高中数学测试题简单

合集下载

高中数学三角函数测试试卷简单(完美版)

高中数学三角函数测试试卷简单(完美版)

一.单选题(共__小题)1.已知0≤x≤2π,且sinx<cosx,则x的取值范围是()A.B.C.D.2.已知a=sin(-1),b=cos(-1),c=tan(-1),则a、b、c的大小关系是()A.a<b<c B.a<c<b C .b <a<c D .c <a <b已知函数f(x)=Asin(ωx+φ)(ω>0,|φ|<)的部分图象如图,则函数f(x)的解析式为()A.f(x)=4sin(x-)B.f(x)=-4sin(x+)C.f(x)=-4sin(x-)D.f(x)=4sin(x+)4.已知函数f(x)=Atan(ωx+φ)(ω>1,|φ|<),y=f(x)的部分图象如图,则f()=()A.B.C.D.5.函数的最小值为()A.8B.10C.12D.6.α,β都是锐角,且,,则sinβ的值是()A.B.C.D.7.已知,tanα,tanβ是关于方程x2+2011x+2012=0的两根,则α+β=()A.B.C.或D.或8.已知函数f(x)=sin(ωx)在[0,10π]上恰好存在5个最大值,则ω的取值范围是()A.5B.C.D.如图所示,设点A是单位圆内的一定点,动点P从点A出发在圆上按逆时针方向旋转一周,点P所旋转过的弧的长为l,原点O到弦AP的长为d,则函数d=f(l)的图象大致是()A.B.C.D.....11.若0<x<,则2x与3sin x的大小关系()A.2x>3sin x B.2x<3sin x C.2x=3sin x D.与x的取值有关12.在△ABC中,若3cos(A-B)+5cosC=0,则tanC的最大值为()A.-B.-C.-D.-2函数y=Asin(ωx+ϕ)(A>0,ω>0)的部分图象如图所示,则f(1)+f(2)+f(3)+…+f(11)的值等于()A.B.C.D.14.已知α,β是锐角,sinα=x,cosβ=y,cos(α+β)=-,则y与x的函数关系式为()A.-+B.C.D.x(<x<1)二.填空题(共__小题)17.若sinθ,cosθ是关于x的方程5x2-x+a=0(a是常数)的两个根,θ∈(0,π),则cos2θ=______.18.已知,则的值为______.19.已知向量,,x∈[0,π],则的取值范围为______.20.在数1和2之间插入n个正数,使得这n+2个数构成递增等比数列,将这n+2个数的乘积记为A n,令a n=log2A n,n∈N*.(1)数列{a n}的通项公式为a n=______;(2)T n=tana2•tana4+tana4•tana6+…+tana2n•tana2n+2=______.21.已知α、β均为锐角,且tanβ=,则tan(α+β)=______.22.已知13sinα+5cosβ=9,13cosα+5sinβ=15,那么sin(α+β)的值为______.23.已知α,β为锐角,且tanα=,tanβ=,tanβ=,则α+2β=______.(结果要求弧度表示)圆O的半径为1,P为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A与点P重合)沿圆周逆时针滚动,点A第一次回到点P的位置,则点A走过的路径的长度为______.25.给出下列命题:①存在实数α,使sinαcosα=1;②存在实数α,使;③是偶函数;三.简答题(共__小题) 27.已知函数f (x )=sin 2x+sinxcosx(Ⅰ)求函数f (x )的单调递增区间; (Ⅱ)求函数f (x )在区间[0,]上的取值范围.28.已知函数,x ∈R .(1)求证f (x )的小正周期和最值; (2)求这个函数的单调递增区间. 29.已知函数f (x )=2sin 2x+2sinxcosx-1(1)求函数f (x)的最小正周期;(2)求函数f (x )的最小值及相应x 的值. 30.函数f (x )=sin2x--(1)若x 属于[,],求f (x )的最值及对应的x 值; (2)若不等式[f (x )-m]2<1在x 上恒成立,求实数m 的取值范围.一.单选题(共__小题)1.已知0≤x≤2π,且sinx<cosx ,则x 的取值范围是()A.B.C.D.答案:D解析:解:画出单位圆以及0≤x≤2π,sinx=MP,cosx=OM,因为0≤x≤2π,且sinx<cosx,从图中可知x的取值范围是故选D.2.已知a=sin(-1),b=cos(-1),c=tan(-1),则a、b、c的大小关系是()A.a<b<c B.a<c<b C.b<a<c D.c<a<b答案:D解析:MP、余弦线OM,观察他们的长度,OM>MP>AT,cos(-1)>sin(-1)>tan(-1),所以c<a<b故选D.已知函数f(x)=Asin(ωx+φ)(ω>0,|φ|<)的部分图象如图,则函数f(x)的解析式为()A.f(x)=4sin(x-)B.f(x)=-4sin(x+)C.f(x)=-4sin(x-)D.f(x)=4sin(x+)答案:B解析:解:由图象可得A=-4,==6-(-2),解得ω=,故函数的解析式可写作f(x)=-4sin(x+φ),代入点(6,0)可得0=-4sin(+φ),故+φ=kπ,k∈Z,即φ=kπ-,又|φ|<,故当k=1时,φ=,故选BA.B.C.D.答案:B解析:解:由题意可知T=,所以ω=2,函数的解析式为:f(x)=Atan(2x+φ),因为函数过(0,1),所以,1=Atanφ…①,函数过(),0=Atan(+φ)…②,解得:φ=,A=1.∴f(x)=tan(2x+).则f()=tan()=故选B.5.函数的最小值为()A.8B.10C.12D.答案:B解析:解:∵=3++2=3+cot+2.∴(y-1)+(4-y )tan +1=0,则一元二次方程(y-1)x 2+(4-y )x+1=0 在(0,1)内有解.∴△=(4-y )2-4(y-1)≥0,(y-2)(y-10)≥0,y ≥10. 故两根之和等于=1-∈[,1),两根之积等于∈(0,],所以是两个正数根,两个根均在(0,1)内,故有y ≥10,即y 的最小值为10. 6.α,β都是锐角,且,,则sin β的值是( )A .B .C .D .答案:C 解析:解:α,β都是锐角,∴α+β∈(0,π), ∵∴cos α===,∵∴sin (α+β)===∴sin β=sin[(α+β)-α]=sin (α+β)cos α-cos (α+β)sin α ==故选C . 7.已知,tan α,tan β是关于方程x 2+2011x+2012=0的两根,则α+β=( ) A .B .C .或D .或答案:B故可得tan(α+β)===1,又,,故tanα,tanβ均为负值,故,故α+β∈[-π,0),故α+β=-故选B8.已知函数f(x)=sin(ωx)在[0,10π]上恰好存在5个最大值,则ω的取值范围是()A.5B.C.D.答案:D解析:解:∵函数f(x)=sin(ωx)在[0,10π]上恰好存在5个最大值,设其周期为T,则4T≤10π<5T,又即•≤10π<•,解得≤ω<,∴ω的取值范围是[,).故选D.如图所示,设点A是单位圆内的一定点,动点P从点A出发在圆上按逆时针方向旋转一周,点P所旋转过的弧的长为l,原点O到弦AP的长为d,则函数d=f(l)的图象大致是()答案:D 解析:解:连接OP ,得∠POA==l作OB ⊥PA 于B ,则可得△POB 中,由∠POB=或(2π-l ) |cos |==d所以函数d=f (l )=|cos |=∴由此对照各个选项,得只有D 选项符合题意 故选:D10.同时具有性质:“(1)最小正周期是π;(2)图象关于直线对称;(3)在区间上是增函数”的一个函数是( )A .B .C .D .答案:C 解析:解:A 、由得,函数的周期为4π,故A 不对;把代入解得:k=1,即此方程是函数的对称轴,由-≤x≤0得,,即函数在区间上是增函数,故C正确;D、由-≤x≤0得,,即函数在区间上是减函数,故D不对.故选C.11.若0<x<,则2x与3sin x的大小关系()A.2x>3sin x B.2x<3sin x C.2x=3sin x D.与x的取值有关答案:D解析:解:设g(x)=2x-3sinx,则g′(x)=2-3cosx,当0<x<arccos时,g′(x)<0,g(x)是减函数,g(x)<g(0)=0,∴2x<3sinx;当arccos<x<时,g‘(x)>0,g(x)是增函数,但g(arccos)<0,g()>0,∴在区间[arccos,)有且仅有一点θ使g(θ)=0;当arccos≤x<θ时,g(x)<g(θ)=0,2x<3sinx;当θ<x<时,g(x)>g(θ)=0,2x>3sinx;∴当0<x<θ时,2x<3sinx;当x=θ时,2x=3sinx;当θ<x<时,2x>3sinx.故选:D.12.在△ABC中,若3cos(A-B)+5cosC=0,则tanC的最大值为()A.-B.-C.-D.-2答案:B即3cosAcosB+3sinAsinB-5cosAcosB+5sinAsinB=0,故8sinAsinB=2cosAcosB,tanAtanB=,tanA+tanB≥2=1,∴tan(A+B)=≥=,则tanC=-tan(A+B)≤-,当且仅当tanA=tanB时,等号成立,故选:B.函数y=Asin(ωx+ϕ)(A>0,ω>0)的部分图象如图所示,则f(1)+f(2)+f(3)+…+f(11)的值等于()A.B.C.D.答案:C解析:解:由函数y=Asin(ωx+ϕ)(A>0,ω>0)的部分图象可得A=2,ϕ=0,且×=4-0,∴ω=.∴函数y=2sin(x),且函数的周期为8.由于f(1)+f(2)+f(3)+…f(8)=0,∴f(1)+f(2)+f(3)+…f(11)=f(1)+f(2)+f(3)=2sin+2sin+2sin=2+2,故选C.14.已知α,β是锐角,sinα=x,cosβ=y,cos(α+β)=-,则y与x的函数关系式为()A.-B.C.D .<x<1)答案:A解析:解:∵知α,β是锐角,sinα=x,cosβ=y,cos(α+β)=-,∴-sinα=cos(α+90°)<cos(α+β)=-⇒x>;∴cosα==;sin(α+β)==.∴cos β=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα=-+x(<x<1)故选:A.二.填空题(共__小题)15.已知角α的终边与单位圆交于点P(x,y),且x+y=-,则tan(α+)=______.答案:±解析:解:由题意可得x+y=-,x2+y2=1,tanα=,求得或,∴tanα=-或tanα=-.旋转,则经过5秒后点P转过的弧长是______cm.答案:100解析:解:如图,连接OP且延长到圆点A,∵CD=6cm,OD=5cm∴OP=4cm∵A、P两点角速度相同,∴5秒后P点转过的角度为25弧度,∴P转过的弧长为25×4=100(cm).故答案为:10017.若sinθ,cosθ是关于x的方程5x2-x+a=0(a是常数)的两个根,θ∈(0,π),则cos2θ=______.答案:-解析:解:因为sinθ,cosθ是关于x的方程5x2-x+a=0的两个根,所以sinθ+cosθ=,sinθcosθ=,又因为(sinθ+cosθ)2=1+2sinθcosθ,所以,解得a=-.因为sinθ+cosθ=>0,sinθcosθ==<0,所以θ∈(,π),所以sinθ-cosθ>0,所以sinθ-cosθ=.已知,则的值为.答案:-解析:解:∵,∴=3,解得tanα=-2,∴===-故答案为:-19.已知向量,,x∈[0,π],则的取值范围为______.答案:[0,2]解析:解:∵,,∴=(cos+cos,sin-sin),∴===,∵x∈[0,π],∴2x∈[0,2π],∴-1≤cos2x≤1,即]0≤2+2cos2x≤4,∴的范围是[0,2].故答案为:[0,2].(2)T n=tana2•tana4+tana4•tana6+…+tana2n•tana2n+2=______.答案:-n解析:解:(1)设在数1和2之间插入n个正数,使得这n+2个数构成递增等比数列为{b n},则b1=1,b n+2=2=1×q n+1,即q n+1=2,q为此等比数列的公比.∴A n=1•q•q2•q3…q n+1=q1+2+3+…+(n+1)===,∴a n=log2A n=,故答案为:.(2)由(1)可得a n=log2A n=,又tan1=tan[(n+1)-1]=,∴tan(n+1)tann=,∴tana2n•tana2n+2=tan(n+1)tan(n+2)═-1,n∈N*.T n=tana2•tana4+tana4•tana6+…+tana2n•tana2n+2=( -1)+( -1)+(-1)+…+(-1)=-n,n∈N*,故答案为:-n.21.已知α、β均为锐角,且tanβ=,则tan(α+β)=______.答案:1解析:解析:∵tanβ=,故答案为:1.22.已知13sinα+5cosβ=9,13cosα+5sinβ=15,那么sin(α+β)的值为______.答案:解析:解:∵13sinα+5cosβ=9,13cosα+5sinβ=15两式平方相加得194+130sinαcosβ+130cosαsinβ=306即∴故答案为23.已知α,β为锐角,且tanα=,tanβ=,tanβ=,则α+2β=______.(结果要求弧度表示)答案:解析:解:∵tanα=,tanβ=,tanβ=,∴tan2β===,∴2β仍为锐角,∴tan(α+2β)===1.再根据α,2β为锐角,可得α+2β∈(0,π),∴α+2β=,圆O的半径为1,P为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A与点P重合)沿圆周逆时针滚动,点A第一次回到点P的位置,则点A走过的路径的长度为______.答案:解析:解:由图可知:∵圆O的半径r=1,正方形ABCD的边长a=1,∴以正方形的边为弦时所对的圆心角为,正方形在圆上滚动时点的顺序依次为如图所示,∴当点A首次回到点P的位置时,正方形滚动了3圈共12次,设第i次滚动,点A的路程为A i,则A1=×|AB|=,A2=×|AC|=,A3=×|DA|=,A4=0,∴点A所走过的路径的长度为3(A1+A2+A3+A4)=.故答案为:.25.给出下列命题:①存在实数α,使sinαcosα=1;其中正确命题的序号是______ 答案:③④ 解析:解:∵sinαcos α=sin2α=1∴sin2α=2,与正弦函数的值域矛盾,故①不对; ∵sin α+cos α=)≤,从而可判断②不对;∵=sin ()=cos2x ,为偶函数,故③正确;将x=代入到y=sin (2x+)得到sin (2×+)=sin=-1,故是函数的一条对称轴方程,故④正确.故答案为:③④.26.已知扇形的圆心角为,弧长为,则该扇形的面积为______.答案:解析:解:∵扇形的圆心角为,弧长为,∴扇形的半径为4, ∴扇形的面积为=.故答案为:.三.简答题(共__小题)27.已知函数f (x )=sin 2x+sinxcosx(Ⅰ)求函数f (x )的单调递增区间;令,则x ∈∴函数f (x )的单调递增区间为(Ⅱ)因为x ∈[0,], 所以,所以,因此,即f (x )的取值范围为[0,]. 解析:解:(Ⅰ)f (x )=sin 2x+sinxcosx==令,则x ∈∴函数f (x )的单调递增区间为 (Ⅱ)因为x ∈[0,], 所以, 所以,因此,即f (x )的取值范围为[0,].28.已知函数,x ∈R .(1)求证f (x )的小正周期和最值; (2)求这个函数的单调递增区间. 答案:解;(1)=cos2x+sin2x+=sin (2x+)+函数的周期T==π解析: 解;(1)=cos2x+sin2x+=sin (2x+)+函数的周期T==π∵-1≤sin (2x+)≤1∴≤sin (2x+)+≤即≤f (x )≤(2)当-+2k π≤2x+≤+2k π⇒x ∈[-+k π,+k π]为函数的单调增区间. 29.已知函数f (x )=2sin 2x+2sinxcosx-1(1)求函数f (x )的最小正周期; (2)求函数f (x )的最小值及相应x 的值. 答案: 解:(1)==,则,(2)当时,,则函数f (x )取得最小值为-2. 此时,.解析:解:(1)==,则函数f(x)取得最小值为-2.此时,.30.函数f(x)=sin2x--(1)若x属于[,],求f(x)的最值及对应的x值;(2)若不等式[f(x)-m]2<1在x上恒成立,求实数m的取值范围.答案:解:(1)f(x)=sin2x--=sin(2x-)-1,∵x属于[,],∴2x-∈[,],∴2x-=,即x=时,函数取得最小值-;2x-=,即x=时,函数取得最大值0;(2)[f(x)-m]2<1等价于m-1<f(x)<m+1,∵不等式[f(x)-m]2<1在x上恒成立,∴,∴-1<m<.解析:解:(1)f(x)=sin2x--=sin(2x-)-1,∵x属于[,],∴2x-∈[,],∴2x-=,即x=时,函数取得最小值-;2x-=,即x=时,函数取得最大值0;(2)[f(x)-m]2<1等价于m-1<f(x)<m+1,∵不等式[f(x)-m]2<1在x上恒成立,。

