水泥中三氧化硫的测定
水泥SO3的测定(离子交换法)
水泥SO 3的测定(阳离子交换树脂法)1、 准确称取0.5g 试样置于已盛有5g 树脂、一根搅拌子及10mL 热水的150mL 烧杯中,摇动烧杯使试样分散。
加入40mL 沸水。
2、 置于磁力搅拌器上,加热搅拌10分钟3、 以快速滤纸过滤,并用热水洗涤烧杯和滤纸上的树脂4~5次,滤纸和洗涤液收集于另一装有2g 树脂及一根搅拌子的150mL 烧杯中(此时溶液体积在100mL 左右)。
4、 再将烧杯置于磁力搅拌器上搅拌3分钟,用快速滤纸过滤,用热水洗涤烧杯和滤纸上的树脂5~6次,滤纸和洗涤液收集于另一300mL 烧杯中。
5、 向溶液加入5~6滴酚酞(10g/L )指示剂溶液,用0.05mol/L 氢氧化钠标准滴定溶液滴定至微红色。
SO 3=1001000)(03⨯⨯-⨯m V V T SO = 5)(03V V T SO -⨯ T SO 3——每毫升氢氧化钠标准滴定溶液相当于三氧化硫的毫克数(mg/mL ) V ——滴定时消耗氢氧化钠标准滴定溶液体积(mL )V 0——空白试验时消耗氢氧化钠标准滴定溶液体积(mL )m ——试样的质量(g )注意事项1、本方法只适用于掺加天然石膏、并且不含有氟、磷、氯的水泥中三氧化硫的测定。
含有氟、磷、氯的水泥中三氧化硫的测定,可在树脂交换后的溶液中以氯化钡沉淀(重量法)进行。
2、含有混合石膏的试样必须加大树脂量延长交换时间和提高温度。
3、每批树脂必须做空白试验。
氢型强酸性阳离子交换树脂的再生:交换柱:长60cm ,直径5cm 或近似规格的玻璃柱,下端带有玻璃活塞和漏板。
732苯乙烯型强酸性阳离子交换树脂(新购买或使用后)1、将树脂洗涤干净后,用蒸馏水浸泡6小时以上2、将树脂装入交换柱中(应带水向柱内装树脂,以排除树脂间的空气),交换柱上部留有约15cm 的空位。
3、用(1+3)盐酸以每分钟5mL 的流速淋洗,至流出液和流入液的浓度相等为止。
(一般再生500g 树脂需要(1+3)盐酸1500ml )4、用蒸馏水逆洗交换柱同内的树脂,至无氯根反应为止(用硝酸银检验)。
实验 水泥中三氧化硫含量的测定
实验水泥中三氧化硫含量的测定适量的SO3可调节水泥的凝结时间,还具有增强、减缩等作用。
制造膨胀水泥时,石膏还是一种膨胀组分,赋予水泥膨胀的性能。
但水泥中石膏量过多,却会导致水泥安定性不良。
因此,水泥中三氧化硫含量是水泥重要的质量指标,在生产过程中必须予以严格控制。
由于水泥中石膏的存在形态及其性质不同,测定水泥中三氧化硫的方法有很多种,如经典的硫酸钡重量法及其改进方法、离子交换法、磷酸溶样-氯化亚锡还原——碘量滴定法、燃烧法(与全硫的测定相同)、分光光度法、离子交换分离一EDTA配位滴定法等。
目前多采用硫酸钡重量法、磷酸溶样—氯化亚锡还原—碘量滴定法(还原—碘量法)、离子交换法。
经典的硫酸钡重量法较准确,常作为仲裁分析。
硫酸钡重量法测定水泥中三氧化硫一、实验目的掌握硫酸钡重量法测定原理和方法。
了解晶型沉淀的沉淀条件、原理和沉淀方法。
沉淀水泥中三氧化硫的含量,并用换算因数计算测定结果。
二、基本原理硫酸钡重量法不仅在准确性方面,而且在适应性和测量范围方面都优于其它方法,但其最大缺点是手续繁琐,费时,不宜作为生产控制例行分析方法。
其改进方法虽然简化了离子分离手续,但是过滤、沉淀、洗涤……,直至恒重等一系列手续,便使这一方法有所逊色。
硫酸钡质量法是通过氯化钡使硫酸根结合成难溶的硫酸钡沉淀,以硫酸钡的质量折算水泥中的三氧化硫含量。
由于在磨制水泥中,需加入一定量石膏,加入量的多少主要反映在水泥中SO42-离子的数量上。
所以可采用BaCl2作沉淀剂,用盐酸分解,控制溶液浓度在0.2-0.4mol/L的条件下,用BaCl2沉淀SO42-离子,生成BaSO4沉淀。
沉淀经过滤、洗涤、和灼烧,以BaSO4形式称量,从而求得S、SO3、或SO42-离子含量。
BaSO4的溶解度很小(其K sp=l.lx10-10),其化学性质非常稳定,灼烧后的组分与分子式符合。
反应式为Ba2+ + SO42- = BaSO4↓(白色)三、试剂1. 盐酸(1+1);2. 氯化钡溶液(100g/L);3. 硝酸银溶液(5g/L)。
三氧化硫的测定
三氧化硫的测定——离子交换法(代用法)
1.方法提要
在水介质中,用氢型阳离子交换树脂对水泥中的硫酸钙进行两次静态交换,生成等物质的量的氢离子,以酚酞为指示剂,用氢氧化钠标准滴定溶液滴定。
本方法只适用于参加天然石膏并且不含有氟、氯、磷的水泥中三氧化硫的测定。
2.分析步骤
称取约0.2g试样(m40),精确至0.0001g,置于已放有5g树脂、10ml热水及一根磁力搅拌子的150ml烧杯中,摇动烧杯使试样分散。
然后加入40ml沸水,立即置于磁力搅拌器上,加热搅拌10分钟。
取下,以快速滤纸过滤,用热水洗涤烧杯和滤纸上的树脂4-5次,滤液及洗液收集于放有2g树脂及一根搅拌子的150ml烧杯中(此时溶液体积在100ml左右)。
将烧杯再置于磁力搅拌器上,搅拌3分钟。
取下,以快速滤纸将溶液过滤于300ml烧杯中,用热水洗涤烧杯和滤纸上的树脂5-6次。
向滤液中加入5-6滴酚酞指示剂溶液,用氢氧化钠标准滴定溶液滴定至微红色。
保存滤纸上的树脂,可以回收处理后再利用。
3.结果的计算于表示
三氧化硫的质量分数ωSO3按下式计算:
T SO3×V×0.1
