平方根知识点总结归纳讲义

合集下载

(完整版)平方根知识点总结讲义

(完整版)平方根知识点总结讲义

平方根 知识点总结【学习目标】1.了解平方根、算术平方根的概念,会用根号表示数的平方根.2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.【要点梳理】要点一、平方根和算术平方根的概念1.算术平方根的定义如果一个正数x 的平方等于a ,即2x a =,那么这个正数x 叫做a 的算术平方根(规定0的算术平方根还是0);aa 的算术平方根”,a 叫做被开方数.要点诠释:a0,a ≥0.2.平方根的定义如果2x a =,那么x 叫做a 的平方根.求一个数a 的平方根的运算,叫做开平方.平方与开平方互为逆运算. a (a ≥0)的平方根的符号表达为0)a ≥,是a 的算术平方根.要点二、平方根和算术平方根的区别与联系1.区别:(1)定义不同;(2)结果不同:2.联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根.(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根.要点三、平方根的性质(0)||0(0)(0)a a a a a a >⎧⎪===⎨⎪-<⎩()20a a =≥要点四、平方根小数点位数移动规律被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位.250=25=2.5=0.25=.【典型例题】类型一、平方根和算术平方根的概念1、若2m -4与3m -1是同一个正数的两个平方根,求m 的值.【思路点拨】由于同一个正数的两个平方根互为相反数,由此可以得到2m -4=-(3m -1),解方程即可求解.【答案与解析】解:依题意得 2m -4=-(3m -1),解得m =1;∴m 的值为1.【总结升华】此题主要考查了平方根的性质:一个正数有两个平方根,它们互为相反数. 举一反三:【变式】已知2a -1与-a +2是m 的平方根,求m 的值.【答案】2a -1与-a +2是m 的平方根,所以2a -1与-a +2相等或互为相反数. 解:①当2a -1=-a +2时,a =1,所以m =()()22212111a -=⨯-=②当2a -1+(-a +2)=0时,a =-1,所以m =()()22221[2(1)1]39a -=⨯--=-= 2、x 为何值时,下列各式有意义?2x 4x -11x x +-1x - 【答案与解析】解:(1)因为20x ≥,所以当x 2x (2)由题意可知:40x -≥,所以4x ≥4x - (3)由题意可知:1010x x +≥⎧⎨-≥⎩解得:11x -≤≤.所以11x -≤≤11x x +-义.(4)由题意可知:1030x x -≥⎧⎨-≠⎩,解得1x ≥且3x ≠.所以当1x ≥且3x ≠1x - 【总结升华】(1)当被开方数不是数字,而是一个含字母的代数式时,一定要讨论,只有当被开方数是非负数时,式子才有意义.(2)当分母中含有字母时,只有当分母不为0时,式子才有意义.举一反三:【变式】已知4322232b a a =-+-+,求11a b +的算术平方根. 【答案】解:根据题意,得320,230.a a -≥⎧⎨-≥⎩则23a =,所以b =2,∴1131222a b +=+=, ∴11a b+的算术平方根为112a b +=. 类型二、平方根的运算3、求下列各式的值.(1)2222252434-+;(2)111200.36900435--. 【思路点拨】(1)首先要弄清楚每个符号表示的意义.(2)注意运算顺序.【答案与解析】解:(1)2222252434-+49257535==⨯=; (2)1118111200.369000.630435435--=-⨯-⨯90.26 1.72=--=-. 【总结升华】(1)混合运算的运算顺序是先算平方开方,再乘除,后加减,同一级运算按先后顺序进行.(2)初学可以根据平方根、算术平方根的意义和表示方法来解,熟练后直接根据2(0)a a a =>来解.类型三、利用平方根解方程4、求下列各式中的x .(1)23610;x -= (2)()21289x +=; (3)()2932640x +-=【答案与解析】解:(1)∵23610x -=∴2361x =∴36119x ==±(2)∵()21289x +=∴1289x +=∴x +1=±17x =16或x =-18.(3)∵()2932640x +-= ∴()264329x += ∴8323x +=± ∴21499x x ==-或 【总结升华】本题的实质是一元二次方程,开平方法是解一元二次方程的最基本方法.(2)(3)小题中运用了整体思想分散了难度.举一反三:【变式】求下列等式中的x :(1)若2 1.21x =,则x =______; (2)2169x =,则x =______; (3)若29,4x =则x =______; (4)若()222x =-,则x =______. 【答案】(1)±1.1;(2)±13;(3)32±;(4)±2. 类型四、平方根的综合应用5、已知a 、b 是实数,26|20a b ++=,解关于x 的方程2(2)1a x b a ++=-. 【答案与解析】解:∵a 、b 26|20a b +-=260a +≥,|20b -≥,∴260a +=,20b -=.∴a =-3,2b =把a =-3,2b =2(2)1a x b a ++=-,得-x +2=-4,∴x =6.【总结升华】本题是非负数的性质与方程的知识相结合的一道题,应先求出a 、b 的值,再解方程.此类题主要是考查完全平方式、算术平方根、绝对值三者的非负性,只需令每项分别等于零即可.举一反三:2110x y -+=,求20112012x y +的值. 【答案】2110x y -+=,得210x -=,10y +=,即1x =±,1y =-.①当x =1,y =-1时,20112012201120121(1)2x y +=+-=.②当x =-1,y =-1时,2011201220112012(1)(1)0x y +=-+-=.6、小丽想用一块面积为4002cm 的正方形纸片,沿着边的方向裁出一块面积为3002cm的长方形纸片,使它长宽之比为2:3,请你说明小丽能否用这块纸片裁出符合要求的长方形纸片.【答案与解析】解:设长方形纸片的长为3x (x >0) cm ,则宽为2x cm ,依题意得32300x x ⋅=.26300x =.250x =.∵ x >0,∴ 50x = ∴ 长方形纸片的长为350cm .∵ 50>49,507>.∴ 35021>, 即长方形纸片的长大于20cm .由正方形纸片的面积为400 2cm , 可知其边长为20cm ,∴ 长方形的纸片长大于正方形纸片的边长.答: 小丽不能用这块纸片裁出符合要求的长方形纸片.【总结升华】本题需根据平方根的定义计算出长方形的长和宽,再判断能否用边长为20cm 的正方形纸片裁出长方形纸片.。

第05讲 平方根-2024年新八年级数学暑假提升讲义(北师大版 学习新知)

第05讲 平方根-2024年新八年级数学暑假提升讲义(北师大版 学习新知)

第05讲平方根模块一思维导图串知识模块二基础知识全梳理(吃透教材)模块三核心考点举一反三模块四小试牛刀过关测1.了解平方根、算术平方根的概念,会用根号表示数的平方根;2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根;3.掌握平方根与算术平方根的有关运算。

