卢瑟福散射实验3
简述卢瑟福a粒子散射实验现象和意义
简述卢瑟福a粒子散射实验现象和意义引言:卢瑟福a粒子散射实验是20世纪初物理学家卢瑟福进行的一项重要实验,通过该实验,卢瑟福首次观察到了原子核的存在,从而为原子结构的研究奠定了基础。
本文将对卢瑟福a粒子散射实验的现象和意义进行简述。
一、实验现象:卢瑟福a粒子散射实验的基本现象是,将高速射入金箔的a粒子被金属原子核散射的过程。
实验中观察到以下几个重要现象:1. 大部分a粒子直线穿过金箔:实验结果显示,大部分a粒子直线穿过金箔,没有或只有微小的偏转。
这说明了原子中存在着大量的空白区域,即原子核外的电子云。
2. 少数a粒子发生大角度散射:尽管大部分a粒子直线穿过金箔,但也有少数a粒子发生了大角度的散射。
这表明原子核具有正电荷,能够对a粒子产生明显的排斥作用。
3. 极少数a粒子被完全反向散射:实验结果还显示,少数a粒子甚至被完全反向散射。
这意味着原子核具有非常强大的正电荷,能够对a粒子产生极强的排斥力。
二、实验意义:卢瑟福a粒子散射实验的意义在于:1. 验证了原子核的存在:实验结果表明,大部分a粒子直线穿过金箔,说明原子中存在大量的空白区域,即原子核外的电子云。
而少数a粒子的大角度散射和完全反向散射现象则表明了原子核具有正电荷。
这一实验结果验证了英国物理学家汤普森的“面包糠模型”是错误的,证明了原子核的存在。
2. 揭示了原子结构的重要特征:卢瑟福的实验结果表明,原子核具有非常强大的正电荷,能够对a粒子产生极强的排斥力。
这一发现揭示了原子结构的重要特征,即原子核是原子中质量集中、带正电荷的部分,而电子则分布在原子核外的电子云中。
3. 奠定了量子力学的基础:卢瑟福的实验结果对于量子力学的发展具有重要意义。
实验结果表明,a粒子在金属原子核的作用下会发生散射,而这种散射现象不能用经典物理学的理论解释。
这促使物理学家们提出了新的理论,即量子力学,以描述微观粒子的行为。
4. 推动了原子核物理学的发展:卢瑟福的实验为原子核物理学的研究奠定了基础。
卢瑟福散射实验 (3)
卢瑟福散射实验10系Pb07210247梁月玲实验目的:通过卢瑟福核式模型,说明α粒子散射实验,验证卢瑟福散射理论;并学习应用散射实验研究物质结构的方法。
实验原理:1.α粒子散射理论:(1)库仑散射偏转角公式设原子核的质量为M ,具有正电荷+Ze ,并处于点O ,而质量为m ,能量为E ,电荷为2e 的α粒子以速度ν入射,在原子核的质量比α粒子的质量大得多的情况下,可以认为前者不会被推动,α粒子则受库仑力的作用而改变了运动的方向,偏转θ角.若α粒子原来的速度为ν,b 是原子核离α粒子原运动径的延长线的垂直距离,即入射粒子与原子核无作用时的最小直线距离,称为瞄准距离。
当α粒子进入原子核库仑场时,一部分动能将改变为库仑势能。
设α粒子最初的的动能和角动量分别为E 和L ,由能量和动量守恒定律可知:⎪⎪⎭⎫⎝⎛++⋅=••222202241ϕπεr r m r Ze E L b m mr ==••νϕ2由以上两式可以证明α粒子的路线是双曲线,偏转角θ与瞄准距离b 关系为:ab ctg22=θ, 其中EZe a 0242πε=这就是库仑散射偏转角公式。
(2)卢瑟福散射公式设靶是一个很薄的箔,厚度为t ,面积为s ,则图3.3-1中的dbds π2=,一个α粒子被一个靶原子散射到θ方向、θθd -范围内的几率,也就是α粒子打在环ds 上的概率,即232cos228sin 2a b db ds d s s s θππθθ==若用立体角Ωd 表示, 2sin 4sin cos 222d d d θθθπθπθΩ==则有:θθd s d a sds 2sin1642Ω=若单位时间有n 个α粒子垂直入射到薄箔上,则单位时间内θ方向且在d Ω立体角内测得的α粒子为:2sin 42414220200θπεΩ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⋅=d E Ze t nN s t N s dsn dn因此,2sin 14241)(422200θπεθσ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=Ω=ΩE Ze td nN dnd d 这就是著名的卢瑟福散射公式。
卢瑟福散射_实验报告
一、实验目的1. 验证卢瑟福散射理论,理解原子核式结构模型;2. 掌握实验装置的使用方法,学会数据处理和误差分析;3. 培养科学实验技能和团队协作能力。
二、实验原理卢瑟福散射实验是通过α粒子轰击金箔,观察α粒子在金箔后的散射情况,从而验证原子核式结构模型。
根据卢瑟福散射理论,当α粒子穿过原子时,只有当α粒子与原子核的距离小于某一特定值时,α粒子才会发生散射。
该特定值与原子核的半径有关,即r = (ke^2)/(p^2),其中k为库仑常数,e为电子电荷,p为α粒子的动量。
三、实验仪器与材料1. 实验仪器:卢瑟福散射实验装置、α粒子源、金箔、计数器、显微镜、计算机等;2. 实验材料:金箔、α粒子源、电源、真空泵等。
四、实验步骤1. 安装实验装置,确保所有仪器连接正确;2. 将金箔固定在实验装置上,调整显微镜位置,使其与金箔垂直;3. 打开α粒子源,调整电流,使α粒子流稳定;4. 打开计数器,记录α粒子在金箔后的散射情况;5. 调整显微镜位置,观察不同角度的散射情况,记录散射角度及计数;6. 重复步骤4和5,记录多组数据;7. 关闭α粒子源,关闭电源,整理实验器材。
五、实验数据与处理1. 记录实验数据,包括散射角度、计数等;2. 利用计算机软件处理数据,计算散射角度与计数的关系;3. 对比实验数据与理论计算值,分析误差来源。
六、实验结果与分析1. 实验结果显示,绝大多数α粒子穿过金箔后仍沿原来的方向前进,偏转角度很小;2. 少数α粒子发生了较大的偏转,偏转角度超过90度;3. 极少数α粒子的偏转角度超过180度,甚至被反弹回来。
