几何画板》考试题

合集下载

2024年八年级数学上册《全等三角形》及答案解析

2024年八年级数学上册《全等三角形》及答案解析

第十二章全等三角形(单元重点综合测试)班级_________姓名________学号__________分数__________考试范围:全章的内容;考试时间:120分钟;总分:120分一、选择题(本大题共10小题,每小题3分,共30分)1.下列说法中,正确的有()①形状相同的两个图形是全等形;②面积相等的两个图形是全等形;③全等三角形的周长相等,面积相等;④若△ABC≌△DEF,则∠A=∠D.A.1个B.2个C.3个D.4个2.下列各组图形中,是全等形的是()A. B.C. D.3.如图,点B在线段AD上,△ABC≌△EBD,AB=2cm,BD=5cm,则CE的长度为()A.2cmB.2.5cmC.3cmD.5cm4.小红用如图所示的方法测量小河的宽度.她利用适当的工具,使AB⊥BC,CD⊥BC,BO=OC,点A、O、D在同一直线上,就能保证△ABO≌△DCO,可作为证明△ABO≌△DCO的依据的是()A.SSSB.ASAC.SASD.HL5.如图,在△ABC和△DEF中,点A,E,B,AC∥DF,AC=DF,能判定△ABC≌△DEF的是()A.BC=DEB.AE=DBC.∠A=∠DEFD.∠ABC=∠D6.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中全等三角形有()A.1对B.2对C.3对D.4对7.现要在一块三角形形状的草坪上安装一个洒水龙头,要使洒水龙头到草坪三条边的距离相等,洒水龙头的位置应选在( )处A.三角形三边的垂直平分线的交点B.三角形的三条角平分线的交点C.三角形的三条高所在直线的交点D.三角形的三条中线的交点8.如图,在△ABC中,CD平分∠ACB,DE⊥BC于点E,S△ABC=30,DE=4,BC=10,则AC的长是()A.5B.6C.7D.89.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF,给出下列五个结论:①DE=DF;②BC=2DB;③AD⊥BC;④AB=3BF;⑤S△ADB=2S△BDF;其中正确的结论共有()A.4个B.3个C.2个D.1个10.新定义:已知三条平行直线,相邻两条平行线间的距离相等,我们把三个顶点分别在这样的三条平行线上的三角形称为“格线三角形”.如图,a∥b∥c,相邻两条平行线间的距离为m,等腰Rt△ABC为“格线三角形”,且∠BAC=90°,则△ABC的面积为()A.5m2 B.2m2 C.5m2 D.4m22二、填空题(本大题共6小题,每小题3分,共18分)11.如图,AD=AB,∠C=∠E,∠CDE=50°,则∠ABE=.12.如图,四边形ABCD≌四边形A B C D .若∠B=90°,∠C=60°,∠D =105°,则∠A的大小为度.13.如图,D,E是边BC上的两点,BD=CE,∠ADB=∠AEC,现要直接用“AAS”定理来证明△ABD≌△ACE,请你再添加一个条件:.14.已知△ABC面积为24,将△ABC沿BC的方向平移到△A B C 的位置,使B 和C重合,连接AC 交A C于D,则△C DC的面积为.15.如图,△ABC中∠A=66°,点M、N是∠ABC与∠ACB三等分线的交点,则∠BMN的度数是.16.如图,CA⊥AB,垂足为点A,射线BM⊥AB,垂足为点B,AB=15cm,AC=6cm.动点E从A点出发以3cm/s的速度沿射线AN运动,动点D在射线BM上,随着E点运动而运动,始终保持ED=CB.若点E的运动时间为t秒t>0,则当t=秒时,△DEB与△BCA全等.三、(本大题共4小题,每小题6分,共24分)17.已知:如图,AB=AE,∠1=∠2,∠C=∠D.求证:BC=ED.18.如图,已知AB∥CD,AB=CD.(1)求证:△ABC≌△CDA;(2)判断BC与AD的位置关系,并说明理由.19.如图,已知AB=CD,AD=BC,O为AC的中点,过O作一条直线分别与AB,CD交于点M,N,点E,F在直线MN上,且OE=OF.(1)图中共有几对全等三角形?请把它们都写出来;(2)求证:∠MAE=∠NCF.20.如图,B、C、E三点在同一条直线上,AC∥DE,AC=CE,∠ACD=∠B(1)求证:△ABC≌△CDE(2)若∠A=55°,求∠BCD的度数.四、(本大题共3小题,每小题8分,共24分)21.如图,△ABC中,点D在边BC延长线上,∠ACB=106°,∠ABC的平分线交AD于点E,过点E作EH⊥BD,垂足为H,且∠CEH=53°.(1)求∠ACE的度数;(2)求证:AE平分∠CAF;(3)若AC+CD=16,AB=10,且S△ACD=24,则△ABE的面积.22.问题提出:如图1,在四边形ABCD中,∠BAD与∠BCD互补,∠B与∠D互补,AB=AD,∠BAD=x°0<x<180,∠ACB=y°,数学兴趣小组在探究y与x的数量关系时,经历了如下过程:实验操作:(1)数学兴趣小组通过电脑软件“几何画板”进行探究,测量出部分结果如下表所示:x⋯304050607080β130y757065α555040θ这里α=,β=,θ=.猜想证明:(2)根据表格,猜想:y与x之间的关系式为;数学兴趣小组发现证明此猜想的一种方法:如图2,延长CB到E,使BE=DC,连接AE,⋯,请你根据其思路将证明过程补充完整,并验证(1)中结论的正确性.应用拓广:(3)如图3,若x+y=135,AC=10,求四边形ABCD的面积.23.(1)【问题解决】如图①,∠AOB=∠DFE=90°,OC平分∠AOB,点F在OC上,∠DFE的两边分别与OA,OB交于点D,E.当FE⊥OB,FD⊥OA时,则FD与FE的数量关系为;(2)【问题探究】如图②,在(1)的条件下,过点F作两条相互垂直的射线FM,FN,分别交OA,OB于点M,N,判断FM与FN的数量关系,说明理由;(3)【迁移应用】某学校有一块四边形的空地ABCD,如图③所示,∠DAB=∠DCB=90°,AC是∠DAB的平分线,AB= 50m,AD=30m,直接写出该空地的面积.五、(本大题共2小题,每小题12分,共24分)24.综合探究:如题图1是一种用刻度尺画角平分线的方法,在OA、OB上分别取点C、E、D、F,使得OC=OD,OE=OF,连接CF、DE,交点为P,则射线OP为∠AOB的角平分线.【验证】(1)试说明OP平分∠AOB,且PE=PF;【应用】(2)如题图2,若C、E、D、F分别为OA、OB上的点,且OC=OD,CF⊥OA,DE⊥OB,试用(1)中的原理说明OP平分∠AOB;【猜想】(3)如题图3,P是∠AOB角平分线上一点,C、D分别为OA、OB上的点,且PC=PD,请补全图形,并直接写出∠PCO与∠PDO的数量关系.25.【模型呈现】(1)如图1,∠BAD=90°,AB=AD,BC⊥CA于点C,DE⊥AE于点E.求证:BC=AE.【模型应用】(2)如图2,EA⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形ABCDE的面积.【深入探究】(3)如图3,∠BAD=∠CAE=90°,AB=AD,AC=AE,连接BC、DE,且BC⊥AF于点F,DE与直线AF交于点G.①求证DG=GE;②若BC=21,AF=12,求△ADG的面积.第十二章全等三角形(单元重点综合测试)班级_________姓名________学号__________分数__________考试范围:全章的内容;考试时间:120分钟;总分:120分一、选择题(本大题共10小题,每小题3分,共30分)1.下列说法中,正确的有()①形状相同的两个图形是全等形;②面积相等的两个图形是全等形;③全等三角形的周长相等,面积相等;④若△ABC≌△DEF,则∠A=∠D.A.1个B.2个C.3个D.4个【答案】B【分析】根据全等形的定义,全等三角形的判定与性质,即可判断.【详解】解:能够完全重合的两个图形叫做全等形,即形状和大小相同的两个图形是全等形,故①②说法错误;全等三角形能够完全重合,所以全等三角形的周长相等,面积相等,故③说法正确;若△ABC≌△DEF,∠A的对应角为∠D,所以∠A=∠D,故④说法正确;说法正确的有③④,共2个.故选:B.【点睛】本题考查全等形,理解能够完全重合的两个图形叫做全等形是解题关键.2.下列各组图形中,是全等形的是()A. B.C. D.【答案】B【分析】本题考查全等形,掌握能完全重合的两个图形是全等形是解题的关键.【详解】观察发现:A,C,D选项中两个图形不能完全重合,不是全等形;B选项中两个图形能完全重合,是全等形,故选B.3.如图,点B在线段AD上,△ABC≌△EBD,AB=2cm,BD=5cm,则CE的长度为()A.2cmB.2.5cmC.3cmD.5cm【答案】C【分析】此题考查了全等三角形的性质,解题的关键熟练掌握性质的应用.根据全等三角形的对应边相等,再利用线段和差即可求解.【详解】∵△ABC≌△EBD,∴BE=AB=2cm,BC=BD=5cm,∴CE=BC-BE=3cm,故选:C.4.小红用如图所示的方法测量小河的宽度.她利用适当的工具,使AB⊥BC,CD⊥BC,BO=OC,点A、O、D在同一直线上,就能保证△ABO≌△DCO,可作为证明△ABO≌△DCO的依据的是()A.SSSB.ASAC.SASD.HL【答案】B【分析】本题主要考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解题的关键.直接利用全等三角形的判定方法即可得出答案.【详解】解:∵AB⊥BC,CD⊥BC,∴∠ABO=∠DCO=90°,在△ABO和△DCO中,∠ABO=∠DCOBO=OC=CO∠BOA=∠COD,∴△ABO≌△DCO ASA∴证明△ABO≌△DCO的依据的是ASA,故选:B.5.如图,在△ABC和△DEF中,点A,E,B,AC∥DF,AC=DF,能判定△ABC≌△DEF的是()A.BC=DEB.AE=DBC.∠A=∠DEFD.∠ABC=∠D【答案】B【分析】本题考查三角形全等的判定,先根据平行线的性质得到∠A=∠D,加上AC=DF,则可根据全等三角形的判定方法对各选项进行判断即可,掌握全等三角形的判定方法:SSS、SAS、ASA、AAS,HL是解题的关键.【详解】解:∵AC∥DF,∴∠A=∠D,∵AC=DF,A、添加BC=DE,不能判定△ABC≌△DEF;B、添加AE=DB,能判定△ABC≌△DEF;C、添加∠A=∠DEF,不能判定△ABC≌△DEF;D、添加∠ABC=∠D,不能判定△ABC≌△DEF;故选:B.6.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中全等三角形有()A.1对B.2对C.3对D.4对【答案】C【分析】本题主要考查三角形全等的判定定理,角平分线的性质,熟练掌握三角形全等的判定方程是解题的关键.根据全等三角形的判定分别证明△AOP≌△BOP(SAS),Rt△P AE≌Rt△PBF HL,△OEP≌△OFP (AAS),即可得到答案.【详解】解:∵OP平分∠MON,∴∠AOP=∠BOP,∵OA=OB,OP=OP,∴△AOP≌△BOP(SAS);∴AP=BP,∵OP平分∠MON,PE⊥OM,PF⊥ON∴PE=PF,∵PE⊥OM于点E,PF⊥ON于点F,∴Rt△P AE≌Rt△PBF HL;∵OP平分∠MON,∴∠AOP=∠BOP,又∵∠OEP=∠OFP=90°,OP=OP,∴△OEP≌△OFP(AAS).∴图中全等三角形有3对故选C.7.现要在一块三角形形状的草坪上安装一个洒水龙头,要使洒水龙头到草坪三条边的距离相等,洒水龙头的位置应选在( )处A.三角形三边的垂直平分线的交点B.三角形的三条角平分线的交点C.三角形的三条高所在直线的交点D.三角形的三条中线的交点【答案】B【分析】本题考查的是三角形的角平分线的性质,掌握角平分线上的点到角的两边的距离相等是解题的关键.根据角平分线上的点到角的两边的距离相等解答即可.【详解】解:要使洒水龙头到草坪三条边的距离相等,则洒水龙头的位置应选在三角形三条角平分线的交点,故选:B8.如图,在△ABC 中,CD 平分∠ACB ,DE ⊥BC 于点E ,S △ABC =30,DE =4,BC =10,则AC 的长是()A.5B.6C.7D.8【答案】A 【分析】本题主要考查了角平分线的性质定理.过点D 作DF ⊥AC 于点F ,根据角平分线的性质可得DE =DF =4,再由S △ABC =S △DBC +S △DAC ,即可求解.【详解】解:如图,过点D 作DF ⊥AC 于点F ,∵CD 平分∠ACB ,DE ⊥BC ,DF ⊥AC ,DE =4,∴DE =DF =4,∵S △ABC =S △DBC +S △DAC ,S △ABC =30,BC =10,∴30=12DE ×BC +12DF ×AC ,∴30=12×4×10+12×4×AC ,∴AC =5,故选:A .9.