知识点1算术平方根(1)定义:一般地,如果一个正数x 的平方根等于a ,即:2,x a =那么这个正数x 就叫做a 的算术平方根,记作,读作“根号a ”,(2)表示方法:非负数a的算术平方根记作a ,(3)性质:①正数只有一个算术平方根,并且恒为正;②0的算术平方根为0,即0=;③负数没有算术平方根,当式子a 一定是一个非负数。

知识点2平方根(1)定义:一般地,如果一个正数x 的平方根等于a ,即:2,x a =那么数x 就叫做a 的平方根,记作a ±,读作“正负根号a ”,(2)表示方法:一个数a (a ≧0)的平方根记作a ±(a ≧0),读作根号a ,“正负根号a ”,(3)性质:一个正数有两个平方根,它们互为相反数;0只有一个平方根,是它本身,负数没有平方根。

知识点3开平方(1)定义:求一个数a 的平方根的运算,叫做开平方,a 叫做被开方数;(2)22(0)a a a ≥与( )的性质:(1)2(0),0(0),(0).a a a a a a a >⎧⎪===⎨⎪-<⎩(2)2()(0)a a a =≥(3)22)a a 与(的区别与联系区别:取值范围不同:2a 中a 为任意实数;()2a 中a 0≥;被开方数不同:2a 中被开方数为2a ;()2a 中被开方数为a ;运算顺序不同:2a 先平方再开方;()2a 先开方再平方。

联系:2a 结果为非负数;()2a 中a ≧0时,2a =()2a 考点一:算术平方根与平方根概念理解例1.(2024·山东菏泽·二模)下列说法正确的是()A .64是8的算术平方根B .981C 93D .一个数的算术平方根等于它本身,这个数只能是1【变式1-1】(23-24七年级下·全国·假期作业)下列语句写成数字式子正确的是()A .9是81的算术平方根:9=B .5是2(5)-5C .6±是366=±D .2-是42=-【变式1-2】(23-24七年级下·黑龙江哈尔滨·阶段练习)下面语句中正确的是()A .64的平方根是4±B .18的平方根是12-C .9-的平方根是3-D .116的算术平方根是14【变式1-3】(23-24七年级下·重庆江北·阶段练习)下列说法正确的是()A .9-的算术平方根是3B .9的平方根是3C .0的平方根与算术平方根都是0D .平方根等于本身的数是0和1考点二:求一个数的算术平方根例2.(23-24七年级下·吉林·期中)4的算术平方根是.【变式2-1】(23-24七年级下·吉林松原·期中)49100的算术平方根是.【变式2-2】(23-24七年级下·广东汕尾·阶段练习)16的平方根是,=.【变式2-3】(2024七年级下·全国·专题练习)(1=,=,=,=,=,对于任意实数0=.(2)2=,2=,2=,2=,对于任意非负数a ,猜想2=.考点三:利用算术平方根的非负性解题例3.(23-24七年级下·辽宁葫芦岛·|1|0-=b ,那么()2024a b +的值为()A .1-B .1C .20243D .2024-【变式3-1】(23-24八年级下·重庆永川·期中)已知x ,y |3|0y +=,则x y +=()A .1-B .1C .5D .5-【变式3-2】(23-24七年级下·云南昆明·期中)若01x -=,则20232024x y +的值为()A .0B .1C .1-D .2【变式3-3】(23-24八年级下·广西防城港·期中)已知()210x -=)A .2B .2-C .4D .4-考点四:求算术平方根的整数部分和小数部分例4.的整数部分为a ,小数部分为b ,则=a ,b =.【变式4-1】(20-21七年级上·山东泰安·的整数部分是.小数部分是.【变式4-2】(23-24八年级下·河北廊坊·2-的整数部分是m ,小数部分是n ,则m =,n =.【变式4-3】已知a ,b 2a ﹣b 的值为.考点五:与算术平方根有关的规律探索题例5.(23-24七年级下·江苏南京·阶段练习)按要求填空:(1)填表并观察规律:2.638=______;0.06164=61.64=,则x =______.【变式5-1】(23-24七年级下·安徽芜湖·期中)(1)填表并观察规律:5.8==___________;0.035==,则x =___________.(3)从以上问题的解决过程中,你发现了什么规律,试简要说明.【变式5-2】(23-24七年级下·贵州黔东南·阶段练习)先填写表,通过观察后再回答问题∶(2)从表格中探究a3.16≈________;8.973=897.3=,用含m 的式子表示b ,则b =________;(3)a 的大小.【变式5-3】(23-24八年级下·广东江门·期中)如图,细心观察图形,认真分析下列各式,然后解答问题.22212OA =+=,1S =;22313OA =+=,22S=;22414OA =+=,3S =.(1)推算出210OA =______;10S =______.(2)请用含n (n 是正整数)的式子填空:n OA =______n S =______(3)求出2222123100S S S S +++⋅⋅⋅+的值.考点六:求一个数的平方根例6.(23-24八年级上·江苏徐州·阶段练习)0.0081的平方根是.【变式6-1】(23-24八年级上·贵州贵阳·期中)1681的平方根是.【变式6-2】(23-24七年级上·浙江杭州·期中)116的算术平方根是;的平方根是.【变式6-3】(23-24八年级上·山东枣庄·阶段练习)144平方根是,()27-的算术平方根是,的平方根是,3π-=.考点七:已知一个数的平方根,求这个数例7.(23-24七年级下·山东德州·期中)如果一个数的平方根是()3a -+和()215a -,则这个数为.【变式7-1】(23-24七年级下·内蒙古通辽·期中)一个正数的两个平方根分别是24a +和1a -,则这个正数是.【变式7-2】(23-24七年级下·山东临沂·期中)已知一个正数的两个不同的平方根是23-x 和41x +,则这个正数是.【变式7-3】(23-24七年级下·河南漯河·期中)一个正数的两个平方根是2m -和10m +,则这个正数是.考点八:求代数式的平方根例8.(23-24七年级下·河南新乡·期中)互为相反数,求326b a -++的平方根.【变式8-1】(23-24七年级下·福建莆田·阶段练习)一个正数b 的平方根是21a -与2a -+,(1)求a 和b 的值.(2)求5a b +平方根.【变式8-2】(23-24七年级下·河南商丘·期中)已知21a +的算术平方根是5,103b +的平方根是4±,c 的整数部分,求5a b c -+的平方根.【变式8-3】(22-23七年级下·陕西安康·期中)一个正数x 的两个不同的平方根分别是23a -和5a -.(1)求a 和x 的值.(2)求12x a +的平方根.考点九:利用平方根解方程例9.(23-24七年级下·全国·假期作业)求下列各式中x 的值.(1)2169100x =;(2)2(1)81x +=;(3)2925x =;(4)24(2)9x -=.【变式9-1】(23-24七年级下·河南安阳·期中)求下列各式中x 的值.(1)2218x =;(2)21728x +=.【变式9-2】(23-24七年级下·福建厦门·期中)已知一个正数的两个平方根是6a -与310a -.(1)求a 的值;(2)求关于x 的方程22250ax -=的解.【变式9-3】(23-24七年级下·北京·期中)已知正实数a 的两个平方根分别是x 和x y +.(1)若2x =,求y 的值;(2)若()2224ax a x y -+=-,求a 的值.一、单选题1.(23-24七年级下·内蒙古巴彦淖尔·期中)9的算术平方根是()A .3B .81C .3±D .81±2.(23-24七年级下·山东日照·期中)下列说法正确的是()A 4=±B .4-是16的平方根C 4D .16的平方根是43.(23-24七年级下·河南周口·期中)若一个正数的两个平方根分别是26m +和18m -,则m 的值是()A .3B .4-C .2D .44.(23-24七年级下·山东德州·期中)下列各式中,正确的是()A3=-B 3=±C 3±D .3=-5.(23-24七年级下·广东汕头·期中)若41a +的算术平方根是5,则2a -的算术平方根是()A B .2±C D .2二、填空题6.(23-24七年级下·山东临沂·阶段练习)81的算术平方根是;的平方根是.7.(23-24七年级下·湖北恩施·期中)若2x +的算术平方根是3,则25x +的平方根是.8.(2024·四川内江·二模)若235a b -+a b +=.9.(23-24七年级下·福建厦门· 1.2165≈ 3.8471≈≈.(精确到十分位)10.(23-24七年级下·山东菏泽·期中)已知a b 是整数的算术平方根为.三、解答题11.(23-24七年级下·海南省直辖县级单位·阶段练习)求下列各式的值(2)(3)(4)12.(23-24七年级下·天津北辰·期中)求x 的值.(1)2519x -=;(2)()2419x -=.13.(23-24七年级下·山东德州·阶段练习)已知正数a 的两个不同的平方根分别是32x -和510x +,4a b +-的算术平方根是3.(1)求a 、b 的值;(2)求2a b -的平方根.14.(23-24七年级下·甘肃陇南·阶段练习)(1)如果一个正数的平方根为23x -和5x -,求这个正数.(2)已知21a -的平方根是3±,31a b +-的平方根是4±,求2+a b 的平方根.15.(23-24七年级上·浙江杭州·期中)已知4a -的立方根是1,b 的算术平方根是2c .(1)求a ,b ,c 的值;(2)求23a b c -+的平方根.16.(23-24八年级上·福建泉州·求得,请同学们观察表:2位则它的算术平方根的小数点就向左或向右移动位;(2)23.26≈7.155≈≈;≈②若20.00512x ≈,则x ≈.第05讲平方根模块一思维导图串知识模块二基础知识全梳理(吃透教材)模块三核心考点举一反三模块四小试牛刀过关测1.了解平方根、算术平方根的概念,会用根号表示数的平方根;2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根;3.掌握平方根与算术平方根的有关运算。