根据实验结果,可以得出以下结论:1. 原子内部存在一个带正电的核,核的半径远小于原子半径;2. 原子核的质量远大于电子的质量;3. 原子核的正电荷集中在原子内部,电子围绕原子核运动。
七、误差分析1. α粒子源电流不稳定,导致α粒子流不稳定;2. 金箔厚度不均匀,导致α粒子散射角度不准确;3. 实验装置存在一定误差,如显微镜的读数误差等;4. 数据处理过程中存在舍入误差。
卢瑟福的α粒子散射实验观察和结论
卢瑟福的α粒子散射实验观察和结论卢瑟福的α粒子散射实验观察和结论导言卢瑟福的α粒子散射实验是物理学史上具有里程碑意义的实验之一。
通过此实验,卢瑟福成功地证实了原子结构的基本概念,并揭示了原子核的存在。
本文将探讨卢瑟福的α粒子散射实验的观察结果和结论,并分享我对此实验的观点和理解。
1. 实验背景卢瑟福的α粒子散射实验于1911年进行,当时科学界对原子结构的理解还较为模糊。
卢瑟福希望通过实验来验证当时流行的“杜尔文模型”,即认为原子是由带正电的球体(原子核)和带负电的电子云组成的。
他选择使用α粒子(带有两个负电荷的氦离子)作为入射粒子,通过散射角度的观察来揭示原子的内部结构。
2. 实验过程卢瑟福将一束经过加速的α粒子照射到薄金属箔上,并在周围布置了一个荧光屏。
通过观察荧光屏上出现的散射点和角度,卢瑟福记录下了大量实验数据。
3. 实验观察结果卢瑟福的实验观察结果出人意料,与当时的预期相去甚远:(1) 大多数α粒子出射角度很小,接近与入射方向一致;(2) 一小部分α粒子发生明显的偏转,出射角度远离入射方向;(3) 极少数α粒子甚至发生180度的反向散射,返回入射方向。
4. 实验结论基于上述观察结果,卢瑟福得出了以下结论:(1) 原子具有较大的空隙,大部分α粒子可以直接穿过原子而不发生散射;(2) 原子中存在带正电的原子核,同时带负电的电子云位于其周围;(3) 发生明显偏转的α粒子与正电荷较大的原子核发生了相互作用;(4) 散射角度与入射粒子的能量和散射物质的原子核正电荷有关。
5. 对实验的观点和理解卢瑟福的α粒子散射实验提供了直接证据,证明了历史上首次提出的原子核模型。
此模型认为原子核位于原子的中心,其中带有正电荷,并且占据了大部分原子的质量。
这个实验打破了当时流行的汤姆孙模型,即认为原子是由均匀分布的正负电荷所组成。
对于实验的观察结果,我认为其中最令人震惊的是极少数α粒子的180度反向散射。
这意味着原子核的大小远远小于原子的整体大小,同时具有较大的正电荷。
卢瑟福散射实验
实 验 报 告实验题目:卢瑟福散射实验实验目的:通过卢瑟福核式模型,说明α粒子散射实验,验证卢瑟福散射理论;并学习应用散射实验研究物质结构的方法。
实验原理:见预习报告。
数据处理:1.确定物理0°的位置。
在不同角度下,2s 内计数,结果如下:由上述数据可知2°处为物理0°。
按RESET 清零。
2.测量散射α粒子数。
测量数据及数据处理如下表:P的平均值为:4968.051==∑=i iPP标准差1123.04)(511=-=∑=-i i n P P σA 类不确定度:050.051123.051==-n Au σP=0.95时782.t p=,故139.0050.078.2=⨯==A p u t u因此14.050.0±=P ,P=0.95。
作)2/(sin 1~4θN曲线如下图:102030405060708090100N /100s1/[sin 4(θ/2)]N~1/[sin 4(θ/2)]曲线Linear Regression for Data7_B:Y = A + B * X Parameter Value Error------------------------------------------------------------A 6.80125 4.40716B 0.37696 0.03644------------------------------------------------------------ R SD N P------------------------------------------------------------ 0.98627 5.6309550.00193------------------------------------------------------------由上图可以看出,实验测得的5个点基本在一条直线上,斜率0.37696,因此可以认为P 近似为常数。
α粒子散射实验 实验报告
α粒子散射实验实验报告一.实验目的1.初步了解近代物理中有关粒子探测技术和相关电子学系统的结构,熟悉半导体探测器的使用方法;2.实验验证卢瑟福散射的微分散射截面公式二.实验原理1.瞄准距离与散射角的关系视α粒子和电子均为点电荷,假设两者间作用力只有静电斥力,如图1,散射角θ,瞄准距离b ,α粒子质量为m ,入射速度为0v ,则:(1)(2)2.卢瑟福微分散射截面公式设有截面为S 的α粒子束射到厚度为t 的靶上,靶的原子数密度为n ,则α粒子散射到θ方向单位立体角内每个原子的有效散射截面为:2222244001121()() 1.296()4sin (/2)sin (/2)d Ze Z d mv E σπεθθ==Ω (3) 设实验中探测器的灵敏面积对靶所张的立体角为Δ,在某段时间内射2co t2b D θ=00πε到靶上的粒子总数为T ,则观察到的粒子数为:(4)三.实验仪器粒子源 真空室 探测器与计数系统 真空泵 四.实验数据及处理1.