ωSO3=----------------------------------
m
4.试验允许误差
水泥SO3同一试验室不大于±0.15%
水泥SO3不同试验室不大于±0.20%
龙海水泥厂
二〇一一年九月二十三日。
水泥中三氧化硫含量的测定方法概述
石 的体积膨 胀 , 破坏 水泥石结构而 影响水泥 的安定 性。 因此要 严格控制水泥 中三氧化硫 的含量 。 本文针对 G B / T 1 7 6 — 2 0 0 8 《 水 泥化学分析方法 》里提到的 5种三氧化硫 的测 定方法进行 了分
析。
( 5)适用性 : 不 但适用 于掺加天然石 膏的水泥 , 还适 用于
以防止 “ 局部过浓 ” 现象 。另外 , 沉淀过程应 当在热溶液 中进行 ,
简单等。
( 3 )缺点 : 所用 试剂种类多 、溶液 配制 麻烦 、反应瓶价格 较高 , 分 析成 本较高。
即将溶液 煮沸 , 最好 B a C 1 : 溶 液也加 热后使 用 。②沉 淀后不 应
所植绿 植后期的养护也必不 可少 。要 定期 回访 已完成 的绿化 改 造工程 ,对所 出现 的问题进 行及 时的解决 ,做好补植 死株的工
老 城 区河 道 绿 化 改 造 的结 果 。
3 结语
一
相对 于其它发达 国家来说 ,我国 的屋顶绿化工 作还在高速 的发展过 程 中。现 阶段 ,我国屋顶 的绿化成 果不是 十分 明显 , 而小部分 、零星 的绿化 屋顶难以为生态环境发 展做 出贡献 。对
满 足施工条件 的老城 区的屋顶进行绿化改造 ,不仅 能有利于满
含有氟 、磷 、氯 的水 泥中三氧化硫 的测定 。因费 时较长 , 故在
生产控制过程 中采用 不太适宜 。
2 碘 量 法
( 1 )原 理 : 将水泥样 品先经过 H , P O 处理 , 使硫化 物分解 逸 出后 , 再加入 S n C 1 一 H P O 溶液 , 将硫 酸盐硫还原成硫 化氢 , 收集 于 Z n — N H 溶 液中 , 然后 用碘量法 测定 。
实验4水泥中三氧化硫的测定
在进行实验时,必须佩戴防护眼镜和穿着实验服,以防止化学物 质溅入眼睛或皮肤接触。
使用防爆电器
在实验室内,应使用防爆电器设备,并确保电源开关具有良好的接 地。
遵循操作规程
严格按照实验操作规程进行实验,避免因操作不当引发安全事故。
实验废弃物的处理方法
分类收集
将实验废弃物按照可回收利用和不可回收利用进行分类收集。
控制合适的沉淀条件,如温度、搅拌速度和沉淀时间,以确保沉淀物为硫酸钡,而不是其他形式的钡 盐。
熟悉实验操作流程
准备实验试剂和设备
准备水泥样品、盐酸、硝酸银、氯化钡等试剂, 以及天平、容量瓶、烧杯、漏斗等设备。
01
酸化处理
将样品与盐酸混合,加热至沸腾,使 水泥中的硫酸盐转化为硫酸。
03
干燥与称重
将滤纸上的沉淀物烘干,然后在天平上称重。
化学废液处理
对于含有有害化学物质的废液,应按照相关规定进行中和、沉淀、 蒸发等处理,确保废液无害化后再排放。
废弃物存放
实验废弃物应存放在指定的废弃物存放处,并定期进行清理和处 置。来自突发情况的应急处理措施
01
火灾应急处理
若发生火灾,应立即切断电源,使用灭火器扑灭火源,并按照火灾应急
预案进行疏散和救援。
05
02
样品处理
将水泥样品研磨至细粉状,过筛后称取适量 样品进行实验。
04
沉淀与过滤
加入钡盐,在适当的沉淀条件下,使 硫酸根离子与钡离子反应生成硫酸钡 沉淀。过滤除去溶液中的悬浮物。
06
数据处理与结果计算
根据称得的硫酸钡重量和样品量,计算出水泥 中三氧化硫的含量。
了解三氧化硫对水泥性能的影响
三氧化硫对水泥硬化的影响
水泥中三氧化硫含量的测定
水泥中三氧化硫含量得测定水泥中得三氧化硫就是由石膏、熟料(特别就是以石膏作矿化剂煅烧得熟料)或混合材料引入,在水泥制造时加入适量石膏可以调节凝结时间,还具有增强、减缩等作用。
制造膨胀水泥时,石膏还就是一种膨胀组分,赋予水泥以膨胀等性能,但水泥中得三氧化硫含量过多,却会引起水泥体积安定性不良等问题,因此,在水泥生产过程中必须严格控制水泥中得三氧化硫含量。
测定水泥中三氧化硫含量得方法多种,如硫酸钡质量法、磷酸溶样-氯化亚锡还原-碘量法以及离子交换法等。
一、 测定原理1. 硫酸钡质量法得测定原理用盐酸分解试样,时试样中不同形态得硫酸全部转变成可溶性得硫酸盐 ,以氯化钡沉淀剂,使之生成硫酸钡沉淀。
该沉淀得溶解度极小,化学性质非常稳定,经灼烧后称重,再换算得出三氧化硫得含量,反应式如下:=↓(白色)2. 碘量法得测定原理水泥中得硫主要以硫酸盐硫(石膏)存在,部分硫存在于硫化钙、硫化亚锰、硫化亚铁等硫化物中。
用磷酸溶解水泥试样时,水泥中得硫化物与磷酸发生下列反应,生成磷酸盐与硫化氢气体,其反应式如下:3CaS +2=+3S ↑3MnS+2=+3S ↑3FeS+2=+3S ↑在有还原剂并加热得条件下,用浓磷酸溶解试样时,不仅硫化物与磷酸发生上述反应,硫酸盐也将与磷酸反应,生成得硫酸与还原剂氯化亚锡发生氧化还原反应,放出硫化氢气体。
根据碘酸钾溶液(加有碘化钾)在酸性溶液中析出碘得性质,在H2S 得吸收液中加入过量得碘酸钾标准溶液,使在溶液酸化时析出碘,并与硫化氢作用,剩余得碘则用硫代硫酸钠回滴,其反应式如下:利用上述反应,先用磷酸处理试样,使水泥中得硫化物生成硫化氢溢出,然后用氯化亚锡-磷酸溶液处理试样,测定试样中得硫酸盐。