平方根 讲义

平方根  讲义

第二节 平方根 讲义 一、対算术平方根的理解一般地,如果一个正数x 的平方等于a ,即2x =a ,那么这个正数x 叫做a 的算术平方根.a 的算术平方根记为a ,读作“根号a ”,a 叫做被开方数.规定:0的算术平方根是0.也就是,在等式2x =a (x ≥0)中,规定x =a .例如:422=,2就叫做4的算术平方根,根据定义,4的算术平方根也可表示为4,读作根号4,所以2=4。

再例如:23=9,3就叫做9的算术平方根,根据定义,9的算术平方根也可表示为9,读作根号,9,所以3=9。

再例如:如果 52=x ,x 就叫做5的算术平方根,根据定义, 5的算术平方根就可以表示为5,所以x=5.2、 试一试:你能根据等式:212=144说出144的算术平方根是多少吗?并用等式表示出来.例1 求下列各数的算术平方根: (1)100;(2)1;(3)6449;(4)0.0001 解:(1)因为302=900,所以900的算术平方根是30,因为900的算术平方根也可表示为900,所以900=30;(2)因为12=1,所以1的算术平方根是1,即1=1;(3)因为,6449)87(2=所以6449的算术平方根是87,即876449=; (4)14的算术平方根是14.通过上面的例题,大家思考一下,我们在求算术平方根时是借助于哪一种运算来求的? [生] 是通过平方来求的.[师]对.由此我们可以看出一个正数的平方和求算术平方根是互为逆运算.而且我们在例题中的步骤采取语言叙述和符号表示互相补充的做法,目的是让大家明白算术平方根的概念,以及从计算中进一步体会一个正数的平方和求算术平方根是互为逆运算.在以后的步骤中可以简化.[师]下面大家再观察一下刚才咱们求出的算术平方根有什么特点. [生甲]算术平方根是整数或分数,即为有理数.[生乙]不对,那14是不是有理数?若是则是,分数还是整数?[生丙]因为没有任何一个整数或分数的平方等于14,所以14不是有理数,而是无理数.结论:非平方数的算术平方根只能用根号表示.[师]大家的分析都有道理,我提示一下从符号方面考虑. [生甲]噢,算术平方根是正数,如14,5,3,2,2.[生乙]不对,还有零呢.正数的算术平方根是正数,零的算术平方根为零.[师]非常正确,那负数的算术平方根是否为负数呢?若(-2)2=4.则4=-2对吗?或者4-=-2对吗?[生甲]不对.因为算术平方根的定义是一个正数的x 的平方等于a ,这个正数x 就叫做a 的算术平方根,所以算术平方根不可能是负数.[师]由此看来,定义中的a 和x 都为正数,即算术平方根是非负数,负数没有算术平方根.用式子表示为a (a ≥0)为非负数,这是算术平方根的性质. (二)补充练习. 一、填空题1.若一个数的算术平方根是5,则这个数是_________.2.94的算术平方根是_________. 3.正数_________的平方为971,25144的算术平方根为_________. 4.(-1.44)2的算术平方根为_________.5.81的算术平方根为_________,04.0=_________ 二、求下列各数的算术平方根,并用符号表示出来:(1)(7.4)2;(2)(-3.9)2;(3)2.25;(4)241. 思考题:因为2是4的算术平方根,所以422=。