原始数据及处理表1 探测到的粒子数count 与散射角的关系Angle/° Angle /rad count1 count2 count3 count4 count5 N=count average count median -10-0.175 668 687 634 683 719 678 683 -9 -0.157 806 790 738 824 776 787 790 -8 -0.140 875 919 924 923 904 909 919 -7 -0.122 1020 1002 960 1032 999 1003 1002 -6 -0.105 1069 1092 1100 1075 1058 1079 1075 -5 -0.087 1149 1188 1201 1115 1149 1160 1149 -4 -0.070 1173 1148 1164 1196 1171 1170 1171 -3 -0.052 1190 1225 1225 1236 1237 1223 1225 -2 -0.035 1222 1256 1288 1283 1225 1255 1256 -1 -0.017 1295 1284 1292 1296 1278 1289 1292 0 0.000 1310 1290 1281 1264 1355 1300 1290 1 0.017 1275 1264 1299 1231 1253 1264 1264 2 0.035 1283 1188 1220 1274 1250 1243 1250 3 0.052 1248 1236 1211 1201 1257 1231 1236 4 0.070 1107 1134 1083 1116 1132 1114 1116 5 0.087 1184 1103 1150 1105 1132 1135 1132 6 0.105 939 919 932 894 934 924 932 7 0.122 811 882 757 853 837 828 837 8 0.140 723 697 729 715 715 716 715 9 0.157 612 622 627 615 610 617 615 10 0.175 514 501 541 517 501 515 514 11 0.192 382 381 412 381 405 392 382 12 0.209 277 279 310 335 294 299 294 13 0.227 250 225 227 228 163 219 227 14 0.244 164 176 160 168 179 169 168 15 0.262 148 108 127 116 135 127 127 16 0.279 85 82 65 72 78 76 78 17 0.297 40 43 33 34 45 39 40 18 0.314 40 43 33 34 45 39 40 19 0.332 31 29 28 29 22 28 29 200.349 20 25 20 14 24 21 2001()()4sin (/2)Ze nt N Tmv πεθ∆Ω=25 0.436 13 10 4 8 10 9 10 30 0.524 1 3 4 2 5 3 3 35 0.611 0 1 2 1 0 1 1 40 0.698 1 1 0 1 3 1 1 45 0.785 0 1 0 0 0 0 0 50 0.873 0 0 0 0 0 0 02.曲线拟合根据表1,做出探测器探测到的粒子数N 的平均值与散射角θ的关系; 再按照修正拟合公式(6)式进行曲线拟合,如图2所示。
卢瑟福散射
3系08级 姓名:方一 日期:6月6日 PB08206045实验题目: 卢瑟福散射 实验目的: 通过卢瑟福核式模型,说明α粒子散射实验,验证卢瑟福散射理论;并学习应用散射实验研究物质结构的方法。
实验原理:现从卢瑟福核式模型出发,先求α粒子散射中的偏转角公式,再求α粒子散射公式。
1.α粒子散射理论 (1)库仑散射偏转角公式设原子核的质量为M ,具有正电荷+Ze ,并处于点O ,而质量为m ,能量为E ,电荷为2e 的α粒子以速度ν入射,在原子核的质量比α粒子的质量大得多的情况下,可以认为前者不会被推动,α粒子则受库仑力的作用而改变了运动的方向,偏转θ角,如图3.3-1所示。
图中ν是α粒子原来的速度,b 是原子核离α粒子原运动径的延长线的垂直距离,即入射粒子与原子核无作用时的最小直线距离,称为瞄准距离。
图3.3-1 α粒子在原子核的库仑场中路径的偏转当α粒子进入原子核库仑场时,一部分动能将改变为库仑势能。
设α粒子最初的的动能和角动量分别为E 和L ,由能量和动量守恒定律可知:⎪⎪⎭⎫⎝⎛++⋅=∙∙222202241ϕπεr r m r Ze E (1) L b m mr ==∙∙νϕ2 (2)由(1)式和(2)式可以证明α粒子的路线是双曲线,偏转角θ与瞄准距离b 有如下关系:22242Ze Ebctgπεθ= (3) 设E Ze a 0242πε=,则a b ctg 22=θ (4)这就是库仑散射偏转角公式。
(2)卢瑟福散射公式在上述库仑散射偏转公式中有一个实验中无法测量的参数b ,因此必须设法寻找一个可测量的量代替参数b 的测量。
事实上,某个α粒子与原子散射的瞄准距离可大,可小,但是大量α粒子散射都具有一定的统计规律。
由散射公式(4)可见,θ与b 有对应关系,b 大,θ就小,如图3.3-2所示。
那些瞄准距离在b 到db b +之间的α粒子,经散射后必定向θ到θθd -之间的角度散出。
因此,凡通过图中所示以b 为内半径,以db b +为外半径的那个环形ds 的α粒子,必定散射到角θ到θθd -之间的一个空间圆锥体内。
卢瑟福散射公式的实验验证
卢瑟福散射公式的实验验证
一、实验简介
卢瑟福散射公式(Rutherford scattering formula)是1911年英国
科学家阿尔弗雷德·卢瑟福提出的,它是用来解释热核反应的微观动力学
模型,根据该公式,当重粒子(如α粒子)抵达质量集中的区域(原子核)时,其有几率发生Scattering过程,进而使得粒子的方向改变。
为
了验证卢瑟福散射公式,本实验采用重粒子(铯粒子),在特定的重粒子
浓度下,观察重粒子运动的方向,检测是否与卢瑟福散射公式所预期相同。
二、实验环境及设备
本实验使用半导体α质量分析仪设备,它是一种能够通过测定散射
冲击中核的质量来测量粒子能量的装备。