高中数学必修综合测试题

高中数学必修综合测试题

高中数学必修综合测试题一、选择题(每题3分,共15分)1. 下列哪个数不是有理数?A. πB. √2C. -3D. 0.333...2. 若函数f(x) = 2x^2 - 3x + 1在区间[-1, 2]上是增函数,则f(x)的最小值出现在:A. x = -1B. x = 0B. x = 1D. x = 23. 已知等差数列的前三项分别为a, a+d, a+2d,若该数列的前三项和为12,则a的值为:A. 2B. 3C. 4D. 64. 已知一个圆的半径为5,圆心到直线的距离为3,那么直线与圆的位置关系是:A. 相切B. 相交C. 相离D. 内切5. 若sin(α) = 1/3,且α为锐角,求cos(α)的值:A. 2√2/3B. 4/9C. √3D. 2√2二、填空题(每题2分,共10分)6. 已知等比数列的首项为2,公比为3,其第五项为_____________。

7. 若f(x) = x^3 - 2x^2 + x - 2,求f(-1)的值为_____________。

8. 已知三角形ABC的三边长分别为a, b, c,且满足a^2 + b^2 =c^2,根据勾股定理,该三角形是_____________三角形。

9. 若直线y = 2x + 3与x轴的交点坐标为_____________。

10. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∩B的结果为_____________。

三、解答题(共75分)11. 解不等式:\( x^2 - 4x + 3 < 0 \)(10分)12. 证明:若\( \sin A + \sin B + \sin C = 0 \),\( \cos A +\cos B + \cos C = 0 \),且A, B, C为三角形ABC的内角,求证:三角形ABC是等边三角形。

(15分)13. 已知函数f(x) = \( \frac{2x}{x^2 + 1} \),求f(x)的导数f'(x),并讨论f(x)的单调性。

高中数学集合测试题(附答案和解析)

高中数学集合测试题(附答案和解析)

高中数学集合测试题(附答案和解析)一、单选题1.已知集合{}1,4,M x x =,{}21,N x =,若N M ⊆,则实数x 组成的集合为( ) A .{}0 B .{}2,2- C .2,0,2 D .2,0,1,22.已知集合{|A x y ==,{}0B x x =>,则A B ⋃=( ) A .{|3}x x ≤ B .{|1}x x ≥- C .{}|3x x > D .{}|0x x > 3.已知全集{}2,1,1,4U =--,{}2,1A =-,{}1,4B =,则()U A B ⋃=( ). A .{}2-B .{}2,1-C .{}1,1,4-D .{}2,1,1--4.已知集合{}21,A y y x x ==-∈Z ,{}25410B x x x =--≤,则A B =( ) A .{}1B .{}0,1C .{}0,1,2D .{}1,3,55.设集合{}2,1,0,1,2,3A =--,{|B x y ==,则A B =( ) A .{}2B .{}0,1C .{}2,3D .{}2,1,0,1,2-- 6.已知集合{1,1},{0,1}A B =-=,设集合{,,}C z z x y x A y B ==+∈∈∣,则下列结论中正确的是( )A .A C ⋂=∅B .AC A ⋃= C .B C B =D .A B C =7.已知集合{}35A x x =-≤<,{B x y ==,则()R A B ⋂=( )A .13,2⎡⎫--⎪⎢⎣⎭B .1,52⎛⎫- ⎪⎝⎭C .[)3,2--D .()2,5-8.已知集合{}1,0,1,2,|sin 02k A B k π⎧⎫=-==⎨⎬⎩⎭,则A ∩B =( ) A .{-1,1}B .{1,2}C .{0,2}D .{0,1,2}9.已知集合{|A x y ==,集合{|1}B x x =<,则A B =( ) A .[)1,1- B .(1,1)- C .(,1)-∞ D .(0,1)10.已知集合{}14A x x =-≤≤,{}260B x N x x =∈--≤ ,则A B =( ) A .[]1,3- B .[]2,4- C .{}1,2,3 D .{}0,1,2,311.已知函数()2ln 3y x x =-的定义域为A ,集合{}14B x x =≤≤,则()A B =R ( )A .{0,1,2,3,4}B .{1,2,3}C .[0,4]D .[1,3] 12.设集合{|12}A x x =-<<,{|2}B x a x a =-<<,若{|10}A B x x =-<<,则A B ⋃=( )A .(2,1)-B .(2,2)-C .(1,2)-D .(0,2)13.已知集合{}21A x x =-<<,{}03B x x =≤≤,则A B ⋃=( )A .{}01x x ≤<B .{}23x x -<≤C .{}13x x <≤D .{}01x x <<14.已知集合{}2|20,A x x x x R =--≤∈,{}|14,B x x x Z =-<<∈,则A B =( ) A .(1,2]-B .(1,2)-C .{}0,2D .{}0,1,2 15.已知集合{}1,0,1,2A =-,{}12B x x =-<<,则A B =( )A .{}1,0,1-B .{}0,1C .{}1,1,2-D .{}1,2二、填空题16.如图,设集合,A B 为全集U 的两个子集,则A B =____________.17.若全集U =R ,集合{}31A x x =-≤≤,{}32A B x x ⋃=-≤≤,则U B A =___________.18.某班有39名同学参加数学、物理、化学课外研究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参见数学和化学小组有多少人__________.19.设全集R U =,集合{}3,1A =-,{}22,1B m m =--,且A B =,则实数m =______.20.已知集合A 与B 的关系如下图,则图中所示的阴影部分用集合表示为________.(要求用集合A 与B 的符号关系表示)21.已知集合{}2A x x =<,{}2,0,1,2B =-,则A B =_______.22.已知集合(){}2,M x y y x ==∣,(){},0N x y y ==,则M N =______.23.在下面的写法中:①∅ {}0;②{}{}00,1∈;③0∈∅;④{}{}0,11,0⊆;⑤{}0∅∈,错误..的写法的序号是______. 24.若全集{}0,1,2,3,4U =,{}012M =,,,{}2,3N =,则M N ⋂=______. 25.若集合{}|21A x x =-<≤,{}|13B x x =<≤,{}|2C x x =>,则()A B C =______.三、解答题26.已知集合{}37A x x =≤<,{}210B x x =<<,{}C x x a =<.(1)求A B ,()A B R ;(2)若A C ⋂≠∅,求a 的取值范围.27.已知集合{}3A x a x a =≤≤+,{1B x x =<-或5}x >.(1)若A B =∅,求a 的取值范围;(2)若A B A =,求a 的取值范围.28.设r 为正实数,若集合(){}22,4M x y x y =+≤,()()(){}222,11N x y x y r =-+-≤.当M N N =时,求r 的取值范围.29.设{}24,21,A a a =--,{}5,1,9B a a =--,已知{}9A B ⋂=,求a 的值.30.已知集合(){}2log 31A x x =->,22112y y B y -⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭. (1)分别求出集合A 、B ;(2)设全集为R ,求()R A B ⋂.【参考答案】一、单选题1.C【解析】【分析】若N M ⊆,所以2x x =或24x =,解出x 的值,将x 的值代入集合,检验集合的元素满足互异性.【详解】因为N M ⊆,所以2x x =,解得0x =,1x =或24x =,解得2x =±,当0x =时,{}1,4,0M =,{}1,0N =,N M ⊆,满足题意.当1x =时,{}1,4,1M =,不满足集合的互异性.当2x =时,{}1,4,2M =,1,4N,若N M ⊆,满足题意. 当2x =-时,{}1,4,2M =-,1,4N,若N M ⊆,满足题意.故选:C.2.B【解析】【分析】由分式不等式求得集合A ,再根据并集的原则求解即可.【详解】 对于集合A ,满足1033x x x +⎧≥⎪-⎨⎪≠⎩,即()()3103x x x ⎧-+≤⎨≠⎩, 解得13x -≤<,即{}13A x x =-≤<, 又{}0B x x =>,所以{}1A B x x ⋃=≥-,故选:B3.D【解析】【分析】由集合的补集运算求U B ,再利用集合的并集运算求()U A B 即可. 【详解】由题意得,{}U 2,1B =--,又{}2,1A =-,(){}{}{}U 2,12,12,1,1AB ==---=--,故答案为:D.4.A【解析】首先解一元二次不等式求出集合B ,再根据交集的定义计算可得;【详解】解:由25410x x --≤,即()()5110x x +-≤,解得115x -≤≤, 所以{}215410|15B x x x x x ⎧⎫=--≤=-≤≤⎨⎬⎩⎭, 又{}{}21,,3,1,1,3,5,A y y x x Z ==-∈=--,所以{}1A B ⋂=;故选:A5.C【解析】【分析】 根据偶次根式有意义及一元二次不等式的解法,再结合集合的交集的定义即可求解.【详解】由y =()()250x x --≥,解得25x ≤≤,所以{}|25B x x =≤≤,A B ={}{}{}2,1,0,1,2,3|252,3x x --≤≤=,故选:C.6.C【解析】【分析】 由题意得{1,0,1,2}C =-,再由交集和并集运算求解即可.【详解】由题意可知,{1,0,1,2}C =-,{1,1}A C ⋂=-,{}1,0,1,2A C C ⋃=-=,{0,1},{1,0,1}B C B A B C ⋂==⋃=-≠.故选:C7.A【解析】【分析】先求出集合B ,得出其补集,再由交集运算得出答案.【详解】由420x +≥,得21x ≥-,即集合1,2B ⎡⎫=-+∞⎪⎢⎣⎭, 所以R 1,2B ∞⎛⎫=-- ⎪⎝⎭.所以()R 13,2A B ⎡⎫=--⎪⎢⎣⎭. 故选:A8.C【分析】 先求{}2,B k k n n Z ==∈,再求交集即可.【详解】∵集合{}1,0,1,2A =-,{}sin 0?2,2k B k k k n n Z π⎧⎫====∈⎨⎬⎩⎭, 则{}0,2A B =.故选:C .9.A【解析】【分析】求出集合A ,根据集合的交集运算即可求得答案.【详解】由题意得:{|{|1}A x y x x ===≥-,故{|11}A B x x ⋂=-≤<,故选:A10.D【解析】【分析】由题知{}0,1,2,3B =,再根据集合交集运算求解即可.【详解】解:解不等式260x x --≤得23x -≤≤,所以{}{}2600,1,2,3B x N x x =∈--≤=, 因为{}14A x x =-≤≤所以A B ={}0,1,2,3故选:D11.D【解析】【分析】根据对数函数的性质,可知230x x ->,由此即可求出集合A ,进而求出A R ,再根据交集运算即可求出结果.【详解】由题意可知,230x x ->,所以0x <或3x >, 所以{}{}03A x x x x =<>,故{}03A x x =≤≤R ,所以()[]1,3R A B =.故选:D.12.B【解析】由{}10A B x x ⋂=-<<,求出0a =,{}20B x x =-<<,由此能求出A B .【详解】 集合{}12A x x =-<<,{}2B x a x a =-<<,{}10A B x x ⋂=-<<,0a ∴=,{}20B x x ∴=-<<,满足题意则(2,2)=-A B .故选:B .13.B【解析】【分析】根据集合的并集计算即可.【详解】{}21A x x =-<<,{}03B x x =≤≤{}|23A B x x ∴=-<≤,故选:B14.D【解析】【分析】解不等式后求解【详解】220x x --≤,解得[1,2]A =-,{0,1,2}A B ⋂=故选:D15.B【解析】【分析】利用交集概念及运算,即可得到结果.【详解】∵集合{}1,0,1,2A =-,{}12B x x =-<<,∴{}0,1A B =,故选:B二、填空题16.{}1,2,3,4,5【解析】【分析】由题知{}{}1,2,3,4,3,4,5A B ==,进而求并集即可.【详解】解:由题知{}{}1,2,3,4,3,4,5A B ==,所以{}1,2,3,4,5A B =.故答案为:{}1,2,3,4,517.{}12x x <≤##(]1,2【解析】【分析】由集合A ,以及集合A 与集合B 的并集确定出集合B ,以及求出集合A 的补集,再根据交集运算即可求出结果.【详解】因为{}31A x x =-≤≤,{}32A B x x ⋃=-≤≤,所以{3U x x A =<-或}1x >,{}{}1232x x x B x ⊆<≤⊆-≤≤,所以{}12U B A x x =<≤.故答案为:{}12x x <≤.18.5【解析】【分析】设参加数学、物理、化学小组的同学组成的集合分别为A ,B 、C ,根据容斥原理可求出结果.【详解】设参加数学、物理、化学小组的同学组成的集合分别为A ,B 、C ,同时参加数学和化学小组的人数为x ,因为每名同学至多参加两个小组,所以同时参加三个小组的同学的人数为0,如图所示:由图可知:20654939x x x -+++++-=,解得5x =,所以同时参加数学和化学小组有5人.故答案为:5.19.3或-1##-1或3【解析】【分析】根据集合相等得到223m m -=,解出m 即可得到答案.【详解】由题意,2233m m m -=⇒=或m =-1.故答案为:3或-1.20.()A B A B ⋃【解析】【分析】由集合的交并补运算求解即可.【详解】设全集为A B ,则阴影部分表示集合A 与B 交集的补集,即()A B A B ⋃ 故答案为:()A B A B ⋃21.{}0,1【解析】【分析】先求出集合A ,然后根据交集的定义求得答案.【详解】 由题意,{}22A x x =-<<,所以{}0,1A B =.故答案为:{}0,1.22.(){}0,0【解析】【分析】根据题意,得到两集合均为点集,联立20y x y ⎧=⎨=⎩求解,即可得出结果. 【详解】因为集合(){}2,M x y y x ==∣表示直线2y x 上所有点的坐标,集合(){},0N x y y ==,表示直线0y =上所有点的坐标,联立20y x y ⎧=⎨=⎩,解得00x y =⎧⎨=⎩ 则(){}0,0M N =.故答案为:(){}0,0.23.②③⑤【解析】【分析】根据集合与集合的关系,元素与集合的关系确定正确答案.【详解】①,空集是任何非空集合的真子集,①正确.②,集合与集合间是包含关系,不是“属于”,元素与集合之间是属于关系,②错误. ③,空集没有任何元素,③错误.④,根据集合元素的无序性可知④正确.⑤,集合与集合间是包含关系,不是“属于”,元素与集合之间是属于关系,⑤错误. 故答案为:②③⑤24.{}3【解析】【分析】由交集、补集的定义计算.【详解】 由题意{4,3}M =,所以M N ⋂={3}.故答案为:{3}.25.{}|23x x <≤【解析】【分析】先求得A B ,然后求得()A B C .【详解】{}23A B x x =|-<≤,()A B C ={}|23x x <≤.故答案为:{}|23x x <≤三、解答题26.(1){}210A B x x ⋃=<<,R (){|23A B x x =<<或710}x ≤<; (2)()3,+∞.【解析】【分析】(1)直接利用集合并集、交集和补集的定义求解;(2)分析A C ⋂≠∅即得解.(1)解:因为A ={x |3≤x <7},B ={x |2<x <10}, 所以{}210A B x x ⋃=<<.因为A ={x |3≤x <7},所以R {|3A x x =<或 7}x ≥则R (){|23A B x x =<<或710}x ≤<.(2) 解:因为A ={x |3≤x <7},C ={x |x a <},且A C ⋂≠∅,所以3a >.所以a 的取值范围为()3,+∞.27.(1)[]1,2-(2)()(),45,-∞-+∞【解析】【分析】(1)根据交集的定义,列出关于a 的不等式组即可求解;(2)由题意,A B ⊆,根据集合的包含关系列出关于a 的不等式组即可求解;(1) 解:∵{}3,{1A x a x a B x x =≤≤+=<-或5}x >,且A B =∅, ∴135a a ≥-⎧⎨+≤⎩,解得12a -≤≤, ∴a 的取值范围为[]1,2-;(2) 解:∵{}3,{1A x a x a B x x =≤≤+=<-或5}x >,且A B A =,∴A B ⊆,∴31a +<-或5a >,即4a或5a >, ∴a 的取值范围是()(),45,-∞-+∞.28.02r <≤-【解析】【分析】 确定集合的元素,由两位置关系可得.【详解】M N N =,则N M ⊆,集合M 表示以原点O 为圆心,2为半径的圆及圆内部分,集合N 表示以点C (1,1)为圆心,r 为半径的圆及内部,OC =2r OC -≥=02r <≤29.-3【解析】【分析】根据{}9A B ⋂=,分219a -=和29a =,讨论求解.【详解】解:因为{}24,21,A a a =--,{}5,1,9B a a =--,且{}9A B ⋂=,所以当219a -=时,解得5a =,此时{}{}4,9,25,0,4,9A B =-=-,不符合题意; 当29a =时,解得3a =或3a =-,若3a =,则{}{}4,52,9,9,,2B A =--=-,不成立;若3a =-,则{}{}4,7,9,8,4,9A B =--=-,成立;所以a 的值为-3.30.(1){}5A x x =>,{0B y y =<或}2y >(2)(){}R 5A B x x ⋂=≤【解析】【分析】(1)利用对数函数和指数函数的单调性可分别求得集合A 、B ;(2)求出A B ,利用补集的定义可求得集合()R A B ⋂. (1)解:(){}{}{}2log 31325A x x x x x x =->=->=>,{}{222112002y y B y y y y y y -⎧⎫⎪⎪⎛⎫=<=->=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭或}2y >. (2)解:由(1)可得{}5A B x x ⋂=>,因此,(){}R 5A B x x ⋂=≤.。