平方根ppt课件

平方根ppt课件
在直角三角形中,直角边的平方和等 于斜边的平方。因此,斜边的平方根 是直角边的长度与另一条直角边的长 度之间的比例中项。
平方根的历史背景
平方根的早期发展
在古代文明中,人们已经意识到某些数的平方的值。例如,古埃及人和古巴比 伦人已经知道π和√2的近似值。随着数学的发展,人们对平方根的认识逐渐深 入。
电容
在计算电容时,需要使用平方根来 计算电容器容纳电荷的能力。
在日常生活中的应用
建筑测量
在建筑测量中,需要使用平方根 来计算建筑物的面积和体积。
土地测量
在土地测量中,需要使用平方根 来计算土地的面积和周长。
商业交易
在商业交易中,需要使用平方根 来计算商品的价格和利润。
05
平方根的注意事项
Chapter
平方根函数的奇偶性
平方根函数的值域
函数$y = sqrt{x}$的值域为所有非负 实数。
函数$y = sqrt{x}$是非奇非偶函数, 因为对于所有的x值,都有$sqrt{-x} neq sqrt{x}$。
平方根的几何性质
平方根与数轴的关系
在数轴上,一个数的平方根表示该数距离原点的距离。例如,4位 于2的右边,因为2是4的平方根。
平方根的除法性质
如果a和b都是正数,那么 $frac{sqrt{a}}{sqrt{b}} = sqrt{frac{a}{b}}$。
平方根的加法性质
如果a和b都是正数,那么 $sqrt{a} + sqrt{b}$不一 定等于$sqrt{a + b}$。
平方根的函数性质
平方根函数的单调性
对于函数$y = sqrt{x}$,当x的值从 负无穷增加到正无穷时,y的值也从负 无穷增加到正无穷,因此该函数是单 调递增的。

平方根与算数平方根(复习讲义)01(教师版)

平方根与算数平方根(复习讲义)01(教师版)

平方根与算数平方根(复习讲义)01【知识点讲解】 知识点一:算术平方根1、定义:一般地,如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 叫做a 的算术平方根,规定0的算术平方根是0。

2、表示方法:非负数a 的算术平方根记作“a ”,读作“根号a ”,其中a 叫做被开方数。

3、性质:正数a 的算术平方根为a ; 0的算术平方根是0,即00=; 负数没有算术平方根。

举例:2552=,那么5叫做25的算术平方根(或者说25的算术平方根是5)。

算术平方根a 具有双重非负性: 被开方数a 是非负数,即a ≥0;非负数a 的算术平方根a 是非负数,即a ≥0。

4、规律方法:求一个非负数的算术平方根与求一个非负数的平方恰好是互逆的过程。

算术平方根等于本身的数只有0和1。

被开方数越大,对应的算术平方根也越大,这个结论对所有正数都成立。

例1:求下列个数的算术平方根 ①:0.090.3②:2516 54 ③:()24-4④:0 0 ⑤:1010知识点二:估算算术平方根1、方法:求一个正数(非完全平方数)的算术平方根的近似值,一般采用夹逼法。

“夹”就是从两边确定取值范围;“逼”就是一点一点加强限制,使取值范围越来越小,从而达到理想的精确度。

2、依据:被开方数越大,对应的算术平方根也越大。

3、举例:估算10的大小,可以取与10最近的两个完全平方数9和16。

因为16109<<,所以16109<<,即4103<<4、估算一个正数(非完全平方数)的算术平方根是用有理数进行估计,利用与被开方数比较接近的完全平方数的算术平方根来估计这个被开方数的算术平方根的大小。

例2:估算7的近似值(精确到0.01)解:372974<<⇒<<76.66.22=、29.77.22=7.276.2<<⇒9696.664.22=、0225.765.22=65.2764.2<<⇒得:65.27≈知识点三:平方根的概念及性质 1、平方根:(1)定义:一般地,如果一个数x 的平方等于a ,即a x =2,那么这个数x 叫做a 的平方根或二次方根。