本实验使用的核物质是6种称为“原子核供体”的晶体,用化学方法制备成椭圆形状的晶体,晶体表面由
一层石英薄膜覆盖,用作放射性核反应探测器。
晶体板两端设有灯,用来
提供实验散射图形的阴影效果。
三、实验实施
1.首先在实验室中放入所需的晶体和灯,将晶体板放在室内的两端,
并在晶体板的表面上以固定间距制作放射线路径,以便观察粒子在穿过该
晶体板的过程中的变化情况。
2.然后向晶体板注入适量的铯粒子,将晶体板放置在射线源(用于发
射α粒子的装置)上方,调节粒子浓度。
卢瑟福的a粒子散射实验结论原理计算
卢瑟福的a粒子散射实验结论原理计算卢瑟福的α粒子散射实验是一个具有重要意义的物理实验。
该实验是由新西兰物理学家欧内斯特·卢瑟福于20世纪初进行的,实验中使用了α粒子(即氦离子或称α粒子)射向一个金属薄膜,并对散射角度和散射强度进行了观察和测量。
根据经典的电磁理论,当一个α粒子入射到坚硬物体上时,它会受到库仑力的相互作用。
根据库仑定律,这个作用力具有反比于距离的平方的关系,因此入射到金属薄膜的α粒子将会受到金属原子核的库仑力作用,与之发生散射。
卢瑟福实验的重要结论如下:1.大部分的α粒子直线穿过金属薄膜,只发生微小的散射。
这表明原子的大部分空间是由空隙构成的,因为α粒子直径比原子小得多。
2.少数的α粒子经过散射后,发现其散射角度很大。
这暗示了原子具有一个高度集中的、具有正电荷的中心区域,即原子核。
3.α粒子散射的散射角度与入射粒子的能量有关。
这表明散射的短距离库仑相互作用,与α粒子的能量相关。
根据以上结论,卢瑟福提出了最早的原子核模型,即卢瑟福散射模型。
根据该模型,原子由一个带正电荷的原子核和围绕核的负电荷电子云组成。
原子的大部分体积为空隙,几乎所有的质量都集中在原子核中。
卢瑟福散射实验结论的原理可以通过经典的库仑力和动量守恒定律来解释。
在实验中,当α粒子与金属原子核发生相互作用时,它们之间的库仑力导致了散射。
根据电磁力的方向,α粒子将会受到一个向外的力,从而发生向后的散射。
根据动量守恒定律,散射后的α粒子的动量也会改变,从而使其散射角度发生偏转。
根据电磁力的定性描述和动量守恒定律可以计算散射角度和散射强度。
实际上,卢瑟福通过对散射后α粒子的观察和测量,得出了散射角度与入射粒子能量之间的关系,并从而确定了原子核的存在。
总结起来,卢瑟福的α粒子散射实验结论揭示了原子内部结构的重要特征,尤其是原子核的存在。
这项实验在现代原子物理学的发展中具有深远意义,为原子核物理学的诞生奠定了基础,也为后来的量子力学的发展提供了重要线索。
卢瑟福散射实验报告
卢瑟福散射实验报告实验步骤:1.测量α粒子在空气中的射程,计算α粒子的能量Ea) 将空靶插入卡槽,测量靶到探头的距离l 1 和源到探头的距离l 2 ,并记录室温Tb) 盖上真空室上盖,开启机械泵电源将真空室抽真空。
c) 打开测量软件,从-5°测到5°,以1°为步长测α粒子能谱峰区计数,每个角度测60s,确定物理0°角;d) 靶台转至物理0°角,测ROI 计数120s;e) 关闭电磁阀2,缓慢放气至6.0kPa 左右后停止放气。
f) 在6~30kPa 范围测气压对计数的影响,测4 个点(连同气压为0 的点共至少5 个点),每点测120s。
g) 绘制P-N曲线,得到α粒子的平均射程及能量2.验证关系a) 缓慢放完气后,打开真空室盖子,换上金靶,合上盖子抽真空。
b) 在-5°~5°范围以1°为步长测α粒子能谱峰区计数,每个角度测90s,确定物理0°角;c) 在10°~25°范围选5 个角度测散射计数,每个角度根据计数率调整测量时间。
d)绘制N-θ曲线,并与理论值比较。
数据分析:1.α粒子射程及能量确定物理零度角:角度/°-5-4-3-2-1选区计数7362573675698316199151905改变真空室气压,记录120s内探测器计数,绘制P-N关系图对曲线进行线性拟合,得到N = -2750.3P + 150823 ,相关系数R² = 0.988由解析式可推得,P=0时N0=150823,N=N0/2时P=27.42kPa。
此时源到探测器距离l2即平均射程。
由,得到室温24.3℃,P=27.42kPa时空气密度∴由可解出E=2.323MeV2.验证关系角度/°-3-2-10选区计数6628693767876437改变散射角,测散射计数,绘制N-θ图散射角/°1013161922时间/s2001503006001000选区计数57682173197919541453,对曲线进行线性拟合,斜率即K=0.0016.做图像,与理论计算值比较121416182022th eta d eg ree0.0050.0100.015K K theta relation相对误差思考题2. 有偏差,而且在θ较大时更加明显,主要原因在于卢瑟福散射公式本身所推论的是一个概率,只有当实验时间趋于无穷时才会完全相符,但由于客观原因的限制我们无法利用更长的时间来获得更加准确的数据,因此随机性的因素便会较大的影响实验的结果。
卢瑟福的α粒子散射实验结论
卢瑟福的α粒子散射实验结论1. 实验背景说起卢瑟福,那可真是个了不起的科学家,咱们今天要聊的就是他那经典的α粒子散射实验。
大约在1911年,这位大名鼎鼎的物理学家在研究原子结构时,做了个大胆的实验。
想象一下,那个时候,科学界对原子内部的构造可谓是一头雾水,搞得像是在摸黑走路。
卢瑟福和他的团队决定用α粒子,也就是一种带正电的粒子,来探探原子里到底藏了些什么东西。
真是敢为人先啊!实验的过程其实挺简单的。
他们把α粒子从放射性元素发射出来,然后让这些粒子撞击一层极薄的金箔。
金箔薄得就像是纸一样,几乎可以用手指捅破。
接着,卢瑟福用荧光屏观察这些α粒子是怎么散射的。
这里面可有不少戏剧性的时刻,就像一场精彩的表演。
2. 实验结果2.1 意外的发现好吧,结果真是让人瞠目结舌!大部分的α粒子都是笔直穿过金箔的,仿佛金箔根本就不存在。
但有一小部分的粒子却偏偏改变了方向,有的甚至反弹回来,简直像是看见了鬼。