普通高中新数学课程标准的测试题(包括答案)

普通高中新数学课程标准的测试题(包括答案)

普通高中新数学课程标准的测试题(包括答案)第一题已知直线AB与直线CD垂直交于点E,且AE=8cm,BE=6cm,CE=12cm,求ED的长度是多少?答案:根据直角三角形的勾股定理可得,ED的长度为10cm。

第二题已知函数f(x) = 2x^2 + 3x - 5,求f(x)的最小值点的横坐标是多少?答案:首先,可以通过求导数的方法找到f(x)的最小值点。

对f(x)求导得到f'(x) = 4x + 3。

令f'(x) = 0,解得x = -3/4。

所以,f(x)的最小值点的横坐标为-3/4。

第三题已知集合A = {1, 2, 3, 4, 5},集合B = {3, 4, 5, 6, 7},求A与B的交集和并集分别是哪些元素?答案:A与B的交集是{3, 4, 5},并集是{1, 2, 3, 4, 5, 6, 7}。

第四题已知三角形ABC的三个内角分别为30°,60°,90°,求三角形ABC的周长。

答案:根据三角形的性质可知,三角形ABC是一个特殊的30°-60°-90°三角形。

设BC = x,则AC = x√3,AB = 2x。

所以,三角形ABC的周长为x + x√3 + 2x = (3 + √3)x。

第五题已知函数f(x) = 3x^2 - 2x + 4,求f(x)的对称轴方程。

答案:对称轴方程可以通过求函数f(x)的一阶导数的零点得到。

对f(x)求导得到f'(x) = 6x - 2。

令f'(x) = 0,解得x = 1/3。

所以,f(x)的对称轴方程为x = 1/3。

第六题已知等差数列的首项是2,公差是5,求该等差数列的前10项之和。

答案:等差数列的前n项和可以通过公式Sn = (n/2)(a + l)得到,其中Sn表示前n项和,a表示首项,l表示末项。

根据已知条件,首项a = 2,公差d = 5,所以末项l = a + (n-1)d = 2 + 9*5 = 47。

高中数学测试题及答案

高中数学测试题及答案

高中数学测试题及答案1. 选择题题目:已知函数 y = 3x^2 - 2x + 1,求该函数的图像与 x 轴交点的个数。

答案:该函数是一个二次函数,其图像与 x 轴交点的个数由函数的判别式决定。

判别式Δ = b^2 - 4ac,其中 a、b、c 分别是二次函数的三个系数。

代入题目给出的函数,有Δ = (-2)^2 - 4(3)(1) = 4 - 12 = -8。

判别式小于0,说明该函数的图像与 x 轴没有交点,即答案为0个。

题目:已知正实数 a、b 的比值为 2:3,且它们的和是100,求 a、b的值。

答案:假设 a 的值为 2x,b 的值为 3x,其中 x 为一个正实数。

根据题目条件,有 2x + 3x = 100,即 5x = 100,解得 x = 20。

将 x 的值代入,可以得到 a = 2(20) = 40,b = 3(20) = 60。

因此,a 的值为40,b 的值为60。

2. 计算题题目:已知√3 + 2x = 5,求 x 的值。

答案:将等式两边都平方,得到3 + 4x√3 + 4x^2 = 25。

移项后,有4x^2 + 4x√3 - 22 = 0。

解这个二次方程,可以使用求根公式,即 x = [-b ± √(b^2 - 4ac)] / (2a)。

代入题目给出的系数,有 x = [-4√3 ± √(4√3^2 -4(4)(-22))] / (2(4)) 。

化简得到 x = [-√3 ± √(3 + 4(22))] / 8。

进一步计算,x = [-√3 ± √(91)] / 8。

因此,x 的值有两个解:x = (-√3 + √(91)) / 8 和 x= (-√3 - √(91)) / 8。

题目:某班共有男生 40 人,女生 60 人。

男生平均身高为 170cm,女生平均身高为 160cm。

求整个班级的平均身高。

答案:根据题目条件,男生人数为 40,女生人数为 60。

高中数学必修一测试题

高中数学必修一测试题

高中数学必修一测试题一、选择题(每题4分,共40分)1. 下列哪个数不是实数?A. πB. -2C. √2D. i2. 函数f(x) = 2x^2 + 3x - 5的图像关于哪条直线对称?A. x = -1B. x = 0C. x = 1D. x = 23. 若x + y = 5,且xy = 3,求x^2 + y^2的值。

A. 13B. 16C. 19D. 254. 已知等差数列的前三项分别为2,5,8,求第10项的值。

A. 23B. 25C. 27D. 295. 一个圆的半径为5,求其面积。

A. 25πC. 75πD. 100π6. 以下哪个是二次方程的根?A. x = 1/2B. x = 2C. x = -2D. x = 37. 已知函数y = 3x - 2,当x = 1时,y的值是多少?A. 1B. 3C. 5D. 78. 一个等比数列的首项为2,公比为3,求第5项的值。

A. 162B. 243C. 486D. 7299. 以下哪个是一元二次方程的判别式?A. b^2 - 4acB. b^2 + 4acC. a^2 - 4bcD. a^2 + 4bc10. 已知三角形的两边长分别为3和4,且夹角为60°,求第三边的长度。

A. 5C. √13D. √21二、填空题(每题3分,共15分)11. 求函数f(x) = x^3 - 2x^2 + x - 2在x = 1处的导数值。

__________12. 已知等差数列的前n项和为S_n,若S_5 = 25,求a_3。

__________13. 求圆心在原点,半径为7的圆的方程。

__________14. 已知函数y = √x + 1,求其在x = 4时的切线斜率。

__________15. 已知三角形ABC中,AB = 5,AC = 7,BC = 6,求角B的余弦值。

__________三、解答题(每题5分,共45分)16. 解一元二次方程:x^2 - 5x + 6 = 0。

高中数学函数测试题及答案

高中数学函数测试题及答案

高一数学一、选择题(每小题5分,共60分,请将所选答案填在括号内)1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是( )A .B=A ∩CB .B ∪C=CC .A ⊂CD .A=B=C 2.下列各组角中,终边相同的角是( )A .π2k 与)(2Z k k ∈+ππB .)(3k 3Z k k ∈±πππ与C .ππ)14()12(±+k k 与 )(Z k ∈D .)(66Z k k k ∈±+ππππ与3.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是 ( )A .2B .1sin 2C .1sin 2D .2sin 4.设α角的终边上一点P 的坐标是)5sin,5(cos ππ,则α等于 ( )A .5πB .5cotπC .)(1032Z k k ∈+ππD .)(592Z k k ∈-ππ5.将分针拨慢10分钟,则分钟转过的弧度数是( )A .3πB .-3πC .6πD .-6π6.设角α和β的终边关于y 轴对称,则有( )A .)(2Z k ∈-=βπαB .)()212(Z k k ∈-+=βπαC .)(2Z k ∈-=βπαD .)()12(Z k k ∈-+=βπα7.集合A={},322|{},2|Z n n Z n n ∈±=⋃∈=ππααπαα, B={},21|{},32|Z n n Z n n ∈+=⋃∈=ππββπββ,则A 、B 之间关系为( )A .AB ⊂B .B A ⊂C .B ⊂AD .A ⊂B8.某扇形的面积为12cm ,它的周长为4cm ,那么该扇形圆心角的度数为 ( )A .2°B .2C .4°D .4 9.下列说法正确的是( )A .1弧度角的大小与圆的半径无关B .大圆中1弧度角比小圆中1弧度角大≠ ≠≠C .圆心角为1弧度的扇形的弧长都相等D .用弧度表示的角都是正角 10.中心角为60°的扇形,它的弧长为2π,则它的内切圆半径为 ( )A .2B .3C .1D .2311.一个半径为R 的扇形,它的周长为4R ,则这个扇形所含弓形的面积为 ( )A .2)1cos 1sin 2(21R ⋅- B .1cos 1sin 212⋅RC .221RD .221cos 1sin R R ⋅⋅- 12.若α角的终边落在第三或第四象限,则2α的终边落在 ( )A .第一或第三象限B .第二或第四象限C .第一或第四象限D .第三或第四象限二、填空题(每小题4分,共16分,请将答案填在横线上) 13.αααsin 12sin2cos-=-,且α是第二象限角,则2α是第 象限角.14.已知βαπβαππβαπ-2,3,34则-<-<-<+<的取值范围是 .15.已知α是第二象限角,且,4|2|≤+α则α的范围是 .16.已知扇形的半径为R ,所对圆心角为α,该扇形的周长为定值c ,则该扇形最大面积为.三、解答题(本大题共74分,17—21题每题12分,22题14分)17.写出角的终边在下图中阴影区域内角的集合(这括边界)(1) (2) (3)18.一个视力正常的人,欲看清一定距离的文字,其视角不得小于5′. 试问:(1)离人10米处能阅读的方形文字的大小如何?(2)欲看清长、宽约0.4米的方形文字,人离开字牌的最大距离为多少?19.一扇形周长为20cm ,当扇形的圆心角α等于多少弧度时,这个扇形的面积最大?并求此扇形的最大面积?20.绳子绕在半径为50cm 的轮圈上,绳子的下端B 处悬挂着物体W ,如果轮子按逆时针方向每分钟匀速旋转4圈,那么需要多少秒钟才能把物体W 的位置向上提升100cm? 21.已知集合A={}810,150|{},135|≤≤-︒⋅==∈︒⋅=k k B Z k k ββαα求与A ∩B 中角终边相同角的集合S.22.单位圆上两个动点M 、N ,同时从P (1,0)点出发,沿圆周运动,M 点按逆时针方向旋转6π弧度/秒,N 点按顺时针转3π弧度/秒,试求它们出发后第三次相遇时的位置和各自走过的弧度.高一数学参考答案(一)一、1.B 2.C 3.B 4.D 5.A 6.D 7.C 8.B 9.A 10.A 11.D 12.B 二、13.三 14. )6,(ππ-15.]2,2(),23(πππ⋃--16.162C三、17.(1)}1359013545|{Z k k k ∈︒⋅+︒≤≤︒⋅+︒αα;(2)}904590|{Z k k k ∈︒⋅+︒≤≤︒⋅αα;; (3)}360150360120|{Z k k k ∈︒⋅+︒≤≤︒⋅+︒-αα.18.(1)设文字长、宽为l 米,则)(01454.0001454.01010m l =⨯==α; (2)设人离开字牌x 米,则)(275001454.04.02m l x ===.19.221021,220rr rS r-=⋅⋅=-=αα,当2,5==αr 时,)(252maxcm S =.20.设需x 秒上升100cm .则ππ15,100502460=∴=⨯⨯⨯x x (秒).21.}360k 1350360|{Z k k S ∈︒⋅=︒-︒-==ααα或.22.设从P (1,0)出发,t 秒后M 、N 第三次相遇,则πππ636=+t t ,故t =12(秒).故M 走了ππ2126=⨯(弧度),N 走了ππ4123=⨯(弧度).同步测试(2)任意角的三角函数及同角三角函数的基本关系式一、选择题(每小题5分,共60分,请将所选答案填在括号内)1.已知)20(παα<<的正弦线与余弦线相等,且符号相同,那么α的值为 ( )A .ππ434或 B .ππ4745或C .ππ454或D .ππ474或2.若θ为第二象限角,那么)2cos(sin )2sin(cos θθ⋅的值为( )A .正值B .负值C .零D .为能确定 3.已知αααααtan ,5cos 5sin 3cos 2sin 那么-=+-的值为( )A .-2B .2C .1623 D .-16234.函数1sectan sin cos 1sin1cos )(222---+-=x x xxxx x f 的值域是( )A .{-1,1,3}B .{-1,1,-3}C .{-1,3}D .{-3,1} 5.已知锐角α终边上一点的坐标为(),3cos 2,3sin 2-则α= ( )A .3-πB .3C .3-2πD .2π-36.已知角α的终边在函数||x y -=的图象上,则αcos 的值为( )A .22 B .-22 C .22或-22 D .217.若,cos 3sin 2θθ-=那么2θ的终边所在象限为( )A .第一象限B .第二象限C .第三象限D .第四象限 8.1sin 、1cos 、1tan 的大小关系为( )A .1tan 1cos 1sin >>B .1cos 1tan 1sin >>C .1cos 1sin 1tan >>D .1sin 1cos 1tan >>9.已知α是三角形的一个内角,且32cos sin =+αα,那么这个三角形的形状为 ( )A .锐角三角形B .钝角三角形C .不等腰的直角三角形D .等腰直角三角形 10.若α是第一象限角,则ααααα2cos ,2tan,2cos,2sin ,2sin 中能确定为正值的有( )A .0个B .1个C .2个D .2个以上11.化简1csc 2csc csc 1tan 1sec 22+++++ααααα(α是第三象限角)的值等于( )A .0B .-1C .2D .-2 12.已知43cos sin =+αα,那么αα33cos sin -的值为( )A .2312825B .-2312825C .2312825或-2312825D .以上全错二、填空题(每小题4分,共16分,请将答案填在横线上) 13.已知,24,81cos sin παπαα<<=⋅且则=-ααsin cos .14.函数x xy cos lg 362+-=的定义域是_________.15.已知21tan -=x ,则1cos sin 3sin2-+x x x =______.16.化简=⋅++αααα2266cos sin 3cos sin . 三、解答题(本大题共74分,17—21题每题12分,22题14分) 17.已知.1cos sin ,1sin cos =-=+θθθθby a x by a x 求证:22222=+by ax .18.若xxx xx tan 2cos 1cos 1cos 1cos 1-=+---+, 求角x 的取值范围.19.角α的终边上的点P 和点A (b a ,)关于x 轴对称(0≠ab )角β的终边上的点Q 与A 关于直线x y =对称. 求βαβαβαcsc sec cot tan sec sin ⋅+⋅+⋅的值. 20.已知c b a ++=-+θθθθ2424sin sin 7cos 5cos 2是恒等式. 求a 、b 、c 的值. 21已知αsin 、βsin 是方程012682=++-k kx x 的两根,且α、β终边互相垂直.求k 的值.22.已知α为第三象限角,问是否存在这样的实数m ,使得αsin 、αcos 是关于x 的方程012682=+++m mx x 的两个根,若存在,求出实数m ,若不存在,请说明理由.高一数学参考答案(二)一、1.C 2.B 3.D 4.D 5.C 6.C 7.C 8.C 9.B 10.C 11.A 12.C 二、13.23-14. ⎥⎦⎤⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫⎢⎣⎡--6,232,223,6ππππ 15.52 16.1 三、17.由已知⎪⎪⎩⎪⎪⎨⎧-=+=,cos sin ,cos sin θθθθbx ax故 2)()(22=+bxax.18.左|sin |cos 2|sin ||cos 1||sin ||cos 1|x x x x x x =--+==右,).(222,0sin ,sin cos 2|sin |cos 2Z k k x k x xx x x ∈+<<+<-=∴ππππ19.由已知P (),(),,a b Q b a -,ab ab bb a ba b =-=+=+-=βαβαcot ,tan ,sec ,sin 2222,ab aab a2222csc ,sec +=+=βα , 故原式=-1-022222=++ab a ab.20.θθθθθθθ2424224sin 9sin 27sin 55sin 2sin 427cos 5cos 2-=--++-=-+,故0,9,2=-==c b a . 21.设,,22Z k k ∈++=ππαβ则αβcos sin =,由⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=⋅=⋅=+=+≥+⨯--=∆,1cos sin ,812cos sin ,43cos sin ,0)12(84)6(22222121212ααααααx x k x x k x x k k 解知910-=k ,22.假设存在这样的实数m ,.则⎪⎪⎪⎩⎪⎪⎪⎨⎧>+=⋅-=+≥+-=∆,0812cos sin ,43cos sin ,0)12(32362m m m m αααα 又18122)43(2=+⨯--m m ,解之m=2或m=.910-而2和910-不满足上式. 故这样的m 不存在.高一数学同步测试(3)—正、余弦的诱导公式一、选择题(每小题5分,共60分,请将所选答案填在括号内) 1.若,3cos )(cos x x f =那么)30(sin ︒f 的值为 ( )A .0B .1C .-1D .232.已知,)1514tan(a =-π那么=︒1992sin( ) A .21||aa + B .21aa + C .21aa +- D .211a+-3.已知函数1tan sin )(++=x b x a x f ,满足.7)5(=f 则)5(-f 的值为 ( )A .5B .-5C .6D .-6 4.设角则,635πα-=)(cos )sin(sin 1)cos()cos()sin(222απαπααπαπαπ+--+++--+的值等于( )A .33 B .-33 C .3 D .-35.在△ABC 中,若)sin()sin(C B A C B A +-=-+,则△ABC 必是 ( )A .等腰三角形B .直角三角形C .等腰或直角三角形D .等腰直角三角形6.当Z k ∈时,])1cos[(])1sin[()cos()sin(απαπαπαπ+++++⋅-k k k k 的值为( )A .-1B .1C .±1D .与α取值有关7.设βαβπαπ,,,(4)cos()sin()(b a x b x a x f ++++=为常数),且,5)2000(=f 那么=)2004(f ( )A .1B .3C .5D .7 8.如果).cos(|cos |π+-=x x 则x 的取值范围是( ) A .)(]22,22[Z k k k ∈++-ππππB .)()223,22(Z k k k ∈++ππππC .)(]223,22[Z k k k ∈++ππππD .)()2,2(Z k k k ∈++-ππππ9.在△ABC 中,下列各表达式中为常数的是 ( )A .CB A sin )sin(++ B . AC B cos )cos(-+C .2tan2tanC B A ⋅+D .2sec2cos A C B ⋅+ 10.下列不等式上正确的是( )A .ππ74sin75sin> B .)7tan(815tanππ->C .)6sin()75sin(ππ->- D .)49cos()53cos(ππ->-11.设,1234tan a =︒那么)206cos()206sin(︒-+︒-的值为( )A .211aa ++ B .-211aa ++ C .211aa +- D .211aa +-12.若)cos()2sin(απαπ-=+,则α的取值集合为 ( )A .}42|{Z k k ∈+=ππαα B .}42|{Z k k ∈-=ππααC .}|{Z k k ∈=πααD .}2|{Z k k ∈+=ππαα二、填空题(每小题4分,共16分,请将答案填在横线上) 13.已知,2cos 3sin =+αα则=+-ααααcos sin cos sin .14.已知,1)sin(=+βα则=+++)32sin()2sin(βαβα . 15.若,223tan 1tan 1+=+-θθ则=⋅--+θθθθθcos sin cot 1)cos (sin .16.设)cos()sin()(21απαπ+++=x n x m x f ,其中m 、n 、1α、2α都是非零实数,若 ,1)2001(=f 则=)2002(f .三、解答题(本大题共74分,17—21题每题12分,22题14分)17.设sin ,(0)()(1)1,(0)x x f x f x x π<⎧=⎨-+≥⎩和1cos ,()2()1(1)1,()2x x g x g x x π⎧<⎪⎪=⎨⎪-+≥⎪⎩求)43()65()31()41(f g f g +++的值.18.已知,1)sin(=+y x 求证:.0tan )2tan(=++y y x19.已知αtan 、αcot 是关于x 的方程0322=-+-k kx x 的两实根,且,273παπ<<求)sin()3cos(απαπ+-+的值.20.已知,3cos 3cot )(tan x x x f -=(1)求)(cot x f 的表达式;(2)求)33(-f 的值.21.设)(x f 满足)2|(|cos sin 4)(sin 3)sin (π≤⋅=+-x xx x f x f ,(1) 求)(x f 的表达式;(2)求)(x f 的最大值.22.已知:∑=+⋅=ni n i i S 1)32cos(ππ ,求.2002S 。

