苏教版高中数学(必修五)(基础版)(全册知识点考点梳理、重点题型分类巩固练习)(家教、补习、复习用)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏教版高中数学(必修五)
重难点突破
全册知识点梳理及重点题型举一反三巩固练习
正弦定理
【学习目标】
1.通过对直角三角形边角间数量关系的研究,发现正弦定理,初步学会运用由特殊到一般的思维方法发现数学规律;
2.会利用正弦定理解决两类解三角形的问题;
(1)已知两角和任意一边,求其他两边和一角;
(2)已知两边和其中一边的对角,求另一边的对角(从而求出其它边角).
【要点梳理】
要点一:学过的三角形知识
1.中
(1)一般约定:中角A、B、C所对的边分别为、、;
(2);
(3)大边对大角,大角对大边,即;
等边对等角,等角对等边,即;
(4)两边之和大于第三边,两边之差小于第三边,即,.
2.中,,
(1),
(2)
(3),,;
,,
要点二:正弦定理及其证明
正弦定理:在一个三角形中各边和它所对角的正弦比相等,即:
直角三角形中的正弦定理的推导
证明:,,,
即:,,,
∴.
斜三角形中的正弦定理的推导
证明:
法一:向量法
(1)当为锐角三角形时
过作单位向量垂直于,则+=
两边同乘以单位向量,得(+)=,
即
∴,∵,,,,,
∴,∴,
同理:若过作垂直于得:
∴,
(2)当为钝角三角形时
设,过作单位向量垂直于向量,同样可证得:.
法二:圆转化法
(1)当为锐角三角形时
如图,圆O是的外接圆,直径为,则,
∴,
∴(为的外接圆半径)
同理:,
故:
(2)当为钝角三角形时
如图,.
法三:面积法
任意斜中,如图作,则
同理:,
故,
两边同除以
即得:
要点诠释:
(1)正弦定理适合于任何三角形;
(2)可以证明(为的外接圆半径);
(3)每个等式可视为一个方程:知三求一。
(4)利用正弦定理可以解决下列两类三角形的问题:
①已知两个角及任意—边,求其他两边和另一角;
②已知两边和其中—边的对角,求其他两个角及另一边。
要点三:解三角形的概念
一般地,我们把三角形的各内角以及它们所对的边叫做三角形的几何元素.任何一个三角形都有六个元素:三边、和三角.
在三角形中,由已知三角形的某些边和角,求其他的边和角的过程叫作解三角形.
有了关于解三角形的有关定理(如勾股定理、三角形的内角和定理、正弦定理,还有即将学习的余弦定理等),三角学特别是测量学得到了一次飞跃,它可以由已知的三角形的边和角来推断未知的边和角.
要点四:正弦定理在解三角形中的应用
利用正弦定理,可以解决以下两类有关三角形的问题:
(1)已知两角和任一边,求其他两边和一角;
(2)已知两边和其中一边的对角,求另一边的对角;
要点诠释:
已知a,b和A,用正弦定理求B时的各种情况;
(1)若A为锐角时:
如图:
(2)若A为直角或钝角时:
判断三角形形状
判断三角形形状的思路通常有以下两种:
(1)化边为角;
(2)化角为边.对条件实施转化时,考虑角的关系,主要有:①两角是否相等?②三个角是否相等?
(3)有无直角、钝角?考查边的关系,主要有:①两边是否相等?②三边是否相等.
要点诠释:对于求解三角形的题目,一般都可有两种思路。但要注意方法的选择,同时要注意对解的讨论,从而舍掉不合理的解。比如下面例2两种方法不同,因此从不同角度来对解进行讨论。此外,有的时候还要对边角关系(例如,大边对大角)进行讨论从而舍掉不合理的解.
【典型例题】
类型一:正弦定理的简单应用:
【正弦定理376682例1】
例1.已知在中,,,,求和B.
【答案】
【解析】,
∴,
∴,
又,
∴.
【总结升华】
1. 正弦定理可以用于解决已知两角和一边求另两边和一角的问题;
2. 数形结合将已知条件表示在示意图形上,可以清楚地看出已知与求之间的关系,从而恰当地选择解答方式.
举一反三:
【变式1】(2015 广东高考)设△ABC的内角A,B,C的对边分别为a,b,c.若
,
则b=________.
【答案】,又,故,所以
由正弦定理得,,所以b=1。
【变式2】在中,已知,求
【答案】根据正弦定理,得
.
【正弦定理376682例2】
例2.在,求和,.
【解析】由正弦定理得:,
∴,
(方法一)∵,∴或,
当时,,(舍去);
当时,,∴.
(方法二)∵,,∴,
∴即为锐角,∴,
【总结升华】
1. 正弦定理也可用于解决已知两边及一边的对角,求其他边和角的问题。
2. 在利用正弦定理求角时,因为,所以要依据题意准确确定角的范围,再求出角.
3.一般依据大边对大角或三角形内角和进行角的取舍.
举一反三:
【变式1】在中,,,,求和.
【答案】∵,∴,
∵,∴或
∴当时,,;
∴当时,,;
所以,或.
【变式2】在中, ,, 求和;
【答案】∵,∴
∵,∴或
①当时,,;
②当时,(舍去)。