卢瑟福当时一定觉得,哎呀,怎么回事呢?难道原子内部隐藏着什么秘密?这可真是让人百思不得其解。
2.2 原子模型的重构经过一番深入思考,卢瑟福得出一个惊人的结论:原子并不是一团糟的“梅花”,而是有着明确结构的。
他提出,原子里有一个非常小且密集的“原子核”,而α粒子反弹就是因为碰到了这个“核”。
这个核是正电的,周围则是负电的电子在转啊转,真是一个小宇宙!这不禁让人想起一句话:外表光鲜,内里却是别有洞天。
3. 实验的意义3.1 对科学界的影响卢瑟福的发现简直就是科学界的一场地震,彻底颠覆了之前的“汤姆逊的葡萄干布丁模型”。
他这一理论,不但让大家看到了原子的真实结构,还为后来的科学研究铺平了道路。
原子核的概念后来成了核物理学的基石,简直是功德无量。
3.2 对日常生活的启示你可能会问,这跟我们日常生活有什么关系呢?其实,卢瑟福的实验提醒我们,很多时候,表象并不代表真相。
就像我们看到的一个人,可能外表光鲜亮丽,内心却藏着故事。
所以,别轻易下结论,要多观察,多思考!另外,卢瑟福的好奇心也是我们每个人都应该学习的。
卢瑟福散射公式结论
卢瑟福散射公式结论卢瑟福散射实验是一种通过射入粒子束到金属箔上来研究原子核结构的方法。
实验中,卢瑟福用射电性物质铀的放射性衰变得到的α粒子作为探针粒子,通过一个小孔射向非常薄的金属箔。
借助于一块放射性屏前后的闪烁屏,科学家可以观察到α粒子在金属箔上的散射情况。
基于大量的实验数据,卢瑟福总结出以下几个重要的结论:1.大部分α粒子直线通过了金属箔。
根据经验关系,粒子的质量越大,其运动惯性越大,使得α粒子在经过金属箔的碰撞中更倾向于直线通过。
2.一小部分α粒子被金属箔散射了。
尽管只有少数几个,但卢瑟福发现这些散射事件是非常重要的。
这些散射事件表明了一种新的粒子之间的相互作用,这种相互作用是通过原子核所发生的。
3.α粒子的散射角度不均匀。
卢瑟福发现散射角度的分布是一个连续的函数,这是相对于传统的“洛雷恩兹定律”的破坏。
洛雷恩兹定律是经典物理学中与射线光学紧密相关的定律。
基于这些实验结果,卢瑟福提出了著名的卢瑟福散射公式:θ = (2πNAZze² / Kmv²) * (1 / (4πε₀)) * (1/sin²(2θ/2))其中,θ是散射角度,NA是阿伏伽德罗常数,Z是目标原子的原子序数,z是入射粒子的电荷数,e是元电荷,K是库仑电荷常数,m是入射粒子的质量,v是入射粒子的速度,ε₀是真空介电常数。
卢瑟福散射公式的推导基于一个假设:入射的α粒子与目标原子核之间的相互作用是一个库仑散射过程,这种相互作用力是一个中心力,与入射粒子和靶粒子间的距离成反比。
根据这个假设,卢瑟福运用了库仑定律、动能守恒和动量守恒等基本物理原理,得出了这一公式。
1.相对于其他轻原子核而言,重原子核对α粒子的散射更明显。
这是因为重原子核所产生的库仑散射力比较大,使得α粒子更容易改变方向而散射。
2.根据散射角度的分布情况,可以推断出目标原子核的质量和电荷分布。
这为原子核物理学的发展提供了重要线索和依据。
3.卢瑟福散射公式的推导过程中,还考虑到了散射角度与入射粒子速度的关系。
卢瑟福散射实验报告
一、实验目的1. 了解卢瑟福散射实验的基本原理和实验方法;2. 掌握实验仪器和实验步骤;3. 通过实验观察和分析,验证卢瑟福散射实验的结论,即原子具有核式结构。
二、实验原理卢瑟福散射实验是英国物理学家卢瑟福在1909年设计的一种实验,旨在验证原子结构的模型。
实验中,卢瑟福使用了一束α粒子轰击薄金属箔,通过观察α粒子的散射情况,推断出原子具有核式结构。
根据经典电磁理论,当α粒子与原子核发生碰撞时,会发生库仑散射。
根据库仑定律,散射角θ与入射角φ、α粒子的能量E和原子核的电荷量q有关。
实验中,通过改变入射角和α粒子的能量,可以观察不同角度下的散射情况,从而验证原子核的存在。
三、实验仪器与材料1. 实验仪器:α粒子源、金箔、显微镜、计数器、实验装置等;2. 实验材料:α粒子源、金箔、实验装置等。
四、实验步骤1. 将α粒子源与金箔固定在实验装置上;2. 将实验装置放入真空容器中,确保容器内无空气;3. 打开α粒子源,调整入射角φ,观察散射情况;4. 记录不同入射角下的散射数据,包括散射角度、散射强度等;5. 改变α粒子的能量E,重复步骤3和4;6. 对实验数据进行处理和分析,验证卢瑟福散射实验的结论。
五、实验结果与分析1. 实验结果显示,大部分α粒子穿过金箔,未发生偏转,表明原子内部存在较大的空间;2. 部分α粒子发生散射,且散射角度较小,表明原子内部存在微粒;3. 极少数α粒子发生大角度散射,甚至反弹回来,表明原子内部存在质量较大、带正电的微粒,即原子核。
根据实验结果,可以得出以下结论:1. 原子具有核式结构,即原子由一个重而带正电的核心和围绕其周围的带负电子的电子云组成;2. 原子核的存在是导致α粒子散射的主要原因;3. 原子核的质量和电荷量远大于电子,因此α粒子在碰撞过程中主要受到原子核的影响。
六、实验讨论1. 实验过程中,α粒子的能量和入射角对散射结果有较大影响。
能量越高、入射角越小,散射角度越小;2. 实验过程中,实验装置的真空度对实验结果有一定影响。
卢瑟福阿尔法粒子散射实验说明
卢瑟福阿尔法粒子散射实验说明第一部分:引言1.1 卢瑟福阿尔法粒子散射实验的重要性卢瑟福阿尔法粒子散射实验是物理学领域中具有里程碑意义的实验之一,通过这个实验,人们首次认识到了原子的内部结构和核的存在。
本文将深入探讨卢瑟福阿尔法粒子散射实验的实验过程、结果和意义,希望能够帮助读者更深入地理解这一重要的实验。
1.2 卢瑟福阿尔法粒子散射实验的背景在开始详细解释实验过程之前,我们首先需要了解卢瑟福阿尔法粒子散射实验的背景。
在20世纪初,科学家们普遍认为原子是不可分割的基本粒子,然而,这一观念在进行卢瑟福散射实验之后发生了改变。
...第六部分:个人观点和理解在本文中,我们详细讨论了卢瑟福阿尔法粒子散射实验的实验过程、结果和意义,并探讨了实验对现代物理学的影响。