如图,AD 是△ABC 的角平分线,DE ⊥AC ,垂足为E ,BF ∥AC 交ED 的延长线于点F ,若BC 恰好平分∠ABF ,AE =2BF ,给出下列五个结论:①DE =DF ;②BC =2DB ;③AD ⊥BC ;④AB =3BF ;⑤S △ADB =2S △BDF ;其中正确的结论共有()A.4个B.3个C.2个D.1个【答案】A 【分析】本题考查了全等三角形判定和性质,角平分线的性质,等腰三角形的判定和性质,由角平分线的性质和平行线的性质可证∠ACB=∠ABC,可得AC=AB,由等腰三角形的性质可得AD⊥BC,CD= BD,由“ASA”可证△CDE≌△BDF,可得S△CDE=S△BDF,CE=BF,DE=DF,即可求解.【详解】解:∵BC恰好平分∠ABF,∴∠ABC=∠CBF,∵BF∥AC,∴∠ACB=∠CBF,∴∠ACB=∠ABC,∴AC=AB,且AD是△ABC的角平分线,∴AD⊥BC,BC=2DB,故②,③正确,符合题意;在△CDE和△BDF中,∠ACB=∠CBF CD=BD∠CDE=∠BDF,∴△CDE≌△BDF ASA,∴S△CDE=S△BDF,CE=BF,DE=DF,故①正确,符合题意;∵AE=2BF,∴AC=3BF=AB,故④正确,符合题意;∵BD=CD,∴S△ADB=S△ACD,∵AE=2BF,∴S△ADB=S△ACD=3S△CDE=3S△BDF,故⑤错误,不符合题意;故选:A.10.新定义:已知三条平行直线,相邻两条平行线间的距离相等,我们把三个顶点分别在这样的三条平行线上的三角形称为“格线三角形”.如图,a∥b∥c,相邻两条平行线间的距离为m,等腰Rt△ABC为“格线三角形”,且∠BAC=90°,则△ABC的面积为()A.52m2 B.2m2 C.5m2 D.4m2【答案】A【分析】本题主要考查平行线间的距离,全等三角形的判定与性质,过点B作BE⊥直线a于点E,延长EB交直线c于点F,过点C作CD⊥直线a于点D,证明△CDA≌△AEB(AAS),得出AE=CD=2m,AD=BE=m,CF=DE=AD+AE=m+2m=3m,再根据=S四边形DEFE-S△ACD×2-S△BCF求解即可【详解】解:过点B作BE⊥直线a于点E,延长EB交直线c于点F,过点C作CD⊥直线a于点D,则∠CDA=∠AEB=90°,如图,∵a∥b∥c,相邻两条平行线间的距离为m,∴BF⊥直线c,CD=2m,BE=BF=m,∵∠CAB=90°,∠CDA=90°∴∠DCA+∠DAC=90°,∴∠DCA=∠EAB,在△CDA和△AEB中,∠DCA=∠EAB∠CDA=∠AEBAC=AB,∴△CDA≌△AEB(AAS),∴AE=CD=2m,AD=BE=m,∴CF=DE=AD+AE=m+2m=3m∴△ABC的面积=S四边形DEFE -S△ACD×2-S△BCF=3m×2m-12×2m×m×2-12×3m×m=52m2故选:A二、填空题(本大题共6小题,每小题3分,共18分)11.如图,AD=AB,∠C=∠E,∠CDE=50°,则∠ABE=.【答案】130°/130度【分析】本题考查了全等三角形的性质与判定,邻补角的定义,掌握全等三角形的性质与判定是解题的关键.证明△ADC≌△ABE AAS得出∠ADC=∠ABE,根据邻补角即可求解.【详解】解:∵在△ADC和△ABE中,∠C=∠E∠A=∠AAD=AB,∴△ADC≌△ABE AAS,∴∠ADC=∠ABE,∵∠CDE=50°,∴∠ADC=180°-50°=130°,∴∠ABE=130°.故答案为:130°.12.如图,四边形ABCD≌四边形A B C D .若∠B=90°,∠C=60°,∠D =105°,则∠A的大小为度.【答案】105【分析】本题考查了全等图形的性质和四边形内角和公式,解题的关键在于熟练掌握全等图形的性质.根据全等的性质求出∠D=∠D ,利用四边形的内角和公式求出∠A的度数即可.【详解】解:∵四边形ABCD≌四边形A B C D .∴∠D=∠D ,∵∠D =105°,∴∠D=105°,∵∠B=90°,∠C=60°,∴∠A=360°-90°-60°-105°=105°,故答案为:105.13.如图,D,E是边BC上的两点,BD=CE,∠ADB=∠AEC,现要直接用“AAS”定理来证明△ABD≌△ACE,请你再添加一个条件:.【答案】∠BAD=∠CAE【分析】在△ABE与△ACD中,已知AE=AD,∠AED=∠ADE,即已知一角及角的一边对应相等,根据“AAS”的判定方法,可以添加已知边的对角对应相等即可.本题考查了全等三角形的判定定理:AAS:两角及其中一个角的对边对应相等的两个三角形全等.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.根据已知结合图形及判定方法选择条件是正确解答本题的关键.【详解】解:可添加一个条件:∠BAD=∠CAE,使△ABD≌△ACE.理由:在△ABD与△ACE中,∠BAD=∠CAE∠AED=∠ADEBD=CE,∴△ABD≌△ACE(AAS).故答案为∠BAD=∠CAE14.已知△ABC面积为24,将△ABC沿BC的方向平移到△A B C 的位置,使B 和C重合,连接AC 交A C于D,则△C DC的面积为.【答案】12【分析】根据平移的性质可得AC=A C ,BC=B C ,AC∥A C ,证明△ADC≌△C DA ,得到AD=C D,则S△C DC =12S△ACC,再推出S△ABC=S△ACC=24,则S△C DC=12S△ACC=12.【详解】解:由平移的性质可得AC=A C ,BC=B C ,AC∥A C ,∴∠DCA=∠DA C ,∠DAC=∠DC A ,∴△ADC≌△C DA ASA,∴AD=C D,∴S△C DC =12S△ACC,∵BC=CC ,△ABC的面积为24,∴S△ABC=S△ACC=24,∴S△C DC =12S△ACC=12.故答案为:12.【点睛】本题主要考查了平移的基本性质,全等三角形的性质与判定,三角形中线的性质,熟知平移的性质是解题的关键:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.15.如图,△ABC中∠A=66°,点M、N是∠ABC与∠ACB三等分线的交点,则∠BMN的度数是.【答案】52°/52度【分析】本题考查与角平分线有关的三角形的内角和定理.过点N作NG⊥BC于G,NE⊥BM于E,NF⊥CM于F,根据角平分线上的点到角的两边的距离相等可得NE=NG=NF,再根据到角的两边距离相等的点在角的平分线上判断出MN平分∠BMC,然后根据三角形内角和等于180°求出∠ABC+∠ACB,再根据角的三等分求出∠MBC+∠MCB的度数,然后利用三角形内角和定理求出∠BMC的度数,从而得解.【详解】解:如图,过点N作NG⊥BC于G,NE⊥BM于E,NF⊥CM于F,∵点M、N是∠ABC与∠ACB三等分线的交点,∴BN平分∠MBC,CN平分∠MCB,∴NE=NG,NF=NG,∴NE=NF,∴MN平分∠BMC,∴∠BMN=12∠BMC,∵∠A=66°,∴∠ABC+∠ACB=180°-∠A=180°-66°=114°,∴∠MBC+∠MCB=23∠ABC+∠ACB=76°,在△BMC中,∠BMC=180°-∠MBC+∠MCB=180°-76°=104°∴∠BMN=12∠BMC=52°.故答案为:52°.16.如图,CA⊥AB,垂足为点A,射线BM⊥AB,垂足为点B,AB=15cm,AC=6cm.动点E从A点出发以3cm/s的速度沿射线AN运动,动点D在射线BM上,随着E点运动而运动,始终保持ED=CB.若点E的运动时间为t秒t>0,则当t=秒时,△DEB与△BCA全等.【答案】3或7或10【分析】本题考查全等三角形的性质,关键是要分情况讨论.分情况,当E在线段AB上,或当E在线段AB延长线上,由HL即可求解.【详解】解:∵CA⊥AB,BM⊥AB,∠CAB=∠DBE=90°,∵ED=CB,当E在线段AB上时,若BE=AC,∴Rt△DEB≌Rt△BCA(HL),∵AE=3tcm,∴BE=AB-AE=15-3tcm,∴15-3t=6,∴t=3;若BE=AB,∴Rt△DEB≌Rt△CBA(HL),∴AE=0,∴t=0(舍去),当E在线段AB延长线上时,若BE=AC,∴Rt△DEB≌Rt△BCA(HL),∵AE=3t=AB+BE=15+6=21(cm),∴t=7,若BE=AB,∴Rt△DEB≌Rt△CBA(HL),∵AE=3t=AB+BE=15+15=30(cm),∴t=10,∴当t=3或7或10秒时,△DEB与△BCA全等.故答案为:3或7或10.三、(本大题共4小题,每小题6分,共24分)17.已知:如图,AB=AE,∠1=∠2,∠C=∠D.求证:BC=ED.【答案】见解析【分析】本题考查了全等三角形的判定与性质,由∠1=∠2可得∠EAD=∠BAC,再根据条件AB=AE,∠C=∠D,可利用AAS证明△ABC≌△AED AAS,再根据全等三角形对应边相等即可得出结论.【详解】证明:∵∠1=∠2,∴∠1+∠BAD=∠2+∠BAD,即∠EAD=∠BAC,在△EAD和△BAC中,∠C=∠D∠BAC=∠EADAB=AE,∴△ABC≌△AED AAS,∴BC=ED.18.如图,已知AB∥CD,AB=CD.(1)求证:△ABC≌△CDA;(2)判断BC与AD的位置关系,并说明理由.【答案】(1)见解析(2)BC∥AD,理由见解析【分析】本题考查了全等三角形的判定与性质,解决本题的关键是得到△ABC≌△CDA.(1)利用SAS证明△ABC≌△CDA即可;(2)由△ABC≌△CDA,得∠BCA=∠CAD,进而可以判断BC与AD的位置关系.【详解】(1)证明:∵AB∥CD,∴∠BAC=∠ACD,在△ABC与△CDA中,AB=CD∠BAC=∠ACDAC=CA,∴△ABC≌△CDA SAS;(2)解:BC∥AD,理由如下:∵△ABC≌△CDA,∴∠BCA=∠CAD,∴BC∥AD.19.如图,已知AB=CD,AD=BC,O为AC的中点,过O作一条直线分别与AB,CD交于点M,N,点E,F在直线MN上,且OE=OF.(1)图中共有几对全等三角形?请把它们都写出来;(2)求证:∠MAE=∠NCF.【答案】(1)4;△ABC≌△CDA,△AMO≌△CNO,△OAE≌△OCF,△AME≌△CNF(2)证明见解析【分析】本题主要考查了全等三角形的性质与判定,找出判定三角形全等的条件是解题的关键.(1)结合已知条件,再根据全等三角形的四个判定方法,即可找出所有的全等三角形;(2)先证明△AME≌△CNF SSS,即可证明∠MAE=∠NCF.【详解】(1)解:有4对全等三角形,分别为:△ABC≌△CDA,△AMO≌△CNO,△OAE≌△OCF,△AME≌△CNF,理由如下:∵AB=CD,BC=AD=DA,AC=CA,∴△ABC≌△CDA SSS,∴∠BAC=∠DCA,即∠MAO=∠NCO,∵O为AC的中点,∴OA=OC,又∵∠AOM=∠CON,∴△AMO≌△CNO ASA,∴AM=CN,OM=ON,∵OA=OC,∠AOE=∠COF,OE=OF,∴△OAE≌△OCF SAS,∴AE=CF,∵OE=OF,OM=ON,∴OE-OM=OF-ON,即ME=NF,又∵AM=CN,∴△AME≌△CNF SSS;(2)证明:∵AB=CD,BC=AD=DA,AC=CA,∴△ABC≌△CDA SSS,∴∠BAC=∠DCA,即∠MAO=∠NCO,∵O为AC的中点,∴OA=OC,又∵∠AOM=∠CON,∴△AMO≌△CNO ASA,∴AM=CN,OM=ON,∵OA=OC,∠AOE=∠COF,OE=OF,∴△OAE≌△OCF SAS,∴AE=CF,∵OE=OF,OM=ON,∴OE-OM=OF-ON,即ME=NF,又∵AM=CN,∴△AME≌△CNF SSS,∴∠MAE=∠NCF.20.如图,B、C、E三点在同一条直线上,AC∥DE,AC=CE,∠ACD=∠B(1)求证:△ABC≌△CDE(2)若∠A=55°,求∠BCD的度数.【答案】(1)详见解析(2)125°【分析】本题考查了平行线性质和全等三角形的性质和判定的应用,证得△ABC≌△CDE是解题的关键.(1)根据平行线求出∠ACD=∠CDE,∠ACB=∠CED,再说明∠B=∠CDE,最后结合AC=CE运用AAS即可证明结论;(2)根据全等三角形性质得出∠A=∠E=55°,进而根据平角定义即可解答.【详解】(1)证明∶∵AC∥DE,∴∠ACD=∠CDE,∠ACB=∠CED,∵∠ACD=∠B,∴∠B=∠CDE,∵AC=CE,∴△ABC≌△CDE AAS.(2)解:∵∠A=55°,∵△ABC≌△CDE,∴∠A=∠ECD=55°,∴∠BCD=180°-∠ECD=180°-55°=125°.四、(本大题共3小题,每小题8分,共24分)21.如图,△ABC中,点D在边BC延长线上,∠ACB=106°,∠ABC的平分线交AD于点E,过点E作EH⊥BD,垂足为H,且∠CEH=53°.