平方根知识点总结

平方根知识点总结

平方根知识点总结平方根是代数学中的一个重要概念,经常在各种数学问题中出现。

简单来说,平方根就是一个数与自己相乘等于指定数的操作的逆运算。

本文将为您总结平方根的知识点,并讨论相关概念、性质和应用。

一、基本概念1. 平方根的定义:对于一个非负数a,它的平方根是指满足x * x = a的非负数x。

符号√a表示a的平方根,√a ≥ 0。

2. 平方根的记法:平方根记作√a。

例如√25 = 5,√144 = 12。

二、性质与运算1. 非负数的平方根:对于任意非负实数a,都存在唯一一个非负实数x,使得x * x = a。

2. 平方根的唯一性:每个正实数只有一个正平方根,即√a是唯一的。

但负实数没有实数平方根。

3. 非零实数的平方根:对于任意非零实数a,其平方根√a的正负号取决于a的符号。

当a > 0时,√a > 0;当a < 0时,√a不存在实数解。

4. 平方根的运算性质:a) 两个非负数的积的平方根等于它们的平方根的乘积:√(ab) = √a * √b。

b) 两个非负数的商的平方根等于它们的平方根的商:√(a/b) = √a / √b(b ≠ 0)。

c) 平方根的乘方等于它的被开方数:(√a)² = a。

三、平方根的求解方法1. 估算法:通过估算被开方数的大小,可以快速确定一个近似的平方根。

2. 迭代法:通过迭代运算,逐步逼近平方根的精确值。

3. 牛顿法:利用泰勒级数近似平方根,通过迭代逼近平方根的解。

四、平方根的应用1. 几何应用:平方根在几何图形的计算中有广泛应用,如计算圆的半径或直径、计算三角形的斜边、计算四边形的对角线等。

2. 物理应用:平方根在物理学中的运动学、力学、电磁学等领域广泛应用,如计算速度、加速度、力的大小等。

3. 工程应用:平方根在工程学中的建筑、机械等领域有重要应用,如计算力的大小、材料的强度等。

4. 统计学应用:平方根在统计学中用于计算方差和标准差等。

总结:平方根是数学中一个非常重要的概念,它在各个领域均有广泛的应用。

《平方根》PPT课件

《平方根》PPT课件

5-2. 已知 2.06 ≈1.435,求下列各数的算术平方根: (1)0.020 6;解:∵ 2.06≈1.435,∴(1) 0.020 6≈0.143 5; (2)206; (2) 206≈14.35; (3)20 600. (3) 20 600≈143.5.
知识点 3 平方根
1. 定义:一般地,如果一个数的平方等于 a,那么这个数 叫做a 的平方根或二次方根 . 这就是说,如果x2=a,那 么x 叫做a的平方根. 表示方法:非负数a 的平方根记为± a ,读作“正、 负根号a”.
2. 大多数计算器都有 键,用它可以求出一个正有理数 的算术平方根(或其近似值). 按键顺序:先按 键, 再输入被开方数,最后按 键. 计算器上就会显示这 个数的算术平方根(或其近似值).
特别解读 ●求一个正数(非平方数) 的算术平方根的近似值,通常有
三种方法: 一是用计算器; 二是查平方根表; 三是估算. ●计算器上显示的数值许多都是近似值.
(1) 1600; (2)- 2 14;
25
(3) -22;
(4) 0.0036.
解:本题运用夹逼法来求整数a 与b 的值. 因为a,b 为连续整数,a< 7 <b, 而22<7<32,所以2< 7 <3. 所以a=2,b=3. 所以a+b=5.
3-1.[中考·天津] 估计 22 的值在( B ) A. 3 和4 之间 B. 4 和5 之间 C. 5 和6 之间 D. 6 和7 之间
(1)121;(2)2 7 ;(3)-(-4)3;(4)
9
49 .
解题秘方:先根据平方运算找出平方等于这个数的
数,然后根据平方根和算术平方根的定义确定.
解:(1)因为(±11)2=121,

平方根、算术平方根讲义

平方根、算术平方根讲义

9.6平方根基础知识点1.平方根和算术平方根的概念2.正确理解√a,-√a,±√a3.无限不循环小数利用平方根与算术平方根的概念1.一个正数x的两个平方根分别是a+1和a-3,则a, x2.√16的平方根是利用平方根的定义解简单方程1.若x的平方根/算术平方根是它本身,则x2.√1-x = 2 的解为利用算术平方根的双重非负性解题1.√(a-2) + (b+5)²= 02.√(2a+6) + |b-√2|= 0 ,解关于x的方程(a+2)x+ b²= a-1利用平方法估计算术平方根的范围1.估计20的算术平方根大小2.已知x为整数,且满足-√2≦x≦√3,则x练习:1.一个自然数的算术平方根为a,则这个自然数相邻的下一个自然数为2.√(-3)²3.√a²= 34.若m (m大于等于0) ,n满足3√m + 5|n|= 7, x=2√m -3|n|, 试求x的取值范围5.√(5x+2y-9) 与|2x-6y-7|互为相反数,则x+1/y =6.3√(a-b) + 4√c=16且x=4√(a-b) -3√c, 试求x的取值范围7.√(2-x)+√(x-2)-y=6, 试求y的x次方的平方根立方根基础知识点1.立方根概念2.平方根与立方根的比较先变形被开方式再直接运算解三次方程估值法比较数的大小实数基础知识点1.无理数的概念及其常见类型(Π类,开方开不尽的数、有规律但又无限不循环的数)2.正确区分无理数和有理数3.实数及其数轴上点的对应关系4.实数的运算法则和运算性质。

平方根和立方根讲义

平方根和立方根讲义

专题1: 平方根和立方根【基础知识梳理】 一、算术平方根1、算术平方根定义: 一般地,如果一个正数x 的平方等于a ,即2x =a ,那么这个正数x 叫做a 的算术平方根.a 的算术平方根记为a ,读作“根号a ”,a 叫做被开方数.规定:0的算术平方根是0.也就是,在等式2x =a (x ≥0)中,规定x =a ,x 就是a 的算术平方根。

例1:下列说法中正确的是( )A.25是5的算术平方根B.5是25的算术平方根C.5是25的算术平方根D.25是5的算术平方根 例2:81的算术平方根是 。

例3:若a+2有算术平方根,则a= 。

例4:若一个圆的面积为236cm π,则这个圆的直径为 cm 。

小结:(1)只有非负数才有算术平方根(2)一个非负数的算术平方根只有一个且仍旧为非负数。

2、你对正数a 的算术平方根a 的结果有怎样的认识呢?a 的结果有两种情:当a 是完全平方数时,a 是一个有限数;当a 不是一个完全平方数时,a 是一个无限不循环小数。

例如7525和=,25是完全平方数,7不是完全平方数。

3、被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律是怎样的呢?一般来说,被开放数扩大(或缩小)n 倍,算术平方根扩大(或缩小)n 倍,例如502500,525== 二、平方根1、平方根的定义:一般地,如果一个数的平方等于a ,那么这个数叫做a 的平方根或二次方根。

即:如果2x =a ,那么x 叫做a 的平方根。

求一个数的平方根的运算,叫做开平方,即a x ±=。

例如:9的平方根是±3,±3的平方等于9,所以平方与开平方互为逆运算. 例5:求下列各数的平方根。

(1) 100 (2)169 (3) 0.25 (4)412 (5)49.0例6:求下列各式中的x 的值。

81)2(16)4(845.021)3(0100)2(225)1(2222=+==-=x x x x2、平方根的性质:讨论:正数的平方根有什么特点?0的平方根是多少?负数有平方根吗?正数有两个平方根,即正数进行开平方运算有两个结果,这两个平方根互为相反数;0的平方根只有一个0;负数没有平方根,即负数不能进行开平方运算;符号:非负数a 的算术平方根可用a 表示;负的平方根可用-a 表示;平方根则表示为a ±,这里的0≥a例7下列各数有平方根吗?如果有,求出它的平方根;如果没有,请说明理由. (1)-64 (2)0 (3)(-4)2(4)10-2例8:(1)下列运算正确的是( ) (2) :下列计算正确的是( )18324.148686.12144.3)3(.222±=±=+=+=--=-D C B A例9:若13++-x x 有意义,则x 的取值范围是 。

平方根知识点总结框架

平方根知识点总结框架

平方根知识点总结框架一、引言- 简要介绍平方根概念和其应用领域- 引出本文的框架和目的二、平方根基础知识1. 定义- 正数的平方根定义- 负数的平方根定义2. 符号表示- 平方根符号的表示:√- 平方根的数学表达式3. 运算法则- 平方根的运算法则- 平方根与指数的关系三、平方根的计算方法1. 直接开方- 整数的平方根计算- 分数的平方根计算2. 估算求解- 估算求解平方根的方法3. 牛顿迭代法- 平方根的牛顿迭代法求解过程- 牛顿迭代法的应用和优缺点4. 算术平方根与几何平方根之间的关系四、平方根的性质1. 性质总述- 平方根的基本性质概述2. 奇偶性- 平方根的奇偶性质3. 有理数性质- 有理数的平方根性质4. 无理数性质- 无理数的平方根性质5. 平方根与基本运算的关系- 平方根与加减乘除的关系6. 平方根的大小比较- 平方根的大小比较性质五、平方根与实际问题1. 实际问题建模- 平方根在实际问题中的建模方法2. 平方根在几何中的应用- 平方根在三角形、正方形等几何图形中的应用3. 平方根在物理中的应用- 平方根在物理学领域中的应用案例4. 平方根在工程中的应用- 平方根在工程领域中的应用案例六、平方根的推广1. n次方根- n次方根的定义和性质2. 平方根的扩展- 平方根的推广及其意义3. 复数平方根- 复数平方根的定义和性质七、平方根领域的发展与应用1. 历史发展- 平方根概念的历史渊源2. 现代应用- 平方根在现代科学技术领域的应用案例3. 未来展望- 平方根在未来领域的发展前景八、结语- 总结平方根的基本知识点- 展望平方根在未来的发展和应用前景。