高中生数学测试题及答案

高中生数学测试题及答案

高中生数学测试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 3.14159B. √2C. 0.33333D. 2/3答案:B2. 函数f(x)=x^2的图像关于哪条直线对称?A. x=0B. x=1C. y=xD. y=-x答案:A3. 集合{1,2,3}和{2,3,4}的交集是什么?A. {1}B. {2,3}C. {3,4}D. {1,2,3,4}答案:B4. 已知等差数列的前三项为2, 5, 8,求第四项。

A. 11B. 10C. 9D. 12答案:A5. 圆的面积公式是什么?A. A=πr^2B. A=2πrC. A=πd^2D. A=πd/2答案:A6. 函数y=3x+2的斜率是多少?A. 3B. 2C. 1/3D. 1/2答案:A7. 一个数的立方根是它本身,这个数可以是:A. 0B. 1C. -1D. 以上都是答案:D8. 一个三角形的三个内角之和是多少度?A. 90度B. 180度C. 360度D. 270度答案:B9. 等腰三角形的两个底角相等,这个说法是正确的吗?A. 正确B. 错误答案:A10. 一个数的绝对值是它本身,这个数可以是:A. 正数B. 负数C. 0D. 以上都是答案:D二、填空题(每题4分,共20分)1. 一个数的相反数是-5,那么这个数是______。

答案:52. 一个数的平方是25,那么这个数可以是______。

答案:±53. 一个数的绝对值是5,那么这个数可以是______。

答案:±54. 一个等差数列的前三项是3, 6, 9,那么这个数列的公差是______。

答案:35. 一个圆的半径是5,那么它的周长是______。

答案:2π×5 = 10π三、解答题(每题10分,共50分)1. 解方程:2x - 3 = 7。

答案:x = 52. 已知一个三角形的两边长分别为3和4,第三边长是5,求这个三角形的面积。

高中生数学测试题及答案

高中生数学测试题及答案

高中生数学测试题及答案一、选择题(每题4分,共40分)1. 若函数f(x) = x^2 - 4x + 3,则f(1)的值为:A. 0B. 1C. 2D. 32. 已知等差数列{an}的首项a1=1,公差d=2,则a5的值为:A. 9B. 10C. 11D. 123. 若复数z满足|z|=1,则z的共轭复数的模为:A. 1C. 0D. 24. 已知函数f(x) = 2sin(x) + cos(x),x∈[0, 2π],则f(x)的最大值为:A. 3B. 2C. 1D. 05. 函数y=x^3 - 3x^2 + 2在x=1处的导数为:A. 0B. 1C. 2D. -16. 若直线l的方程为x+y-1=0,且点P(2,3)在直线l上,则直线l的斜率为:B. -1C. 0D. 27. 已知双曲线C的方程为x^2/a^2 - y^2/b^2 = 1 (a>0, b>0),焦点在x轴上,且过点(1, √2),则a的值为:A. 1B. 2C. √2D. √38. 已知向量a=(2, -1),b=(1, 2),则向量a和向量b的数量积为:A. 3B. 2C. 1D. 09. 若函数f(x) = x^3 - 3x^2 + 2x,x∈[0, 2],则f(x)的零点个数为:A. 0B. 1C. 2D. 310. 已知抛物线y=ax^2 + bx + c的顶点坐标为(1, -4),则a的值为:A. 2B. -2C. 4D. -4二、填空题(每题4分,共20分)11. 已知函数f(x) = x^2 - 6x + 8,求f(x)的对称轴方程为:_________________。

12. 已知等比数列{bn}的首项b1=2,公比q=3,则b4的值为:_________________。

13. 已知圆的方程为(x-2)^2 + (y+1)^2 = 9,求圆心坐标为:_________________。

14. 已知函数f(x) = 2^x - 1,求f(0)的值为:_________________。

高中数学集合测试题(附答案和解析)

高中数学集合测试题(附答案和解析)

