2018年对口高考试卷(数学)
2018年河北省对口高考数学真题+考点分析+详细答案解析
的面积为
.
30.将一枚硬币抛掷 3 次,则至少出现一次正面的概率为
.
三、解答题(本大题共 7 小题,共 45 分,请在答题卡中对应题号下面指定的位置作答,要写出
必要的文字说明、注明过程和演算步骤)
31.(5 分)已知集合 A x x2 x 6 0 ,B x x m ,且 A B A ,求 m 的取值范围.
A. y 1 x 3
B. y 2x2
C. y x3
D. y 1 x
5.函数
y
sin
2x
4
的图象可以由函数
y
sin
2x
的图象如何得到(
)
A. 向左平移 个单位 4
B. 向右平移 个单位 4
C. 向左平移 个单位
D. 向右平移 个单位
6.已知向量
a
8
1,
2,b
3,
m
,
a b
2018 年河北省普通高等学校对口招生考试
数学试题
一、选择题(本大题共 15 小题,每小题 3 分,共 45 分.在每小题给出的四个选项中,只有
一个符合题目要求)
1.设集合 M 0,1, 2,3, 4 , N x 0 x 3 ,则 M N (
)
A. 1,2
B. 0,1,2
C. 1,2,3
16 12
3
36.(7 分)在 ABC 中, ACB 90, AC BC 1,VC 平面 ABC ,VC 1 , D 为VA 中点.
(1)求证:VA 平面 DBC ;
(2)求 DB 与平面 ABC 所成角的正弦值.
V
D
C
B
A
37.(6 分)从 4 名男生和 3 名女生中任选 3 人参加学校组织的“两山杯”环保知识大赛,设
江苏单招高考数学试卷和答案
1若成绩小于13秒被认定为优秀,求该样本
在这次百米测试中成绩优秀的人数;
23.14分
解:1易知 , ,得 ,·······················2分
所以准线方程为 .·····················2分
2联立方程组 ,化简得 ,
由 得
设 ,
则 , ,
于是| |=
,·························2分
又原点 到直线 的距离 ,············1分
因为 ,
故 的范围是 .······························1分
3由题意知
,·····························1分
令 ,
则
当 时,即 千米/小时,最低耗油量 升.
···················································2分
21.10分某学校计划购买 咯篮球和 个足球.
(1)若 , 满足约束条件 ,问该校计划购买这两种球的总数最多是多少个
(2)
(3)若 , 满足约束条件 ,已知每个篮球100元,每个足球70元,求该校最少要投入多少元
(4)
22.10分某辆汽车以 千米/小时 的速度在高速公路上匀速行驶,每小时的耗油量为 升,其中 为常数.若该汽车以120千米/小时的速度匀速行驶时,每小时的耗油量是12升.
约束条件的可行域是答21图中不包含边界的部分,根据
2018年河北省对口高考数学真题+考点分析+详细答案解析
2018年河北省普通高等学校对口招生考试数学试题一、选择题(本大题共15小题,每小题3分,共45分.在每小题给出的四个选项中,只有一个符合题目要求)1.设集合{}0,1,2,3,4M =,{}03N x x =<≤,则M N =I ( ).A {}1,2 .B {}0,1,2 .C {}1,2,3 .D {}0,1,2,32.若,,a b c 为实数,a b >,则( ).A a c b c ->- .B 22a b > .C ac bc > .D 22ac bc >3.“2x >”是“2x >”的( ).A 充分不必要条件 .B 必要不充分条件.C 充分必要条件 .D 既不充分也不必要条件4.下列函数中,既是奇函数又是减函数的是( ).A 13y x = .B 22y x = .C 3y x =- .D 1y x= 5.函数sin 24y x π⎛⎫=- ⎪⎝⎭的图象可以由函数sin 2y x =的图象如何得到( ) .A 向左平移4π个单位 .B 向右平移4π个单位 .C 向左平移8π个单位 .D 向右平移8π个单位 6.已知向量()()1,2,3,a b m =-=u u r u r ,a b a b +=-u u r u r u u r u r ,则m =( ) .A 32- .B 32.C 6 .D 6- 7.下列函数中,周期为π的偶函数是( ).A sin y x = .B sin 2y x = .C sin y x = .D cos 2x y = 8.在等差数列{}n a 中,若12312a a a ++=,23418a a a ++=,则345a a a ++=( ) .A 22 .B 24 .C 26 .D 309.记n S 为等比数列{}n a 的前n 项和,若2410,40S S ==,则6S =( ) .A 50 .B 70 .C 90 .D 13010.下列各组函数中,表示同一个函数的是( ).A y x =与y .B y x =与y =.C y x =与y = .D y y =11.过圆2225x y +=上一点()3,4的切线方程为( ).A 34250x y +-= .B 34250x y ++=.C 34250x y --= .D 34250x y -+=12.某体育兴趣小组共有4名同学,如果随机分为两组进行对抗赛,每组2名队员,分配方案共有( ).A 2种 .B 3种 .C 6种 .D 12种13.设()201822018012201821x a a x a x a x -=++++L ,则122018a a a +++=L ( ) .A 0 .B 1 .C 1- .D 201821-14.已知平面上三点()()()1,2,3,0,4,3A B C -,则点B 关于AC 中点的对称点的坐标是( ).A ()1,4 .B ()5,6 .C ()1,4-- .D ()2,115.下列命题中正确的是( )(1)平行于同一直线的两条直线平行 (2)平行于同一平面的两条直线平行(3)平行于同一直线的两个平面平行 (4)平行于同一平面的两个平面平行.A (1)(2) .B (1)(3) .C (1)(4) .D (2)(4)二、填空题(本大题共15小题,每小题2分,共30分)16.已知函数()24,0ln ,0x x f x x x ⎧+≤=⎨>⎩,则(){}f f f e ⎡⎤=⎣⎦ . 17.函数2log y x -的定义域为 .18.计算:14281log cos30!16π-⎛⎫+-= ⎪⎝⎭ . 19.不等式21139x x +⎛⎫> ⎪⎝⎭的解集为 . 20.若()f x 为定义在R 上的奇函数,则()10f e += .21.已知等差数列{}n a 的前n 项和24n S n n =-,则公差d = . 22.ABC ∆为等边三角形,则 AB u u u r 与CA u u u r 的夹角为 .23.