通过深入的研究,我对这一实验有了更清晰的认识,也对原子结构的探索历程有了更深刻的理解。
我认为,卢瑟福阿尔法粒子散射实验是现代物理学发展历程中的关键一步,它为我们揭开了原子结构的神秘面纱,也为后来的科学研究奠定了坚实的基础。
总结:通过本文的阐述,我们了解了卢瑟福阿尔法粒子散射实验的实验背景、过程、结果和意义,深刻认识到了这一实验对原子结构研究和现代物理学发展的重要性。
希望本文能够帮助读者更深入地理解这一重要的实验,并对原子结构的探索历程有一定的了解。
我也希望本文能够激发读者对科学研究的兴趣,鼓励大家进一步了解和探索这一令人着迷的领域。
作者急切地期盼着读者们能够对卢瑟福阿尔法粒子散射实验产生兴趣,并对这一重要实验进行更深入的了解和探索。
接下来,我们将进一步扩展和深化关于实验过程、结果和意义的讨论,同时也会涉及到一些相关实验和理论的发展,以便更全面地了解这一实验对现代物理学的重要性。
2.1 实验过程的详细讨论在卢瑟福阿尔法粒子散射实验中,实验装置包括一个具有一定厚度和一定粒度的金属箔,以及一台阿尔法粒子发射装置和一个探测屏。
当阿尔法粒子通过金属箔时,它们会与金属原子核发生散射,然后经过一定角度后,散射的阿尔法粒子会被探测屏捕捉到。
卢瑟福的a粒子散射实验现象及结论
卢瑟福的a粒子散射实验现象及结论一、实验介绍二、实验现象1. α粒子的发射与散射2. α粒子的反跳现象三、实验结论1. 原子具有空心结构2. 原子核具有正电荷3. 原子核与电子的比例关系四、实验意义及影响一、实验介绍卢瑟福的a粒子散射实验是物理学中非常重要的一个经典实验,它是对原子结构和性质进行研究的基础。
该实验于1910年由英国物理学家欧内斯特·卢瑟福(Ernest Rutherford)领导完成,是一项利用α粒子对原子核进行探测的实验。
二、实验现象1. α粒子的发射与散射在卢瑟福的a粒子散射实验中,首先将α放射源放置在一个铅盒中,使其向外发出α粒子。
然后将α粒子引入真空玻璃管中,通过调节电压和电流来使α粒子加速,并通过一个小孔射向金箔靶。
在金箔靶后面设立一个荧光屏,用来观察α粒子的散射情况。
实验结果表明,大多数α粒子直线穿过金箔靶,只有极少数α粒子被散射。
这说明原子具有空心结构,其中正电荷集中在原子核内。
2. α粒子的反跳现象在实验中,还观察到了α粒子的反跳现象。
即有些α粒子经过金箔靶后会发生反弹,回到射线源处。
这说明原子核具有正电荷,并且与电子相比非常小。
三、实验结论1. 原子具有空心结构卢瑟福的a粒子散射实验表明,大多数α粒子直线穿过金箔靶,只有极少数α粒子被散射。
这说明原子具有空心结构,其中正电荷集中在原子核内。
2. 原子核具有正电荷实验还观察到了α粒子的反跳现象。
即有些α粒子经过金箔靶后会发生反弹,回到射线源处。
这说明原子核具有正电荷,并且与电子相比非常小。
3. 原子核与电子的比例关系通过对实验数据的分析,卢瑟福得出了一个重要的结论:原子核的质量与电子的质量相比非常大,而原子核的直径只有原子直径的万分之一。
这说明原子核与电子的比例关系是非常不同的。
四、实验意义及影响卢瑟福的a粒子散射实验是对原子结构和性质进行研究的基础。
它揭示了原子具有空心结构,其中正电荷集中在原子核内;同时也证明了原子核具有正电荷,并且与电子相比非常小。
卢瑟福的a粒子散射实验结论原理计算
卢瑟福的a粒子散射实验结论原理计算卢瑟福的α粒子散射实验被认为是原子物理学的里程碑之一,它为原子结构的理论奠定了基础。
实验中,卢瑟福将带有正电荷的α粒子轰击薄薄的金属箔,观察散射后α粒子的轨迹和能量分布情况。
根据实验结果,卢瑟福提出了以下结论:1.原子有一个小而重的核心:卢瑟福发现大部分α粒子穿过金箔而不受到偏转,只有极少数粒子会发生大角度的散射。
这表明原子中存在一个小而重的核心,α粒子必须以足够大的角度接近核心才能发生散射。
2.原子核带有正电荷:由于α粒子带有正电荷,而且只有很少的粒子角度发生大的散射,可推断出核内带有与α粒子电荷相反的正电荷。
3.原子是空旷的:由于几乎所有的α粒子都能穿过金箔而不受到偏转,推断出原子的体积主要是由空旷的空间构成,α粒子只有在靠近核心时才会发生散射。
4.原子中电子的位置和分布:卢瑟福的实验结果无法解释电子分布的精确位置,但可以推测出电子主要处于与核心固定位置的轨道上,并且占据大部分原子体积。
卢瑟福的实验结论可以得出以下原理:1.核内带正电荷:由于α粒子在金箔中的大角度散射,推测出核内带有正电荷。
瑟福的实验结果与电子云模型中的平均电荷情况不符,进而证实了带正电荷的原子核的存在。
2.原子是空旷的:由于大部分α粒子穿过了金箔而不受到偏转,推测原子主要是由空旷的空间构成。
这与传统的布尔理论,即原子由电子环绕的核心构成的观点不同,从而推动了后来的量子力学的发展。
计算原理:卢瑟福实验的计算原理基于库伦定律和动量守恒定律。
根据库仑定律,两个带电体之间的作用力与它们电荷之间的乘积成正比,与它们之间距离的平方成反比。
在实际计算中,我们可以假设α粒子和原子核为点电荷,并且α粒子的质量远大于电子和原子核的质量。
由于其中一个电荷为正电荷,而另一个电荷为负电荷,通过库伦定律可以计算出粒子受到的作用力大小。
此外,卢瑟福实验还考虑了动量守恒定律。
在碰撞前后,α粒子和原子核之间的总动量矢量在大小和方向上都保持不变。
RBS卢瑟福背散射-实验报告
实验报告卢瑟福背散射分析(RBS)实验姓名:学号:院系:物理学系实验报告一、实验名称卢瑟福背散射分析(RBS)实验二、实验目的1、了解RBS实验原理、仪器工作结构及应用;2、通过对选定的样品的实验,初步掌握RBS实验方法及谱图分析;3、学习背散射实验的操作方法。