高中数学集合测试题(附答案和解析)一、单选题1.已知集合{}1,2,3,4A =,2{|log ,}B y y x x x A ==-∈,则A B =( ) A .{}1,2B .{}1,3C .{}1,2,3D .{}1,3,42.已知集合{A xy =∣,{}0,1,2,3B =,则A B =( ) A .{3} B .{2,3} C .{1,2,3} D .{0,1,2,3}3.已知集合{}1,2,3A =,{}21,B y y x x A ==-∈,则A B =( ) A .{}1,2 B .{}1,2,3 C .{}1,3D .{}1,2,3,54.已知集合{}2|8120A x x x =-+<,{|14}B x Z x =∈<<,则A B =( )A .{1,2}B .{}2,4C .{3}D .∅5.已知集合{}N 15A x x =∈≤≤,{}05B x x =<<,则A B =( ) A .{}2,3,4B .{}1,2,3,4C .{}15x x ≤≤D .{}15x x ≤<6.已知R 为实数集,集合{}{}2340,ln(1)A x x x B x y x =--≤==-,则R A B ⋃=( )A .{}14x x <≤B .{}11x x -≤≤C .{}1x x ≥-D .{}4x x ≤7.已知集合{}{}2230,1A x x x B x x =--<=≤,则R()A B ⋂=( )A .(,1][1,)∞∞--⋃+B .(,1](1,)-∞-⋃+∞C .(]1,1-D .[1,1)- 8.已知集合{}{}|2,|(1)0A x x B x x x =>=->,则A B ⋃=( ) A .(-∞,0) B .()(),01,-∞⋃+∞ C .()(),02,-∞⋃+∞D .(2,+∞)9.设集合(){}ln 2A x y x ==-,{}13B x x =≤≤,则A B ⋃=( ) A .(]2,3 B .[)1,+∞ C .()2,+∞D .(],3-∞10.已知集合{|12}A x x =-<≤,{}2,1,0,2,4B =--,则()R A B ⋂=( ) A .∅B .{}1,2-C .{}2,4-D .{}2,1,4--11.已知函数()2log f x x =,()2g x a x =-,若存在[]12,1,2x x ∈,使得()()12f x g x =,则实数a 的取值范围是( ) A .()(),25,-∞⋃+∞ B .(][),25,-∞⋃+∞ C .()2,5D .[]2,512.已知集合(){},M x y y x ==,(){}22,|1N x y xy =+=,M N A ⋂=,则A 中元素个数为( )个. A .1B .2C .3D .4 13.设全集{}0,1,2,3,4U =,集合{}1,2,4A =,{}2,3B =,则()U A B ⋂=( ) A .{}2B .{}2,3C .{}0,3D .{}314.集合N A x x ⎧⎫=∈⎨⎬⎭⎩31,()}{N log B x x =∈+≤211,S A ⊆,S B ⋂≠∅,则集合S 的个数为( ) A .0B .2C .4D .815.设集合{}260A x x x =--≤,{}20B x x a =+≤,且{}21A B x x ⋂=-≤≤,则=a ( ) A .4-B .2-C .2D .4二、填空题16.如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,()1,2,,8i P i =是上底面上其余的八个点,()1,2,,8i i x AB AP i =⋅=则用集合列举法表示i x 组成的集合______.17.如图,用集合符号表述下列点、直线与平面之间的关系.(1)点C 与平面β:___________; (2)点A 与平面α:___________;(3)直线AB 与平面α:___________; (4)直线CD 与平面α:___________.18.若集合{}{}1,2,3,4,|23A B x x ==≤≤﹐则A B =_________. 19.已知集合{}1,2,3,4,A =,{}1,4,7,10,B =,下有命题:①{} 2,3,5,6,8,9,AB =;②若f 表示对二个数乘以3减去2的运算,则对应:f A B →表示一个函数; ③A 、B 两个集合元素个数相等; ④n A ∀∈,22n n ≥. 其中真命题序号是______.20.已知{}3A x a x a =≤≤+,{}15b x x =-<<,A B =∅,则实数a 的取值范围是______ 21.集合(){},A x y y a x ==,(){},B x y y x a ==+,C AB =,且集合C 为单元素集合,则实数a 的取值范围是________.22.已知[]x 表示不超过x 的最大整数.例如[2.1]2=,[ 1.3]2-=-,[0]0=,若{[]}A y y x x ==-∣,{0}∣=≤≤B y y m ,yA 是yB ∈的充分不必要条件,则m 的取值范围是______.23.已知集合{1,2,3}A =,则满足A B A ⋃=的非空集合B 有_________个.24.已知集合{}1,0,1A =-,{}220B x x x =-=,则A B ⋃=______.25.写出集合{1,1}-的所有子集______.三、解答题26.(1)已知全集{}|510,Z U x x x =-≤≤∈,集合M ={|07,Z x x x ≤≤∈},N ={|24,Z x x x -<∈≤},求()U N M (分别用描述法和列举法表示结果);(2)已知全集{}0,1,2,3,4,5,6,7,8,9,10U A B =⋃=,若集合{}2,4,6,8UA B =,求集合B ;(3)已知集合2{|210,R,R}P x ax ax a x =++=∈∈,当集合P 只有一个元素时,求实数a 的值,并求出这个元素.27.函数()()sin 22sin cos 1a x f x a x x +=+-.(1)若1a =,,02x π⎡⎫∈-⎪⎢⎣⎭,求函数()f x 的值域;(2)当,02x ⎡⎤∈-⎢⎥⎣⎦π,且()f x 有意义时,①若(){}0y y f x ∈=,求正数a 的取值范围; ②当12a <<时,求()f x 的最小值N .28.已知集合2111x A x x +⎧⎫=<⎨⎬-⎩⎭,{(1)(2)0}B x x x m =-+<. (1)当1m =时,求A B ;(2)已知“x A ∈”是“x B ∈”的必要条件,求实数m 的取值范围.29.已知集合{|lg(3)A x y x ==-,2{|9200}B x x x =-+≤,{|121}C x a x a =+≤<-.若()C A B ⊆,求实数a 的取值范围.30.已知U =R ,{}2=160A x x -<,{}2=3180B x x x -++>,求A B ,A B .【参考答案】一、单选题 1.A 【解析】 【分析】根据对数的运算求出集合B ,再根据交集的定义可求出结果. 【详解】当1x =时,21log 11y =-=, 当2x =时,22log 21y =-=, 当3x =时,23log 3y =-, 当4x =时,24log 42y =-=, 所以2{1,2,log 3}B =, 所以A B ={1,2}. 故选:A 2.C 【解析】 【分析】先由y =A ,再根据集合交集的原则即可求解.【详解】对于集合A ,10x -≥,即1≥x ,则{}1A x x =≥, 所以{}1,2,3A B =, 故选:C 3.C 【解析】 【分析】根据题意求出集合B ,在和集合A 取交集即可. 【详解】因为集合{}1,2,3A =,{}21,B y y x x A ==-∈, 所以{}1,3,5B =,所以{}1,3A B =, 故选:C. 4.C 【解析】 【分析】解出不等式28120x x -+<,然后可得答案. 【详解】因为{}{}2|8120|26A x x x x x =-+<=<<,{}{}142,3B x Z x =∈<<=所以{}3⋂=A B , 故选:C 5.B 【解析】 【分析】由集合的交运算求A B 即可. 【详解】由题设,集合{}1,2,3,4,5A =,{}05B x x =<<, 所以{}1,2,3,4A B ⋂=. 故选:B 6.D 【解析】 【分析】首先解一元二次不等式求出集合A ,再根据对数型函数的定义域求出集合B ,最后根据补集、并集的定义计算可得; 【详解】解:由2340x x --≤,即410x x ,解得14x -≤≤,即{}{}234014A x x x x x =--≤=-≤≤,又(){}{}ln 11B x y x x x ==-=,所以{}|1R B x x =≤,所以{}4R A B x x ⋃=≤; 故选:D 7.B 【解析】 【分析】解一元二次不等式求集合A 、解绝对值不等式求集合B ,再应用集合的交补运算求R()A B .【详解】由题设,{|13},{|11}A x x B x x =-<<=-≤≤, 所以1{|1}A B x x =-<≤,则R(){|1A B x x ⋂=≤-或1}x >.故选:B 8.B 【解析】 【分析】首先解一元二次不等式求出集合B ,再根据并集的定义计算可得; 【详解】解:由(1)0x x ->,解得1x >或0x <,所以{}|(1)0{|1B x x x x x =->=>或0}x <,又{}|2A x x =>,所以()(),01,A B ⋃=-∞⋃+∞;故选:B 9.B 【解析】 【分析】根据对数型函数的性质,结合集合并集的定义进行求解即可. 【详解】因为(2,)A =+∞,{}13B x x =≤≤, 所以A B ⋃=[)1,+∞, 故选:B 10.D 【解析】 【分析】 利用补集定义求出A R,利用交集定义能求出()A B R .【详解】解:集合{|12}A x x =-<≤,{}2,1,0,2,4B =--, 则R{|1A x x =≤-或2}x >,(){}R 2,1,4A B ∴⋂=--. 故选:D 11.D【分析】根据条件求出两个函数在[1,2]上的值域,结合若存在[]12,1,2x x ∈,使得12()()f x g x =,等价为两个集合有公共元素,然后根据集合关系进行求解即可. 【详解】当12x ≤≤时,22log 1()log 2f x ≤≤,即0()1f x ≤≤,则()f x 的值域为[0,1], 当12x ≤≤时,4()2a g x a -≤≤-,则()g x 的值域为[4,2]a a --, 因为存在[]12,1,2x x ∈,使得12()()f x g x =, 则[4,2][0,1]a a --≠∅ 若[4,2][0,1]a a --=∅, 则14a <-或02a >-, 得5a >或2a <,则当[4,2][0,1]a a --≠∅时,25a ≤≤, 即实数a 的取值范围是[2,5],A ,B ,C 错,D 对. 故选:D . 12.B 【解析】 【分析】联立方程,解方程组,考察方程组的解的组数,即为集合A 的元素个数; 【详解】联立方程得221y x x y =⎧⎨+=⎩,解得x y ⎧=⎪⎪⎨⎪=⎪⎩x y ⎧=⎪⎪⎨⎪=⎪⎩所以集合M 与N 的交集A 中的元素个数为2个; 故选:B. 13.D 【解析】 【分析】利用补集和交集的定义可求得结果. 【详解】 由已知可得{}0,3UA =,因此,(){}U 3AB ⋂=,故选:D. 14.C 【解析】 【分析】根据分式不等式和对数不等式求出集合A 和B ,利用交集的定义 和集合的包含关系即可求解.由x31,得03x <≤, 所以}{N,,A x x ⎧⎫=∈=⎨⎬⎭⎩31123. 由()log x +≤211,得11x -<≤. 所以()}{}{N log ,B x x =∈+≤=21101.由S A ⊆,S B ⋂≠∅,知S 中必含有元素1,可以有元素2,3.所以S 只有{}1,{}12,,{}13,,{}123,,,即集合S 的个数共4个. 故选:C. 15.B 【解析】 【分析】先求出集合,A B ,再根据交集的结果求出a 即可. 【详解】由已知可得{}23A x x =-≤≤,2a B x x ⎧⎫=≤-⎨⎬⎩⎭又∵{}21A B x x ⋂=-≤≤,∴12a-=, ∴2a =-. 故选:B .二、填空题 16.{}1【解析】 【分析】由空间向量的加法得:i i AP AB BP =+,根据向量的垂直和数量积得221AB AB ==,0i AB BP ⋅=计算即可.【详解】由题意得,()2i i i i x AB AP AB AB BP AB AB BP =⋅=⋅+=+⋅又AB ⊥平面286BP P P ,i AB BP ∴⊥,则0i AB BP ⋅=,所以221i i x AB AB BP AB =+⋅==, 则()1,2,,81i i x AB AP i =⋅==,故答案为:{}117. C β∉ A α AB B α⋂= CD α⊂【分析】根据元素与集合,集合与集合之间的关系,由图可写出答案 【详解】(1)C 为元素,平面β为集合,所以,由图可得C β∉.(2)A 为元素,平面α为集合,所以,由图可得A α.(3)直线AB 为集合,平面α为集合,所以,由图可得AB B α⋂=. (4)直线CD 为集合,平面α为集合,所以,CD α⊂.故答案为:①C β∉;②A α;③AB B α⋂=;④CD α⊂; 18.{2,3}##{3,2} 【解析】 【分析】 由交集的运算求解 【详解】{}{}1,2,3,4,|23A B x x ==≤≤,则{2,3}A B =故答案为:{2,3} 19.①②③ 【解析】 【分析】①由补集定义直接判断;②按照函数定义进行判断;③元素一一对应即可判断;④3n =时,不成立. 【详解】因为{}{}**,32,A n n N B n n k k N =∈==-∈,故②正确,又{ 31AB n n k ==-或}*3,n k k N =∈,故①正确;A 、B 两个集合元素一一对应,元素个数相等,故③正确;当3n =时,3223<,故④错误. 故答案为:①②③. 20.4a ≤-或5a ≥ 【解析】 【分析】由3a a <+可得A ≠∅,根据题意可得到端点的大小关系,得到不等式,从而可得答案. 【详解】由题意 3a a <+,则A ≠∅要使得A B =∅,则31a +≤-或5a ≥ 解得4a ≤-或5a ≥ 故答案为:4a ≤-或5a ≥21.[1,1]-【解析】 【分析】由题意可得集合A ,B 表示的曲线有一个交点,可得a x x a =+有一个根,当0a =时,符合题意,当0a ≠时,1x x a =+,分别作出y x =与1xy a=+的图象,根图象求解即可 【详解】因为C A B =,且集合C 为单元素集合, 所以集合A ,B 表示的曲线有一个交点, 所以a x x a =+有一个根 当0a =时,符合题意, 当0a ≠时,1x x a =+,分别作出y x =与1xy a=+的图象, 由图象可知11a ≥或11a≤-时,两函数图象只有一个交点, 解得01a <≤或10a -≤<, 综上,实数a 的取值范围是[1,1]-, 故答案为:[1,1]-22.[)1,+∞【解析】 【分析】由题可得{[]}[0,1)A yy x x ==-=∣,然后利用充分不必要条件的定义及集合的包含关系即求. 【详解】∵[]x 表示不超过x 的最大整数,∴[]x x ≤,[]01x x ≤-<,即{[]}[0,1)A yy x x ==-=∣, 又y A 是y B ∈的充分不必要条件,{0}∣=≤≤B y y m ,∴A B ,故m 1≥,即m 的取值范围是[)1,+∞. 故答案为:[)1,+∞.23.7 【解析】 【分析】由A B A ⋃=可得B A ⊆,所以求出集合B 的所有非空子集即可 【详解】因为A B A ⋃=,所以B A ⊆, 因为{1,2,3}A =,所以非空集合{}1B =,{}2,{}3,{}1,2,{}1,3,{}2,3,{}1,2,3, 所以非空集合B 有7个, 故答案为:724.{1,0,1,2}-【解析】 【分析】根据给定条件求出集合B ,再利用并集的定义直接计算作答. 【详解】解方程220x x -=得:0x =或2x =,则{}0,2B =,而{}1,0,1A =-, 所以{1,0,1,2}A B =-. 故答案为:{1,0,1,2}- 25.∅,{}1-,{1},{1,1}- 【解析】 【分析】利用子集的定义写出所有子集即可. 【详解】由子集的定义,得集合{1,1}-的所有子集有:∅,{}1-,{1},{1,1}-.故答案为:∅,{}1-,{1},{1,1}-.三、解答题26.(1){}|47,Z x x x ≤≤∈,{}4,5,6,7;(2){}0,1,3,5,7,9,10;(3)1a =,元素为1-. 【解析】 【分析】(1)根据补集和交集的定义直接计算作答. (2)利用补集的定义直接计算作答. (3)利用元素与集合的关系推理计算作答. 【详解】(1)由{}|510,Z U x x x =-≤≤∈,N ={|24,Z x x x -<∈≤}, 得:{|52U N x x =-≤<-或410,Z}x x ≤≤∈,而{|07,Z}M x x x =≤≤∈, 所以{}()|47,Z U N M x x x =≤≤∈{}4,5,6,7=.(2)由{}0,1,2,3,4,5,6,7,8,9,10U A B =⋃=,{}2,4,6,8UA B =,得{2,4,6,8}UB =,所以{}()0,1,3,5,7,9,10U U B B ==. (3)当0a =时,P =∅,不符合题意,当0a ≠时,因集合P 只有一个元素,则方程2210ax ax ++=有等根,2440a a ∆=-=, 此时1a =,集合P 中的元素为1-, 所以1a =,这个元素是1-.27.(1)(,2-∞-(2)①2a ≥;②)21N a=【解析】 【分析】(1)当1a =时,求得()sin 22sin cos 1x f x x x +=+-,令[)sin cos 1,1t x x =+∈-,令[)12,0m t =-∈-,()()22h m f x m m==++,利用双勾函数的单调性可得出函数()h m 在[)2,0-上的值域,即可得解;(2)①分析可知210a a --≤≤,可得出2a ≥,分1a =、1a ≠两种情况讨论,化简函数()221at ap t at +-=-的函数解析式或求出函数()f x 的最小值,综合可得出正实数a 的取值范围;②令[]11,1n at a a =-∈---,则1n t a +=,可得出()()21122a a p t n n a n ϕ⎡⎤+-=++=⎢⎥⎣⎦,分析可得出101a a --<<-<法可求得N . (1)解:当1a =时,()sin 22sin cos 1x f x x x +=+-,因为,02x π⎡⎫∈-⎪⎢⎣⎭,则,444x πππ⎡⎫+∈-⎪⎢⎣⎭,令[)sin cos 1,14t x x x π⎛⎫=+=+∈- ⎪⎝⎭,则212sin cos 1sin 2t x x x =+=+,可得2sin 21x t =-, 设()()211t g t f x t +==-,其中11t -≤<,令1m t =-,则()22111221m t m t m m+++==++-,令()22h m m m=++,其中20m -≤<,下面证明函数()h m 在2,⎡-⎣上单调递增,在()上单调递减,任取1m 、[)22,0m ∈-且12m m <,则()()1212122222h m h m m m m m ⎛⎫⎛⎫-=++-++ ⎪ ⎪⎝⎭⎝⎭()()()()12121212121222m m m m m m m m m m m m ---=--=,当122m m -≤<<122m m >,此时()()12h m h m <,当120m m <<,则1202m m <<,此时()()12h m h m >, 所以,函数()h m在2,⎡-⎣上单调递增,在()上单调递减,则()(max 2h m h ==-因此,函数()f x 在,02π⎡⎫-⎪⎢⎣⎭上的值域为(,2-∞-. (2)解:因为,02x ⎡⎤∈-⎢⎥⎣⎦π,则,444x πππ⎡⎤+∈-⎢⎥⎣⎦,令[]sin cos 1,14t x x x π⎛⎫=+=+∈- ⎪⎝⎭,设()()222211a a t at a a f x p t at at -⎛⎫+ ⎪+-⎝⎭===--, ①若(){}0y y f x ∈=,必有210aa--≤≤,因为0a >,则2a ≥,当1a =时,即当1a =()110p t t t a =+==,可得1t =,合乎题意;当1a≠2a ≥且1a ≠()min 0p t =,合乎题意. 综上所述,2a ≥;②令[]11,1n at a a =-∈---,则1n t a+=, 则()()22121122n a a a a a a p t n n n a n ϕ⎡⎤+-⎛⎫+⎢⎥ ⎪⎝⎭⎡⎤+-⎢⎥⎣⎦==++=⎢⎥⎣⎦, 令()()20qs x x q x=++>,下面证明函数()s x在(上单调递减,在)+∞上为增函数,任取1x、(2x ∈且12x x <,则120x x -<,120x x q <<, 所以,()()()()()()121212121212121212220q x x x x x x q q qs x s x x x x x x x x x x x ---⎛⎫⎛⎫-=++-++=--=> ⎪ ⎪⎝⎭⎝⎭,所以,()()12s x s x >,故函数()s x在(上单调递减, 同理可证函数()s x在)+∞上为增函数,在(,-∞上为增函数,在()上为减函数,因为12a <<,则()()2212121,2a a a +-=--+∈,且()()22121220a a a a a +---=->10a >->, 又()22212120a a a a +----=-<,1a ∴--<,101a a ∴--<<-由双勾函数的单调性可知,函数()n ϕ在1,a ⎡--⎣上为增函数,在()上为减函数,在(]0,1a -上为减函数, 当[)1,0x a ∈--时,()((max 120n aϕϕ==-<, ()2101a a ϕ-=>-,()((22111a a a ϕϕ⎡⎤---=+⎢⎥⎣⎦- (())())()21142214210111a a a a a a a a a a +------=≥=>---,由双勾函数性质可得()()min 21f x a ϕ=-=,综上所述())min 21f x N a==.【点睛】关键点点睛:在求解本题第二问第2小问中,要通过不断地换元,将问题转化为双勾函数的最值,结合比较法可得出结果. 28.(1){21}x x -<<; (2)[2,4]∈-m . 【解析】 【分析】(1)当1m =时,解分式不等式化简集合A ,解一元二次不等式化简集合B ,再利用并集的定义计算作答.(2)由给定条件可得B A ⊆,再借助集合包含关系列式计算作答. (1) 由2111x x +<-,得201x x +<-,解得21x -<<,则{21}A x x =-<<, 当1m =时,()()1{1210}12B x x x x x ⎧⎫=-+<=-<<⎨⎬⎩⎭,所以{21}A B x x ⋃=-<<. (2)因为“x A ∈”是“x B ∈”的必要条件,则B A ⊆, 当12m ->,即2m <-时,{1}2mB x x =<<-,B A ⊄,不符合题意,当12m-=,即2m =-时,B =∅,符合题意, 当12m -<,即2m >-时,12m B x x ⎧⎫=-<<⎨⎬⎩⎭,则212m -≤-<,解得24m -<≤,综上得:24m -≤≤,所以实数m 的取值范围[2,4]∈-m .29.(,3]-∞【解析】 【分析】求函数定义域得93,2A ⎛⎤= ⎥⎝⎦,解不等式得[4,5]B =,进而得(3,5]A B =,再结合题意,分C =∅和C ≠∅两种情况求解即可.【详解】解:由30920x x ->⎧⎨-≥⎩,解得932x <≤,所以93,2A ⎛⎤= ⎥⎝⎦,因为()()2920450x x x x -+=--≤,解得45x ≤≤,所以[4,5]B =所以(3,5]A B = 因为()C A B ⊆,所以,当C =∅时,121a a +≥-,解得2a ≤C ≠∅时,可得12113215a a a a +<-⎧⎪+>⎨⎪-≤⎩,解得:23a <≤综上可得:实数a 的取值范围是(,3]-∞ 30.{}=34A B x x ⋂-<<,{}=46A B x x ⋃-<< 【解析】 【分析】先化简集合A 、B ,再去求A B 、A B 即可解决. 【详解】{}{}2=16044A x x x x -<=-<<{}{}2=318036B x xx x x -++>=-<<则{}{}{}=443634A B x x x x x x ⋂-<<⋂-<<=-<<{}{}{}=443646A B x x x x x x ⋃-<<⋃-<<=-<<。