(1)求∠ACE的度数;(2)求证:AE平分∠CAF;(3)若AC+CD=16,AB=10,且S△ACD=24,则△ABE的面积.【答案】(1)∠ACE=37°(2)证明见解析(3)15【分析】本题主要考查了邻补角的性质、角平分线的性质与判定定理、三角形的面积等知识点,灵活运用相关知识点成为解答本题的关键.(1)根据邻补角的定义和垂直的定义可得∠ACD=74°、∠CHE=90°,进而得到∠ECH=37°,然后根据∠ACE=∠ACD-∠ECH即可解答;(2)如图:过E点分别作EM⊥BF于M,EN⊥AC与N,根据角平分线的性质定理以及角平分线的定义可得EM=EH、CE平分∠ACD、EN=EH,最后根据角平分线的判定定理即可解答;(3)根据S△ACD=S△ACE+S△CED结合已知条件可得EM=3,最后运用三角形的面积公式即可解答.【详解】(1)解:∵∠ACB=106°,∴∠ACD=180°-106°=74°,∵EH⊥BD,∴∠CHE=90°,∵∠CEH=53°,∴∠ECH=90°-53°=37°,∴∠ACE=∠ACD-∠ECH=74°-37°=37°.(2)证明:如图:过E点分别作EM⊥BF于M,EN⊥AC与N,∵BE平分∠ABC,∴EM=EH,∵∠ACE =∠ECH =37°,∴CE 平分∠ACD ,∴EN =EH ,∴EM =EN ,∴AE 平分∠CAF .(3)解:∵AC +CD =16,S △ACD =24,EM =EN =EH ,∴S △ACD =S △ACE +S △CED =12AC ⋅EN +12CD ⋅EH =12(AC +CD )⋅EM =24,即12×16⋅EM =24,解得EM =3,∵AB =10,∴S △ABE =12AB ⋅EM =15.22.问题提出:如图1,在四边形ABCD 中,∠BAD 与∠BCD 互补,∠B 与∠D 互补,AB =AD ,∠BAD =x °0<x <180 ,∠ACB =y °,数学兴趣小组在探究y 与x 的数量关系时,经历了如下过程:实验操作:(1)数学兴趣小组通过电脑软件“几何画板”进行探究,测量出部分结果如下表所示:x⋯304050607080β130y 757065α555040θ这里α=,β=,θ=.猜想证明:(2)根据表格,猜想:y 与x 之间的关系式为;数学兴趣小组发现证明此猜想的一种方法:如图2,延长CB 到E ,使BE =DC ,连接AE ,⋯,请你根据其思路将证明过程补充完整,并验证(1)中结论的正确性.应用拓广:(3)如图3,若x +y =135,AC =10,求四边形ABCD 的面积.【答案】(1)60,100,15;(2)y =90-12x ,理由见详解;(3)S 四边形ABCD =50【分析】(1)观察表格发现:x 每增加10,y 减小5,由此即可得出α、β、θ的值.(2)根据表格猜想:y =90-12x .延长CB 到E ,使BE =DC ,连接AE ,则可得△ABE ≌△ADE ,进而可得AE =AC ,∠EAB =∠CAD ,则可得∠EAC =x °.在△AEC 中,根据三角形内角和定理即可得出y 于x 之间的关系式.(3)延长CB 到E ,使BE =DC ,连接AE .由(2)得△ABE ≌△ADE ,则S △ABE =S △ADE ,进而可得S 四边形ABCD =S △AEC .由x +y =135,y =90-12x 可得x =90,y =45.则可得∠EAC =90°,∠AEC =∠ACE =45°,进而可得AE =AC =10,可得S △AEC 的值,即可得S 四边形ABCD 的值.【详解】(1)观察表格发现:x每增加10,y减小5,∴α=65-5=60,β=80+2×10=100,θ=40-3×5=15.故答案为:60,100,15,x.(2)根据表格猜想:y=90-12证明:如图2,延长CB到E,使BE=DC,连接AE,则∠ABC+∠ABE=180°,又∵∠ABC+∠D=180°,∴∠ABE=∠D,又∵AB=AD,∴△ABE≌△ADE(SAS),∴AE=AC,∠EAB=∠CAD,∴∠E=∠ACB=y°,∠EAC=∠EAB+∠BAC=∠CAD+∠BAC=∠BAD=x°.在△AEC中,∠EAC+∠E+∠ACE=180°,∴x°+2y°=180°,y=90-1x.2(3)如图,延长CB到E,使BE=DC,连接AE.由(2)得△ABE≌△ADE,∴S△ABE=S△ADE,=S△ACD+S△ABC=S△ABE+S△ABC=S△AEC,∴S四边形ABCD∵x+y=135,y=90-1x,2x=135,∴x+90-12解得x=90,y=45,∴∠EAC=90°,∠AEC=∠ACE=45°,∴AE=AC=10,×10×10=50,∴S△AEC=12∴S=50.四边形ABCD【点睛】本题考查了数字类探索规律问题,以及全等三角形的判定和性质,三角形内角和定理.熟练掌握以上知识,证明出y与x之间的关系式是解题的关键.23.(1)【问题解决】如图①,∠AOB =∠DFE =90°,OC 平分∠AOB ,点F 在OC 上,∠DFE 的两边分别与OA ,OB 交于点D ,E .当FE ⊥OB ,FD ⊥OA 时,则FD 与FE 的数量关系为;(2)【问题探究】如图②,在(1)的条件下,过点F 作两条相互垂直的射线FM ,FN ,分别交OA ,OB 于点M ,N ,判断FM 与FN 的数量关系,说明理由;(3)【迁移应用】某学校有一块四边形的空地ABCD ,如图③所示,∠DAB =∠DCB =90°,AC 是∠DAB 的平分线,AB =50m ,AD =30m ,直接写出该空地的面积.【答案】(1)FD =FE ;(2)FM =FN ,理由见详解;(3)1600m 2【分析】(1)根据“角平分线上的点到角两边的距离相等”可得FD =FE ;(2)先根据四边形内角和等于360°可得∠DFE =90°,由∠DFE =∠FMN =90°可得∠DFM =∠EFN ,再根据ASA 证明△DFM ≌△EFN ,则可得FM =FN ;(3)过C 点作CE ⊥AB 于E 点,CF ⊥AD 的延长线于F 点.由(2)得△CFD ≌△CEB ,则可得FD =EB ,S △CFD =S △CEB ,进而可得S 四边形ABCD =S 四边形AECF .证明△ACF ≌△ACE (,则可得AF =AE ,由AE =AB -BE 、AF =AD +DF 可求得BE 的长,进而可得AF 、AE 的长,由此可得S 四边形AECF 的值,即可得S 四边形ABCD 的值.【详解】(1)解:∵OC 平分∠AOB ,点F 在OC 上,且FE ⊥OB ,FD ⊥OA ,∴FD =FE .(2)解:FD =FE ,理由如下:∵FD ⊥OA ,FE ⊥OB ,∴∠FDO =∠FEO =∠FEN =90°,∵四边形DOEF 中,∠FDO =∠FEO =∠AOB =90°,∴∠DFE =360°-∠FDO -∠FEO -∠AOB =90°,∴∠DMF +∠MFE =90°,又∵FM ⊥FN ,∴∠FMN =90°,∴∠DFM =∠EFN ,在△DFM 和△EFN 中,∠FDM =∠FENFD =FE ∠DFM =∠EFN,∴△DFM ≌△EFN (ASA ),∴FM =FN .(3)解:如图,过C 点作CE ⊥AB 于E 点,CF ⊥AD 的延长线于F 点,由(2)得△CFD≌△CEB,∴FD=EB,S△CFD=S△CEB,∴S四边形ABCD =S四边形AECF,∵AC是∠DAB的平分线,∴∠DAC=∠CAB,又∵∠CFB=∠CEA=90°,AC=AC,∴△ACF≌△ACE(AAS),∴AF=AE,又∵AE=AB-BE,AF=AD+DF,∴AB-BE=AD+DF,∴50-BE=30+BE,解得BE=10,∴AF=AE=40,∴S四边形AECF=40×40=1600m2,∴S四边形ABCD=1600m2,答:该空地的面积为1600m2.【点睛】本题主要考查了角平分线的性质、全等三角形的判定和性质,熟练掌握以上知识,正确的作出辅助线是解题的关键.五、(本大题共2小题,每小题12分,共24分)24.综合探究:如题图1是一种用刻度尺画角平分线的方法,在OA、OB上分别取点C、E、D、F,使得OC=OD,OE=OF,连接CF、DE,交点为P,则射线OP为∠AOB的角平分线.【验证】(1)试说明OP平分∠AOB,且PE=PF;【应用】(2)如题图2,若C、E、D、F分别为OA、OB上的点,且OC=OD,CF⊥OA,DE⊥OB,试用(1)中的原理说明OP平分∠AOB;【猜想】(3)如题图3,P是∠AOB角平分线上一点,C、D分别为OA、OB上的点,且PC=PD,请补全图形,并直接写出∠PCO与∠PDO的数量关系.【答案】(1)见解析;(2)见解析;(3)补全图形见解析,∠PCO=∠PDO或∠PCO+∠PDO=180°【分析】本题是三角形综合题目,考查了全等三角形的判定与性质、角平分线的性质等知识,本题综合性强,熟练掌握全等三角形的判定与性质是解题的关键,属于中考常考题型.(1)先证明△DOE≌△COF(SAS),得∠PEC=∠PFD,再证△CPE≌△DPF(AAS),得PE=PF,然后证△OPE≌△OPF(SSS),得∠POE=∠POF,即可得出结论;(2)先证明△OCF≌△ODE(ASA),可得OF=OE,由(1)可得OP平分∠AOB;(3)过点P分别作PM⊥OA于M,PN⊥OB于N,分两种情况进行求解即可.【详解】解:(1)∵OC=OD,∠DOE=∠COF,OE=OF,∴CE=DF,△DOE≌△COF(SAS),∴∠PEC=∠PFD,∵∠CPE=∠DPF,CE=DF,∴△CPE≌△DPF(AAS),∴PE=PF,∵OE=OF,PE=PF,OP=OP,∴△OPE≌△OPF(SSS),∴∠POE=∠POF,即∠POA=∠POB,∴射线OP平分∠AOB;(2)∵CF⊥OA,DE⊥OB,∴∠OCF=∠ODE=90°,∴∠COF=∠DOE,OC=OD,∴△OCF≌△ODE(ASA),∴OF=OE,由(1)可得OP平分∠AOB;(3)补全图形如下,过点P分别作PM⊥OA于M,PN⊥OB于N,∵OP是∠AOB的平分线,∴PM=PN,∠PMC=∠PND=90°,当PC=PD1时,在Rt△PMC和Rt△PND1中,PC=PD1,PM=PN∴Rt△PMC≌Rt△PND1(HL),∴∠PCO=∠PD1O;当PC=PD2时,同理得Rt△PMC≌Rt△PND2HL,∴∠PCM=∠PD2N;∵∠PD2N+∠PD2O=180°,∴∠PCO+∠PD2O=180°,综上所述,∠PCO与∠PDO的数量关系为∠PCO=∠PDO或∠PCO+∠PDO=180°;25.【模型呈现】(1)如图1,∠BAD=90°,AB=AD,BC⊥CA于点C,DE⊥AE于点E.求证:BC=AE.【模型应用】(2)如图2,EA⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形ABCDE的面积.【深入探究】(3)如图3,∠BAD=∠CAE=90°,AB=AD,AC=AE,连接BC、DE,且BC⊥AF于点F,DE与直线AF交于点G.①求证DG=GE;②若BC=21,AF=12,求△ADG的面积.【答案】(1)见解析;(2)50;(3)①见解析;63【分析】(1)证明△ABC≌△DAE AAS,即可得证;(2)同(1)法得到△AEP≌△BAG,△CBG≌△DCH,分割法求出图形面积即可;(3)①过点D作DP⊥AG于P,过点E作EQ⊥AG交AG的延长线于Q,易证△AFB≌△DP A,△AFC ≌△EQA,得到DP=AF,EQ=AF,再证明△DPG≌△EQG AAS,即可得出结论;②根据全等三角形的性质,求出AG的长,进而利用面积公式进行求解即可.【详解】解:(1)证明:∵∠BAD=90°,∴∠BAC+∠DAE=90°,∵BC⊥CA,DE⊥AE,∴∠ACB=∠DEA=90°,∴∠BAC+∠ABC=90°,∴∠ABC=∠DAE,在△ABC和△DAE中,∠ACB=∠DEA∠ABC=∠DAEBA=AD∴△ABC≌△DAE AAS,∴BC=AE.(2)由模型呈现可知,△AEP≌△BAG,△CBG≌△DCH,∴AP=BG=3,AG=EP=6,CG=DH=4,CH=BG=3,则S实线围成的图形=12×4+6×3+6+4+3-12×3×6-12×3×6-12×3×4-12×3×4=50.(3)①过点D作DP⊥AG于P,过点E作EQ⊥AG交AG的延长线于Q.图3由【模型呈现】可知,△AFB≌△DP A,△AFC≌△EQA,∴DP=AF,EQ=AF∴DP=EQ,∵DP⊥AG,EQ⊥AG∴∠DPG=∠EQG=90°,在△DPG和△EQG中,∠DPG=∠EQG∠DGP=∠EGQDP=EQ∴△DPG≌△EQG AAS,∴DG=GE.②由①可知,BF=AP,FC=AQ,∴BC=BF+FC=AP+AQ,∵BC=21,∴AP+AQ=21,∴AP+AP+PG+GQ=21,由①△DPG≌△EQG得∴PG=GQ,∴AP+AP+PG+PG=21,∴AP+PG=10.5,∴AG=10.5,∴S△ADG=1×10.5×12=63.2。