若sin cos 2αα-=,则sin2α= . 24.过直线230x y +-=和直线210x y -+=的交点,且斜率为1-的直线的一般式方程为 .25.若333sin ,cos ,tan 888a b c πππ===,则,,a b c 从小到大的顺序为 . 26.过抛物线28y x =的焦点的弦AB 的中点的横坐标为3,则AB = .27.设直线a 与平面α所成的角为3π,直线b α⊆,则a 与b 所成角的范围是 . 28.已知锐角ABC ∆的外接圆的面积为9π,若3a =,则cos A = .29.在ABC ∆中,5AB AC cm ==,6BC cm =,若PA ⊥平面ABC ,PA =,则PBC ∆的面积为 .30.将一枚硬币抛掷3次,则至少出现一次正面的概率为 .三、解答题(本大题共7小题,共45分,请在答题卡中对应题号下面指定的位置作答,要写出必要的文字说明、注明过程和演算步骤)31.(5分)已知集合{}{}260,A x x x B x x m =--≥=≥,且A B A =U ,求m 的取值范围.32.(8分)如图,将直径为8分米的半圆形铁板裁成一块矩形铁板,使矩形铁板ABCD的面积最大.(1)求AD的长;(2)求矩形铁板ABCD的最大面积.33.(6分)已知{}n a为等差数列,n a n=,记其前n项和为n S,1nnbS=,求数列{}n b的通项公式及{}n b的前n项和n T.34.(6分)已知函数2cos siny x x x=-.(1)求函数的值域;(2)求函数的最小正周期;(3)求使函数取得最大值的x的集合.35.(7分)已知直线l交椭圆2211612x y+=于,A B两点,()2,1M为AB的中点,求直线l的方程.OA BCD•36.(7分)在ABC ∆中,90,1ACB AC BC ∠=︒==,VC ⊥平面ABC ,1,VC D =为VA 中点.(1)求证:VA ⊥平面DBC ; (2)求DB 与平面ABC 所成角的正弦值.37.(6分)从4名男生和3名女生中任选3人参加学校组织的“两山杯”环保知识大赛,设ξ表示选中3人中女生的人数.求(1)至少有1名女生的概率;(2)ξ的概率分布.A CD V B参考答案一、选择题1.【答案】C .【考点】集合的交(两集合的公共元素组成的集合).【解析】M N I 表示M 和N 的公共元素组成的集合,故选C .2.【答案】.A【考点】不等式的基本性质.【解析】B 项反例:1,2a b ==-;C 、D 项反例:0c =;根据不等式性质:不等式两边同时加上或减去同一个数,不等式不变。
江苏省2018年普通高校对口单招文化统考数学答案(Word版)
江苏省2018年普通高校对口单招文化统考数学试题答案及评分参考二、填空题(本大题共5小题,每小题4分,共20分) 11. 6 12.552 13. 48 14.5 15.4>a 三、解答题(本大题共8小题,共90分) 16.(8分) 解:(1)由题意知:-2﹤a-3﹤2,即1﹤a ﹤5. (2)因为1﹤a ﹤5,所以31x 23273=>+,于是312>+x ,故1>x .17.(10分)解:(1)因为02=-x ,即2=x 时,12)(=x g ,所以定点A 的坐标为(2,12). (2)因为)(x f 是奇函数,所以)2()2(--=f f ,于是-(-4-2m )=12,即m=4. (3)由题意知:)21()223()23()227()27(-=-==-=f f f f f2)3212()21(=-⨯-=-=f . 18.(14分)解:(1)由题意知1log log 212=-+n n a a ,得21=+nn a a,所以数列{}n a 是公比q=2,3221==a a 的等比数列, 于是11123--∙=∙=n n n qa a , )12(321)21(3-=--=n n n S 。
(2)因为222log 9)23(log 9log b 22221222-==∙==--n a n n n n , 所以数列{}n b 是首项为0,公差为2的等差数列, 于是n n n n n -=∙-=2222T 。
19.(12分)解:(1)由频率分布直方图可得成绩优秀的人数为0.1×2×100=20。
(2)因为12×0.1+14×0.15+16×0.2+18×0.05=7.4, 所以本次测试的平均成绩为7.4×2=14.8秒。
(3)由频率分布直方图得第四组有100×0.05×2=10人,其中有7名女生,3名男生。
最新湖南省高考对口招生考试数学真题
湖南省2018年普通高等学校对口招生考试数学本试题卷包括选择题、填空题和解答题三部分,共4页,时量120分钟,满分120分一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={1,2,3,4},B={3,4,5,6},则A ∩B=( ) A.{1,2,3,4,5,6} B.{2,3,4} C.{3,4} D.{1,2,5,6}2. “92=x ”是“3=x ”的( )A.充分必要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件3.函数x x y 22-=的单调增区间是( )A.(-∞,1]B. [1,+∞)C.(-∞,2]D.[0,+∞)4.已知53cos -=α, 且α为第三象限角,则tan α=( )A.34B.43C.43-D.34-5.不等式112>-x 的解集是( ) A.{0|<x x } B.{1|>x x } C.{10|<<x x } D.{10|><x x x 或}6.点M 在直线01243=-+y x 上,O 为坐标原点,则线段OM 长度的最小值是( )A. 3B. 4C. 2512D. 5127.已知向量a ,b 满足7=a ,12=b ,42-=∙b a ,则向量a ,b的夹角为( )A. ︒30B. 60°C. 120°D. 150° 8.下列命题中,错误..的是( ) A. 平行于同一个平面的两个平面平行 B. 平行于同一条直线的两个平面平行 C. 一个平面与两个平行平面相交,交线平行D. 一条直线与两个平行平面中的一个相交,则必与另一个相交 9.已知︒=15sin a ,︒=100sin b ,︒=200sin c ,则c b a ,,的大小关系为( )A. c b a <<B. b c a <<C. a b c <<D. b a c <<10.过点(1,1)的直线与圆422=+y x 相交于A ,B 两点,O 为坐标原点,则OAB ∆面积的最大值为( ) A. 2 B. 4 C. 3 D. 23 二、填空题(本大题共5小题,每小题4分,共20分)11. 某学校有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该学校学生中抽取一个容量为45的样本,则应抽取男生的人数为 .12. 函b x x f +=cos )((b 为常数)的部分图像如图所示,则b = .6)1(+x 13.