平方根总结知识点

平方根总结知识点

平方根总结知识点一、平方根的定义平方根是指一个数的平方等于另一个数的操作,比如数a的平方根就是满足等式:x^2= a的x,记作√a。

1. 正数的平方根当a是非负实数时,存在一个非负实数x,使得x^2 = a成立,这个非负实数就是a的平方根。

如果a=0,则a的平方根为0;如果a>0,则a的平方根有两个,一个是正数,一个是负数。

比如,√9=3,-3。

2. 负数的平方根当a是负实数时,不存在任何实数x,使得x^2 = a成立,因此负数没有实数域内的平方根,这在实数范围内是没有意义的。

3. 复数的平方根如果a是负数,则我们可以在复数域内寻找a的平方根,因为复数域中规定了i^2 = -1,即虚数单位i的平方为-1。

因此,负数a的平方根可以表示为√a=i√|a|,其中|a|表示a的绝对值。

二、平方根的性质平方根具有一系列性质,这些性质对于平方根的运算和性质分析都有着重要的作用。

1. 非负实数的平方根性质(1)正数的平方根是非负实数,即√a≥0。

(2)如果a<b,则√a<√b。

(3)平方根的运算性质:a) √(ab) = √a * √bb) √(a/b) = √a / √b (其中b≠0)2. 负实数与复数的平方根性质(1)负实数的平方根是复数且成对出现,例如√-4 = 2i。

(2)负实数的平方根满足共轭关系:如果z是负数a的平方根,那么z的共轭z*也是负数a的平方根。

3. 平方根的运算规律(1)平方根的加减法计算:a) √a + √b = √(a + 2√ab + b)b) √a - √b = √(a - 2√ab + b)(2)平方根的乘除法计算:a) √ab = √a * √bb) √(a/b) = √a / √b (其中b≠0)三、平方根的计算方法1. 精确计算如果已知某个数的精确值,可以直接通过平方根的定义来计算,即求解方程x^2 = a。

但是这种方法对于大数来说较为繁琐,且无法精确计算出其平方根。

(完整版)平方根和立方根经典讲义

(完整版)平方根和立方根经典讲义

内容基本要求略高要求较高要求平方根、算术平方根了解平方根及算术平方根的概念,会用根号表示非负数的平方根及算术平方根 会用平方运算求某些非负数的平方根立方根 了解立方根的概念,会用根号表示数的立方根会用立方根运算求某些数的立方根 实数了解实数的概念会进行简单的实数运算实数可按下图进行详细分类:0⎧⎧⎫⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎧⎨⎪⎪⎨⎪⎪⎪⎩⎭⎩⎪⎪⎫⎧⎪⎪⎨⎬⎪⎪⎩⎭⎩正整数整数负整数有理数有限小数或无限循环小数正分数实数分数负分数正无理数无理数无限不循环小数负无理数实数与数轴上的点一一对应.(以下概念均在实数域范围内讨论) 平方根的定义及表示方法:如果一个数的平方等于a,那么这个数叫做a 的平方根. 也就是说,若2x a=,则x就叫做a 的平方根.一个非负数a 的平方根可用符号表示为“a”.算术平方根:一个正数a有两个互为相反数的平方根,其中正的平方根叫做a 的算术平方根,可用符号表示为a ;有一个平方根,就是0,0的算术平方根也是0,负数没有平方根,当然也没有算术平方根.知识点睛中考要求平方根和立方根一个非负数的平方根不一定是非负数,但它的算术平方根一定是非负数,即若0a ≥0a .平方根的计算:求一个非负数的平方根的运算,叫做开平方.开平方与平方是互逆运算,可以通过平方运算来求一个数的平方根或算术平方根,以及检验一个数是不是另一个数的平方根或算术平方根.通过验算我们可以知道:⑴ 当被开方数扩大(或缩小)2n 倍,它的算术平方根相应地扩大(或缩小)n 倍(0n ≥). ⑵ 平方根和算术平方根与被开方数之间的关系:①若0a ≥,则2()a a =;②不管a 2(0)||(0)a a a a a a ≥⎧==⎨-<⎩注意二者之间的区别及联系.⑶若一个非负数a 介于另外两个非负数1a 、2a 之间,即120a a a ≤<<1a 2a 之间,即:120a a a ≤<范围.立方根的定义及表示方法:如果一个数的立方等于a ,那么这个数叫做a 的立方根,也就是说,若3,x a =则x 就叫做a 的立方根, 一个数a 的立方根可用符号表3a ,其中“3”叫做根指数,不能省略. 前面学习的a 其实省略了根指数“2”2a a 3a “三次根号a ”2a “二次根号a ”a “根号a ”.任何一个数都有立方根,且只有一个立方根,正数的立方根为正数,负数的立方根为负数,0的立方根为0.立方根的计算:求一个数的立方根的运算,叫做开立方,开立方与立方是互逆运算,可以通过立方运算来求一个数的立方根,以及检验一个数是不是另一个数的立方根.通过归纳我们可以知道:⑴当被开方数(大于0)扩大(或缩小)3n 倍,它的立方根相应地扩大(或缩小)n 倍. 33a a =,33()a a =⑶若一个数a 介于另外两个数1a 、2a 之间,即12a a a <<, 31a 32a 33312a a a < 利用这个结论我们可以来估算一个数的立方根的大致范围.重、难点难点:平方根的性质【例1】 判断下列各题,并说明理由819±. ( ) a ( ) ⑶2a 的算术平方根是a . ( ) ⑷ 2()5a -,则5a =-. ( ) 93=±. ( ) ⑹ 6-是2(6)-的平方根. ( ) ⑺ 2(6)-的平方根是6-.( )⑻ 若236x =,则366x =±=±. ( ) ⑼ 若两个数平方后相等,则这两个数也一定相等. ( ) ⑽ 如果两个非负数相等,那么这两个数各自的算术平方根也一定相等. ( ) ⑾ 算术平方根一定是正数. ( ) ⑿ 2a -没有算术平方根. ( ) ⒀ 64的立方根是4±. ( )⒁ 1-是16-的立方根. ( )⒂ 33x x . ( ) ⒃ 互为相反数的两个数的立方根互为相反数. ( ) ⒄ 正数有两个互为相反数的偶数次方根,任何数都有唯一的奇数次方根. ( )【例2】 ⑴ 若22(2)a =-,则a = ;若22()(3)x -=-,则x = .⑵ 22x +,则(25)x +的平方根是 ;若25x =,则x = .⑶ 21a =-,则a ;若20a a =,则a . ⑷ 当0m <,2m 的算术平方根是 .⑸ 2()a b -算术平方根是a b -,则a b .⑹ 若一个自然数的一个平方根是m ,那么比它大1的自然数的平方根是 .⑺ 平方根等于本身的数是 ,算术平方根等于它本身的数是,立方根等于它本身的数是 ;平方根与立方根相等的数是 .例题精讲⑴21(51)30x --=; ⑵3(100.2)0.027x -=-3312573511164168---33321600010.125-【例4】 已知某正数的两个平方根是35a -与1a +,求这个正数.【例5】 已知3(2)27a b +=-235a b -=,求21(3)n a b ++的值(n 为正整数).【例6】 求22221995199519961996+⋅+的平方根.【例7】 (人大附单元测试)已知a 为实数,且满足200201a a a --=,求2200a -的值.【练习1】若22(3)x =-,33(2)y =-,求x y +所有可能值.【练习2】一个数的平方根是22a b +和4613a b -+,求这个数.【练习3】(101数学实验班单元练习)已知2a -的平方根是2±,27a b ++的立方根是3,求22a b +的平方根.【练习4】(2007年成都)22(5)0a b -+=,那么a b +的值为 .【练习5】22111a ab -+-+=,求a ,b 的值.课堂作业【练习6】若a 、b 为实数,且|1|20a ab --,求1111(1)(1)(2)(2)(1993)(1993)ab a b a b a b +++++++++的值.1. ⑴ (安顺市中考题)16的平方根是 ;2( 2.5)-的平方根是 ;2(2)-的平方根是 .⑵ (威海中考题38的相反数是 ;64的立方根是 .⑶ 平方根等于本身的数是 ,算术平方根等于它本身的数是 ,立方根 等于它本身的数是 ;平方根与立方根相等的数是 . ⑷ (江西省中考题)20n n 为( )A .2B .3C .4D .5 ⑸ (上海市中考题)12x -=的根是 . 31.815848 1.2231815848- _____. 2. 若一正数的平方根是36a +与29a +,求这个正数.3. 已知x y +的负的平方根是3-,x y -的立方根是3,求25x y -的平方根. 4. 243a b x a -+=+3a +的算术平方根,323b a y b -+=-3b -的立方根,求y x -的立方根.5.已知:|1|2340a b a b -+--.求:24a b +的立方根. 家庭作业。