2022~2023中级软考考试题库及答案参考70

2022~2023中级软考考试题库及答案参考70

2022~2023中级软考考试题库及答案1. 不管什么课程,都可以实现小组合作学习。

正确答案:错误2. Solaris系统使用什么命令查看已有补丁列表?()A.uname–anB.showrevC.oslevel–rD.swlist–lproduct‘PH??’正确答案:3. 以下关于虚拟局域网中继( VLAN Trunk )的描述中,错误的是 ()A.VLAN Trunk 是在交换机与交换机之间、交换机与路由器之间存在的物理链路上传输多个 VLAN信息的一种技术B.VLAN Trunk 的标准机制是帧标签。

C.在交换设备之间实现 Trunk 功能, VLAN协议可以不同D.目前常用的 vlan 协议有 ISL 、IEEE802.10 和国际标准 IEEE 802.1Q正确答案:C4. 聚光灯有拍照功能,可以将所突出的内容拍下来。

()正确答案:正确5. 在数据库中,下列哪些数据不能加密?()A.索引字段B.存放日期字段C.存放密码的D.存放名称字段正确答案:A6. 书名号《》可以在任何搜索引擎中使用。

()正确答案:错误7. 下列操作中,哪个不是SQLServer服务管理器功能()?A.执行SQL查询命令B.停止SQLServer服务C.暂停SQLServer服务D.启动SQLServer服务正确答案:8. 基于网络环境下的自主学习有利于增强学生的信息化意识和信息素养。

正确答案:正确9. 在一个校园内组织内构建的网络属于什么网?正确答案:在一个校园内构建的网络属于局域网10. 以下有有关路由表的说法中,错误的是()A.路由表可以分为静态路由表和动态路由表。

B.静态路由表由人工方式建立,网络结构变化时,无法自动更新C.动态路由表由系统自动运行动态路由选择协议,可以自动更新结构D.静态路由表很少用到,已经被动态路由表取代。

正确答案:D11. 下面哪一个情景属于授权(Authorization)过程?()A.用户依照系统提示输入用户名和口令B.用户在网络上共享了自己编写的一份Office文档,并设定哪些用户可以阅读,哪些用户可以修改C.用户使用加密软件对自己编写的Office文档进行加密,以阻止其他人得到这份拷贝后看到文档中的内容D.某个人尝试登录到你的计算机中,但是口令输入的不对,系统提示口令错误,并将这次失败的登录过程纪录在系统日志中正确答案:12. 在投影机使用结束后,应首先按下POWER键,待散热完成后,再关闭电源。

信息技术考试题目及答案

信息技术考试题目及答案

信息技术考试题⽬及答案信息技术培训测试题⼀、判断题(⼤题总分19分,每题1分,共19⼩题)1.交互式电⼦⽩板的⼏何作图功能地主要特点是作图规范,且学⽣易操作A. 正确B. 错误答案:A解析:2.资源要保证按时接收,按时分类整理,并进⾏保存和应⽤A. 正确B. 错误答案:A解析:3.百宝箱中要使⽤的图形(即放在信封下的图形)要设计为拖动副本A. 正确B. 错误答案:A解析:4.为了检测学习者的认知结构以及知识间的关系,最常使⽤的软件是概念图软件A. 正确B. 错误答案:A解析:5.在灵活性⽅⾯,交互⽩板⽐PPT强⼤A. 正确B. 错误答案:A解析:6.Flash是⼀个⽮量动画软件。

A. 正确B. 错误答案:A解析:8.⽹络学习空间只属于技术领域范畴的概念A. 正确B. 错误答案:B解析:9.MOODLE平台可以协助学⽣进⾏⾃主学习与独⽴探索A. 正确B. 错误答案:A解析:10.微课能解决学习者的实际问题A. 正确B. 错误答案:A解析:11.教师应改变观念,调整⾃⼰的教学⽅式,将课堂教学由“教”为主转向以“学”为主A. 正确B. 错误答案:A解析:12.学习⼩组长的学习能⼒就是⼀个班级的学习能⼒,学习⼩组长的学习⽔平就是⼀个班级的学习⽔平,更是⼀个教师的教学⽔平。