的展开式5x 的系中数为 (用数字作答)14.已知向量a =(1,2),b =(3,4),c =(11,16),且c =a x+b y ,则=+y x .15.如图,画一个边长为4的正方形,再将这个正方形各边的中点相连得到第2个正方形,依次类推,这样一共画了10个正方形.则第10个正方形的面积为 .三、解答题(本大题共7小题,其中第21,22小题为选做题.满分60分,解答应写出文字说明、证明过程或演算步骤)16.(本小题满分10分)已知数列{n a}为等差数列,1a=1,3a=5,(Ⅰ)求数列{n a}的通项公式;(Ⅱ)设数列{n a}的前n项和为n S . 若n S=100,求n.17.(本小题满分10分)某种饮料共6瓶,其中有2瓶不合格,从中随机抽取2瓶检测.用ξ表示取出饮料中不合格的瓶数.求(Ⅰ)随机变量ξ的分布列;(Ⅱ)检测出有不合格饮料的概率.18.(本小题满分10分)已知函数)3(log )(-=x x f a )1,0(≠>a a 且的图像过点(5,1) (Ⅰ)求)(x f 的解析式,并写出)(x f 的定义域;(Ⅱ)若1)(<m f ,求m 的取值范围19.(本小题满分10分)如图,在三棱柱111C B A ABC -中,1AA ⊥底面ABC ,BC AB AA ==1,=∠ABC 90°,D 为AC 的中点.(I)证明:BD ⊥平面C C AA 11;(Ⅱ)求直线1BA 与平面C C AA 11所成的角.20.(本小题满分10分)已知椭圆:C 12222=+by ax (0>>b a )的焦点为1F (-1,0)、2F (1,0),点A (0,1)在椭圆C 上. (I)(II) 求椭圆C 的方程; (III)(Ⅱ)直线l 过点1F 且与1AF 垂直,l 与椭圆C 相交于M ,N 两点,求MN 的长.选做题:请考生在第21,22题中选择一题作答.如果两题都做,则按所做的第21题计分,作答时,请写清题号.21.(本小题满分10分)如图,在四边形ABCD 中,6==CD BC ,4=AB ,=∠BCD 120°,=∠ABC 75°,求四边形ABCD 的面积.22.(本小题满分10分)某公司生产甲、乙两种产品均需用A,B两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲产品可获利润4万元,生产1吨乙产品可获利润5万元.问:该公司如何规划生产,才能使公司每天获得的利润最大?。
(2021年整理)2018安徽对口高考数学真题
(完整版)2018安徽对口高考数学真题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)2018安徽对口高考数学真题)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)2018安徽对口高考数学真题的全部内容。
(完整版)2018安徽对口高考数学真题编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望 (完整版)2018安徽对口高考数学真题这篇文档能够给您的工作和学习带来便利.同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为 <(完整版)2018安徽对口高考数学真题〉这篇文档的全部内容。
2018年安徽省对口高考数学试卷31. 已知集合}2,1,0,2{},3,0{-==B A ,则=B A(A)∅ (B )}0{ (C )}3,0{ (D )}3,2,1,0,2{- 32.函数3-=x y 的定义域是(A )}3{≥x x (B )}3{>x x (C )}3{≤x x (D )}3{<x x33.过B(2,3)A(-1,2),两点的直线的斜率为(A )3- (B )3 (C )31-(D )31 34。
已知向量b a ,的夹角060,且4,2==b a ,则=⋅b a(A )8 (B )34 (C)24 (D )435。
=0390sin(A )21- (B )23- (C )21(D )2336.椭圆1422=+y x 的离心率是(A )23 (B )21 (C )43 (D )43 37。
(完整版)2018对口高考数学试卷及答案(可编辑修改word版)
江苏省2018年普通高校对口单招文化统考数学试卷—、单项选择题(本大题共10小题,每小题4分,共40分。
在下列每小题中,选出一个正确答案,将答题卡上对应选项的方框涂满、狳黑)1.设集合M={1, 3}, N={a+2, 5},若MPlN={3},则a 的值为A. -1B. 1C. 3D. 52.若实系数一元二次方程x2+mx + n = 0的一个根为1-z ,则另一个根的三角形式为. n . . 7T rr, 3苁..3苁、A. cos——I sin —B. V 2 (cos——+ zsin——)4 4 4 4C. y[2 (cos— + z sin —)D. x/2[cos(-—) + i sin(-—)]4 4 4 43.在等差数列{aj中,若a3, a2016是方程x2-2x-2018 = 0的两根,则3* *3a⑽的值为1A. -B. 1C. 3D. 934.已知命题P:(1101)2=(13) 10和命题q:A • 1=1(A为逻辑变量),则下列命题中为真命题的是A. ~tiB. p AqC. pVqD.-*pAq5.用1, 2, 3, 4, 5这五个数字,可以组成没有重复数字的三位偶数的个数是A. 18B. 24C. 36D. 486.在长方体ABCD-^CiDi中,AB=BC=2,AA I=2A/6,则对角线BD:与底面ABCD所成的角是— B. — C.—6 4 38.若过点P (-1,3)和点Q(1, 7)的直线&与直线mx + (3m - 7)y + 5 = 0平行,则m的值为人2 C. 69.设向量a=(cos2^, -), b= (4,6)、若sin(^--0 =-:则|25a-Z?| 的值为3 、A. -B. 3C. 4D. 5510.若函数/(x) = x2-bx+c满足/(I + x) = /(I - x),且 / ⑼=5,则f(b x)与/(O 的大小关系是A- /(dO</(C x) B. /(y)>/(c x) c. /«/)</(c x) D. /(//)>/(c x)二、填空题(本大题共5小题,每小题4分,共20分)11.设数组a=(-l, 2, 4),b=(3, rn, -2),若a • b=l,则实数m= 。
(完整word版)湖南省2018年高考对口招生考试数学真题及参考答案.docx