平方根(基础)知识点归纳总结及典型例题详解

平方根(基础)知识点归纳总结及典型例题详解

平方根(基础)知识讲解【学习目标】1.了解平方根、算术平方根的概念,会用根号表示数的平方根.2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.【要点梳理】【平方根,知识要点】知识点一、平方根和算术平方根的概念1.算术平方根的定义如果一个正数x的平方等于a,即2x a=,那么这个正数x叫做a的算术平方根(规定0的算术平方根还是0);a的算术平方根记作a的算术平方根”,a叫做被开方数.要点诠释:a一定表示一个非负数,0,a≥0.2.平方根的定义如果2x a=,那么x叫做a的平方根.求一个数a的平方根的运算,叫做开平方.平方与开平方互为逆运算.a (a≥0)的平方根的符号表达为a≥是a的算术平方根.0)知识点二、平方根和算术平方根的区别与联系1.区别:(1)定义不同;(2)结果不同:2.联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根.(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根. 知识点三、平方根的性质20 ||00a aa a aa a >⎧⎪===⎨⎪-<⎩()()2a a a=≥知识点四、平方根小数点位数移动规律被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位.例如:62500250=,62525=, 6.25 2.5=,0.06250.25=.【典型例题】类型一、平方根和算术平方根的概念1、下列说法错误的是()A.5是25的算术平方根B.l是l的一个平方根C.()24-的平方根是-4D.0的平方根与算术平方根都是0【答案】C ;【解析】利用平方根和算术平方根的定义判定得出正确选项.A.因为25=5,所以本说法正确;B.因为±1=±1,所以l 是l 的一个平方根说法正确;C.因为±()24-=±16=±4,所以本说法错误; D.因为0±=0,0=0,所以本说法正确;【总结升华】此题主要考查了平方根、算术平方根的定义,关键是明确运用好定义解决问题.举一反三:【变式】判断下列各题正误,并将错误改正:(1)9-没有平方根.( )(2)164=±.( )(3)21()10-的平方根是110±.( ) (4)25--是425的算术平方根.( ) 【答案】√ ;×; √; ×,提示:(2)164=;(4)25是425的算术平方根. 2、 填空:(1)4-是 的负平方根.(2116表示 的算术平方根,116= .(3)181的算术平方根为 . (4)若3x =,则x = ,若23x =,则x = . 【思路点拨】(3)181就是181的算术平方根=19,此题求的是19的算术平方根. 【答案与解析】(1)16;(2)11;164(3)13 (4) 9;±3 【总结升华】要审清楚题意,不要被表面现象迷惑.注意数学语言与数学符号之间的转化.举一反三:【变式1】下列说法中正确的有( ):①3是9的平方根. ② 9的平方根是3.③4是8的正的平方根.④ 8-是64的负的平方根.A .1个B .2个C .3个D .4个【答案】B ;提示:①④是正确的.【变式2】求下列各式的值:(1)325 (2)8136+ (3)0.040.25- (4)40.36121⋅ 【答案】(1)15;(2)15;(3)-0.3;(4)655 3、使代数式1x +有意义的x 的取值范围是______________.【答案】x≥1-;【解析】x+1≥0,解得x≥1-.【总结升华】当式子a有意义时,a一定表示一个非负数,即a≥0,a≥0.举一反三:【变式】(2015春•中江县期中)若+(3x+y﹣1)2=0,求5x+y2的平方根.【答案】解:∵+(3x+y﹣1)2=0,∴,解得,,∴5x+y2=5×1+(﹣2)2=9,∴5x+y2的平方根为±=±3.类型二、利用平方根解方程4、(2015春•鄂州校级期中)求下列各式中的x值(1)169x2=144(2)(x﹣2)2﹣36=0.【思路点拨】(1)移项后,根据平方根定义求解;(2)先将(x﹣2)看成一个整体,移项后,根据平方根定义求解.【答案与解析】解:(1)169x2=144,两边同时除以169,得1442x=169开平方,得x=(2)(x﹣2)2﹣36=0,移项,得(x﹣2)2=36开平方,得x﹣2=±6,解得:x=8或x=﹣4.【总结升华】本题考查了平方根,根据是一个正数的平方根有两个.类型三、平方根的应用5、要在一块长方形的土地上做田间试验,其长是宽的3倍,面积是1323平方米.求长和宽各是多少米?【答案与解析】解:设宽为x,长为3x,由题意得,x·3x=132332x=1323x=±21x=-21(舍去)答:长为63米,宽为21米.【总结升华】根据面积由平方根的定义求出边长,注意实际问题中边长都是正数.。