三、RBS实验装置主要包括四个部分:1、一定能量离子束的的产生装置----加速器2、离子散射和探测的地方----靶室3、背散射离子的探测和能量分析装置4、放射源RBS图1 背散射分析设备示意图1.离子源2.加速器主体3.聚焦系统4. 磁分析器5.光栅6. 靶室7.样品8.真空泵9.探测器10.前置放大器11.主放大器12. 多道分析器13. 输出四、实验原理当一束具有一定能量的离子入射到靶物质时,大部分离子沿入射方向穿透进去,并与靶原子电子碰撞逐渐损失其能量,只有离子束中极小部分离子与靶原子核发生大角度库仑散射而离开原来的入射方向。
入射离子与靶原子核之间的大角度库仑散射称为卢瑟福背散射(记为RBS)。
用探测器对这些背散射粒子进行侧量,能获得有关靶原子的质量、含量和深度分布等信息。
入射离子与靶原子碰撞的运动学因子、散射截面和能量损失因子是背散射分析中的三个主要参数。
图 3 大角度散射示意图(实验室坐标系)图2 弹性散射(质心坐标系)1、 运动因子K 和质量分辨率 1)运动学因子K当一定能量(对应于一定速度)的离子射到靶上时,入射离子和靶原子发生弹性碰撞,人射离子的部分能量传给了被撞的靶原子,它本身则被散射,散射的方向随一些参量而变化,如图2(质心坐标系)所示.设Z 1, Z 2分别为入射离子及靶原子的原子序数,m 、 M 分别为它们的原子质量,e 为单位电子电荷量,v 0为入射离子的速度,b 为碰撞参量或瞄准距离(即入射轨迹延伸线与靶原子核的距离),x 为散射角.由分析力学可以推导出。
此式实际上不是一个入射离子而是一束禽子,且b 值有大有小。
卢瑟福散射 实验报告
卢瑟福散射实验报告卢瑟福散射实验报告引言:卢瑟福散射实验是20世纪初物理学家欧内斯特·卢瑟福进行的一项重要实验,通过观察α粒子在金属箔上的散射现象,揭示了原子结构中的核心概念。
本文将对卢瑟福散射实验进行详细介绍,并探讨其对原子理论的贡献。
实验装置与方法:卢瑟福散射实验主要使用了阻挡放射性α粒子的金属箔和荧光屏。
实验时,α粒子从放射源发射出来,经过一系列的准直装置后,射到金属箔上。
箔片上的α粒子会发生散射,一部分散射到荧光屏上,形成亮点。
通过观察亮点的分布情况,可以推断出α粒子在金属箔中的散射规律。
实验结果与讨论:卢瑟福实验的最重要结果之一是发现了一个非常小而密集的正电荷核心,即原子核。
通过对散射角度的测量和分析,卢瑟福得出结论:α粒子在经过金属箔时,与核心发生散射的概率与散射角度的平方成反比。
这一结论被称为卢瑟福散射公式。
卢瑟福散射公式的推导与解释:卢瑟福散射公式的推导基于库仑力的作用。
当α粒子靠近原子核时,它受到核心的正电荷吸引,同时也受到库仑斥力的作用。
根据库仑定律,这两个力与距离的平方成反比。
因此,当α粒子靠近核心时,它的散射角度会增大。
卢瑟福散射公式的解释也揭示了原子的空间结构。
根据公式,α粒子在经过金属箔时,只有极小的一部分发生散射,而大部分直线通过。
这表明原子内部存在着大量的空隙,α粒子可以穿过这些空隙而不与核心发生碰撞。
而当α粒子与核心发生碰撞时,它们的散射角度较大,说明核心的大小相对较小。
卢瑟福散射实验对原子理论的贡献:卢瑟福散射实验的结果对于原子理论的发展产生了深远的影响。
首先,实验结果证实了汤姆逊提出的“杏仁布丁模型”是错误的。
根据杏仁布丁模型,原子是由均匀分布的正电荷和电子组成的,而卢瑟福实验的结果表明,原子核的正电荷集中在一个非常小的区域内,而电子则分布在核外的轨道上。
其次,卢瑟福散射实验为后来的量子力学理论奠定了基础。
实验结果揭示了原子内部的空隙结构,这启发了后来量子力学理论中的波粒二象性概念。
卢瑟福背散射分析
题目:元素深度分布的卢瑟福背散射(RBS)分析元素深度分布的卢瑟福背散射(RBS)分析摘要卢瑟福背散射(RBS)分析是一种应用非常广泛的离子束分析技术。
1. 前言卢瑟福背散射分析是固体表面层和薄膜的简便、定量、可靠、非破坏性分析方法,是诸多的离子束分析技术中应用最为广泛的一种微分析技术。
其理论基础是在Rutherford、Gerger和Marsden发现了新原子模型(1909-1913)以后的一些年份里逐渐形成的。
在早期的应用中,背散射分析技术主要是用在一些与原子核有关的研究中,一般是通过分析背散射离子束来检测靶的玷污。
1967年背散射技术首次成功的应用于月球土壤成分分析,这是在非核领域第一个公开发表的实际应用例子。
发展至今,背散射技术已经成为一种十分成熟的离子分析技术。
它具有方法简单、可靠、快速(一般只需要30分钟)、无需标准样品就能得到定量分析结果、不必破坏样品宏观结构就能得到深度分布信息等独特优点。
背散射分析技术在固体物理、表面物理、材料科学、微电子学等领域得到广泛应用。
它是分析薄膜界面特性、固体表面层元素成分、杂质含量和元素深度分布以及化合物的化学配比不可缺少的分析手段。
此外,背散射分析与其他核核分析方法组合应用于同一样品,能获得更多的信息。
我国自七十年代起开始这方面的研究。
随着不断发展,背散射分析技术的应用范围也在不断的扩大。
例如,在考古领域,背散射分析可以研究一些大气中对环境不利的因素。
T.Huthwelker等提高利用卢瑟福背散射分析来研究大气浮质中痕量酸性气体(如HCl,HBr,SO2)的相互作用,这种相互作用与全球变暖、臭氧层耗损、酸雨等环境污染问题有很大的关系。
Ulrich K.Krieger等曾利用卢瑟福背散射测量易发挥物质在近表面层区的元素分布。
背散射分析技术分析速度快,能得出表面下不同种类原子的深度分布,并能进行定量分析。
结合沟道效应还能研究单晶样品的晶体完美性。
但它的深度分辨率不够高(一般为100~200埃),因而不能对最表面的原子层进行研究。
卢瑟福_散射实验报告
一、实验目的1. 验证汤姆孙原子模型的正确性;2. 探究原子内部结构,寻找原子核的位置;3. 通过实验结果,推导出原子核的半径和电荷分布。
二、实验原理卢瑟福散射实验是利用α粒子轰击金箔,观察α粒子在穿过金箔后的散射情况,以此来研究原子内部结构。
根据经典电磁学理论,α粒子在穿过金箔时,会发生库仑散射,散射角度与金箔原子核的电荷量和距离有关。
通过实验测量散射角度和散射强度,可以推导出原子核的位置、半径和电荷分布。