湖南省 2018 年普通高等学校对口招生考试数学本试题卷包括选择题、填空题和解答题三部分, 共 4 页 , 时量 120 分钟 , 满分 120 分一、选择题 ( 本大题共 10 小题 , 每小题 4 分, 共 40 分. 在每小题给出的四个选项中 , 只有一项是符合题目要求的 )1. 已知集合 A={1,2,3,4},B={3,4,5,6},则 A ∩ B=( )A.{1,2,3,4,5,6}B.{2,3,4}C.{3,4}D.{1,2,5,6}2. “ x 29 ”是“ x 3 ”的()A. 充分必要条件B.必要不充分条件C.充分不必要条件D. 既不充分也不必要条件3. 函数 y x22x 的单调增区间是()A.(- ∞ ,1]B. [1,+∞) C.(-∞,2]D.[0,+ ∞)4. 已知 cos3 , 且为第三象限角 , 则 tan=()54334A. 3B.4C.4D.35. 不等式 2x1 1 的解集是()A.{ x | x 0 }B.{C.{ x | 0 x 1}D.{x | x 1 }x | x 0或x 1 }6. 点 M 在直线 3x 4y 12 0 上, O 为坐标原点 , 则线段 OM 长度的最小值是()A. 3B. 4C.12 D.12 2557. 已知向量 a , b 满足 a7 , b12 ,a ?b42, 则向量a , b的夹角为( )数学试卷第1页(共9页)8. 下列命题中 , 错误的是()..A.平行于同一个平面的两个平面平行B.平行于同一条直线的两个平面平行C.一个平面与两个平行平面相交 , 交线平行D.一条直线与两个平行平面中的一个相交 , 则必与另一个相交9. 已知a sin15 , b sin100 , c sin 200 ,则 a, b,c 的大小关系为()A. a b cB. a c bC. c b aD. c a b10. 过点 (1,1) 的直线与圆x2y2 4 相交于A,B两点, O 为坐标原点,则OAB 面积的最大值为()A. 2B. 4C.3D. 23二、填空题 ( 本大题共 5 小题 , 每小题 4 分, 共 20 分)11.某学校有 900 名学生 , 其中女生 400 名. 按男女比例用分层抽样的方法 , 从该学校学生中抽取一个容量为45 的样本 , 则应抽取男生的人数为.12. 函f ( x)cosx b ( b 为常数)的部分图像如图所示,则 b = .6 13.(x 1)的展开式中x5的系数为( 用数字作答 )14.已知向量a=(1,2), b =(3,4), c =(11,16),且 c = xa + yb ,则 x y.15.如图 , 画一个边长为 4 的正方形 , 再将这个正方形各边的中点相连得到第 2 个正方形 , 依次类推 , 这样一共画了 10 个正方形 . 则第 10 个正方形的面积为.三、解答题 ( 本大题共 7 小题 , 其中第 21,22 小题为选做题 . 满分 60分, 解答应写出文字说明、证明过程或演算步骤)16.( 本小题满分 10 分 )已知数列 { a n } 为等差数列 , a1 =1, a3 =5,(Ⅰ)求数列 { a n } 的通项公式;(Ⅱ)设数列 { an } 的前n项和为Sn .若Sn=100,求n.17.( 本小题满分 10 分)某种饮料共 6 瓶,其中有 2 瓶不合格 , 从中随机抽取 2 瓶检测 . 用表示取出饮料中不合格的瓶数 . 求( Ⅰ ) 随机变量的分布列;( Ⅱ ) 检测出有不合格饮料的概率.18.( 本小题满分 10分 )已知函数 f ( x)log a ( x 3) (a0,且 a 1) 的图像过点(5,1)( Ⅰ ) 求f (x)的解析式,并写出 f (x) 的定义域;( Ⅱ ) 若f (m) 1, 求m的取值范围19.( 本小题满分 10分 )如图 , 在三棱柱ABC A1B1C1 中,AA1 ⊥底面ABC , AA1 AB BC , ABC 90°,D为AC的中点 .(I)证明 : BD⊥平面AA1C1C;( Ⅱ ) 求直线BA1与平面AA1C1C所成的角 .20.( 本小题满分 10 分 )x2y21( a b 0) 的焦点为F1(-1,0)、 F2(1,0),已知椭圆C :2b2点Aa(0,1) 在椭圆 C上 .(I)求椭圆 C 的方程;(II)( Ⅱ) 直线l过点F1且与AF1垂直 , l与椭圆C相交于M,N两点 , 求MN 的长.选做题 : 请考生在第 21,22 题中选择一题作答 . 如果两题都做 , 则按所做的第 21 题计分 , 作答时 , 请写清题号 .21.( 本小题满分 10 分 )如图 , 在四边形ABCD中,BC CD 6 ,AB 4, BCD 120°,ABC75°, 求四边形ABCD的面积 .22.( 本小题满分 10 分)某公司生产甲、乙两种产品均需用 A , B 两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示 . 如果生产 1 吨甲产品可获利润 4 万元,生产 1 吨乙产品可获利润 5 万元 . 问: 该公司如何规划生产 , 才能使公司每天获得的利润最大 ?甲乙原料限额A (吨)128B (吨)3212参考答案一、选择题:1. C2. B3. B4. A5. D6. D7. C8.B9. D 10. A二、填空题:11. 25 12.213. 6 14. 5 15.132三、解答题16. 解:(Ⅰ)数列 { an } 为等差数列 ,a1 =1,a3 =5公差 d=51231故 a n 1 2( n 1)2n 1(Ⅱ)∵等差数列 { an} 的前n项和为S S=100n ,nS n n(a1 a n ) 2n(1 2n 1) 100∴2∴n 1017.解:(Ⅰ)的可能取值有 0,1,2P (0)=C42 C202C 625P (2)=C40 C 221C 6215C41 C218P(1)= C6215故随机变量的分布列是:012 P28151515(Ⅱ)设事件A表示检测出的全是合格饮料,则A表示有不合格饮料检测出的全是全格饮料的概率P(A)C42 C20225C 6P(A) 1 23故检测出有不合格饮料的概率5518.解:(Ⅰ)∵函数 f ( x)log( x3) (a0, 且a1) 的图像过点(5,1)a∴log a 2 1∴ a2f (x)log 2 (x 3)有意义,则x3 0∴ x3函数 f (x)log 2( x3) 的定义域是 (3, )( Ⅱ) ∵f ( x) log2( x3) , f (m)1∴ log 2 (m3) 1log 2 2∴m 3 2∴m 5又f ( x)log2(x 3)的定义域是(3, ),即m 3∴3 m 5m的取值范围是( 3, 5)19.(Ⅰ)证明:∵在三棱柱 ABC A1 B1C1中,AA1⊥底面ABC∴AA1⊥BD又 AB BC ,ABC90° , D为AC的中点 .