高中数学集合测试题(含答案和解析)

高中数学集合测试题(含答案和解析)

高中数学集合测试题(含答案和解析)一、单选题1.已知集合{}1,2A =,{}2,3,4B =,则A B =( )A .{}2B .{}3C .{}1,3D .{}1,22.已知集合{}260A x R x x =∈+-<,集合1133x B x R -⎧⎫=∈≥⎨⎬⎩⎭,则A B =( ) A .{}32x x -<<B .{}02x x <≤C .{}02x x ≤<D .{}3x x >-3.设M ,N ,U 均为非空集合,且满足M ⫋N ⫋U ,则()()U U M N ⋂=( ) A .MB .NC .u MD .u N 4.已知集合{|04,}P x x x Z =<<∈,且M P ⊆,则M 可以是( ) A .{1,2} B .{2,4} C .{0,2} D .{3,4} 5.设集合{}1A x x =>,{}2B x x =≤,则A B =( )A .∅B .{}12x x <≤C .{}12x x x ≤>或D .R6.已知集合2cos ,3n A x x n N π*⎧⎫==∈⎨⎬⎩⎭,{}2230B x x x =--<,则A B =( ) A .{}2,1-- B .{}2,1,1-- C .{}1,2 D .{}1,1,2- 7.已知集合{}2,3,6,8U =,{}2,3A =,{}2,6,8B =,则()U A B =( ) A .{6,8} B .{2,3,6,8} C .{2} D .{2,6,8} 8.已知集合{}1,2,3A =,{}20B x x =-<,则A B =( )A .{}1B .{}1,2C .{}0,1,2D .{}1,2,3 9.设集合{}2,3,4,5A =,{}3,4,6B =,则A B =( ).A .{}2B .{}2,3C .{}3,4D .{}2,3,410.设集合{}{}13,33A xx B x x =≤≤=-≤≤∣∣,则A B =( ) A .[]1,3 B .[]3,3- C .(]1,3 D .[]3,1-11.已知集合{}2{63},3100S x x T x x x =∈-<<=--<Z ∣∣,则S T ( )A .{23}x x -<<∣B .{1,0,1,2}-C .{52}xx -<<∣ D .{2,1,0,1,2}-- 12.已知集合{}1,0,1,2M =-,{}21x N x =>,则()R M N ⋂=( ) A .{}1-B .{}0x x ≤C .{}10x x -<≤D .{}1,0-13.已知集合{|12}A x x =-<≤,{}2,1,0,2,4B =--,则()R A B ⋂=( )A .∅B .{}1,2-C .{}2,4-D .{}2,1,4--14.若集合{}{}22,3,|560,A B x x x ==-+=则A B =( )A .{2,3}B .∅C .2D .2,315.给出下列关系:①13∈R ;Q ;③-3∉Z ;④∉N ,其中正确的个数为( )A .1B .2C .3D .4二、填空题16.设{1,2}{1,2,3,4}A =,则满足条件的集合A 共有________个.17.已知全集{1,2,3,4,5,6,7}U =,集合{}1,3,5,7A =,则U A ____________.18.已知(){},21A x y y x ==+,(){},3B x y y x ==+,则A B =___________.19.集合{}14A x x =-<≤,{}1,1,3B =-,则A B 等于_________.20.若集合(){}21420A x a x x =-+-=有且仅有两个子集,则实数a 的值是____. 21.已知全集为R ,集合()1,A =+∞,则A =__________.22.若集合{}|23A x x =-<<,{}|2B x x =>,则A B =______.23.若实数2a =,集合{}|13B x x =-<<,则a 与B 的关系是______.24.对于数集M 、N ,定义{},,M N x x a b a M b N +==+∈∈,,,a M N x x a M b N b ⎧⎫÷==∈∈⎨⎬⎩⎭,若集合{}1,2P =,则集合()P P P +÷中所有元素之和为___________.25.若集合{}3A x x =>,集合{}B x x a =≥,且B A ,则实数a 的取值范围是______. 三、解答题26.已知集合{}1|43280x x A x +=-⋅+,{}|2.B x x a =+< (1)当1a =时,求A B ;(2)若“x B ∈”是“x A ∈”的必要条件,求实数a 的取值范围.27.在①{}{}21,22,1,0a a a a ⊆-+-;②关于x 的不等式13ax b <+≤的解集是{}34x x <≤这两个条件中任选一个,补充在下面的问题(1)中并解答,若同时选择两个条件作答,以第一个作答计分.(1)已知______,求关于x 的不等式230ax x a -->的解集A ;(2)在(1)的条件下,若非空集合{}22B x k x k =<≤+,A B A ⋃=,求实数k 的取值范围.28.已知集合{}17U x x =≤≤,{}25A x x =≤<,{}37B x x =<≤.(1)求A B ;(2)求()U A B .29.设全集{2}U x x =≥-∣,{210}A x x =<<∣,{28}B x x =≤≤∣.求U A ,()U A B ⋂,A B ,()U A B30.已知集合{}4222x A x =<≤,{}122B x a x a =-<≤+(1)当0a =,求A B ;(2)若A B =∅,求a 的取值范围.【参考答案】一、单选题1.A【解析】【分析】根据集合的交集运算,即可求得答案.【详解】集合{}1,2A =,{}2,3,4B =,则{2}A B =,故选:A2.C【解析】【分析】本题首先通过解不等式260x x +-<得出{}32A x x =-<<,然后通过解不等式1133x -≥得出{}0B x x =≥,最后通过交集的相关性质即可得出结果.【详解】260x x +-<,()()320x x +-<,32x -<<,{}32A x x =-<<,1133x -≥,11x -≥-,0x ≥,{}0B x x =≥, 则{}02A B x x ⋂=≤<,故选:C.3.D【解析】【分析】利用()()()U U u M N M N ⋂=⋃,判断相互之间的关系.【详解】 ()()()U U u M N M N ⋂=⋃,M N N ⋃=,()u u M N N ⋃=.故选D.4.A【解析】【分析】化简集合P ,根据集合的包含关系确定M .【详解】因为{|04,}={1,2,3}P x x x Z =<<∈,又M P ⊆,所以任取x M ∈,则{1,2,3}x ∈, 所以M 可能为{2,3},A 对,又 0M ∉,4M ∉,∴ M 不可能为{2,4},{0,2},{3,4},B ,C ,D 错,故选:A.5.B【解析】【分析】根据交集的定义计算可得;【详解】 解:因为{}1A x x =>,{}2B x x =≤,所以{}12A B x x ⋂=<≤;故选:B6.C【解析】【分析】结合余弦型函数的周期性可得到{}1,1,2,2A =--,再得到2230x x --<的解集,进而求解.【详解】 因为2cos 3y x π=的最小正周期263T ππ==且1cos 32π=, 21coscos cos 3332ππππ⎛⎫=-=-=- ⎪⎝⎭,3cos 13π=-, 41coscos cos 3332ππππ⎛⎫=+=-=- ⎪⎝⎭,51cos cos 2cos 3332ππππ⎛⎫=-== ⎪⎝⎭, 6cos 13π=,71cos cos 2cos 3332ππππ⎛⎫=+== ⎪⎝⎭,, 所以{}*|2cos ,1,1,2,23n A x x n N π⎧⎫==∈=--⎨⎬⎩⎭, 又{}{}223013B x x x x x =--<=-<<, 所以{}1,2A B =,故选:C7.A【解析】【分析】由已知,先有集合U 和集合A 求解出U A ,再根据集合B 求解出()U A B ⋂即可. 【详解】因为{}2,3,6,8U =,{}2,3A =,所以{}6,8U A =,又因为{}2,6,8B =,所以(){}6,8U A B =.故选:A.8.A【解析】【分析】根据集合交集的概念及运算,即可求解.【详解】 由题意,集合{}{}202B x x x x =-<=<,又由{}1,2,3A =,根据集合交集的概念及运算,可得{}1A B ⋂=.故选:A.9.C【解析】【分析】依据交集定义即可求得A B【详解】{}{}{}2,3,4,53,4,63,4A B ⋂=⋂=故选:C10.A【解析】【分析】利用集合交集定义计算即可【详解】[1,3],[3,3],[1,3]A B A B ==-⋂=故选 :A11.B【解析】【分析】求解一元二次不等式解得集合T ,再求S T 即可.【详解】因为{63}S x x =∈-<<Z∣{}5,4,3,2,1,0,1,2=-----, {}23100T x x x =--<∣()(){}|520{|25}x x x x x =-+<=-<<,故S T {}1,0,1,2=-.故选:B.12.D【解析】【分析】先求出R N ,再结合交集定义即可求解.【详解】 由{}{}R 210x N x x x =≤=≤,得()R M N ⋂={}1,0- 故选:D13.D【解析】 【分析】利用补集定义求出A R ,利用交集定义能求出()AB R . 【详解】解:集合{|12}A x x =-<≤,{}2,1,0,2,4B =--,则R {|1A x x =≤-或2}x >,(){}R 2,1,4A B ∴⋂=--.故选:D14.A【解析】【分析】依据交集定义去求A B 即可.【详解】{}{}2|560=2,3B x x x =-+=则{}{}{}2,32,32,3A B ⋂=⋂=,故选:A .15.B【解析】【分析】根据数集的定义,即可得答案;【详解】13是实数,①②错误;-3是整数,③④正确.所以正确的个数为2.故选:B.二、填空题16.4【解析】【分析】根据并集的定义,列举集合A .【详解】由并集定义可知,集合A 中有元素3和4,所以满足条件的集合{}{}{}{}3,4,1,3,4,2,3,4,1,2,3,4A =共4个.故答案为:417.{}2,4,6【解析】【分析】由补集的定义即可求解.【详解】解:因为全集{1,2,3,4,5,6,7}U =,集合{}1,3,5,7A =,所以{}2,4,6U A =.故答案为:{}2,4,618.(){}2,5【解析】【分析】由方程组可求得交点坐标,由此可得交集.【详解】由213y x y x =+⎧⎨=+⎩得:25x y =⎧⎨=⎩,(){}2,5A B ∴=. 故答案为:(){}2,5.19.{}1,3【解析】【分析】由交集定义直接得到结果.【详解】由交集定义知:{}1,3A B =.故答案为:{}1,320.±1【解析】【分析】分析出集合A 有1个元素,对a 讨论方程解的情况即可.【详解】因为集合(){}21420A x a x x =-+-=有且仅有两个子集, 所以集合A 有1个元素.当a =1时,{}1|4202A x x ⎧⎫=-==⎨⎬⎩⎭,符合题意; 当a ≠1时,要使集合A 只有一个元素,只需()()244120a ∆=--⨯-=,解得:1a =-;综上所述: 实数a 的值是1或-1.故答案为:±1.21.(],1-∞【解析】【分析】直接利用补集的定义求解即可【详解】因为全集为R ,集合()1,A =+∞, 所以A =(],1-∞,故答案为:(],1-∞22.{}|23x x <<##()2,3【解析】【分析】由交集运算可直接求解.【详解】因为{}|23A x x =-<<,{}|2B x x =>,则{}|23A B x x =<<.故答案为:{}|23x x <<23.a B ∈【解析】【分析】根据元素与集合关系即可判断.【详解】因为2a =,满足123-<<,所以a B ∈.故答案为:a B ∈.24.232##11.5 【解析】【分析】根据定义分别求出()P P P +÷中对应的集合的元素即可得到结论.【详解】{1P =,2},{|P P x x a b ∴+==+,a P ,}{2b P ∈=,3,4},(){|2P P P x x ∴+÷==,3,4,1,3}2, ∴元素之和为323234122++++=, 故答案为:232. 25.3a >【解析】【分析】解不等式求得结合A ,根据B A 列不等式来求得a 的取值范围.【详解】3x >⇔3x <-或3x >,所以{|3A x x =<-或}3x >.由于B A ,所以3a >.故答案为:3a >三、解答题26.(1)(]3,2-(2)()3,0.-【解析】【分析】(1)化简集合A ,B ,再由并集的定义求解即可;(2)列出实数a 的不等式组,解之即可得出实数a 的取值范围.(1)由143280x x +-⋅+,得()()22240x x --,则224x ,则12x ,所以[]1,2A =, 由12x +<,可得31x -<<,则()3,1B =-,所以[]()(]=1,23,13,2A B ⋃⋃-=-(2)()2,2B a a =---,因为“x B ∈”是“x A ∈”的必要条件,所以A B ⊆ ,所以2122a a --<⎧⎨->⎩, 所以()3,0.a ∈-27.(1)条件选择见解析,12A x x ⎧=<-⎨⎩或}2x > (2)[)5,1,22∞⎛⎫--⋃ ⎪⎝⎭ 【解析】【分析】(1)若选①,分2122a a =-+和11a =-,求得a ,再利用一元二次不等式的解法求解; 若选②,根据不等式13ax b <+≤的解集为{}34x x <≤,求得a ,b ,再利用一元二次不等式的解法求解;(2)由A B A ⋃=,得到B A ⊆求解;(1)解:若选①,若2122a a =-+,解得1a =,不符合条件.若11a =-,解得2a =,则2222a a -+=符合条件.将2a =代入不等式230ax x a -->并整理得()()2210x x -+>,解得2x >或12x <-,故12A x x ⎧=<-⎨⎩或}2x >. 若选②,因为不等式13ax b <+≤的解集为{}34x x <≤,所以3143a b a b +=⎧⎨+=⎩,解得25a b =⎧⎨=-⎩. 将2a =代入不等式整理得()()2210x x -+>,解得2x >或12x <-.故12A x x ⎧=<-⎨⎩或}2x >. (2)∵A B A ⋃=,∴B A ⊆,又∵B ≠∅, ∴22122k k k +>⎧⎪⎨+<-⎪⎩或2222k k k +>⎧⎨≥⎩, ∴52k <-或12k ≤<, ∴[)5,1,22k ⎛⎫∈-∞-⋃ ⎪⎝⎭. 28.(1){}35x x << (2){12x x ≤<或}37x <≤【解析】【分析】根据集合间的运算直接得解.(1) 由{}25A x x =≤<,{}37B x x =<≤,得{}35A B x x ⋂=<<;(2) 由{}17U x x =≤≤,{}25A x x =≤<,得{12U A x x =≤<或}57x ≤≤, 故(){12U A B x x ⋃=≤<或}37x <≤.29.{22U A x x =-≤≤∣或10}x ≥,(){2}U A B =,{28}A B x x ⋂=<≤∣,(){22U A B x x ⋂=-≤≤∣或8}x >【解析】【分析】依据补集定义求得U A ,再依据交集定义求得()U A B ⋂;依据交集定义求得A B ,再依据补集定义求得()U A B . 【详解】{2}U x x =≥-∣,{210}A x x =<<∣,{28}B x x =≤≤∣,则{22U A x x =-≤≤∣或10}x ≥,则(){2}U A B = {28}A B x x ⋂=<≤∣,则(){22U A B x x ⋂=-≤≤∣或8}x > 30.(1){12}A B xx ⋂=<≤∣ (2)1,[5,)2⎛⎤-∞-⋃+∞ ⎥⎝⎦ 【解析】【分析】(1)首先求出集合,A B ,然后根据集合的交集运算可得答案; (2)分B =∅、B ≠∅两种情况讨论求解即可.(1)因为0a =,所以{12}B xx =-<≤∣ 因为{}4222{14}x A x x x =<≤=<≤∣, 所以{12}A B xx ⋂=<≤∣. (2)当B =∅,即122a a -≥+,3a ≤-时,符合题意当B ≠∅时可得12214a a a -<+⎧⎨-≥⎩或122221a a a -<+⎧⎨+≤⎩, 解得5a ≥或132a -<≤-. 综上,a 的取值范围为1,[5,)2⎛⎤-∞-⋃+∞ ⎥⎝⎦.。