A. 正确B. 错误答案:A解析:13.防护罩也是监控系统中最常⽤的设备之⼀A. 正确B. 错误答案:A解析:解析:15.中⼩学教师信息技术能⼒提升⼯程应充分考虑培训主体庞⼤,充分考虑教师群体间的差异性A. 正确B. 错误答案:A解析:16.学科教学⼯作坊不是聚焦⼀个学科的主题。

A. 正确B. 错误答案:B解析:17.教师的专业性指的是教师作为专业⼈员所表现出来的主要特征A. 正确B. 错误答案:A解析:18.在⽹络学习环境中,学⽣的学习材料仅为书本和教师提供的扩展资料A. 正确B. 错误答案:B解析:19.中⼩学的微课⼀般控制在10分钟以内,⾼校微课⼀般控制在15分钟以内。

《几何画板》考试题

《几何画板》考试题

学校课程——《几何画板的运用》测试(试卷满分100分)试卷设计:王伟君班级:姓名:号数:成绩:一、单选题(共15题,每题2分,共30分)1、几何画板是制作()学科课件的“利剑”。

A、数学B、物理C、数学和物理D、数学或物理2、几何画板中工具栏没有()工具。

A、选择箭头工具B、圆规工具C、直尺工具D、颜料桶工具3、几何画板中不可以度量的是()A、线段的长度B、角度C、周长D、直线的长度4、几何画板中可以度量的是()。

A、重量B、直线C、比D、射线5、几何画板中画圆,自动有()个点。

A、1B、2C、3D、46、几何画板中画三角表的步骤是()A、使用“点工具”在工作区画三个点——显示——线段B、使用“点工具”在工作区画三个点——作图——线段C、使用“点工具”在工作区画三个点——度量——线段D、使用“点工具”在工作区画三个点——窗口——线段7、几何画板中三角形的重心的绘画的步骤是()①画三角形②画中点③连接A、①②③B、①③②C、②①③D、②③①8、几何画板中绘制平行四边形的步骤是()。

①画两邻边②画平行线③取点④连线A、④③②①B、④②③①C、①②③④D、①③②④9、几何画板中画同心圆的步骤是()。

①选定一点和多条线段②作图③以圆心和半径绘圆A、③②①B、③①②C、①③②D、①②③10、几何画板中“反射”在()菜单项中。

A、变换B、显示C、度量D、图表11、几何画板中利用“反射”作轴对称图形的步骤是()。

①反射②标记镜面③画三角形A、①②③B、③②①C、①③②D、③①②12、几何画板中度量线段步骤是()。

①画线段②长度③度量A、①②③B、①③②C、③②①D、③①②13、几何画板中“操作类按钮”有()。

A、隐藏/显示B、动画C、移动D、ABC都是14、几何画板中“系列”按钮执行参数有()。

A、同时执行B、依序执行C、A和BD、A或B15、几何画板中选中对象的“动画”的速度有()。

A、慢B、中C、快D、ABC二、判断题(共10小题,每题2分,共20分)1、几何画板可以画直线、线段、射线。

2024年山东省潍坊市初中学业水平考试模拟试题(二)

2024年山东省潍坊市初中学业水平考试模拟试题(二)

2024年山东省潍坊市初中学业水平考试模拟试题(二)一、单选题1.计算(2的结果是()B.9 C.D.3A2.下列与潍坊相关的logo图形中,是轴对称图形的是()A.B.C.D.3.潍坊红木嵌银漆器是山东潍坊特有的传统手工艺品,最早可追溯到战国时代在一些铜器上镶嵌金银丝花纹;如图为某嵌银厂制作的传统工艺红木嵌银靠背马扎,其侧面图如图所示,∠=()∠=︒,DE与地面平行,55DEF115∠=︒,则DCEABDA.70︒B.65︒C.60︒D.50︒4.某校在学校科技节宣传活动中,科技活动小组将着重介绍2023年度十大科技新词,将其中4个标有“百模大战”,3个标有“墨子巡天”,2个标有“数智生活”的小球(除标记外其它都相同)放入盒中,小红从盒中随机摸出1个小球,并对小球标记的内容进行介绍,下列叙述正确的是( )A .摸出“百模大战”小球的可能性最大B .摸出“墨子巡天”小球的可能性最大C .摸出“数智生活”小球的可能性最大D .摸出三种小球的可能性相同 5.点()121,-a y 、()2,a y 在反比例函数(0)k y k x=>的图象上,若120y y <<,则a 的取值范围是( )A .1a <B .1a >C .1a <-D .1a >- 6.若把第n 个位置上的数记为n x ,则称1x ,2x ,3x ,…,n x 有限个有序放置的数为一个数列A .定义数列A 的“伴生数列”B 是:1y ,2y ,3y ,…,n y ,其中n y 是这个数列中第n 个位置上的数,1n =,2,…,k 且()()111101n n n n n x x y x x -+-+⎧=⎪=⎨≠⎪⎩,,并规定0n x x =,11n x x +=.如果数列A 只有四个数,且1x ,2x ,3x ,4x 依次为3,1,2,1,则其“伴生数列”B 是( )A .0,1,0,1.B .1,0,1,0.C .1,0,0,1.D .0,1,1,0.二、多选题7.下列计算不正确的是( )A .3362a a a +=B .()326a a -=C .325a a a -÷=D .235a a a ⋅=8.如图,ABO V 的顶点坐标是()2,6A ,()3,1B ,()0,0O ,以点O 为位似中心,将ABO V 缩小为原来的13,得到A B O ''△,则点A '的坐标为( )A .2,23⎛⎫ ⎪⎝⎭B .(6)18,C .2,23⎛⎫-- ⎪⎝⎭D .(9)3,三、单选题9.如图,在ABC V 中,90,30,2B A BC ∠︒∠︒===,D 为AB 的中点.若点E 在边AC上,且AD DE AB BC=,则AE 的长为( )A .1B .2C D四、多选题10.如图,抛物线2y ax bx c =++经过点()2,0-,()3,0.下列结论中正确是( )A .0ab c< B .2c b =C .若抛物线上有点15,2y ⎛⎫ ⎪⎝⎭,()23,y -,31,2y ⎛⎫- ⎪⎝⎭,则213y y y << D .方程20cx bx a ++=的解为112x =,213x =-五、填空题11.因式分解:2242xy xy x -+.12.《梦溪笔谈》是我国古代科技著作,其中它记录了计算圆弧长度的“会圆术”.如图,»AB 是以点O 为圆心、OA 为半径的圆弧,N 是AB 的中点.MN AB ⊥.“会圆术”给出»AB 的弧长l 的近似值计算公式:2MN l AB OA=+.当460OA AOB =∠=︒,时,则l 的值为.13.骰子各面上的点数分别是1,2,…,6.抛掷一枚骰子,点数是偶数的概率是. 14.小王同学从家出发,步行到离家a 米的公园晨练,4分钟后爸爸也从家出发沿着同一路线骑自行车到公园晨练,爸爸到达公园后立即以原速折返回到家中,两人离家的距离y (单位:米)与出发时间x (单位:分钟)的函数关系如图所示,则两人先后两次相遇的时间间隔为.六、解答题15.(1)下面是一道例题及其解答过程的一部分,其中M 是单项式.请写出单项式M ,并将该例题的解答过程补充完整.(2)求不等式组523(1)131722x x x x+>-⎧⎪⎨-≤-⎪⎩的所有整数解的和. 16.出入相补原理是我国古代数学的重要成就之一,最早是由三国时期数学家刘徽创建.“将一个几何图形,任意切成多块小图形,几何图形的总面积保持不变,等于所分割成的小图形的面积之和”是该原理的重要内容之一,如图,在矩形ABCD 中,512AB AD ==,,对角线AC 与BD 交于点O ,点E 为BC 边上的一个动点,EF AC EG BD ⊥⊥,,垂足分别为点F ,G ,求EF EG +的长.17.一天晚上,小明和爸爸带着测角仪和皮尺去公园测量一景观灯(灯杆底部不可到达)的高AB .如图所示,当小明爸爸站在点D 处时,他在该景观灯照射下的影子长为DF ,测得2.4m DF =;当小明站在爸爸影子的顶端F 处时,测得点A 的仰角α为266︒..已知爸爸的身高 1.8m CD =,小明眼睛到地面的距离 1.6m EF =,点F 、D 、B 在同一条直线上,EF FB ⊥,CD FB ⊥,AB FB ⊥.求该景观灯的高AB .(参考数据:sin26.60.45︒≈,cos26.60.89︒≈,tan 26.60.50)︒≈18.潍县萝卜是山东潍坊市的特产,中国国家地理标志产品;因原产于山东潍县而得名,已有300多年的栽培历史.11月25日,2023潍坊市第十六届潍坊·寒亭潍县萝卜文化节嘉年华活动在潍坊国家农综区国际博览馆隆重举办.期间,某农产品合作社主要推销A 、B 两种不同品种的有机萝卜,已知A 、B 两种有机萝卜的批发价和零售价如下表所示:展会后,某商超采购员到有机萝卜产区进行了采购.(1)若他批发A 、B 两种有机萝卜共20kg 花90元.求批发A ,B 两种有机萝卜各多少千克?(列方程或方程组求解)(2)若他批发A 、B 两种有机萝卜共80kg 花m 元,设批发A 种有机萝卜n kg ,求m 与n 的函数关系式;(3)在(2)的条件下,全部卖完这些萝卜后要保证利润不低于176元,至少批发A种有有机萝卜多少千克?19.某校德育处开展专项安全教育活动前,在全校范围内随机抽取了40名学生进行安全知识测试,测试结果如表1所示(每题1分,共10道题),专项安全教育活动后,再次在全校范围内随机抽取40名学生进行测试,根据测试数据制作了如图1、图2所示的统计图(尚不完整).表1设定8分及以上为合格,分析两次测试结果得到表2.表2请根据图表中的信息,解答下列问题:(1)将图2中的统计图补充完整,并直接写出a ,b ,c 的值;(2)若全校学生以1200人计算,估计专项安全教育活动后达到合格水平的学生人数;(3)从多角度分析本次专项安全教育活动的效果.20.如图1,在ABC V 中,45,ABC AD BC ∠=︒⊥于点D ,在DA 上取点E ,使DE DC =,连接BE 、CE .(1)直接写出CE 与AB 的位置关系;(2)如图2,将BED V 绕点D 旋转,得到B E D ''△(点B ',E '分别与点B ,E 对应),连接CE AB ''、,在BED V 旋转的过程中CE '与AB '的位置关系与(1)中的CE 与AB 的位置关系是否一致?请说明理由;(3)如图3,当BED V 绕点D 顺时针旋转30°时,射线CE '与AD 、AB '分别交于点G 、F ,若,CG FG DC ==AB '的长.21.如图,在单位长度为1的网格中,点O ,A ,B 均在格点上,3OA =,2AB =,以O 为圆心,OA 为半径画圆,请按下列步骤完成作图,并回答问题:①过点A 作切线AC ,且4AC =(点C 在A 的上方);②连接OC ,交O e 于点D ;③连接BD ,与AC 交于点E .(1)求证:BD 为O e 的切线;(2)求AE 的长度.22.某数学兴趣小组运用《几何画板》软件探究y =ax 2(a >0)型抛物线图象.发现:如图1所示,该类型图象上任意一点M 到定点 F (0,14a )的距离MF ,始终等于它到定直线l :y =﹣14a上的距离MN (该结论不需要证明),他们称:定点F 为图象的焦点,定直线l 为图象的准线,y =﹣14a 叫做抛物线的准线方程.其中原点O 为FH 的中点,FH =2OF = 12a,例如,抛物线y =12x 2,其焦点坐标为F (0,12),准线方程为l :y =﹣12.其中MF =MN ,FH =2OH =1.(1)【基础训练】请分别直接写出抛物线y =2x 2的焦点坐标和准线l 的方程: , .(2)【技能训练】如图2所示,已知抛物线y =18x 2上一点P 到准线l 的距离为6,求点P 的坐标; (3)【能力提升】如图3所示,已知过抛物线y =ax 2(a >0)的焦点F 的直线依次交抛物线及准线l 于点A 、B 、C .若BC =2BF ,AF =4,求a 的值;(4)【拓展升华】古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点C 将一条线段AB 分为两段AC 和CB ,使得其中较长一段AC 是全线段AB 与另一段CB 的比例中项,即满足:AC AB =BC AC .这个数称为“黄金分割”把点C 称为线段AB 的黄金分割点.如图4所示,抛物线y =14x 2的焦点F (0,1),准线l 与y 轴交于点H (0,﹣1),E 为线段HF 的黄金分割点,点M 为y 轴左侧的抛物线上一点.当MH MF △HME 的面积值.。