3.离子交换法得测定原理水泥中得三氧化硫主要来自石膏,在强酸性阳离子交换树脂R-SO 3·H 得作用下,石膏在水中迅速溶解,离解成Ca 2+与,Ca 2+迅速与树脂酸性基团得H +进行交换,析出H +,它与石膏离解所得生成硫酸,直至石膏全部溶解,其离子交换反应式为:2+2-44332CaSO Ca +SO +2R-SO H)R-SO )Ca+2H (固体)(( ⑴ ⑵在石膏与树脂发生离子交换得同时,水泥中得C 3S 等矿物将发生水解,生成氢氧化钙与硅酸:⑶所得Ca(OH)2,一部分与树脂发生离子交换;另一部分与H2SO4作用,生成CaSO4再与树脂交换,反应式为:⑷⑸⑹熟料矿物水解,当水解产物参与离子交换达到平衡时,并不影响石膏与树脂进行交换生成得H2SO4量,但使树脂消耗量增加,同时,溶液中硅酸含量得增加,使溶液PH值减少,用NaOH 滴定滤液时,所用指示剂必须与进入溶液得硅酸量相适应。
实验五水泥中SO3的测定
实验五、水泥中SO的测定3水泥中的三氧化硫(SO)以CaSO形态存在,它主要由煤带入。
而水泥中SO除熟料343带入外,主要由作为缓凝剂的石膏带入。
适量的SO可调节水泥的凝结时间,并可增加3水泥的强度,制造膨胀水泥时,石膏还是一种膨胀组分,赋予水泥膨胀性能。
但石膏量过多,会导致水泥安定性不良。
因此,水泥中三氧化硫含量是水泥重要的质量指标。
由于水泥中石膏的存在形态及其性质不同,测定水泥中三氧化硫的方法有很多种,有硫酸钡重量法、离于交换法、磷酸溶样一氯化亚锡还原一碘量滴定法、燃烧法(与全硫的测定相同)、分光光度法、离子交换分离一EDTA配位滴定法等。
目前多采用硫酸钡重量法、离子交换法、磷酸镕样一氮化亚锡还原一碘量滴定法(还原,碘量法)进行测定。
本实验采用硫酸钡重量法。
一、实验目的(1) 了解硫酸钡重量法测定SO的原理及方法3(2) 测定水泥中SO的含量。
3二、方法提要硫酸钡重量法是通过氯化钡使硫酸根结合成难镕的硫酸钡沉淀,以硫酸钡的重量折算水泥中的三氧化硫含量。
2-离由于在磨制水泥中,需加入一定量石膏,加入量的多少主要反映在水泥中SO 4子的数量上。
所以可采用BaCl作沉淀剂,用盐酸分解,控制溶液浓度在~/L的条件下,22--10).10其化学的溶解度很小BaSO(其Ksp=×用BaCL沉淀SO离子,生成BaSO沉淀。
4424性质非常稳定,灼烧后的组分与分子式符合。
反应式为:2+2=BaSO (白色) Ba十SO44三、试剂盐酸(1+1)氯化钡溶液(100g/l)硝酸银溶液(5g/l)四、实验步骤,加热至(1+1)盐酸40ml水及3040ml烧杯中300ml置于,水泥试样0.5g准确称取约.微沸,并保持微沸5min,在搅拌下滴加10ml氯化钡溶液,并将溶液煮沸数分钟,然后移至温热处静止4h或过夜(此溶液体积应保持在200ml),用慢速滤纸过滤,以温水洗至无氯根反应(用硝酸银溶液检验)。
将沉淀及滤纸一并移入已灼烧恒量的瓷坩埚中,灰化后在800℃的高温炉中灼烧30min。
水泥中SO3测定方法简介
优 点在分析领域得到广泛应用。 但 是, 试样 中除硫化物 ( s 2 - ) 和硫酸外 , 还
用盐 酸分解试样 , 控 制溶液浓度在 0 . 2 0 . 4 m o l / L的条件 下, 用B a c 1 , 有其它状态 的硫存在时, 将给测定造成误差 。
由于水泥 中石膏的存在形态及其性质不 同, 测定水泥 中三氧 化硫的 试样 中除硫 化物 ( s z 一 ) 和硫 酸外 , 还有其它状 态的硫存在时 , 将给 测定造 方法有 很多种 。目前多采用硫酸钡重量法 、 离子交换法、 磷酸溶样— —氯 成 误 差 。
化 亚锡还 原——碘量滴定法 、 分光光度法、 配位滴定法等。其中硫 酸钡重 量法为基 准法 , 其它 为代用 法, 结果有歧义时, 以基准法为准 。下面我们
5 恒 电流 库 伦滴定 法
水 泥试样经 甲酸处理 , 将 硫化物分解 除去, 在助熔剂 ( 锡粒) 存在 的 条件 下, 于空气 流中燃 烧分解 , 试 样中的硫生成二氧 化硫并被碘化 钾吸
生成的B a S O 沉淀为典型的晶形沉淀, 它的溶解度很小 ( K s r = 1 . 1 x l 0 ) ,
化学性质非常稳定, 按晶形沉淀 的条件进 行沉 淀和过滤。滤 出沉淀后于
收, 以电解碘化钾溶液所产生的碘进行滴 定。 试样 中除硫化物 ( S 2 - ) 和硫酸外 , 还有其 它状态 的硫存 在时 , 将给 测
定造成误差 。
8 0 0 C高温下灼烧至恒重,灼烧后所得 的称量形式 B a S O 符合质量分析 的
中图 分 类 号 : T Q1 7 2 . 1 6 文 献标 识 码 : A 文章编号 : 1 6 7 2 — 1 6 7 5 ( 2 0 1 6 ) 1 9 — 0 3 2 3 一 O 1
水泥中三氧化硫的快速测定
下一页 返回
任务2硅酸盐中二氧化硅的 测定(氟硅酸 钾容量法)
• (7)KCl溶液(50 g/L):将50 g固体KCl溶于水中,再用水稀释 • 至1000mL; • ( 8) KCl-乙醇溶液(50 g/L):将5 gKCl溶于50 mL水中,再用水稀释至
1000mL; • (9)酚酞指示剂。 0.15 mol/L):将6 g NaOH溶于1 000 mL水中,摇
上一页 下一页 返回
任务1 水泥中三氧化硫的快速测定(离子 交换法)
• 2.交换和侧定 • 准确称取约0. 2 g试样,精确至0. 000 1 g,置于已盛有5g树脂、一