数学高中测试题及答案

数学高中测试题及答案

数学高中测试题及答案一、选择题(每题4分,共40分)1. 若函数f(x)=2x^2+3x+1,则f(-1)的值为:A. 0B. 1C. 2D. 32. 已知等差数列{an}的首项为2,公差为3,求第10项的值:A. 29B. 28C. 32D. 313. 圆的方程为(x-2)^2+(y+3)^2=16,圆心坐标为:A. (2, -3)B. (-2, 3)C. (-2, -3)D. (2, 3)4. 函数y=x^3-3x^2+4x-5的导数为:A. 3x^2-6x+4B. 3x^2-6x+5C. x^2-6x+4D. x^2-6x+55. 集合A={1, 2, 3},集合B={2, 3, 4},则A∩B为:B. {2, 3}C. {3, 4}D. {1, 2, 3}6. 已知向量a=(3, -4),向量b=(2, 5),则向量a与向量b的点积为:A. -22B. 22C. -2D. 27. 函数y=2sin(x)的周期为:A. πB. 2πC. π/2D. 4π8. 一个等腰三角形的底边长为6,腰长为5,其面积为:A. 12B. 15C. 18D. 209. 抛物线y^2=4x的焦点坐标为:A. (1, 0)B. (0, 1)C. (1, 1)D. (0, 0)10. 函数y=1/x的反函数为:A. y=1/xC. y=x^2D. y=√x二、填空题(每题5分,共30分)1. 已知函数f(x)=x^2-4x+3,其顶点坐标为______。

2. 等比数列{bn}的首项为8,公比为1/2,求第5项的值:______。

3. 已知直线y=2x+1与x轴的交点坐标为______。

4. 函数y=|x-2|的图象与x轴的交点坐标为______。

5. 一个圆的半径为5,圆心在原点,其面积为______。

6. 已知向量c=(1, 2),向量d=(3, 4),则向量c与向量d的向量积为______。

三、解答题(每题15分,共30分)1. 已知函数f(x)=x^3-6x^2+11x-6,求其在x=2处的切线方程。

高中数学集合测试题(含答案和解析)

高中数学集合测试题(含答案和解析)

高中数学集合测试题(含答案和解析)一、单选题1.已知集合{}{}22,1,0,2,3,4,|340A B x x x =--=--<,则A B =( )A .{}1,0,2,3,4-B .{}0,2,3,4C .{}0,2,3D .{}2,32.已知集合{}0,1,2,3,4A =,集合{}R 326xB x =∈<,则A B =( )A .{}0,1,2B .{}0,1,2,3C .{}0,1,2,3,4D .{}1,2,33.设集合{}1A x x =>,{}2B x x =≤,则A B =( ) A .∅B .{}12x x <≤C .{}12x x x ≤>或D .R4.若集合{}220A x x x =--<,{}21B x x =<,则A B =( )A .AB .BC .()1,0-D .()0,25.设集合{}0,1S =,{}0,3T =,则S T ⋃=( ) A .{}0 B .{}1,3 C .{}0,1,3D .{}0,1,0,36.已知R 为实数集,集合{}{}2340,ln(1)A x x x B x y x =--≤==-,则R A B ⋃=( )A .{}14x x <≤B .{}11x x -≤≤C .{}1x x ≥-D .{}4x x ≤7.已知集合{}{}234014P x x x Q x N x =--<=∈≤≤,,则=P Q ( )A .{1,2,3,4}B .{1,2,3}C .{1,2}D .{2,3,4}8.设全集U =R ,已知集合2|4A x x x >={},|B x y =={,则()UA B ⋂=( )A .[0,4]B .(,4]-∞C .(,0)-∞D .[0,)+∞9.设集合1|05x A x x -⎧⎫=>⎨⎬-⎩⎭,{}|13B x x =-≤≤,则()A B =R ( ) A .{}|35x x ≤< B .{}|15x x ≤< C .{}|15x x -≤<D .{}|13x x ≤≤10.已知集合{}1A x x =≤,B ={}02x x <<,则A B =( ) A .(]0,1B .[)1,2C .()0,1D .()0,211.已知集合50{|}A x x =<<-,{}41B x x =-≤≤,则A B ⋃=( ) A .AB .BC .(5,1]-D .[4,0)-12.已知集合{}13A x x =≤≤,集合{}24B x x =≤≤,则A B =( ) A .{}23x x ≤≤B .{}34x x <≤C .{}12x x <≤D .{|1x x <或}2x ≥13.若集合{}{}22,3,|560,A B x x x ==-+=则A B =( )A .{2,3}B .∅C .2D .2,314.设集合{}123A =,,,{}2|0B x R x x =∈-=,则A B ⋃=( ) A .{}1B .{}01,C .{}123,,D .{}0123,,,15.已知集合1|2,[,4]2xA xB a a ⎧⎫=>=+⎨⎬⎩⎭,若(]1,2A B =-,则=a ( )A .2B .1-C .2-D .5-二、填空题16.网络流行词“新四大发明’’是指移动支付、高铁、网购与共享单车.某中学为了解本校学生中“新四大发明”的普及情况,随机调查了100名学生,其中使用过移动支付或共享单车的学生共90名,使用过移动支付的学生共有80名,使用过共享单车的学生且使用过移动支付的学生共有60名,则该校使用共享单车的学生人数与该校学生总数比值的估计值为___________.17.设集合{}13A x x =<<,{}B x x a =<,若A B ⊆,则a 的取值范围是_________. 18.集合A ={2|x x -ax +2=0}的子集有两个,则实数a =______. 19.已知集合{}2,1,2A =-,{}1,B a a =+,且B A ⊆,则实数a 的值是___________.20.设全集{}0,1,2U =,集合{}0,1A =,在UA______21.方程组13x y x y -=⎧⎨+=⎩的解集..为_____. 22.已知集合A 与B 的关系如下图,则图中所示的阴影部分用集合表示为________.(要求用集合A 与B 的符号关系表示)23.已知集合(){}2,2A x y y xx ==-,()(){},21B x y y x ==+,则AB =___________.24.(1)已知集合{}2230A x x x =--=,{}20B x ax =-=,且B A ⊆,则实数a 的值为______.(2)若不等式23208kx kx +-<对一切实数x 都成立,则k 的取值范围为______.25.当x A ∈时,若有1x A -∉且1x A +∉,则称x 是集合A 的一个“孤元”,由A 的所有孤元组成的集合称为A 的“孤星集”,若集合{}1,2,3M =的孤星集是M ',集合{}1,3,4P =的孤星集是P ',则M P ''⋂=______.三、解答题26.已知集合A ={x |24x >},B ={x ||x -a |<2},其中a >0且a ≠1. (1)当a =2时,求A ∪B 及A ∩B ;(2)若集合C ={x |log ax <0}且C ⊆B ,求a 的取值范围.27.已知全集U R =,集合{|A x =213x -<,123}3x x -≤-,{|13}B x x =-≤≤.(1)求A ,A B ⋃,UB(2)如图①,阴影部分表示集合M ,求M . (3)如图②,阴影部分表示集合N ,求N .28.已知函数()()4log 526f x x x =--()g x x α=(α为常数),且()g x 的图象经过点(8,22P .(1)求()f x 的定义域和()g x 的解析式;(2)记()f x 的定义域为集合A ,()g x 的值域为集合B ,求()A B ⋂R .29.集合{}{}3621A x x B x m x m =<≤=≤≤+,. (1)若2m =,求,A B A B ;(2)若x B ∈是x A ∈的必要条件,求实数m 的取值范围.30.设集合{}4U x x =≤,{}12A x x =-≤≤,{}13B x x =≤≤.求:(1)A B ; (2)()U A B ; (3)()()U U A B ⋂.【参考答案】一、单选题 1.C 【解析】 【分析】先求出集合B ,再求两集合的交集即可 【详解】由2340x x --<,得(1)(4)0x x +-<,解得14x -<<, 所以{}14B x x =-<<, 因为{}2,1,0,2,3,4A =--, 所以A B ={}0,2,3, 故选:C 2.A 【解析】 【分析】根据指数函数的单调性,结合集合交集的定义进行求解即可. 【详解】由333262log 26log 273xx <⇒<<<=,因此A B ={}0,1,2, 故选:A 3.B 【解析】 【分析】根据交集的定义计算可得; 【详解】解:因为{}1A x x =>,{}2B x x =≤,所以{}12A B x x ⋂=<≤; 故选:B 4.B 【解析】 【分析】由题知{}12A x x =-<<,{}11B x x =-<<,再求交集即可. 【详解】解:解不等式220x x --<得12x -<<,故{}12A x x =-<<, 解不等式21x <得11x -<<,故{}11B x x =-<<, 所以A B ={}11x x B -<<=. 故选:B 5.C 【解析】 【分析】 由并集的概念运算 【详解】 S T ⋃={}0,1,3故选:C 6.D 【解析】 【分析】首先解一元二次不等式求出集合A ,再根据对数型函数的定义域求出集合B ,最后根据补集、并集的定义计算可得; 【详解】解:由2340x x --≤,即410x x ,解得14x -≤≤,即{}{}234014A x x x x x =--≤=-≤≤,又(){}{}ln 11B x y x x x ==-=,所以{}|1RB x x =≤,所以{}4R A B x x ⋃=≤;故选:D 7.B 【解析】 【分析】解不等式得到14{|}P x x =-<<,根据题意得到{1,2,3,4}Q =,再由集合交集的概念得到结果. 【详解】由集合{}234|0P x x x =--<,解不等式得到:14{|}P x x =-<<,又因为{1,2,3,4}Q =,根据集合交集的概念得到:{}1,2,3P Q ⋂=.8.D 【解析】 【分析】化简集合,A B ,先求出A B ,再求出其补集即可得解. 【详解】2|4A x x x >={}{|0x x =<或4}x >,|B x y ={{|4}x x =≤,所以{|0}A B x x =<, 所以()UA B ⋂={|0}x x ≥,即()UA B ⋂[0,)=+∞.故选:D9.D 【解析】 【分析】求解分式不等式的解集,再由补集的定义求解出A R,再由交集的定义去求解得答案.【详解】1015x x x ->⇒<-或5x >,所以{}15A x x =≤≤R , 所以得(){}13A B x x ⋂=≤≤R . 故选:D 10.A 【解析】 【分析】根据集合的交集概念即可计算. 【详解】∵{}1A x x =≤,B ={}02x x <<,∴A B =(]0,1. 故选:A ﹒ 11.C 【解析】 【分析】根据集合并集的概念及运算,正确运算,即可求解. 【详解】由题意,集合50{|}A x x =<<-,{}41B x x =-≤≤,根据集合并集的概念及运算,可得{|51}(5,1]A B x x =-<≤=-. 故选:C. 12.A 【解析】 【分析】由交集运算直接求出两集合的交集即可.由集合{}13A x x =≤≤,集合{}24B x x =≤≤ 则{}|23A B x x =≤≤ 故选:A 13.A 【解析】 【分析】依据交集定义去求A B 即可. 【详解】{}{}2|560=2,3B x x x =-+=则{}{}{}2,32,32,3A B ⋂=⋂=, 故选:A . 14.D 【解析】 【分析】先求出集合B ,再由并集运算得出答案. 【详解】由{}2|0B x R x x =∈-=可得{}0,1B =则{}0,1,2,3A B ⋃= 故选:D 15.C 【解析】 【分析】求出集合A 的解集,由(]1,2A B =-,列出满足题意的关系式求解即可得答案. 【详解】解:因为{}{}11|2|22|1(1,)2x x A x x x x -⎧⎫=>=>=>-=-+∞⎨⎬⎩⎭,[,4]B a a =+,又(1,2]A B ⋂=-,所以421a a +=⎧⎨≤-⎩,即2a =-,故选:C.二、填空题16.710##0.7 【解析】 【分析】利用韦恩图,根据题中的信息得出样本中使用共享单车和移动支付的学生人数,将人数除以100可得出所求结果. 【详解】根据题意,将使用过移动支付、共享单车的人数用如图所示的韦恩图表示,所以该校使用共享单车的学生人数与该校学生总数比值的估计值为6010710010+=. 故答案为:710. 17.[)3,+∞【解析】 【分析】根据A B ⊆列出不等式即可求解. 【详解】因为{}13A x x =<<,{}B x x a =<,A B ⊆,故只需3a ≥即可满足题意. 故答案为:[)3,+∞.18.22±【解析】 【分析】根据题意可得集合A 中仅有一个元素,则方程220x ax -+=只有一个解,从而有0∆=,即可得出答案. 【详解】解:因为A ={2|x x -ax +2=0}的子集有两个, 所以集合A 中仅有一个元素, 所以方程220x ax -+=只有一个解, 所以280a ∆=-=,解得22a =± 故答案为:22± 19.1 【解析】 【分析】由子集定义分类讨论即可. 【详解】因为B A ⊆,所以a A ∈1a A ∈, 当2a =-1a 无意义,不满足题意;当1a =12=,满足题意; 当2a =11=,不满足题意. 综上,实数a 的值1. 故答案为:120.{2}【解析】 【分析】利用集合的补运算求UA 即可.【详解】由{}0,1,2U =,{}0,1A =,则{2}UA =.故答案为:{2}.21.{(2,1)}【解析】 【分析】利用加减消元法求得方程组的解集. 【详解】依题意13x y x y -=⎧⎨+=⎩,两式相加得24,21x x y ==⇒=, 所以方程组的解集为{(2,1)}. 故答案为:{(2,1)}22.()A BAB ⋃【解析】 【分析】由集合的交并补运算求解即可. 【详解】设全集为A B ,则阴影部分表示集合A 与B 交集的补集,即()A BAB ⋃故答案为:()A BAB ⋃23.()1,1,2,62⎧⎫⎛⎫-⎨⎬ ⎪⎝⎭⎩⎭【解析】 【分析】解方程组直接求解即可 【详解】由()2221y x x y x ⎧=-⎪⎨=+⎪⎩得121x y ⎧=-⎪⎨⎪=⎩或26x y =⎧⎨=⎩,∴()1,1,2,62A B ⎧⎫⎛⎫⋂=-⎨⎬ ⎪⎝⎭⎩⎭.故答案为:()1,1,2,62⎧⎫⎛⎫-⎨⎬ ⎪⎝⎭⎩⎭24. 2a =-或23a =或0 30k -<≤ 【解析】 【分析】(1)分情况讨论,0,a B ==∅满足题意;当0a ≠时,{}220B x ax a ⎧⎫=-==⎨⎬⎩⎭,因为B A ⊆,故得到21a =-或23a=,解出即可;(2)分情况讨论,当0k =时,满足题意;当0k ≠时,只需要满足23Δ808k k k <⎧⎪⎨⎛⎫=-⨯-< ⎪⎪⎝⎭⎩解不等式组即可. 【详解】已知集合{}{}22301,3A x x x =--==-,{}20B x ax =-=当0,a B ==∅,满足B A ⊆; 当0a ≠时,{}220B x ax a ⎧⎫=-==⎨⎬⎩⎭,因为B A ⊆,故得到21a =-或23a= 解得2a =-或23a =; 不等式23208kx kx +-<对一切实数x 都成立,当0k =时,满足题意;当0k ≠时,只需要满足203Δ808k k k <⎧⎪⎨⎛⎫=-⨯-< ⎪⎪⎝⎭⎩解得30k -<< 综上结果为:30k -<≤. 故答案为:2a =-或23a =或0;30k -<≤ 25.∅【解析】 【分析】根据集合的新定义求解出集合M '和P ',再求解交集可得出答案. 【详解】根据“孤星集”的定义,1,112,2A A ∈+=∈ 所以1不是集合M '的元素同理2,3也都不是集合M '的元素M ∴'=∅,同理可得 {}1P '=所以M P '⋂'=∅.故答案为:∅.三、解答题26.(1)A ∪B ={x |x >0},A ∩B ={x |2<x <4};(2){a |1<a ≤2},【解析】【分析】(1)化简集合A ,B ,利用并集及交集的概念运算即得;(2)分a >1,0<a <1讨论,利用条件列出不等式即得.(1)∵A ={x |2x >4}={x |x >2},B ={x ||x -a |<2}={x |a -2<x <a +2},∴当a =2时,B ={x |0<x <4},所以A ∪B ={x | x >0},A ∩B ={x |2<x <4};(2)当a >1时,C ={x |log ax <0}={x |0<x <1},因为C ⊆B ,所以2021a a -≤⎧⎨+≥⎩,解得-1≤ a ≤2, 因为a >1,此时1<a ≤2,当0<a <1时,C ={x |log ax <0}={x |x >1},此时不满足C ⊆B ,综上,a 的取值范围为{a |1<a ≤2}.27.(1)3{|2}2A x x =≤<,{|13}AB x x ⋃=-≤≤,U B {|1x x =<-或3}x >; (2)3{|12M x x =-≤<或23}x ≤≤; (3){|1M x x =<-或3}x >.【解析】【分析】(1)求解不等式组解得集合A ,再根据集合的并运算和补运算即可求得结果; (2)根据阴影部分可知M =()B A B ⋂,根据已知集合求解即可; (3)根据阴影部分可知M =()U A B ,根据已知集合求解即可. (1){|A x =213x -<,1323}{|2}32x x x x -≤-=≤<, {|13}A B x x ⋃=-≤≤,U B {|1x x =<-或3}x >.(2)因为3{|2}2A B x x ⋂=≤< 根据题意可得M =()B A B ⋂3{|12x x =-≤<或23}x ≤≤. (3) 因为{|13}A B x x ⋃=-≤≤,根据题意可得M =()U A B {|1x x =<-或3}x >. 28.(1)()3,5;()12g x x =;(2)][)0,35,∞⎡⋃+⎣.【解析】【分析】(1)根据f (x )解析式即可求其定义域,根据()g x x α=过P 求出α即可求出g (x )解析式; (2)根据幂函数的性质求g (x )值域即B ,根据集合的补集和交集的运算方法求解即可.(1)5052603x x x x ⎧-><⎧⇒⎨⎨->>⎩⎩, ∴f (x )定义域为()3,5;∵()g x x α=过(P ,则()3132218222g x x ααα==⇒=⇒=; (2)()3,5A =,[)0,B ∞=+,][(),35,A ∞∞=-⋃+R ,()][)0,35,A B ∞⎡⋂=⋃+⎣R .29.(1){}35A B x x ⋂=<≤,{|26}x x AB ≤≤=; (2)5,32⎡⎤⎢⎥⎣⎦【解析】【分析】(1)将m 的值代入集合B ,然后根据交集与并集的定义即可求解;(2)由题意,可得A B ⊆,根据集合的包含关系列不等式组求解即可得答案.(1)解:当2m =时,{|25}B x x =≤≤,又{}36A x x =<≤, 所以{}35A B x x ⋂=<≤,{|26}x x AB ≤≤=;(2)解:因为x B ∈是x A ∈的必要条件,所以A B ⊆,即(3,6][,21]m m ⊆+,所以有3216m m ≤⎧⎨+≥⎩,解得532≤≤m , 所以实数m 的取值范围为5,32⎡⎤⎢⎥⎣⎦. 30.(1){|12}A B x x =≤≤;(2)(){|1U B x A x ⋃=<-或14}x ≤≤;(3)()(){|1U U x B x A ⋂=<-或34}x <≤.【解析】【分析】(1)由集合的交集运算可求得答案; (2)先算出U A ,再求()U A B ⋃; (3)先求U B ,再求()()U U A B ⋂. (1)解:∵{|12}A x x =-≤≤,{|13}B x x =≤≤, ∴{|12}A B x x =≤≤;(2)解:{|4}U x x =≤,{}12A x x =-≤≤,所以{|1U A x x =<-或24}x <≤. 又∵{|13}B x x =≤≤,∴(){|1U B x A x ⋃=<-或14}x ≤≤.(3)∵{|4}U x x =≤,{|13}B x x =≤≤,∴{|1U B x x =<或34}x <≤, ∴()(){|1U U x B x A ⋂=<-或34}x <≤.。