几何画板期末考试试题

几何画板期末考试试题

几何画板期末考试试题一、选择题1. 在几何画板中,以下哪个工具用于绘制直线?A. 点工具B. 线段工具C. 圆工具D. 多边形工具2. 几何画板中,如何创建一个圆?A. 选择圆工具,然后点击画布上的一点作为圆心B. 选择圆工具,然后点击画布上的两点确定圆的直径C. 选择圆工具,然后拖动鼠标确定圆的半径D. 选择圆工具,然后点击画布上的两点确定圆的中心和边缘3. 以下哪个操作不能在几何画板中实现?A. 移动对象B. 旋转对象C. 缩放对象D. 改变对象的颜色4. 几何画板中,如何将一个对象的属性(如颜色、大小)应用到另一个对象?A. 使用“复制”和“粘贴”命令B. 使用“属性”菜单C. 使用“变换”菜单D. 使用“选择”工具拖动属性二、填空题1. 在几何画板中,要绘制一个正三角形,首先需要绘制一个______,然后使用“构造”菜单中的“等边三角形”选项。

2. 如果要改变一个圆的半径,可以使用“变换”菜单中的“缩放”选项,并将缩放的中心点设置为圆的______。

3. 在几何画板中,可以通过“构造”菜单中的“垂线”选项来绘制一条______。

4. 几何画板中,若要创建一个与给定线段平行的线段,应使用“构造”菜单中的“平行线”选项,并选择______。

三、简答题1. 描述在几何画板中创建一个正六边形的步骤。

2. 解释在几何画板中如何使用“变换”菜单来创建一个对象的反射。

3. 阐述在几何画板中如何测量一个角度的大小。

四、操作题1. 请绘制一个半径为5厘米的圆,并在圆内绘制一个内切正方形。

2. 绘制一个等边三角形,并在三角形的每个顶点处绘制一个以该顶点为圆心的圆,圆的半径为1厘米。

3. 绘制一个矩形,并在矩形的中心绘制一个与矩形边平行的线段,线段的长度为矩形对角线长度的一半。

五、应用题1. 假设你有一个已知半径的圆,你需要在圆的边缘绘制一个正五边形。

描述如何使用几何画板完成这个任务。

2. 你被要求在几何画板中创建一个复杂的图案,该图案由几个相互连接的多边形组成。

2022~2023中级软考考试题库及答案参考78

2022~2023中级软考考试题库及答案参考78

2022~2023中级软考考试题库及答案1. 技术与工具会在学生复习时导致注意力分散,不利于学生对于知识的巩固与学习。

正确答案:错误2. 以下不属于多媒体静态图像文件格式的是()。

A.GIFB.MPGC.BMPD.PCX正确答案:B3. 项目的需求文档应精准描述要交付的产品,应能反映出项目的变更。

当不得不作出变更时,应该()对被影响的需求文件进行处理。

A.从关注高层系统需求变更的角度B.从关注底层功能需求变更的角度C.按照从高层到底层的顺序D.按照从底层到高层的顺序正确答案:C4. 项目经理组织所有团队成员对三个技术方案进行投票:团队成员中的 45%选择方案甲; 35%选择方案乙; 20%选择方案丙,因此,方案甲被采纳。

该项目采用的群体决策方法是( )。

A.一致同意B.大多数原则C.相对多数原则D.独裁正确答案:C5. 通用标准v2版(CC)的安全等级是以EAL来表示的。

正确答案:正确6. 一下不是数据库的加密技术的是()。

A.库外加密B.库内加密C.硬件加密D.固件加密正确答案:7. 如果知道Oracle密码长度,用Rainbow表生成器来破解其密码哈希值是绝对成功的。

正确答案:8. 现代加密算法可以分为对称加密算法和非对称加密。

正确答案:正确9. 雷电侵入计算机信息系统的途径主要有:()A.信息传输通道线侵入B.电源馈线侵入C.建筑物D.地电位反击正确答案:ABD10. 哪一个是PKI体系中用以对证书进行访问的协议()?A.SSLB.LDAPC.CAD.IKE正确答案:11. 甲乙两人分别独立开发出相同主题的阀门,但甲完成在先,乙完成在后。

依据专利法规定,()。

A.甲享有专利申请权,乙不享有B.甲不享有专利申请权,乙享有C.乙都享有专利申请权D.甲、乙都不享有专利申请权正确答案:C12. 因为看到的比标清更清楚,所以有种视频格式才叫高清。

()正确答案:错误13. 以下的选项中,不是使用浏览器对交换机进行配置的必备条件的是()A.在用于配置的计算机和被管理的交换机上都已经配置好了 IP 地址B.被管理交换机必须支持 HTTP服务,并已启动该服务C.在用于管理的计算机上,必须安装有支持 Java 的 Web浏览器D.在被管理的交换机上,需拥有 FTP的用户账户和密码正确答案:D14. 面向对象的软件开发过程是用例驱动的,用例是 UML 的重要部分,用例之间存在着一定的关系,下图表示的是用例之间的()关系。

几何画板考试题及答案

几何画板考试题及答案

几何画板考试题及答案一、选择题(每题3分,共30分)1. 以下哪个图形是轴对称图形?A. 平行四边形B. 等腰三角形C. 不规则多边形D. 圆答案:B2. 一个正方形的对角线长度是边长的多少倍?A. 1倍B. √2倍C. 2倍D. √3倍答案:B3. 在一个直角三角形中,如果一个锐角是30°,那么另一个锐角的度数是多少?A. 30°B. 45°C. 60°D. 90°答案:C4. 一个圆的半径是5厘米,那么它的周长是多少?A. 10π厘米B. 15π厘米C. 20π厘米D. 25π厘米答案:C5. 以下哪个图形是中心对称图形?A. 等边三角形B. 矩形C. 菱形D. 正五边形答案:C6. 一个等腰梯形的上底和下底分别是3厘米和7厘米,高是4厘米,那么它的面积是多少?A. 10平方厘米B. 12平方厘米C. 14平方厘米D. 16平方厘米答案:B7. 如果一个圆的直径是10厘米,那么它的半径是多少?A. 5厘米B. 10厘米C. 15厘米D. 20厘米答案:A8. 在一个等腰三角形中,如果底角是45°,那么顶角的度数是多少?A. 45°B. 60°C. 90°D. 120°答案:C9. 一个矩形的长是8厘米,宽是4厘米,那么它的对角线长度是多少?A. 4√2厘米B. 8√2厘米C. 4√3厘米D. 8√3厘米答案:B10. 在一个等边三角形中,每个内角的度数是多少?A. 30°B. 45°C. 60°D. 90°答案:C二、填空题(每题2分,共20分)1. 一个等腰三角形的底角是70°,那么顶角的度数是______。

答案:40°2. 一个圆的周长是62.8厘米,那么它的半径是______。

答案:10厘米3. 在一个直角三角形中,如果一个锐角是60°,那么另一个锐角的度数是______。

小学教师招聘考试(小学信息技术)仿真试题及答案(四)

小学教师招聘考试(小学信息技术)仿真试题及答案(四)

小学教师招聘考试(小学信息技术)仿真试题及答案(四)一、填空题1.如果要将整个屏幕的信息以位图形式复制到剪切板中,一般可以按____键。

2.Word 2003中有两种输入模式:一种是插入模式,另一种是____模式。

3。

若在单元格中输入7/8,则显示____。

4.设置单元格条件格式,最多只能设定____个条件。

5.从计算机网络逻辑功能的角度看,计算机网络可以分为:通信子网和____子网。

6。

在Windows XP中,搜索文件时,可以使用v符号通配多个任意字符.7。

要将某个文件夹共享,可以右击文件夹图标,从快捷菜单中选择____命令,进行文件的共享设置。

8.Word 2003中,新建文档的快捷键是____。

9。

要弹出快捷菜单,除了右击项目外,还可以按____组合键。

10。

下列代码的运行结果为____.Private Sub commandl_click( )Dim m(10)For k=1 T0 10m(k)= 11-kNext kx=5Print m(2+m(x))End Sub11。

在Word中,按“ ____”键可将光标移到下一个制表位上。

12。

要将选定的文件物理删除,即不放入“回收站”,则应先按住____键,再做删除操作。

13.按信号在传输过程中的表现形式可以把信号分为____信号和数字信号二种。

14.微处理器按其字长可分为 ____位、____位、____位和64位微处理器。

15。

汉字国标码GB2312-80,从实质上来说,它是一种____码。

16。

热启动应同时按下的组合键是____。

17.按病毒设计者的意图和破坏性大小,可将计算机病毒分为____和____。

18。

“蠕虫”病毒往往是通过____进入其他计算机系统。

19。

信息高速公路的基本特征是高速、____和广域。

20.下列程序执行次数为____.int i,j;for(i=5;i;i—-)for(j=O;j<4;j++){…}二、简答题1。

最新人教版数学七年级下册《期末考试试题》(带答案)

最新人教版数学七年级下册《期末考试试题》(带答案)