根搅拌棒及10 mL热水的150 mL烧杯中,摇动烧杯使其分散。向烧 杯中加入约40 mL沸水,置于磁力搅拌器上,加热搅拌10 min后以快 速滤纸过滤,用热水洗涤烧杯与滤纸上的树脂4~5次。滤液及洗液收 集于另一装有2 g树脂及一根搅拌棒的150 mL烧杯中(此时溶液体积 在100 mL左右)。再将烧杯置于搅拌器上搅拌3 min,用快速滤纸过 滤,用热水洗涤烧杯与滤纸上的树脂5~6次,滤液及洗液收集于300 mL烧杯中。向溶液中加入5~6滴酚酞指示剂,用0. 06 mol/L NaOH • 标准溶液滴定至微红色即为终点。保存用过的树脂以备再生。
6~7gNaOH,于650℃~ 700℃高温炉内,熔融20m in,取出冷却, 将柑祸放入盛有100 mL沸水的烧杯中,盖上表面皿,加热,待熔块 完全浸出后,取出坩埚,用水洗净柑祸和盖,再搅拌下一次加入 25mL浓HCl和1 mL浓HNO3。用热HCl(1 +5)洗净柑祸和盖,将溶液 加热至沸,使溶液澄清,冷却后,移入250 mL容量瓶中,用水稀释 至标线,摇匀。
上一页 下一页 返回
水泥中三氧化硫的测定
3) 用离子交换法测定水泥中的三氧化硫,重要的前提是必须把 试样中的硫酸钙完全提取到溶液中。当水泥中的石膏是硬石 膏或混合石膏(二水石膏和硬石膏)时,由于有些硬石膏溶解 速度较慢,用本方法测定时因离子交换时间较短,在此期间 石膏往往不能完全提取到溶液中去,使测定结果偏低。遇此 情况,可将试样磨细一些,并将试样的质量由0.5g减为0.2g, 第一次静态交换的时间由原2min延长至10min,必要时也可 将树脂由原来的2g增至5g。第二次交换的条件仍不变。这样 上述问题得以解决,但进入溶液中的硅酸量也相应增大。 4) 由于试样中磷、氟、氯等酸性物质将与NaOH反应,使滴定 结果偏高,故本方法含有F- 、C1- 、PO4-3 等的工业副产石膏 及氟铝酸盐的水泥是不适用的。但可以将离子交换后的溶液 用硫酸钡重量法(控制溶液酸度在0.2~0.4mol/L之间)测定三 氧化硫,也可用静态离子交换——返滴定法测定三氧化硫。
3) 0.05mol/L氢氧化钠标准溶液:将20g氢氧化钠溶于10L水中,充 分摇匀后,储存于带胶塞(装有钠石灰干燥管)的硬质玻璃瓶内。 • 标定方法:准确称取约0.3g苯二甲酸氢钾置于400ml烧杯中, 加入约150ml新煮沸过的并已用氢氧化钠溶液中和至酚酞呈微 红色的冷水,搅拌使其溶解,然后加入2~3滴1%酚酞指示剂溶 液,用配好的氢氧化钠溶液滴定至微红色。 • 氢氧化钠标准溶液对三氧化硫的滴定度按下式计算
(2)试剂 • • • 盐酸(1+1); 氯化钡溶液[10%(W/V)]; 硝酸银溶液[10%(W/V)]。
(3)分析步骤
• 准确称取约0.5g水泥试样,置于300ml烧杯中,加入30~40ml 水及10ml盐酸,加热至微沸,并保持微沸5min,使试祥充分 分解。 • 以 中 速 滤 纸 过 滤 , 用 温 水 洗 涤 10~12 次 。 调 整 滤 液 体 积 至 200m1,煮沸,在搅拌下滴加10ml氯化钡溶液[10%(W/V)], 并将溶液煮沸数分钟,然后移至温热处静止4h或过夜(此溶液 体积应保持在200ml)。 • 用慢速滤纸过滤,以温水洗至无氯根反应(用硝酸银溶液检验)。 • 将沉淀及滤纸一并移入已灼烧恒量的瓷坩埚中 ,灰化后在 800℃的高温炉中灼烧30min。取出坩埚,置于干燥器中冷却 至室温,称量。如此反复灼烧,直至恒量。
水泥中三氧化硫快速测定方法试验
水泥中三氧化硫快速测定方法试验引言:水泥是一种常用的建筑材料,但含有过多的三氧化硫会对环境和人体健康造成危害。
因此,快速准确地测定水泥中三氧化硫的含量对于质量控制非常重要。
本实验旨在探索一种快速测定水泥中三氧化硫含量的方法,并验证其准确性和可行性。
实验方法:1.准备工作:b)准备所需的实验仪器和试剂,包括pH计、分光光度计、硫酸铵、三氧化硫标准溶液等。
c)根据实验需要,将水泥样品研磨成细粉并过筛,以确保样品的均匀性和粒度一致性。
2.实验步骤:a)取一定质量的水泥样品(约10克),并加入适量的精确称量的硫酸铵。
b)将混合物转移至一个适量的容器中,并用试剂枪加入适量的去离子水,使混合物溶解并形成均一的溶液。
c)将溶液的pH值调节到指定范围(例如pH=5-6),可以使用pH计进行测定和调整。
d)用分光光度计在特定波长下测定溶液的吸光度,并根据标准曲线计算出三氧化硫的浓度。
3.质量控制:a)同时进行多个水泥样品的测定,以确保实验数据的可靠性和准确性。
b)制备一系列不同浓度的三氧化硫标准溶液,并每次进行实验前都进行校准。
c)对样品进行重复测定,以计算平均值和相对标准偏差(RSD)。
结果与讨论:1.针对不同厂家、不同类型的水泥样品进行了同样的实验操作,并得到了相应的三氧化硫浓度测定结果。
2.利用标准曲线对测定结果进行了计算和验证。
3.对多个水泥样品进行了重复测定,并计算了平均值和RSD。
4.对实验结果进行了讨论和分析,并与国家标准进行了比较和评估。
结论:本实验探索了一种快速测定水泥中三氧化硫含量的方法,并验证了其准确性和可行性。
该方法可以用于水泥生产过程中的质量控制和环境保护监测。
然而,需要进一步的研究和实验,以确保该方法在不同水泥样品中的适用性和可靠性。
水泥中三氧化硫的测定.
