相溶”
• a. 非极性物质—非极性固定液。沸点越低的组 分越早出峰。
• b. 极性物质—极性固定液。极性越小的组分出 越早出峰。
• 质谱作为气相色谱的检测器,利用电离源将各种成 分分子电离成质谱碎片,通过相应的谱库检索碎片 信息,给出此信息与某化学物质匹配度,达到对物 质进行定性的目的。
2020/3/29
———
气质联用组成构建
2020/3/29
———
常见的气质联用仪
• 目前常用的是美国Agilent的和日本岛津的联 用仪,其中Agilent为公认的分析测量仪器生 产厂家。型号有 6890N/5973C、 7890N/5975C等
相关文档
最新文档