人教版七年级下学期期末测试数学试卷学校________ 班级________ 姓名________ 成绩________一、精心选一选(本大题共有12个小题,每小题3分,共36分.每小题只有一个正确选项,请把正确选项的字母代号在答题卡上涂匀).1.下列几个汽车的车标图案中,可以看做是由“基本图案”经过平移得到的是()A. B. C. D.2.下列各数中,3.14159,,38,0.131131113…,,π,,,()2a b ab+-,无理数的个数有()A. 1个B. 2个C. 3个D. 4个3.如图是我们生活中经常接触的小刀,刀片的外壳是四边形,而且刀片外壳与刀片铆合部分都是直角,刀片的上、下是平行的,转动刀片时会形成,1和,2,则,1+,2的度数为()A. 80°B. 70°C. 90°D. 100°4.下列语句写成式子正确的是()A. 4是16平方根,即,4B. 4是(,4)2的算术平方根,即,4C. ±4是16的平方根,即±,4D. ±4是16的平方根,即,±45.下列调查方式科学合理的是()A. 对某校七年级一班全体同学喜爱球类运动的情况进行调查,采用抽样调查的方式.B. 了解赤峰市九年级同学的视力情况,采用全面调查的方式.C. 某农田保护区对区内的小麦的高度进行调查,采用全面调查的方式.D. 对宁城县食品合格情况的调查,采用抽样调查的方式.6.若a2=25,|b|=3,且ab>0,则a+b的值为()A. 8B. -8C. 8或-8D. 8或-2 7的点P为直线l外一点,点A、B、C为直线l上三点,P A=4cm,PB=5cm,PC=2cm,则点P到直线l的距离为()A. 4cmB. 5cmC. 小于2cmD. 不大于2cm8.在平面直角坐标系中,点P(-3,b)到x轴的距离为4,则P点坐标为( )A. (-3,4)B. (-3,-4)C. (-3,4)或(-3,-4)D. (3,4)或(3,-4)9. 小明和小莉出生于1998年12月份,他们的出生日不是同一天,但都是星期五,且小明比小莉出生早,两人出生日期之和是22,那么小莉的出生日期是()A 15号 B. 16号 C. 17号 D. 18号10.已知点P(3﹣m,m﹣1)在第二象限,则m的取值范围在数轴上表示正确的是()A. B. C. D.11.如果不等式213(1)x xx m->-⎧⎨<⎩的解集是x<2,那么m的取值范围是()A. m=2B. m>2C. m<2D. m≥212.某种商品价格为33元/件,某人只带有2元和5元的两种面值的购物劵各若干张,买了一件这种商品;若无需找零钱,则付款方式中张数之和(指付2元和5元购物券的张数)最少和张数之和最多的方式分别是()A. 8张和16张B. 8张和15张C. 9张和16张D. 9张和15张二、细心填一填(本大题共有4个小题,每小题3分,共12分.请把答案填在答题卡上.)13.以下五个条件中,能得到互相垂直关系的有___________.(填写序号)①对顶角的平分线;②邻补角的平分线;③平行线截得的一组同位角的平分线;④平行线截得的一组内错角的平分线;⑤平行线截得的一组同旁内角的平分线.14.,15.906,__________.15.若12ab=⎧⎨=-⎩是关于a,b的二元一次方程ax+ay,b=7的一个解,则代数式x2+2xy+y2,1,的值是_________,16.(1)两条直线相交于一点有2组不同的对顶角;(2)三条直线相交于一点有6组不同的对顶角;(3)四条直线相交于一点有12组不同的对顶角;.(4)n条直线相交于同一点有___________组不同对顶角.(如图所示)三、耐心答一答:(本大题共10个小题,满分102分,解答时应写出必要的计算过程、推理步骤或文字说明。

4.7 图形的位似(9大题型)(分层练习)(原卷版)

4.7 图形的位似(9大题型)(分层练习)(原卷版)

第4章相似三角形4.7 图形的位似(9大题型)分层练习考查题型一位似图形的识别1.(2022秋·九年级单元测试)如图,下面三组图形中,位似图形有( )A.0组B.1组C.2组D.3组2.(2023·河北廊坊·校考三模)在研究相似问题时,嘉嘉和淇淇两同学的观点如下:嘉嘉:将边长为1的正方形按图1的方式向外扩张,得到新正方形,它们的对应边间距为1,则新正方形与原正方形相似,同时也位似;淇淇:将边长为1的正方形按图2的方式向外扩张,得到新正方形,每条对角线向其延长线两个方向各延伸1,则新正方形与原正方形相似,同时也位似.对于两人的观点,下列说法正确的是()A.两人都对B.两人都不对3.(2022春·全国·九年级专题练习)位似图形的性质(1)位似图形是相似图形的特例,位似图形不仅相似,而且对应顶点的连线相交于(2)位似图形相似图形,但相似图形4.(2020秋·安徽滁州·九年级校联考阶段练习)在如图所示的网格中,以点的位似图形,小明认为四边形边形NPMQ,你认为正确的是A.2、点P B2.(2023·河北沧州·模拟预测)如图,A.点M B.点3.(2023秋·九年级课时练习)如图,在平面直角坐标系中,阴影所示的两个正方形是位似图形,若位似中心在两个正方形之间,则位似中心的坐标为4.(2022春·九年级课时练习)如图,在正方形()1,1--,则两个正方形的位似中心的坐标是(1)在图中标出ABC V 与111A B C △的位似中心点M 的位置,并直接写出点(2)若以点O 为位似中心,请你帮小明在图中画出△似比为2(只画出一个三角形即可).考查题型三 位似图形相关概念辨析1.(2022秋·吉林长春·九年级校考阶段练习)如图,ABC V 与DEF V 位似,点O 为位似中心,位似比为2:3,若DEF V 的周长为6,则ABC V 的周长是( )A.16B.2.(2023秋·河北保定·九年级统考期末)下列关于位似图形的表述:①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;4.(2023秋·九年级课时练习)如图,点=;ABCÐ=,Ð5.(2022春·九年级单元测试)如图,在68´的网格中,每个小正方形的边长均为1,点O 和ABC V 的顶点均为小正方形的顶点.(1)在图中ABC V 的内部作A B C ¢¢¢V ,使A B C ¢¢¢V 和ABC V 位似,且位似中心为点O ,位似比为1:2;(2)连接(1)中的AA ¢,则线段AA ¢的长度是________.A .1:2B .2:12.(2023秋·全国·九年级专题练习)如图,四边形形,若四边形ABCD 与四边形A .23:B .49:C .3.(2023秋·陕西西安·九年级高新一中校考阶段练习)面积为1,DEF V 面积为9,则OC CF 的值为4.(2023秋·黑龙江哈尔滨·九年级哈尔滨工业大学附属中学校校考开学考试)四边形1111D C B A 是位似图形,点A 与点么AB A B = .(1)在图中画出ABC V 沿x 轴翻折后的11A B C △(2)以点()1,2M 为位似中心,作出111A B C △按(3)求点2A 的坐标以及ABC V 与222A B C △的周长比.考查题型五 画已知图形放大或缩小n 倍后的位似图形1.(2023春·河北邢台·九年级统考开学考试)以O 为位似中心,画出一个矩形,使得所画的矩形与矩形ABCD 位似,且位似比为1:2,则所画的矩形可以是( )A .①B .②C .③D .④A.P点B.Q点3.(2022春·九年级课前预习)总结画位似图形的一般步骤:(1)确定;(2)分别连接并延长和能代表原图的关键点;(3)根据,确定能代表所作的位似图形的关键点;(4)顺次连接上述各点,得到放大或缩小的图形.4.(2022春·九年级课前预习)把图中的四边形分析:把原图形缩小到原来的似中心的距离之比为作法:5.(2022秋·四川成都·九年级川大附中校考期中)在正方形网格中,OBC △的顶点分别为()00O ,,()31B -,,()21C ,.(1)以点()00O ,为位似中心,以位似比21:在位似中心的异侧将OBC △放大为OB C ¢¢△,放大后点B ,C 两点的对应点分别为B ¢,C ¢,请画出OB C ¢¢△;(2)在(1)中,若点()M a b ,为线段BC 上任一点,直接写出变化后点M 的对应点M ¢的坐标.(用含a ,b 的代数式表示)A.62.(2022秋·安徽合肥为位似中心,把△A.(9,6)B.3.(2023秋·福建莆田·九年级校考阶段练习)如图,()A-,OAB4,2V与OCDV4.(2023秋·陕西榆林·九年级校考期末)如图,在平面直角坐标系中,位似中心的位似图形,点A、5,6,则点A点A的坐标为()5.(2023秋·浙江·九年级专题练习)如图,方格纸中的每个小方格都是边长为面直角坐标系后,ABC V 的顶点均在格点上,点C 的坐标为()41-,.(1)以O 为位似中心在第二象限作位似比为1:2变换,得到对应的111A B C △,画出111A B C △,并写出1C 的坐标;(2)以原点O 为旋转中心,画出把ABC V 顺时针旋转90°的图形222A B C △,并写出2C 的坐标.A .2B .33.(2022春·八年级单元测试)如图,四边形6,4,3OC CC AB ¢===,则A B ¢¢=4.(2023·山西运城·统考一模)在平面直角坐标系中,的坐标分别为()1,3-,()3,9-,则ABC V 5.(2022秋·广西贵港·九年级统考期中)A .DEF VB .DHF △2.(2023春·河北邯郸·九年级校考开学考试)在如图所示正方形网格图中,以大为原来的2倍,则A 的对应点为(A .N 点B .M 点3.(2023春·九年级单元测试)已知方形网格中,每个小正方形的边长是与ABC V 位似,且111A B C △与ABC V5.(2022春·湖南郴州·九年级校考开学考试)如图,平面直角坐标系中,点上.(1)以O 点为位似中心,位似比为2,将ABC V (2)若ABC V ,111A B C △的面积为S 、1S ,写出考查题型九 在坐标系中画位似中心1.(2023春·云南昭通·九年级统考期中)如图,在直角坐标系中,ABC V 与ODE V 是位似图形,已知点()2,1A ,则位似中心的坐标是( )A .()1,5B .()4,22.(2023·四川遂宁·统考中考真题)在方格图中,以格点为顶点的三角形叫做格点三角形.在如图所示的平面直角坐标系中,格点ABC DEF V V 、成位似关系,则位似中心的坐标为(A .()1,0-B .()0,03.(2023秋·全国·九年级专题练习)如图,在直角坐标系中,则位似中心的坐标是 .5.(2023秋·全国·九年级专题练习)已知,分别为()()()104132-,,,,,.1A △(1)请画出点P 的位置,并写出点P 的坐标(2)以点O 为位似中心,在y 轴左侧画出V 内一点,则点M 在222A B C △内的对应点的坐标为1,2BA.()2.(2023秋·浙江·九年级专题练习)如图,四边形OE2A.4B.163.(2023秋·山东聊城·九年级校考开学考试)如图,在边长为V的三个顶点均在格点(网格线的交点)上.以原点标系,ABC相似比为2,则点B的对应点1B的坐标是(42,B.A.()4.(2023·山东日照·校考三模)如图,在平面直角坐标系中,()-,,点C坐标为()20-,10A .()3,2-B .5.(2021春·福建龙岩·九年级校考阶段练习)COD △的相似比是31:,且点A .()2,4B .7.(2023秋·湖南衡阳·九年级校联考阶段练习)将函数的新函数记作()g x ,我们称()f x 与(g x 8.(2023秋·全国·九年级专题练习)如图,在平面直角坐标系中,是位似中心,已知点()2,0A ,点(),C a b ,式子表示)9.(2023·辽宁盘锦·统考中考真题)如图,ABO V 中心,将ABO V 缩小为原来的13,得到A B O ¢¢△10.(2022秋·湖南长沙位似比是1:3,已知11.(2022秋·湖南永州·九年级校考期中)如图,()2,4C -,请你画出以坐标原点并直接写出A 、B 的对应点的坐标.12.(2022秋·陕西渭南·九年级统考期末)如图,在平面直角坐标系中,()()()0,02,11,2O A B -、、.(1)以原点O 为位似中心,在图中画出OAB V 的位似11OA B V ,使得点AB 、的对应点11A B 、均在y 轴的右侧,且11OA B V 与OAB V 的相似比为2:1;(2)在(1)的条件下,写出点1A 的坐标.13.(2023秋·山东临沂·七年级统考开学考试)(1)用数对分别表示出梯形四个顶点的位置:A ( )B ( )C ( )D ( )(2)把图中的梯形绕B 点顺时针旋转90°,画出旋转后的图形.(3)将原梯形按2:1放大,画出放大后的图形.14.(2023春·黑龙江绥化·九年级校考阶段练习)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,ABC V 的三个顶点坐标分别为()1,4A ,()1,1B ,()3,1C .(1)画出ABC V ,再画出ABC V 关于x 轴对称的111A B C △;(2)画出ABC V 以点O 为位似中心扩大2倍后的图形222A B C △.15.(2023秋·全国·九年级专题练习)如图,已知()0,2A -,()2,1B -,()3,2C .(1)求线段AB 的长;(2)把A 、B 、C 三点的横坐标,纵坐标都乘2,得到A ¢,B ¢,C ¢的坐标,画出A B C ¢¢¢V ,并求A B ¢¢的长;(3)ABC V 与A B C ¢¢¢V 是位似图形吗?若是,请写出位似中心的坐标,并求出位似比.。