∴BD ⊥AC而AA1 AC A∴BD ⊥平面AA1C1C( Ⅱ) 由(Ⅰ)可知:BD⊥平面AA1C1C连结A 1D,则BA 1D 是直线 BA 1 与平面 AA 1C 1C 所成的角 在 Rt A BDBD12 ABA B2 AB中,AC122, 1∴ sin BA 1 DBD1A 1B2∴ BA 1 D 30即直线 BA 1 与平面 AA 1C 1C 所成的角是 30 .20. (Ⅰ) 椭圆 C :x2y 21( a b0 ) 的焦点为 F (-1,0) 、F (1,0)a 2 b2解: ∵1 2∴c1又点 A (0,1) 在椭圆 C 上∴b 21∴ a2b2c21 1 2∴椭圆 C的方程是x 2y212( Ⅱ ) 直线 AF 1 的斜率kAF 11而直线 l 过点 F 1 且与 AF 1 垂直∴直线 l 的斜率是 k1直线 l 的方程是yx 1yx1消去 y 得: 3x2由 x2y214x 02设M ( x 1, y 1 ),N ( x 2, y 2 ),则x 1 x 24 x x3 ,21xx(x x 2)24x x24 1211 3MNk 21 xx24 4 212334即MN的长是3221. 解:如图,连结BD在 BCD 中, BC CD6 ,BCD120°,由余弦定理得:BD2BC2CD22BC CD cos BCD62622 6 6 (1 )2623BD6 3四边形ABCD的面积S四边形 ABCD =SBCDSABD=1 BC CD sinBCD1 BA BD sin ABD2 2= 16 6 sin 1201 4 6 3 sin 452 2=1 6 6 3 1 4 6 32 2 2 22= 9 3 6 622. 解:设公司每天生产甲产品 x吨,乙产品 y吨,才能使公司获得的利润 z最大,则 z 4x 5 y , x、 y 满足下列约束条件:x0y 0x 2y 8 3x2y 12作出约束条件所表示的平面区域,即可行域,如图中的阴影部分,四边形ABOC作直线y4x 及其平行线54zl:y5 5,直线l表示斜率为4,纵截距为z的平行直线x55系,当它在可行域内滑动时,由图可知,直线l 过点A时,z取得最大值,x 2y8由3x 2y 12 得A(2,3)∴z max 4 2 5 323 万元即当公司每天生产甲产品 2 吨,乙产品 3 吨时,公司获得的利润最大,最大利润为 23 万元 .。
2018年湖南省对口高中高考数学试卷习题
湖南省2018年一般高等学校正口招生考试数学本试题卷包含选择题、填空题和解答题三个部分,共4页,时量120分钟,满分120分。
一、选择题(本大题共10小题,每题4分,共40分,在每题给出的四个选项中,只有一项为哪一项切合题目要求的)1、已知会合A{1,2,3,4},B{3,4,5,6},则ABA.{1,2,3,4,5,6}B.{2,3,4}C.{3,4}D.{1,2,5,6}2、“x29”是“x3”的A.充足必需条件B.必需不充足条件C.充足不用要条件D.既不充足也不用要条件3、函数y x22x的单一递加区间是A.(,1]B.[1,)C.(,2]D.[0,)4、已知cos3,且为第三象限角,则tanA.45B.334C. D.3443 5、不等式2x11的解集是A.{xx0}B.1} {xxC. D.或{x0x1}{xx0x1}6、点M在直线3x4y120上,O为坐标原点,则线段OM长度的最小值是A.3 C.12 D.122557、已知向量a,b知足a7,b12,ab42,则向量a,b的夹角为°°°°A.8、以下命题中,错误的选项是B.平行于同一个平面的两个平面平行C.平行于同一条直线的两个平面平行D.一个平面与两个平行平面订交,交线平行E.一条直线与两个平行平面中的一个订交,则必与另一个订交9、已知asin15,bsin100,csin200,则a,b,c 的大小关系为A.a b cc bC.b aD.c a bc10、过点(1,1)的直线与圆x 2 y 24订交于A 、B 两点,O 为坐标远点,则ABC 面积的最大值为C. 3D.23二、填空题(本大题共5小题,每题4分,共20分)11、某学校有900名学生,此中女生 400名,按男女比率用分层抽样的方法,从该学校学生中抽取一个容量为 45的样本,则应抽取男生的人数为。
12、函数 f(x)cosxb(b 为常数)的部分图像以下图,则b=。
完整版)河南省2018年对口升学高考数学试题
完整版)河南省2018年对口升学高考数学试题河南省2018年普通高等学校对口招收中等职业学校毕业生考试-数学考生注意:所有答案都要写在答题卡上,写在试题卷上无效一、选择题(每小题3分,共30分)1.下列关系式中,正确的是()A.A∩φ=AB.A∩CUA=φC.A∩B∪AD.A∩B∪B正确答案:A2.若<x<1,则下列式子中,正确的是()A.x3>x2>xB.x>x2>x3C.x2>x3>xD.x>x3>x2正确答案:B3.已知函数f(x)为奇函数,且当x≥0时,f(x)=x2+1,则f(-1)的值为正确答案:24.函数f(x)=1-2x+1/(x+3)的定义域是()A.(-3.)B.(-3,1]C.(-3.)D.(-3,1)正确答案:A5.已知α是第二象限角,sinα=5/13,则cosα的值为()A.-12/13B.-5/13C.12/13D.5/13正确答案:-12/136.设首项为1,公比为3的等比数列{an}的前n项和为Sn,则()正确答案:Sn=2an-17.下列命题中,错误的是()A.平面内一个三角形各边所在的直线都与另一个平面平行,则这两个平面平行B.平行于同一平面的两个平面平行C.若两个平面平行,则位于这两个平面内的直线也互相平行D.若两个平面平行,则其中一个平面内的直线平行于另一个平面正确答案:A8.下列命题中,正确的是()A.若a=b,则a=bB.若a=b,则a与b是平行向量C.若a>b,则a>bD.若a≠b,则向量a与b不共线正确答案:B9.下列事件是必然事件的是()A.掷一枚硬币,出现正面向上B.若x∈R,则x2≥1C.买一张奖劵,中奖D.检验一只灯泡合格正确答案:C10.(1+ax)(x+1)5的展开式中含x2项的系数为5,则a的值为()A.-4B.-3C.-2D.-1正确答案:D二、填空题(每小题3分,共24分)11.已知集合M={,1,2,3,4},N={x∈R<x<2},则M∩N=φ。
2018安徽对口高考数学真题
31. 已知集合}2,1,0,2{},3,0{-==B A ,则=B A I(A )∅ (B )}0{ (C )}3,0{ (D )}3,2,1,0,2{-32.函数3-=x y 的定义域是(A )}3{≥x x (B )}3{>x x (C )}3{≤x x (D )}3{<x x33.过B(2,3)A(-1,2),两点的直线的斜率为(A )3- (B )3 (C )31-(D )31 34.已知向量b a ρρ,的夹角060,且4,2==b a ρρ,则=⋅b a ρρ(A )8 (B )34 (C )24 (D )435.=0390sin(A )21-(B )23- (C )21(D )2336.椭圆1422=+y x 的离心率是 (A )23 (B )21 (C )43 (D )43 37.函数)22sin(π+=x y 的最小正周期是(A )2π(B )π (C )π2 (D )π4 38.不等式31<+x 的解集是(A )}24{<<-x x (B )}24{>-<x x x 或(C )}42{<<-x x (D )}42{>-<x x x 或39.