高中数学测试题及答案

高中数学测试题及答案

高中数学测试题及答案一、选择题(每题3分,共30分)1. 下列函数中,哪一个是奇函数?A. y = x^2B. y = x^3C. y = sin(x)D. y = cos(x)答案:B2. 一个等差数列的首项为3,公差为2,求第10项的值。

A. 23B. 25C. 27D. 29答案:A3. 已知函数f(x) = ax^2 + bx + c,其中a, b, c为常数,且f(1) = 2,f(-1) = 0,f(2) = 8,求a的值。

A. 1B. 2C. 3D. 4答案:B4. 一个圆的直径为10cm,求其面积。

A. 25π cm^2B. 50π cm^2C. 100π cm^2D. 200π cm^2答案:B5. 一个直角三角形的两条直角边长分别为3cm和4cm,求斜边的长度。

A. 5cmB. 6cmC. 7cmD. 8cm答案:A6. 已知集合A={1, 2, 3},集合B={2, 3, 4},求A∩B。

A. {1, 2, 3}B. {2, 3}C. {2, 3, 4}D. {1, 2, 3, 4}答案:B7. 抛物线y = x^2 - 4x + 3的顶点坐标是?A. (2, 1)B. (2, -1)C. (-2, 1)D. (-2, -1)答案:A8. 函数y = 2x + 1的反函数是?A. y = (x - 1) / 2B. y = (x + 1) / 2C. y = 2x - 1D. y = -2x + 1答案:A9. 已知一个等比数列的前三项分别为2, 6, 18,求第四项。

A. 54B. 48C. 36D. 24答案:A10. 一个正方体的体积是27cm^3,求其边长。

A. 3cmB. 6cmC. 9cmD. 12cm答案:A二、填空题(每题4分,共20分)11. 计算:(3x^2 - 2x + 1) - (2x^2 + 3x - 4) = _______。

答案:x^2 - 5x + 512. 一个数列的前四项为1, 3, 6, 10,求第五项。

数学测试题及答案高中

数学测试题及答案高中

数学测试题及答案高中一、选择题(每题3分,共30分)1. 下列哪个选项是方程2x^2 - 5x + 3 = 0的解?A. x = 1B. x = 2C. x = 3D. x = 42. 函数f(x) = 3x + 2的反函数是:A. f^(-1)(x) = (x - 2) / 3B. f^(-1)(x) = (x + 2) / 3C. f^(-1)(x) = 3x - 2D. f^(-1)(x) = 3x + 23. 已知三角形ABC的三边长分别为a, b, c,且满足a^2 + b^2 = c^2,那么三角形ABC是:A. 直角三角形B. 钝角三角形C. 锐角三角形D. 不能确定4. 集合A = {1, 2, 3},集合B = {2, 3, 4},则A∩B等于:A. {1}B. {2, 3}C. {3, 4}D. {1, 2, 3, 4}5. 函数y = sin(x)的周期是:A. πB. 2πC. 3πD. 4π6. 已知数列1, 3, 6, 10, ... 的通项公式为:A. a_n = n(n + 1) / 2B. a_n = n^2 + 1C. a_n = 2n + 1D. a_n = n + (n - 1)7. 圆的方程为x^2 + y^2 = 9,那么圆心坐标是:A. (0, 0)B. (3, 0)C. (0, 3)D. (-3, 0)8. 函数y = ln(x)的定义域是:A. (-∞, 0)B. (0, +∞)C. (-∞, +∞)D. [0, +∞)9. 已知向量a = (3, 4),向量b = (-4, 3),则向量a与向量b的夹角θ满足:A. cosθ = 0B. cosθ = 1C. cosθ = -1D. cosθ = 1/210. 函数f(x) = x^3 - 3x^2 + 4的极值点是:A. x = 1B. x = 2C. x = 3D. x = 4答案:1. A2. A3. A4. B5. B6. A7. A8. B9. A10. B二、填空题(每题4分,共20分)1. 计算极限lim(x→0) (sin(x) / x) = _______。

普通高中新数学课程标准的测试题(包括答案)

普通高中新数学课程标准的测试题(包括答案)

普通高中新数学课程标准的测试题(包括答案)普通高中新数学课程标准的测试题(包括答案)一、选择题(每题5分,共25分)1. 下列选项中,哪一个不是普通高中新数学课程标准中的核心素养?A. 逻辑推理B. 数据分析C. 几何画板技能D. 数学建模{答案:C}2. 在普通高中新数学课程标准中,哪个领域主要包括函数、导数、积分等内容?A. 几何B. 代数C. 概率与统计D. 微积分{答案:D}3. 下列哪个数学思想方法不是普通高中新数学课程标准中要求学生掌握的?A. 转化与化归B. 分类与讨论C. 归纳与猜想D. 计算机辅助证明{答案:D}4. 在普通高中新数学课程标准中,哪个层次的数学课程主要让学生感受数学的基本思想?A. 必修课程B. 选择性必修课程C. 选修课程D. 拓展课程{答案:A}5. 下列哪个教学策略不符合普通高中新数学课程标准的要求?A. 注重学生自主研究B. 强化过程评价C. 提倡题海战术D. 鼓励学生合作探究{答案:C}二、填空题(每题5分,共25分)6. 普通高中新数学课程标准中,数学学科核心素养包括______、______、______、______、______和______。

{答案:逻辑推理、数据分析、几何直观、数学建模、数学运算、直观想象}7. 普通高中新数学课程标准将数学课程分为______个研究领域,包括______、______、______、______、______和______。

{答案:6个研究领域,包括数与代数、几何、概率与统计、函数、导数与微积分、数学建模}8. 普通高中新数学课程标准提出,高中数学课程应采用______、______、______等多种教学方式。

{答案:讲授、探究、实践}9. 普通高中新数学课程标准强调,评价应关注学生的______、______、______和______等方面。

{答案:知识与技能、过程与方法、情感态度、价值观}10. 普通高中新数学课程标准建议,教师应根据学生的______、______、______等差异,实施分层教学。

高中数学测试题及答案

高中数学测试题及答案

高中数学测试题及答案一、选择题1. 若函数f(x) = 2x^3 - 3x + k 是奇函数,则常数k的值为:a) -2 b) -3 c) 2 d) 3答案:d) 32. 设集合A = {x | x是实数,2 ≤ x ≤ 5},则集合A的元素个数为:a) 1 b) 2 c) 3 d) 4答案:d) 43. 设函数f(x) = log2(x + 1),则f(7) - f(3)的值为:a) 1 b) 2 c) 3 d) 4答案:b) 24. 已知三边长为12cm、20cm和16cm的三角形ABC,若∠C为锐角,则sin∠A + sin∠B的值为:a) 1 b) 1/2 c) 3/2 d) 2答案:b) 1/25. 已知函数f(x) = x^3 + 2x^2 + ax + 2a + 1在x = 1处取得极值为5,则常数a的值为:a) 2 b) 4 c) 1 d) -1答案:c) 1二、填空题1. 函数f(x) = 2x^3 + 3x^2 - 10的次数为______.答案:32. 等差数列1,3,5,7的前n项和为________.答案:2n^2 - n3. 设a和b是实数,若4a - b = 2,则a = _______.答案:(b + 2) / 44. 若log2(x + 1) = 3,则x = _______.答案:75. 以(-2, 1)和(2, 5)为端点的直线的斜率为______.答案:2三、解答题1. 已知等比数列的首项为a,公比为r,前n项和为S_n。

试证明:当r ≠ 1时,S_n = a * (1 - r^n) / (1 - r)。

解答:首先,我们知道等比数列的通项公式为:a_n = a * r^(n - 1)。

那么,前n项和S_n = a + ar + ar^2 + ... + ar^(n-1)。

我们可以将S_n乘以公比r,得到r * S_n = ar + ar^2 + ar^3 + ... + ar^n。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数 学 试 题 卷
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.
(1)已知集合{|(2)(3)0}A x x x =+-<,{1,0,1,2,3}B =-,则A B =I (A ){0,1} (B ){0,1,2}
(C ){1,0,1}- (D ){1,0,1,2}-
(2)设a =(2,)k k +,b =(3,1),若a ⊥b ,则实数k 的值等于
(A )-32 (B )-53 (C )53 (D )3
2
(3)设等差数列{a n }的前n 项和为S n ,若a 5+a 14=10,则S 18等于
(A )20 (B )60 (C )90 (D )100 (4)圆与圆
的位置关系为
(A )内切 (B )相交 (C )外切 (D )相离
(5)已知变量x ,y 满足约束条件⎪⎩

⎨⎧≤-≥+≤112y x y x y ,则z =3x +y 的最大值为
(A)12 (B)11 (C)3 (D)-1
(6)已知等比数列{a n}中,a1=1,q=2,则T n=1
a1a2+
1
a2a3+…+
1
a n a n+1的结果
可化为
(A)1-1
4n(B)1-
1
2n(C)
2
3(1-
1
4n) (D)
2
3(1-
1
2n)
(7)“m=1”是“直线20
mx y
+-=与直线10
x my m
++-=平行”的(A)充分不必要条件(B)必要不充分条件
(C)充要条件(D)既不充分也不必要条件
(8)阅读右面的程序框图,运行相应的程序,
输出S的值为
(A)15
(B)105
(C)245
(D)945
第II卷
二、填空题:本大题共4小题,每小题5分
(13)某学校高一、高二、高三年级的学生人数之比为334
::,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高一年级抽取名学生.
(14)在ABC ∆中,角所对边长分别为,
若3,,cos 6
4
a B A π
==
=
, 则b =___________.
(15)已知点P ,Q 为圆C :x 2+y 2=25上的任意两点,且|PQ |<6,若PQ 中点
组成的区域为M ,在圆C 内任取一点,则该点落在区域M 上的概率为__________ .
(16)点C 是线段..AB 上任意一点,O 是直线AB 外一点,OC xOA yOB =+u u u r u u u r u u u r

不等式22(1)(2)(2)(1)x y y x k x y +++>++对满足条件的x ,y 恒成立, 则实数k 的取值范围_______.
三、解答题:解答应写出文字说明,证明过程或演算步骤. 已知的面积是3,角所对边长分别为,4
cos 5
A =
. (Ⅰ)求AB AC u u u r u u u r
g ;
(Ⅱ)若2b =,求的值.
已知圆:,直线l 过定点. (Ⅰ)若l 与圆相切,求直线l 的方程;
(Ⅱ)若l 与圆相交于、
两点,且PQ =,求直线l 的方程.
,,A B C ,,a b c ABC ∆,,A B C ,,a b c a C 4)4()3(22=-+-y x (1,0)A C C P Q
某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100]后得到如图所示的频率分布直方图.
(Ⅰ)若该校高一年级共有学生640名,试估计
该校高一年级期中考试数学成绩不低于60分的人数;
(Ⅱ)若从数学成绩在[40,50)与[90,100]两个分数
段内的学生中随机选取2名学生,求这2名学生的数学
成绩之差的绝对值不大于10的概率.
已知数列{a n }满足111,n n a a a n -=-=(其中2n n N ≥∈且). (Ⅰ)求数列{a n }的通项公式; (Ⅱ)设24
n
n n a b n =⨯,其前n 项和是T n ,求证:T n <79 .
已知动点(,)P x y 满足方程1(0)xy x =>.求动点P 到直线:20l x y +=距
离的最小值;
已知函数2
()ax b
f x x
+=为奇函数,且(1)1f =.求实数a 与b 的值;
1—5 DACBB 6—10 CCBDD 15,2,9
25,
1
()
4
-∞,
解答题:(17)解:由
4
cos
5
A=,得
3
sin
5
A=.
又,1
sin 32bc A =∴10bc =(Ⅰ)cos 8AB AC bc A ==u u u r u u u r g (Ⅱ)2,5b c =∴=Q ,=13
∴a =.解:(Ⅰ)当斜率不存在时,方程x=1满足条件; 当L 1斜率存在时,设其方程是y=k(x -1),则
21
4k 32=+--k k ,解得4
3
=
k , 所以所求方程是x =1和3x -4y -3=0;
(Ⅱ)由题意,直线斜率存在且不为0,设其方程是y =k (x -1),则圆心到直线的距离d=
1
4k 22+-k
,d =∴Q k =1或k =7,
所以所求直线方程是10x y --=或770x y --=. 解:(Ⅰ)根据频率分布直方图,成绩不低于60分的频率为
1-10×(0.005+0.01)=0.85.由于该校高一年级共有学生640名,利用样本估计总体的思想,可估计该校高一年级期中考试数学成绩不低于60分的人数约为640×0.85=544.
解:121321()()()n n n a a a a a a a a -=+-+-++-L
(1)
1232n n n +=++++=
L
解:
(Ⅰ)2
|5x d +
=
=≥
当且仅当x =
小值
5.
解:因为()f x 为奇函数,
22
ax b ax b x x -++=-
, 1sin 302bc A =2222cos a b c bc A =+-
得0b =,又(1)1f =,得1a =。

相关文档
最新文档