三、实验器材1. α粒子源:用于产生α粒子束;2. 金箔:用于实验,厚度约为0.01微米;3. 电磁场发生器:用于产生磁场,使α粒子束发生偏转;4. 观察屏:用于观察α粒子散射后的轨迹;5. 数据采集系统:用于采集散射数据;6. 计算机软件:用于数据处理和分析。
四、实验步骤1. 准备实验器材,将α粒子源、金箔、电磁场发生器、观察屏和计算机软件连接好;2. 打开α粒子源,调节α粒子束的强度和方向;3. 调节电磁场发生器的磁场强度,使α粒子束发生偏转;4. 观察α粒子散射后的轨迹,记录散射角度和散射强度;5. 利用计算机软件对数据进行处理和分析,推导出原子核的位置、半径和电荷分布。
五、实验结果与分析1. 实验数据:(1)α粒子束穿过金箔后的散射角度分布;(2)α粒子束穿过金箔后的散射强度分布。
2. 分析:(1)根据散射角度分布,可以发现大部分α粒子几乎沿原方向前进,说明原子内部大部分空间是空的;(2)少数α粒子发生了较大偏转,说明原子内部存在一个质量较大、体积较小的正电荷集中区域,即原子核;(3)极少数α粒子被反弹回来,说明原子核的电荷量较大,且与α粒子的碰撞过程中,α粒子损失了大部分能量。
根据以上实验结果,可以推导出以下结论:1. 原子的核式结构模型:原子由一个质量较大、体积较小的正电荷集中区域(原子核)和围绕原子核运动的电子组成;2. 原子核的半径:根据散射角度分布,可以推导出原子核的半径约为10^-15米;3. 原子核的电荷分布:根据散射强度分布,可以推导出原子核的电荷分布近似为一个点电荷。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
卢瑟福散射实验
PB04210277 刘善峰
实验目的:通过卢瑟福核式模型,说明α粒子散射实验,验证卢瑟福散射理论;
并学习应用散射实验研究物质结构的方法。
实验原理: α粒子散射理论
(1)库仑散射偏转角公式
设原子核的质量为M ,具有正电荷+Ze ,并处于点O ,而质量为m ,能量为E ,电荷为2e 的α粒子以速度ν入射,
当α粒子进入原子核库仑场时,一部分动能将改变为库仑势能。
设α粒子最初的的动能和角动量分别为E 和L ,由能量和动量守恒定律可知:
⎪⎪⎭
⎫
⎝⎛++⋅=••222202241
ϕπεr r m r Ze E (1) L b m mr ==•
•
νϕ2 (2)
由(1)式和(2)式可以证明α粒子的路线是双曲线,偏转角θ与瞄准距离b 有如下关系:
2
2242
Ze
Eb
ctg
πεθ
= (3) 设E Ze a 02
42πε=,则a b ctg 22=θ (4)
设靶是一个很薄的箔,厚度为t ,面积为s ,则图3.3-1中的db ds π2=,一个α粒子被一个靶原子散射到θ方向、θθd -范围内的几率,也就是α粒子打在
环ds 上的概率,即
θ
θ
θ
ππd s a s db b s ds 2
sin 82cos 223
2== (5)
若用立体角Ωd 表示, 由于
θ
θ
θ
πθ
θ
πd d d 2
cos 2
sin
42
sin 2==Ω
则
有θθ
d s d a s
ds 2
sin
1642Ω=
(6)
为求得实际的散射的α粒子数,以便与实验进行比较,还必须考虑靶上的原子数和入射的α粒子数。
由于薄箔有许多原子核,每一个原子核对应一个这样的环,若各个原子核互不遮挡,设单位体积内原子数为0N ,则体积st 内原子数为st N 0,α粒子打在这些环上的散射角均为θ,因此一个α粒子打在薄箔上,散射到θ方向且在Ωd 内的概率为
s t N s
ds
⋅0。
若单位时间有n 个α粒子垂直入射到薄箔上,则单位时间内θ方向且在Ωd 立体角内测得的α粒子为:
2
sin 424142
20200θπεΩ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭
⎫ ⎝⎛=⋅=d E Ze t nN s t N s ds
n dn (7) 经常使用的是微分散射截面公式,微分散射截面
Ω
⋅=Ωtd N n dn d d 01
)(θσ
其物理意义为,单位面积内垂直入射一个粒子(n=1)时,被这个面积内一个靶原子(10=t N )散射到θ角附近单位立体角内的概率。
因此,
2
sin 14241)(4
2
22
00θπεθσ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭
⎫ ⎝⎛=Ω=ΩE Ze td nN dn
d d (8) 这就是著名的卢瑟福散射公式。
代入各常数值,以E 代表入射α粒子的能量,得到公式:
()
2sin 12296.142
θσ⎪⎭⎫
⎝⎛=ΩE Z d d (9)
其中,Ω
d d σ
的单位为sr mb /,E 的单位为Mev 。
卢瑟福理论的实验验证方法
为验证卢瑟福散射公式成立,即验证原子核式结构成立,实验中所用的核心 仪器为探测器。
设探测器的灵敏度面对靶所张的立体角为∆Ω,由卢瑟福散射公式可知在某段时间间隔内所观察到的α粒子总数N 应是:
T nt m Ze N 2/sin 4142
2
022
0θνπε
∆Ω⎪⎪⎭
⎫
⎝
⎛⎪⎪⎭
⎫ ⎝
⎛= (10) 式中N 为该时间T 内射到靶上的α粒子总数。
由于式中N 、∆Ω、θ等都是可测的,所以(10)式可和实验数据进行比较。
由该式可见,在θ方面上∆Ω内所观
察到的α粒子数N 与散射靶的核电荷Z 、α粒子动能2
021νm 及散射角θ等因素
都有关。
实验数据:
角度:30 35 40 45 50 55 时间:200 400 600 1000 2000 3000
No: 257 236 184 149 171 183 实验内容:
将实验数据代入公式,并进行曲线拟合,得:
50
100
150
200
250
300
B
A
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
0.5
0.60.70.80.91.0
1.11.2B
A。