器中冷却至பைடு நூலகம்温,称量,反复灼烧,直至恒重。
SO3的质量分数按下式计算:
XSO3
=
m1 ´ 0.343 ´ 100% m
式中——SO3的质量分数,%; m1——灼烧后沉淀的质量,g; m——试料的质量,g; 0.343——BaSO4对SO3的换算因数。
璃棒压碎块状物,慢慢加热溶液直至试完全。将溶液加热
微沸 5min 。用中速滤纸过滤,用热水洗涤烧杯 10~12 次。 调整滤为200mL,煮沸,在搅拌下滴加 15mLBaCl2溶液,继 续煮沸数分钟,然后移至温热4h或过夜(此时溶液体积应 保持在200mL)。
用慢速滤纸过滤,用温水洗涤,直至 Cl- 为止( AgNO3 溶 液检验)。将沉淀及滤纸一并移人已灼烧恒重的瓷坩埚中, 灰化,在800℃的马弗炉内灼烧30min。取出坩埚置于干燥
水泥中三氧化硫的测定
水泥中SO3的测定——BaSO4重量法(适用于水泥、混凝土专 业) 一、实验目的 1.学习沉淀制备与处理的基本操作; 2.学习重量法测石膏中SO3的原理和方法。
二、实验原理 其测定原理是将一定质量的水泥试料,用盐酸分解,控制溶 液酸度在 0.2-0.4mol/L 的条件下,用 BaC12 沉淀 SO42- ,生 成 BaSO4 沉淀。此沉淀的溶解度很小(其 KSP=1.1×10-10 ), 化学性质非常稳定,灼烧后所得的称量形式 BaSO4 符合重
量分析的要求。
反应式为:Ba2++ SO42-= BaSO4↓
三、试剂与仪器 1.试剂:HCl(1+1)、BaCl 2溶液(100g/L)、AgNO3 (10g/L)
2.仪器:高温炉、干燥器、分析天平、瓷坩埚。
四、实验过程
水泥中三氧化硫含量的测定
实验名称:水泥中三氧化硫含量的测定水泥中的SO3可以有效地控制和调节水泥的凝结时间, 还可以提高强度,降低收缩性, 改善抗冻、耐蚀和抗渗性等物理性能。
但SO3超过一定限量后, 会引起水化后水泥石的体积膨胀, 破坏水泥石结构。
因此在水泥检测中, 三氧化硫的测定比较重要。
一.实验目的1.了解硫酸钡重量法测定SO3的原理及方法;2.测定水泥中SO3的含量;二.实验原理将水泥试样经酸溶后, 一次分离不溶残渣等, 加入适量的氯化钡溶液, 使溶液中的SO42-和加入的Ba2+离子生成BaSO4沉淀。
=↓(白色)沉淀经过样品溶解、沉淀、过滤、洗涤、灰化、灼烧和称量后,即可得到硫酸钡的质量, 进而可计算出试样中的三氧化硫的含量。
三.实验器材:实验仪器:一个500mL烧杯、一个250mL烧杯、一个100mL烧杯、一个50ml 量筒、定性/定量滤纸、过滤漏斗、玻璃棒、高温炉、胶头滴管、分析天平、铁架台、坩埚、马弗炉;实验原料:盐酸(1+1)、氯化钡溶液(100g/L)、硝酸银溶液(5g/L)、水泥、蒸馏水;四.实验过程⒈试样制备取具有代表性的均匀样品,采用四分法缩分至100g左右,经0.08mm方孔筛筛析,用磁铁吸去筛余物中的金属铁,将筛余物经过研磨后使其全部通过0.08mm 方孔筛,将样品充分混匀后,装入带有磨口塞的瓶中并密封。
⒉测定步骤1) 称取约0.5g 试样(m ),精确至0.0001g :2) 置于100mL 烧杯中,加入30~40mL 水使其分散;3) 加10mL 盐酸(1+1),用平头玻璃棒压碎块状物,慢慢地加热溶液,直至水泥分解完全;4) 将溶液加热微沸5min ,用定量滤纸过滤,用热水洗涤10~12次;5) 凋整滤液体积至200mL ~250mL ,煮沸,在搅拌下滴加10mL 热的氯化钡溶液,继续煮沸10分钟;6) 移至温热处静置4h 或过夜(此时溶液的体积应保持在200mL 左右);7) 用定性滤纸过滤,用温水洗涤,用硝酸银溶液直至检验无氯离子为止;8) 将沉淀及滤纸一并移入已灼烧恒量的瓷坩埚中,灰化后在800℃的马弗炉内灼烧60min ;9) 取出坩埚置于干燥器中冷却至室温,称量;试样中三氧化硫含量按式(1)计算: 13m 0.343SO (%=100%m⨯⨯) (1) 式中 m 1——灼烧后沉淀的质量,g ;m ——试样的质量,g ;0.343——硫酸钡对三氧化硫的换算系数;同一试样应分别测两次,两次结果的绝对误差应在0.15%以内,如超出允许范围,应在短时间内进行第三次测定,若结果与前两次或任一次分析结果之差符合规定,则取平均值,否则,应查找原因,重新按上述规定进行分析。
水泥三氧化硫含量试验硫酸钡重量法
水泥三氧化硫含量试验硫酸钡重量法1. 引言水泥是一种广泛应用于建筑行业的重要材料,而其中的三氧化硫(SO3)含量是评估水泥质量的重要指标之一。
高含量的SO3会导致水泥熟料矿物相组成发生变化,从而对混凝土的强度和耐久性产生不利影响。
准确测定水泥中的SO3含量对于保证建筑物的结构安全和使用寿命至关重要。
本文将介绍一种常用的试验方法——硫酸钡重量法,用于测定水泥中三氧化硫的含量。
该方法基于SO3与BaCl2反应生成沉淀的原理,通过称量沉淀物得出SO3含量。
2. 实验步骤2.1 准备工作•将所需试剂准备好,包括稀盐酸(HCl)、硝酸银(AgNO3)、硝酸钡(Ba(NO3)2)等。
•准备所需仪器设备,包括天平、热板、玻璃容器等。
2.2 样品处理•将水泥样品研磨成细粉,并过筛以确保颗粒均匀。
•取约2克水泥样品,加入250毫升的稀盐酸中,用热板进行加热,使其完全溶解。
•加入适量硝酸银溶液,使其中的氯离子全部与硝酸银反应生成沉淀。
•过滤沉淀物,并用去离子水洗涤至无氯离子残留。
2.3 沉淀生成•将过滤后的溶液转移至锥形瓶中,加入适量的硝酸钡溶液。
•用去离子水将锥形瓶中的溶液稀释至一定体积,并充分搅拌。
2.4 沉淀收集•将锥形瓶中的溶液静置一段时间,待沉淀充分生成。
•将沉淀物用滤纸过滤,并用去离子水洗涤至无杂质残留。
•将滤纸与沉淀物一起转移到预先称重的钢模中。
2.5 沉淀干燥•将钢模放入烘箱中,以恒定的温度和时间进行干燥。
•取出钢模,冷却至室温后,用天平称量沉淀物的质量。