在等比数列}{n a 中,81,141==a a ,则该数列的公比=q (A )41 (B )21(C )2 (D )4 40.某校举办一项职业技能大赛,在面试环节,选手甲从A 、B 、C 、D 四道题中随机抽出两道试题作为面试题,则A 、B 同时被抽到的概率为 (A )21 (B )31 (C )41 (D )61 41.若一球的半径为2,则该球的体积为 (A )34π (B )38π (C )316π (D )332π 42.已知函数⎩⎨⎧<≥=1,41,log 2x x x y x,则=+)2()0(f f =a(A )1 (B )2 (C )3 (D )443.若向量),2(),2,1(x b a -==ρρ,且b a ρρ//,则=x(A )4 (B )1 (C )4- (D )1- 44.设R c b a ∈,,,且b a >,则下列结论正确的是(A )22b a > (B )ba 11> (C )bc ac > (D )c b c a +>+ 45.若直线02=+-y x 与直线012=++y ax 互相垂直,则=a (A )2 (B )2- (C )1 (D )1- 46.已知31sin =α,则=α2cos (A )924 (B )924- (C )97 (D )97-47.函数x x y 22-=的单调增区间为(A )(]1,∞- (B )[)+∞,1 (C )(]1,-∞- (D )[)+∞-,148.如图所示,在正方体1111D C B A ABCD -中,点N M ,分别为111,B A AA 的中点,则直线MN 与直线1CC 所成的角等于(A )030(B )045(C )060(D )09049.在一次射击测试中,甲、乙两名运动员各射击五次,命中的环数分别为:甲:10,9,6,10,5,乙:8,9,8,8,7,记乙甲x x ,分别为甲、乙命中环数的平均数,乙甲s s ,分别为甲、乙命中环数的标准差,则下列结论正确的是(A )乙甲x x > (B )乙甲x x < (C )乙甲s s > (D )乙甲s s <50.在等差数列}{n a 中,13,372==a a ,则该数列前8项的和=8S (A )128 (B )92 (C )80 (D )64 51.已知3tan =α,则=+)4tan(πα(A )2- (B )2 (C )1- (D )1 52.如图所示,ABC PA 平面⊥,且090=∠ABC ,则下列结论错误的是(A )AB PA ⊥ (B )AC PA ⊥(C )PAB BC 平面⊥(D )PBC AB 平面⊥53.若函数)(x f 在R 上是减函数,且)()(21x f x f >,则下列结论正确的是(A )021<-x x (B )021>-x x (C )021<+x x (D )021>+x x54.在三角形ABC 中,角C B A 、、所对的边分别为c b a ,,,045,30==B A ,==b a 则,1(A )42 (B )22 (C )2 (D )22 55.若抛物线px y 22=过点)1,1(,则抛物线的焦点坐标为(A ))0,41( (B ))0,21( (C ))21,0( (D ))41,0(56.设0>>y x ,则下列结论正确的是(A )yx 33< (B )y x <(C )y x 22log log > (D )y x cos cos >57.设B A ,为两个非空的集合,且A B ⊆,则“A x ∈”是“B x ∈”的 (A )充分条件 (B )必要条件 (C )充要条件 (D )既不充分又不必要 58.若函数)(12)(R x a x x f ∈-+=为奇函数,则=-)1(f(A )3 (B )3- (C )2 (D )2-59.已知直线01=+-y x l :与圆)0(:222>=+r r y x O 相较于B A ,两点,若在圆上存在一点P ,使得PAB ∆为等边三角形,则=r(A )1 (B )2 (C )3 (D )260.在同一个平面直角坐标系中,函数xay )1(=与)10(log ≠>=a a x y a 且的图像可能是参考答案 31 32 33 34 35 36 37 38 39 40 B A D D C A B A B D 41 42 43 44 45 46 47 48 49 50 D B C D A C B B C D 51 52 53 54 55 56 57 58 59 60 A DACACBDBC。
2018年河北省对口高考数学真题+考点分析+详细答案解析
河北省对口招生考试2018年数学试题2018年河北省普通高等学校对口招生考试数学试题一、选择题(本大题共15小题,每小题3分,共45分.在每小题给出的四个选项中,只有一个符合题目要求)1.设集合{}0,1,2,3,4M =,{}03N x x =<≤,则M N = ().A {}1,2.B {}0,1,2.C {}1,2,3.D {}0,1,2,32.若,,a b c 为实数,a b >,则().A a c b c->-.B 22a b >.C ac bc>.D 22ac bc >3.“2x >”是“2x >”的().A 充分不必要条件.B 必要不充分条件.C 充分必要条件.D 既不充分也不必要条件4.下列函数中,既是奇函数又是减函数的是().A 13y x =.B 22y x =.C 3y x =-.D 1y x=5.函数sin 24y x π⎛⎫=- ⎪⎝⎭的图象可以由函数sin 2y x =的图象如何得到().A 向左平移4π个单位.B 向右平移4π个单位.C 向左平移8π个单位.D 向右平移8π个单位6.已知向量()()1,2,3,a b m =-= ,a b a b +=-,则m =().A 32-.B 32.C 6.D 6-7.下列函数中,周期为π的偶函数是().A sin y x =.B sin 2y x =.C sin y x =.D cos2x y =8.在等差数列{}n a 中,若12312a a a ++=,23418a a a ++=,则345a a a ++=().A 22.B 24.C 26.D 309.记n S 为等比数列{}n a 的前n 项和,若2410,40S S ==,则6S =().A 50.B 70.C 90.D 13010.下列各组函数中,表示同一个函数的是().A y x =与y =.B y x =与y =.C y x =与y =.D y =与y =11.过圆2225x y +=上一点()3,4的切线方程为().A 34250x y +-=.B 34250x y ++=.C 34250x y --=.D 34250x y -+=12.某体育兴趣小组共有4名同学,如果随机分为两组进行对抗赛,每组2名队员,分配方案共有().A 2种.B 3种.C 6种.D 12种13.设()201822018012201821x a a x a x a x -=++++ ,则122018a a a +++= ().A 0.B 1.C 1-.D 201821-14.