江苏省扬州市第一中学2023-2024学年高一下学期期中考试数学试题

江苏省扬州市第一中学2023-2024学年高一下学期期中考试数学试题

江苏省扬州市第一中学2023-2024学年高一下学期期中考试数学试题一、单选题1.在△ABC 中,已知8,30,105a B C ===o o ,则b 等于( )A .323B .4 3 C.D .4 22.若cos 21π2cos 4αα=⎛⎫+ ⎪⎝⎭,则cos sin αα+=( )AB . 22C .14D .123.复数2i1i z +=-,i是虚数单位,则下列结论正确的是( ) A.z B .z 的共轭复数为31i 22+C .z 的实部与虚部之和为1D .z 在平面内的对应点位于第一象限41cos20-︒的值为( ) A .8B .8-C .4D .−45.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若△ABC 的面积为S ,222,44a S b c ==+-,则△ABC 外接圆的面积为( ) A .4πB .8πC .πD .2π6.已知梯形ABCD 中,//,3,3AD BC BF FC AH HF ==u u u r u u u r u u u r u u u r,且BH BA BC λμ=+u u u r u u u r u u u r ,则λμ的值为( )A .364B .564C .764D .9647.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2b cos C -2c cos B =a ,且B=2C ,则△ABC 的形状是( ) A .等腰直角三角形 B .直角三角形 C .等腰三角形D .等边三角形8.在菱形ABCD 中,120ABC ∠=︒,AC =2 3,102BM CB →→→+=,DC DN λ→→=,若29AM AN →→⋅=,则λ=( ) A .18B .17C .16D .15二、多选题9.计算下列几个式子,结果为 3的是( ) A.tan 25tan3525tan35+︒︒︒︒B .()2sin35cos 25sin55cos65︒︒+︒︒C .2πtan6π1tan 6- D .1tan151tan15+︒-︒10.已知向量()1,3a =r ,()2,4b =-r ,则下列结论正确的是( )A .()a b a +⊥r r rB.2a b +r rC .向量a 与向量b的夹角为34πD .b 在a 的投影向量是()1,311.中国南宋时期杰出数学家秦九韶在《数书九章》中提出了已知三角形三边求面积的公式,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实,一为从隅,开平方得积.”若把以上这段文字写成公式,即S =△ABC满足sin :sin :sin A B C =,且ABCS =△,请判断下列命题正确的是( )A .△ABC周长为5B .3C π=C .△ABCD .△ABC 中线CD的长为2三、填空题12.已知正方形ABCD 的边长为3,E 为CD 的中点,则AE BD ⋅=u u u r u u u r.13sin αα+,则cos 23πα⎛⎫-= ⎪⎝⎭.14.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,()s i n co s c o s s i n B C B C b c C+⎫+=⎪⎭,π3B =,则2a c +的最大值为.四、解答题15.已知a ,b ,c 是同一平面内的三个向量,其中(a =r(1)若4c =r ,且//c a r r,求c 的坐标;(2)若1b =r ,且()52a b a b ⎛⎫+⊥- ⎪⎝⎭r r r r ,求a与b 的夹角θ 16.m 为何实数时,复数()()()22i 3i 121i z m m =+-+--满足下列要求:(1)z 是纯虚数;(2)z 在复平面内对应的点在第二象限; 17.已知π1tan 43α⎛⎫-= ⎪⎝⎭,π0,4α⎛⎫∈ ⎪⎝⎭.(1)求2sin 22cos 1tan ααα++的值;(2)若π0,2β⎛⎫∈ ⎪⎝⎭,且sin β=αβ+的值.18.已知向量()cos ,sin a αα=r ,12b ⎫=-⎪⎪⎝⎭r ,π02α<<. (1)若a b ⊥r r 时,求sin 21cos 2αα+的值;(2)若a b -=r r 2πsin 23α⎛⎫- ⎪⎝⎭的值.19.请欣赏:上图所示的毕达格拉斯树画是由图(ⅰ)利用几何画板或者动态几何画板Geogebra 做出来的图片,其中四边形ABCD ,AEFG ,PQBE 都是正方形.如果改变图(ⅰ)中AEB ∠的大小,会得到更多不同的“树形”.(1)在图(ⅰ)中,AB =2,1AE =,且AE AB ⊥,求AQ ;(2)在图(ⅱ)中,AB =2,1AE =,设()0180EAB θθ∠=︒<<︒,求2AQ 的最大值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学校课程——《几何画板的运用》测试
(试卷满分100分)试卷设计:王伟君
班级:姓名:号数:成绩:
一、单选题(共15题,每题2分,共30分)
1、几何画板是制作()学科课件的“利剑”。

A、数学
B、物理
C、数学和物理
D、数学或物理
2、几何画板中工具栏没有()工具。

A、选择箭头工具
B、圆规工具
C、直尺工具
D、颜料桶工具
3、几何画板中不可以度量的是()
A、线段的长度
B、角度
C、周长
D、直线的长度
4、几何画板中可以度量的是()。

A、重量
B、直线
C、比
D、射线
5、几何画板中画圆,自动有()个点。

A、1
B、2
C、3
D、4
6、几何画板中画三角表的步骤是()
A、使用“点工具”在工作区画三个点——显示——线段
B、使用“点工具”在工作区画三个点——作图——线段
C、使用“点工具”在工作区画三个点——度量——线段
D、使用“点工具”在工作区画三个点——窗口——线段
7、几何画板中三角形的重心的绘画的步骤是()
①画三角形②画中点③连接
A、①②③
B、①③②
C、②①③
D、②③①
8、几何画板中绘制平行四边形的步骤是()。

①画两邻边②画平行线③取点④连线
A、④③②①
B、④②③①
C、①②③④
D、①③②④
9、几何画板中画同心圆的步骤是()。

①选定一点和多条线段②作图③以圆心和半径绘圆
A、③②①
B、③①②
C、①③②
D、①②③
10、几何画板中“反射”在()菜单项中。

A、变换 B 、显示 C、度量 D、图表
11、几何画板中利用“反射”作轴对称图形的步骤是()。

①反射②标记镜面③画三角形
A、①②③
B、③②①
C、①③②
D、③①②
12、几何画板中度量线段步骤是()。

①画线段②长度③度量
A、①②③
B、①③②
C、③②①
D、③①②
13、几何画板中“操作类按钮”有()。

A、隐藏/显示
B、动画
C、移动
D、ABC都是
14、几何画板中“系列”按钮执行参数有()。

A、同时执行
B、依序执行
C、A和B
D、A或B
15、几何画板中选中对象的“动画”的速度有()。

A、慢
B、中
C、快
D、ABC
二、判断题(共10小题,每题2分,共20分)
1、几何画板可以画直线、线段、射线。

()
2、点动成线,线动成面,面动成体。

()
3、几何画板中画直线,直线上没有点。

()
4、几何画板中测量角度时,会自动为点标上字母。

()
5、几何画板中画三角形,只能用“直尺工具”。

()
6、几何画板中不能为点标字母。

()
7、几何画板中出现的错误操作不能改正。

()
8、以一点和多条线段画的同心圆的大小不能改变。

()
图2
图1
A E
9、几何画板中“平移变换”中的“0°”平移和“180°”平移正好方向相反。

( )
10、几何画板中既可以度量,也可以进行计算。

( )
三、填空题(共10小题,每题2分,共20分) 1、几何画板软件是 国的产品。

2、几何画板中文件的扩展名是 。

3、几何画板中使用 画点。

4、几何画板中画线段,可以先画两点,再选中这两点——单击
5、几何画板中画圆,自动绘出 个点。

6、几何画板中出现误删除现象,可以 恢复。

7、三角形的重心是三条 的交点。

8、三角形三条内角平分线的交点是
9、几何画板中作角平分线选中的三点中,角的顶点必须在 。

10、几何画板中“平移变换”中的“固定距离”的单位是 。

四、操作题(第空3分,共30分)
在讲解特殊平行四边形一节中,利用几何画板将一般四边形ABCD 演变成一个平行四形,请结合图形根据操作补完下列制作过程。

第1步:利用点工具绘制点A ,点B ,点C ,点D 四个点;
第2步:利用 工具,依次把四个点连结成四边形;
第3步:利用自定义工具做出一个平行四边形EFGH ;
第4步:依次选择点A ,点E ,利用编辑菜单下,操作类按钮
中的 按钮,速度为中速,得到操作按钮
,使得点A移动到点E;
第5步:类似依次选择点B与点,点C与点,点D与点,同时选中操作按钮中的移动按钮,速度为,得到操作按钮;
第6步:选中两个操作类按钮,在编辑菜单下选择系列按钮,在系列动作中,选择;(同时执行或依次执行),并改名为“变形成平行四边形”;得到操作按钮;
第7步:框选四边形EFGH,在显示菜单中隐藏对象;
第8步:在几何画板界面中再任意取四个点I,点J,点L,点K,依次选择点A与点I,点B与点J,点C与点L,点D与点K,在编辑菜单下的操作按钮中选择移动按钮,速度为(慢速,中速,高速),并改标签为“”,得到操作类按钮;
第9步:选中点I,点J,点L,点K,用快捷键Ctrl+ (A,C,V,H)隐藏;第10步:调整图形到适当的位置,完成。

答案
一、选择题
1 C
2 D
3 D
4 C
5 B
6 B
7 A
8 C
9 D 10 A
11 B 12 B 13 D 14 C 15 D
二、判断题
1 对
2 对
3 错
4 对
5 错
6 错
7 错
8 错
9 对 10 对
三、填空题
1 美
2 GSP
3 点工具
4 作图
5 2
6 撤销
7 中线 8 内心 9 中间
10 厘米
四、操作题
线段移动 F G H
中速同时执行高速还原 H。

相关文档
最新文档