3. 结果计算3.1 确定SO3质量•记录沉淀物的质量(m1)。
•计算SO3的质量(m2):m2 = m1 × (233.4/233)。
3.2 计算SO3含量•根据水泥样品的质量(m0)和SO3的质量(m2),计算SO3含量:SO3含量= m2/m0 × 100%。
4. 实验注意事项•操作过程中需佩戴防护手套和护目镜,避免试剂接触皮肤和眼睛。
重量法测定水泥中三氧化硫的方法
重量法测定水泥中三氧化硫的方法1.基本原理[1]在酸性溶液中,用氯化钡溶液沉淀硫酸盐,即采用Ba2+离子将SO42-离子沉淀为BaSO4,沉淀经过滤、洗涤和灼烧后,以硫酸钡形式称量。
从而求得S、SO3或SO42-离子含量,测定结果以三氧化硫计。
2.仪器和试剂仪器:高温炉、坩埚、定量滤纸、电炉试剂:盐酸溶液:1:1(体积比)氯化钡溶液:10%(质量与体积之比)硝酸银溶液:1%(质量与体积之比)为克服硝酸银在水中发生水解和预防硝酸银见光分解,须将1g硝酸银溶解在适量水中,而后加入10ml浓硝酸,再稀释至100ml,并储存在棕色瓶中。
3.分析步骤3.1称取试样0.5g于200ml烧杯中,加40ml蒸馏水分散湿润试样,搅拌使试样完全分解,在搅拌下加入10ml盐酸溶液(1:1),用平头玻璃棒压碎块状物,置于电炉上微沸(5±0.5)min,取下冷却,用定量中速滤纸过滤,用热水洗涤10~12次,滤液及洗液收集于400ml 烧杯。
加水稀释至约250ml,加热煮沸3.2滤液于电炉上微沸时,从杯口缓慢逐滴加入10ml热的氯化钡溶液,继续微沸3min以上使沉淀良好地形成,然后在常温处静置12h~24h或温热处静置至少4h,此时溶液体积应保持在约200ml。
3.3进行第二次过滤,用定量慢速滤纸过滤,以温水洗涤,洗至无白色沉淀,用1%的硝酸银溶液检验。
3.4将滤纸移入已灼烧恒量的坩埚中,于电炉中灰化完全后,放入800℃~950℃的高温炉内灼烧30min,取出坩埚,置于干燥器中冷却至室温,称量。
反复灼烧直至恒量。
3.5计算: 3.6操作流程:称样→分解→第一次过滤→沉淀→第二次过滤→灰化→灼烧→称量沉淀→数据处理4.操作要求及注意事项4.1测定条件 4.1.1除去酸不溶物由于试样中含有SiO2.,用盐酸溶解试样时SiO2可能部分成硅酸凝胶析出影响测定,因此试样分解后,用中速定量滤纸过滤除去酸不溶物。
4.1.2控制溶液酸度在0.25~0.3mol/l左右(1)在这种酸度下进行沉淀,可防止生成BaCO3、Ba(PO4)2、BaHPO4、Ba(OH)2等沉淀。
浅析水泥中三氧化硫含量测定的方法
浅析水泥中三氧化硫含量测定的方法摘要:三氧化硫的测定方法很多,CB/T176-2008《水泥化学分析方法》标准中给出了五种三氧化硫测定方法。
本文针对硫酸钡重量法(基准法)通过大量的试验操作,对测定三氧化硫的方法原理、试验步骤、影响因素和试验中易出现的问题进行了分析总结。
对容易产生问题的步骤给出相应的操作要点,以提高测定的准确度和精确度。
关键词:三氧化硫;测定;硫酸钡重量法;操作要点水泥中的三氧化硫含量是评定水泥品质的重要指标和出厂检验的必要项目。
水泥中三氧化硫主要是磨制水泥时掺加石膏带入的,也可能是熟料中掺加矿化物或原燃材料带入的。
适当的三氧化硫可以有效地控制和调节水泥的凝结时间,改善水泥性能,如提高水泥强度,降低收缩性,改善抗冻、抗渗和耐腐蚀性。
但如果水泥中的三氧化硫过高,多余的三氧化硫在水泥硬化后将继续与水和铝酸三钙反应形成钙矾石,会产生膨胀应力,引起水泥石的体积膨胀,破坏水泥石结构而影响水泥的安定性。
所以,要严格控制水泥中三氧化硫的含量。
关于三氧化硫的测定方法很多,GB/T176-2008《水泥化学分析方法》标准中给出了五种三氧化硫测定方法,即硫酸钡重量法(基准法)、碘量法(代用法)、离子交换法(代用法)、铬酸钡分光光度法(代用法)、库仑滴定法(代用法)。
硫酸钡重量法为基准法,是水泥广和检验机构使用最多、最规范的一种方法:优点是测定准确、成本低、受环境影响小、适用范围广。
其它硫化物、硫酸盐和各种悸杏奠不会给测定结果造成误差。
本文主要针对基准法进行详细介绍。
1原理在酸性溶液中,用氧化钡溶液沉淀硫酸盐,经过滤灼烧后,以硫酸钡形式称量。
测定结果以三氧化硫计:其反应式如下:硫酸根与加入的氯化钡反应:Ba2++S042-=BaS04 ↓2仪器和试剂2.1仪器BS210S电子天平、SGM2884人工智能箱式电阻炉、坩埚、快速和中速定量滤纸、电炉。
2.2试剂盐酸溶液(1+1)氯化钡溶液:将100 g氯化钡溶于水中,加水稀释至1L硝酸银溶液:将0.5 g硝酸银溶于水中,加入1mL硝酸.加水稀释至100 mL,贮存于棕色瓶中。
水泥中三氧化硫含量的测定
水泥中三氧化硫含量的测定水泥中的三氧化硫是由石膏、熟料(特别是以石膏作矿化剂煅烧的熟料)或混合材料引入,在水泥制造时加入适量石膏可以调节凝结时间,还具有增强、减缩等作用。
制造膨胀水泥时,石膏还是一种膨胀组分,赋予水泥以膨胀等性能,但水泥中的三氧化硫含量过多,却会引起水泥体积安定性不良等问题,因此,在水泥生产过程中必须严格控制水泥中的三氧化硫含量。
测定水泥中三氧化硫含量的方法多种,如硫酸钡质量法、磷酸溶样-氯化亚锡还原- 碘量法以及离子交换法等。
一、测定原理1.硫酸钡质量法的测定原理用盐酸分解试样,时试样中不同形态的硫酸全部转变成可溶性的硫酸盐,以氯化钡沉淀剂,使之生成硫酸钡沉淀。
该沉淀的溶解度极小,化学性质非常稳定,经灼烧后称重,再换算得出三氧化硫的含量,反应式如下:=↓(白色 )2.碘量法的测定原理水泥中的硫主要以硫酸盐硫(石膏)存在,部分硫存在于硫化钙、硫化亚锰、硫化亚铁等硫化物中。
用磷酸溶解水泥试样时,水泥中的硫化物与磷酸发生下列反应,生成磷酸盐和硫化氢气体,其反应式如下:3CaS+2=+3S↑3MnS+2=+3S↑3FeS+2=+3S↑在有还原剂并加热的条件下,用浓磷酸溶解试样时,不仅硫化物与磷酸发生上述反应,硫酸盐也将与磷酸反应,生成的硫酸与还原剂氯化亚锡发生氧化还原反应,放出硫化氢气体。