已知平面上三点()()()1,2,3,0,4,3A B C -,则点B 关于AC 中点的对称点的坐标是().A ()1,4.B ()5,6.C ()1,4--.D ()2,115.下列命题中正确的是()(1)平行于同一直线的两条直线平行(2)平行于同一平面的两条直线平行(3)平行于同一直线的两个平面平行(4)平行于同一平面的两个平面平行.A (1)(2).B (1)(3).C (1)(4).D (2)(4)二、填空题(本大题共15小题,每小题2分,共30分)16.已知函数()24,0ln ,0x x f x x x ⎧+≤=⎨>⎩,则(){}f f f e ⎡⎤=⎣⎦.17.函数2log y x =的定义域为.18.计算:14281log cos30!16π-⎛⎫+--=⎪⎝⎭.19.不等式21139xx +⎛⎫> ⎪⎝⎭的解集为.20.若()f x 为定义在R 上的奇函数,则()10f e+=.21.已知等差数列{}n a 的前n 项和24n S n n =-,则公差d =.22.ABC ∆为等边三角形,则AB 与CA的夹角为.23.若2sin cos 2αα-=,则sin 2α=.24.过直线230x y +-=和直线210x y -+=的交点,且斜率为1-的直线的一般式方程为.25.若333sin ,cos ,tan 888a b c πππ===,则,,a b c 从小到大的顺序为.26.过抛物线28y x =的焦点的弦AB 的中点的横坐标为3,则AB =.27.设直线a 与平面α所成的角为3π,直线b α⊆,则a 与b 所成角的范围是.28.已知锐角ABC ∆的外接圆的面积为9π,若3a =,则cos A =.29.在ABC ∆中,5AB AC cm ==,6BC cm =,若PA ⊥平面ABC ,PA cm =,则PBC ∆的面积为.30.将一枚硬币抛掷3次,则至少出现一次正面的概率为.三、解答题(本大题共7小题,共45分,请在答题卡中对应题号下面指定的位置作答,要写出必要的文字说明、注明过程和演算步骤)31.(5分)已知集合{}{}260,A x x x B x x m =--≥=≥,且A B A = ,求m 的取值范围.32.(8分)如图,将直径为8分米的半圆形铁板裁成一块矩形铁板,使矩形铁板ABCD的面积最大.(1)求AD的长;(2)求矩形铁板ABCD的最大面积.33.(6分)已知{}n a为等差数列,n a n=,记其前n项和为n S,1nnbS=,求数列{}n b的通项公式及{}n b的前n项和n T.34.(6分)已知函数2cos siny x x x=-.(1)求函数的值域;(2)求函数的最小正周期;(3)求使函数取得最大值的x的集合.35.(7分)已知直线l交椭圆2211612x y+=于,A B两点,()2,1M为AB的中点,求直线l的方程.OA BCD∙36.(7分)在ABC ∆中,90,1ACB AC BC ∠=︒==,VC ⊥平面ABC ,1,VC D =为VA 中点.(1)求证:VA ⊥平面DBC ;(2)求DB 与平面ABC 所成角的正弦值.37.(6分)从4名男生和3名女生中任选3人参加学校组织的“两山杯”环保知识大赛,设ξ表示选中3人中女生的人数.求(1)至少有1名女生的概率;(2)ξ的概率分布.ACDVB参考答案一、选择题1.【答案】C .【考点】集合的交(两集合的公共元素组成的集合).【解析】M N 表示M 和N 的公共元素组成的集合,故选C .2.【答案】.A 【考点】不等式的基本性质.【解析】B 项反例:1,2a b ==-;C 、D 项反例:0c =;根据不等式性质:不等式两边同时加上或减去同一个数,不等式不变。
2018安徽数学真题(对口升学)
2018年安徽省对口高考数学试卷31. 已知集合}2,1,0,2{},3,0{-==B A ,则=B A(A )∅ (B )}0{ (C )}3,0{ (D )}3,2,1,0,2{- 32.函数3-=x y 的定义域是(A )}3{≥x x (B )}3{>x x (C )}3{≤x x (D )}3{<x x 33.过B(2,3)A(-1,2),两点的直线的斜率为(A )3- (B )3 (C )31-(D )31 34.已知向量b a ,的夹角060,且4,2==b a ,则=⋅b a(A )8 (B )34 (C )24 (D )4 35.=0390sin (A )21-(B )23- (C )21(D )2336.椭圆1422=+y x 的离心率是 (A )23 (B )21 (C )43 (D )43 37.函数)22sin(π+=x y 的最小正周期是(A )2π(B )π (C )π2 (D )π4 38.不等式31<+x 的解集是(A )}24{<<-x x (B )}24{>-<x x x 或 (C )}42{<<-x x (D )}42{>-<x x x 或 39.在等比数列}{n a 中,81,141==a a ,则该数列的公比=q (A )41 (B )21(C )2 (D )4 40.某校举办一项职业技能大赛,在面试环节,选手甲从A 、B 、C 、D 四道题中随机抽出两道试题作为面试题,则A 、B 同时被抽到的概率为(A )21 (B )31 (C )41 (D )6141.若一球的半径为2,则该球的体积为(A )34π (B )38π (C )316π (D )332π42.已知函数⎩⎨⎧<≥=1,41,log 2x x x y x ,则=+)2()0(f f(A )1 (B )2 (C )3 (D )443.若向量),2(),2,1(x b a -==,且b a //,则=x(A )4 (B )1 (C )4- (D )1- 44.设R c b a ∈,,,且b a >,则下列结论正确的是 (A )22b a > (B )ba 11> (C )bc ac > (D )c b c a +>+ 45.若直线02=+-y x 与直线012=++y ax 互相垂直,则=a (A )2 (B )2- (C )1 (D )1- 46.已知31sin =α,则=α2cos (A )924 (B )924- (C )97 (D )97- 47.函数x x y 22-=的单调增区间为(A )(]1,∞- (B )[)+∞,1 (C )(]1,-∞- (D )[)+∞-,148.如图所示,在正方体1111D C B A ABCD -中,点N M ,分别为111,B A AA 的中点,则直线MN 与直线1CC 所成的角等于(A )030 (B )045 (C )060 (D )09049.在一次射击测试中,甲、乙两名运动员各射击五次,命中的环数分别为:甲:10,9,6,10,5,乙:8,9,8,8,7,记乙甲x x ,分别为甲、乙命中环数的平均数,乙甲s s ,分别为甲、乙命中环数的标准差,则下列结论正确的是(A )乙甲x x > (B )乙甲x x < (C )乙甲s s > (D )乙甲s s < 50.在等差数列}{n a 中,13,372==a a ,则该数列前8项的和=8S (A )128 (B )92 (C )80 (D )64 51.已知3tan =α,则=+)4tan(πα(A )2- (B )2 (C )1- (D )1 52.如图所示,ABC PA 平面⊥,且090=∠ABC ,则下列结论错误的是(A )AB PA ⊥ (B )AC PA ⊥ (C )PAB BC 平面⊥ (D )PBC AB 平面⊥53.若函数)(x f 在R 上是减函数,且)()(21x f x f >,则下列结论正确的是 (A )021<-x x (B )021>-x x (C )021<+x x (D )021>+x x54.在三角形ABC 中,角C B A 、、所对的边分别为c b a ,,,045,30==B A ,==b a 则,1(A )42 (B )22 (C )2 (D )22 55.若抛物线px y 22=过点)1,1(,则抛物线的焦点坐标为(A ))0,41( (B ))0,21( (C ))21,0( (D ))41,0( 56.设0>>y x ,则下列结论正确的是(A )yx 33< (B )y x <(C )y x 22log log > (D )y x cos cos >57.设B A ,为两个非空的集合,且A B ⊆,则“A x ∈”是“B x ∈”的 (A )充分条件 (B )必要条件 (C )充要条件 (D )既不充分又不必要 58.若函数)(12)(R x a x x f ∈-+=为奇函数,则=-)1(f(A )3 (B )3- (C )2 (D )2-59.已知直线01=+-y x l :与圆)0(:222>=+r r y x O 相较于B A ,两点,若在圆上存在一点P ,使得PAB ∆为等边三角形,则=r(A )1 (B )2 (C )3 (D )260.在同一个平面直角坐标系中,函数x ay )1(=与)10(log ≠>=a a x y a 且的图像可能是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖南省2018年普通高等学校对口招生考试
数学
本试题卷包括选择题、填空题和解答题三部分,共4页。
时量120分钟。
满分120分一.选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.已知集合A={1,2,3,4},B={3,4,5,6},则A∩B=
A.{1,2,3,4,5,6}
B.{2,3,4}
C.{3,4}
D.{1,2,5,6}
2.“x2=9是“x=3”的
A.充分必要条件
B.必要不充分条件
C.充分不必要条件
D.既不充分也不必要条件
3.函数y=x2−2x的单调增区间是
A.(−∞,1]
B.[1,+∞)
C.(−∞,2]
D.[0,+∞)
4.已知cosα=−3
5
,且α为第三象限角,则tanα=
A.4
3 B.3
4
C.−3
4
D. −4
3
5.不等式|2x−1|>1的解集是
A.{x|x<0}
B.{x|x>1}
C.{x|0<x<1}
D.{x|x<0或x>1}
6.点M在直线3x+4y-12=0上,O为坐标原点,则线段OM长度的最小值是
A.3
B.4
C.12
25 D.12
5
7.已知向量a,b满足|a|=7,|b|=12,a∙b=−42,则向量a,b的夹角为
A.30°
B.60°
C.120°
D.150°
8.下列命题中,错误的是
A.平行于同一个平面的两个平面平行
B.平行于同一条直线的两个平面平行
C.一个平面与两个平行平面相交,交线平行
D.一条直线与两个平行平面中的一个相交,则必与另一个相交
9.已知a =sin15°,b =sin100°,c =sin200°,则a,b,c 的大小关系为
A.a <b <c
B.a <c <b
C.c <b <a
D.c <a <b
10.过点(1,1)的直线与圆x 2+y 2=4相交于A,B 两点,O 为坐标原点,则△OAB 面积的最大值为
A.2
B.4
C.√3
D.2√3
二、填空题(本大题共5小题,每小题4分,共20分)
11.某学校有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该学校学生中抽取一个容量为45的样本,则应抽取男生的人数为______。
12.函数f(x)=cos x +b (b 为常数)的部分图像如图所示,则b=______。
13.(x +1)2
的展开式中x 5的系数为______(用数字作答)。
14.已知向量a=(1,2),b=(3,4),c=(11,16),且c=xa+yb ,则x+y=______。
15.如图,画一个边长为4的正方形,再将这个正方形各边的中点相连得到第2个正方形,依次类推,这样一共画了10个正方形,则第10个正方形的面积为______。
三、解答题(本大题共7小题,其中第21、22小题为选做题,满分60分,解答应写出文字说明、证明过程或演算步骤)
16.(本小题满分10分)
已知数列{a n}为等差数列,a1=1,a3=5.
(I)求数列{a n}的通项公式;
(II)设数列{a n}的前n项和S n,若S n=100,求n.
17.(本小题满分10分)
某种饮料共6瓶,其中有2瓶不合格,从中随机抽取2瓶检测,用ξ表示取出饮料中不合格的评述,求:
(I)随机变量ξ的分布列;
(II)检测出有不合格饮料的概率。
18. (本小题满分10分)
已知函数f(x)=log a(x−3)(a>0,且a≠1)的图像过点(5,1)。
(I)求f(x)的解析式,并写出f(x)的定义域
(II)若f(m)<1,求m的取值范围。
19. (本小题满分10分)
如图,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AA1=AB=BC,∠ABC=90°,D 为AC的中点。
(I)证明:BD⊥平面AA1C1C;
(II)求直线BA1与平面AA1C1C所成的角。
20.(本小题满分10分)
已知椭圆C:x 2
a2+y2
b2
=1(a>b>0)的焦点为F1(-1,0),F2(1,0),点A(0,1)
在椭圆C上。
(I)求椭圆C的方程;
(II)直线L过点F1且与AF1垂直,L与椭圆C相交于M,N两点,求MN的长
选做题:请考生在第21,22题中选择一题作答,如果两题都做,则按所做的第21题计分,作答时,请写清题号。
21. (本小题满分10分)
如图,在四边形ABCD中,BC=CD=6,AB=4,∠BCD=120°,∠ABC=75°,求四边形ABCD 的面积。
22. (本小题满分10分)
某公司生产甲、乙两种产品均需用A,B两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示,如果生产1吨甲产品可获利4万元,生产1吨乙产品可获利润5万元,问:该公司如何规划生产,才能使公司每天获得的利润最大?。