3CaSO 4 +2H 3 PO 4 =Ca 3 (PO 4 ) 2 +3H 2PO 4 3H 2SO 4 +12SnCl 2 =6SnCl 4 +6SnO 2 +3H 2S根据碘酸钾溶液 (加有碘化钾) 在酸性溶液中析出碘的性质, 在 H2S 的吸收液中加入过量的碘酸钾标准溶液, 使在溶液酸化时析出碘, 并与硫化氢作用, 剩余的碘则用硫代硫酸钠回滴,其反应式如下:IO -3+5I - +6H + =3I 2 +3H 2OH 2S+I 2 =2HI+S2Na 2S 2O 3 +I 2 =2NaI+Na 2S 4 O 6利用上述反应, 先用磷酸处理试样, 使水泥中的硫化物生成硫化氢溢出,然后用氯化亚锡- 磷酸溶液处理试样,测定试样中的硫酸盐。
三氧化硫测定规程
三氧化硫测定规程(离子交换法)
1.目的
为保证水泥分析的准确性和操作的规范性,特制定本规程。
2.范围
用于水泥分析。
3.引用标准
水泥及其原材料化学分析
GB176-2008 水泥化学分析
4.内容
准确称取约0.2g 水泥试样,精确至0.0001g,置于预先放入5g 树脂100ml 热水及一根磁力搅拌棒的150ml 烧杯中,摇动烧杯使试样分散,然后加40ml 沸水,立即置于电磁搅拌器上搅拌10 min ,取下以快速定性滤纸过滤,用热水洗涤树脂残渣4-5次(每次洗液不超过15ml 并过滤),滤液收集于预先放有2 g 树脂及一根磁力搅拌棒的150ml 烧杯中(此时溶液体积在100ml 左右)。
将烧杯再置于电磁搅拌器上,搅拌3 min ,取下以快速定性滤纸过滤,以热水冲洗烧杯与滤纸的树脂5-6次,滤液及洗液收集与300 ml 烧杯中。
向溶液中加5-6滴酚酞指示剂(1%(W/V ))乙醇溶液,用0.06mol/L 氢氧化钠标准滴定溶液滴定至微红色,保存滤纸上的树脂当下次分析第一次交换用。
三氧化硫的百分含量按下式计算:
式中: T SO3-----每毫升氢氧化钠标准溶液相当于三氧化硫的毫克数;
V---滴定时消耗氢氧化钠标准溶液的体积;
M----试料的质量
100
33⨯⨯=m V
T SO SO
5.附则
5.1 本规程由品质处起草并归口管理。
5.2 本规程于2004年6月发布并实施,2009年6月第二次修订再版。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•
树脂的再生处理:将用过的带有水泥残渣的树脂放入烧杯
中,用水清洗数次以除去水泥残渣。将树脂浸泡在稀盐酸中,
当积至一定数量后,倾出其中夹带的残渣,再按钠型树脂转变
为H型树脂的方法进行再生。
3) 0.05mol/L氢氧化钠标准溶液:将20g氢氧化钠溶于10L水中,充 分摇匀后,储存于带胶塞(装有钠石灰干燥管)的硬质玻璃瓶内。
• 以 中 速 滤 纸 过 滤 , 用 温 水 洗 涤 10~12 次 。 调 整 滤 液 体 积 至 200m1,煮沸,在搅拌下滴加10ml氯化钡溶液[10%(W/V)], 并将溶液煮沸数分钟,然后移至温热处静止4h或过夜(此溶液 体积应保持在200ml)。
• 用慢速滤纸过滤,以温水洗至无氯根反应(用硝酸银溶液检验)。
也须用酸进行再生,使其重新转变成氢型以继续使用。
(2)材料、试剂与仪器
1) 水泥试样
2) H型732苯乙烯强酸性阳离子交换树脂(1x12)或类似性能的树脂
•
钠型树脂转变为H型树脂的处理方法;将250g 732苯乙烯强
酸性阳离子交换树脂(1x12)用250ml 95%乙醇浸泡过滤,然后倾
出乙醇,再用水浸泡6~8h。将树脂装入离子交换柱(直径约5cm,
CaSO4+2(R-SO3)Na
(R-SO3)2Ca+Na2SO4
生成的硫酸钠为中性盐,滴定时不与氢氧化钠反应,
从而导致结果偏低。为此,在处理树脂时,不应使用静态
交换法,而必须使用动态交换法,这样才能确保获得纯的
氢型树脂。
2) 已处理好的氢型树脂在放置的过程中,往往会逐渐析出游 离酸。因此,在使用之前应将所用的树脂以水洗静,不然 会由此而给分析结果造成可观的偏高误差。
•
Ba2++SO2-4 =BaSO4 (白色)
(2)试剂
• 盐酸(1+1); • 氯化钡溶液[10%(W/V)]; • 硝酸取约0.5g水泥试样,置于300ml烧杯中,加入30~40ml 水及10ml盐酸,加热至微沸,并保持微沸5min,使试祥充分 分解。
• CaSO4(固体) • •
Ca2++ SO42-+2 (R-SO3 ·H) (R-SO3 )2·Ca+2H+ + SO42-
• 或 CaSO4 + 2 (R-SO3 ·H) (R-SO3 )2·Ca+ H2SO4
• 物在将石水膏解与,树生脂成发氢生氧离化子钙交与换硅的酸同时,水泥中的C3S等矿
数;
•
G ——苯二甲酸氢钾的质量,g;
•
V——滴定时消耗氢氧化钠标准溶液的体积,ml;
•
0.2042——每毫克当量苯二甲酸氢钾的克数;
•
0.04——每毫克当量三氧化硫的克数。
4) 1%酚酞指示剂溶液:将1g酚酞溶于100ml 95%乙醇中。 5) 分析天平:不低于四级。 6) 磁力搅拌器:200—300转/分。 7) 离子交换柱;长约70 cm,直径5cm。 8) 其他:烧杯、量简、快速定性滤纸、过滤漏斗等。
4) 由于试样中磷、氟、氯等酸性物质将与NaOH反应,使滴定 结果偏高,故本方法含有F-、C1-、PO4-3等的工业副产石膏 及氟铝酸盐的水泥是不适用的。但可以将离子交换后的溶液 用硫酸钡重量法(控制溶液酸度在0.2~0.4mol/L之间)测定三 氧化硫,也可用静态离子交换——返滴定法测定三氧化硫。
• 然而不少工厂使用硬石膏、混合石膏(二水石膏与硬石膏的 混合物)作缓凝剂,由于硬石膏溶解速度较慢,静态离子交换 往往不够完全,使分析结果偏低。
• 用动态法虽能提高离子交换率,但分离手续将增加,时间 也较长。此外,使用含氟、氯、磷的石膏(如工业副产石膏、 盐用石膏等)或含有其他可被交换盐类的石膏作缓凝剂,以及 使用萤石和石膏作复合矿化剂时.水泥中将含F-、PO43-、Cl等离子,它们将与回滴生成硫酸的NaOH作用,使三氧化硫分 析结果偏高。因此,离子交换法适应性还较差。
1. 硫酸钡质量法测定水泥中三氧化硫
(1) 测定原理
•
由于在磨制水泥中,需加入于定量石膏,加
入量的多少主要反映在水泥中SO42-离子的数量 上。所以可采用BaCl2作沉淀剂,用盐酸分解, 控制溶液浓度在0.2~0.4mol/L的条件下,用BaCl2 沉淀SO42-离子,生成BaSO4沉淀。此沉淀的溶解 度很小(其KSPSO4=1.1×10-10),化学性质非常稳 定,灼烧后所得的称量形式BaSO4符合质量分析 的要求。反应式为:
•
2NaOH+ H2SO4 = Na2SO4+2H2O
• 在强酸性阳离子交换树脂中,若含钠型树脂时,它提供
交使交换换的产阳物离H子2S为ON4 a量+,减与少石,膏由交Na换OH的溶结液果滴将定生算成得NSaO2S3O含4,量 偏低。强酸性阳离子交换树脂出厂时一般为钠型,所以在
使用时须预先用酸处理成氢型。用过的树脂(主要是钙型),
当石膏全部溶解后,将树脂及残渣滤除所得滤液,由 于C3S等水解的影响,使其中尚含Ca(OH)2和CaSO4。为使 存Ca在SO于4全滤部液转中化的成C等a当(O量H)的2 中H和2SO,4,并必使须滤在液滤中除尚树未脂转和化残的渣 后的滤液中再加入树脂进行第二次交换,其反应按式如上。 然后滤除树脂,用已知浓度的氢氧化钠标准溶液滴定生成 的硫酸,根据消耗氢氧化钠标准溶液的毫升数,计算试样 中三氧化硫百分含量
第四节 水泥中三氧化硫的测定方法
水泥熟料在粉磨过程中,必须加入适量的 石膏起到缓凝的作用。石膏与C3A反应形成钙矾 石包裹在C3A表面,阻止了其快速水化和闪凝。 钙矾石的形成吸收了大量结晶水,如果水泥中 含有过量的三氧化硫,水泥水化后发生该反应, 则在硬化的水泥体中形成针棒状的钙矾石晶体 造成水泥石的膨胀,引起水泥安定性不良。
2. 离子交换法分析水泥中三氧化硫含量
•
离 子 交 换 法 是 采 用 强 酸 性 阳 离 子 交 换 的 树 脂 (Ion
exchange resin)与硫酸钙进行离子交换,生成硫酸。用氢
氧化钠标准溶液滴定生成的硫酸,从而推算出三氧化硫
的含量。
•
按操作方法不同,又可分为静态离子交换法和动态
离子交换法。将过量的离子交换树脂放在交换溶液中搅
• 将沉淀及滤纸一并移入已灼烧恒量的瓷坩埚中,灰化后在 800℃的高温炉中灼烧30min。取出坩埚,置于干燥器中冷却 至室温,称量。如此反复灼烧,直至恒量。
(4)结 果 计 算
• 三氧化硫的百分含量按下式计算:
• SO3%= m1 0.3430100 (1—4) m
• 式中 m1——灼烧后沉淀的质量(g); m ——试样质量(g);0.5g 0.3430——硫酸钡对SO3的换算系数。
2) 将烧杯再置于磁力搅拌器上搅拌3min,取下,以快速定性滤 纸将溶液过滤于300ml烧杯中,用热水倾泻洗涤4~5次(尽量 不把树脂倾出)。保存树脂,供下次分析时第一次交换用。
3) 向溶液中加入7~8滴1%酚酞指示剂溶液,用0.05mol/L 氢氧 化钠标准溶液滴定至微红色。
4) 三氧化硫的质量分数按下式计算
长约70cm)中,用1500ml 3mol/L盐酸溶液以5ml/min的流速进
行淋洗,然后用蒸馏水逆洗交换柱中的树脂,直至流出液中的
氯根反应消失为止(用1%硝酸银溶液校验)。树脂倒出,用布氏
漏斗以抽气泵或抽气管抽滤,然后储存于广口瓶中备用。树脂
在放置过程中将析出游离酸,会使测定结果偏高。故使用应再
用水清洗数次。
SO3%= TSO3 V 100 % G 1000
式中 TSO3——每毫升氢氧化钠标准溶液相当于三氧化硫的 毫克数,mg/ml; V——滴定时消耗氢氧化钠标准溶液的体积,ml; G——试样质量,g。
(4)影响因素与注意事项
1) 应注意所用氢型树脂一定要确保其中不含有其他的盐型树 脂(如Na型),否则在交换过程中产生下述交换反应
•
3CaO·SiO2+nH2O Ca(OH)2+SiO2·mH2O
• 所H2得SOC4a作(O用H,)2一生部成分Ca与SO树4,脂再发与生树离脂子交交换换,,反另应一式部为分与
•
Ca(OH)2+2(R-SO3·H) (R-SO3)2·Ca+2H2O
•
Ca(OH)2+ H2SO4
CaSO4+2H2O
(1)基本原理
• 水泥中的三氧化硫主要来自石膏(gypsum),在强酸性 阳离子交换树脂R-SO3·H的作用下.石膏在水中迅速溶 解,离解成Ca2+和SO42- 离子。 Ca2+离子迅速与树脂酸 性基团的H+离子进行交换,析出H+离子,它与石膏中 SO42-作用生成H2SO4(硫酸),直至石膏全部溶解。其离 子交换反应式为
•
标定方法:准确称取约0.3g苯二甲酸氢钾置于400ml烧杯中,
加入约150ml新煮沸过的并已用氢氧化钠溶液中和至酚酞呈微
红色的冷水,搅拌使其溶解,然后加入2~3滴1%酚酞指示剂溶
液,用配好的氢氧化钠溶液滴定至微红色。
•
氢氧化钠标准溶液对三氧化硫的滴定度按下式计算
G 0.041000 • 式中TSO3——每毫TS升O3氢氧化V钠 0标.2准04溶2液相当于三氧化硫的毫克
3) 用离子交换法测定水泥中的三氧化硫,重要的前提是必须把 试样中的硫酸钙完全提取到溶液中。当水泥中的石膏是硬石 膏或混合石膏(二水石膏和硬石膏)时,由于有些硬石膏溶解 速度较慢,用本方法测定时因离子交换时间较短,在此期间 石膏往往不能完全提取到溶液中去,使测定结果偏低。遇此 情况,可将试样磨细一些,并将试样的质量由0.5g减为0.2g, 第一次静态交换的时间由原2min延长至10min,必要时也可 将树脂由原来的2g增至5g。第二次交换的条件仍不变。这样 上述问题得以解决,但进入溶液中的硅酸量也相应增大。