平方根知识点总结讲义

平方根知识点总结讲义

平方根知识点总结讲义平方根是数学中非常重要的概念,我们经常在各种计算和解题中都会用到。

以下是平方根的相关知识点总结:1.平方根的定义:平方根是指一个数的平方等于该数的非负实数解。

对于正数a,它的平方根记作√a。

2.平方根的性质:a)平方根的平方等于它本身,即(√a)^2=a。

b)任意正数的平方根是唯一的。

但是对于负数,它的平方根是虚数。

c) 平方根满足乘法的可交换性,即√(ab) = √a * √b。

3.平方根的运算法则:a) 平方根的和差:√a ± √b = √(a ± 2√ab + b)。

b)平方根的积除:√(a/b)=√a/√b。

c)乘法公式:(a±b)*(a∓b)=a^2-b^2、利用该公式,我们可以进行平方根的乘法运算。

4.求平方根的方法:a)通过查表或使用计算器可以求得近似值。

b)使用二分法逼近平方根的精确值。

c)使用牛顿迭代法来计算平方根的近似值。

5.特殊平方根值:a)2的平方根是无理数,它的近似值约为1.414b)3的平方根也是无理数,它的近似值约为1.7326.平方根的应用:a)平方根可以用于计算直角三角形的边长。

例如,根据毕达哥拉斯定理,两条边长分别为a和b的直角三角形的斜边长c可以通过√(a^2+b^2)来计算。

b)平方根在统计学中经常用到,例如计算标准差和方差等。

c)平方根还可以用于解决一些数论问题和代数方程等。

总结起来,平方根是数学中极为重要的概念之一、了解平方根的定义、性质和运算法则,掌握求解平方根的方法,以及理解平方根的应用,对于解决实际问题和提高数学能力都非常有帮助。

算术平方根知识点总结

算术平方根知识点总结

算术平方根知识点总结算术平方根是数学中一个基础且重要的概念。

在我们的日常生活和学习中,它有着广泛的应用。

接下来,让我们详细地了解一下算术平方根的相关知识。

一、算术平方根的定义若一个非负数 x 的平方等于 a,即\(x^2 = a\),那么这个非负数x 叫做 a 的算术平方根,记作\(\sqrt{a}\),读作“根号a”,a 叫做被开方数。

特别地,0 的算术平方根是 0。

例如,因为\(2^2 = 4\),所以 2 是 4 的算术平方根,即\(\sqrt{4} = 2\);因为\(0^2 = 0\),所以 0 是 0 的算术平方根,即\(\sqrt{0} = 0\)。

需要注意的是,负数没有算术平方根,因为任何数的平方都是非负数。

二、算术平方根的性质1、双重非负性算术平方根具有双重非负性,即被开方数\(a\geq 0\),算术平方根\(\sqrt{a}\geq 0\)。

这是因为一个数的平方不可能是负数,所以被开方数必须是非负的;同时,算术平方根表示的是一个非负的数。

2、唯一性一个正数的算术平方根是唯一的。

例如,9 的算术平方根只有一个,就是 3,而不是\(-3\)。

3、运算性质\(\sqrt{a^2} =|a|\)当\(a\geq 0\)时,\(\sqrt{a^2} = a\);当\(a < 0\)时,\(\sqrt{a^2} = a\)。

三、算术平方根的计算1、常见数的算术平方根要牢记一些常见数的算术平方根,例如:\(\sqrt{1} = 1\),\(\sqrt{4} = 2\),\(\sqrt{9} =3\),\(\sqrt{16} = 4\),\(\sqrt{25} = 5\)等等。

2、利用平方运算求算术平方根对于一个数 a,如果要计算它的算术平方根,可以通过试探找到一个数 x,使得\(x^2 = a\),则\(x =\sqrt{a}\)。

例如,要计算\(\sqrt{10}\),因为\(3^2 = 9\),\(4^2 =16\),而 10 在 9 和 16 之间,所以\(\sqrt{10}\)在 3 和 4 之间。

数学七年级下册平方根的知识点

数学七年级下册平方根的知识点

数学七年级下册平方根的知识点平方根是数学中一个非常重要的概念,它在我们的日常生活中也有着非常广泛的应用。

在数学七年级下册中,我们将学习关于平方根的知识,包括平方根的定义、性质、计算等方面的内容。

通过学习平方根,我们可以更加深入地了解数学知识,并且在解决实际问题时有更强的能力。

本文将对数学七年级下册平方根的知识点进行详细的介绍和解析,帮助同学们更好地掌握这一部分知识。

一、平方根的定义1.1平方根的概念平方根是指一个数的平方等于另一个数的数值,通常用符号√来表示。

如果一个数a的平方等于b,那么我们就说b的平方根是a,记作√b = a。

其中,a称为平方根,b称为被开方数。

1.2平方根的性质平方根有以下几个重要的性质:(1)非负性:任何非负数的平方根都是一个非负数。

(2)唯一性:一个非负数的平方根是唯一的。

(3)零的平方根是0。

(4)负数没有实数平方根。

1.3平方根的表示方法平方根可以以分数、小数、甚至无理数的形式表示。

一些特殊的平方根可以用根式来表示,如√2、√3等。

二、平方根的计算2.1常见平方数的平方根在数学中,一些常见的平方数的平方根是容易计算的,如1、4、9、16、25等。

我们可以通过列举平方数表来记住这些平方数的平方根。

2.2用因数分解方法求平方根对于那些不是常见平方数的数字,我们可以通过因数分解的方法来求它的平方根。

以简化为最简分数的形式,例如√20 = √(2*2*5)= 2√5。

2.3用近似算法求平方根对于那些不能很容易求出精确值的平方根,可以使用近似算法来计算。

例如,通过不断迭代计算可以得到一个数字的近似平方根值。

三、平方根的应用3.1在几何中的应用平方根在几何中有着广泛的应用,例如在计算直角三角形的斜边长、正方形的对角线长度等方面。

3.2在物理中的应用物理学中常常涉及到平方根的运算,例如在速度、加速度、力等方面的计算中,都需要用到平方根。

3.3在工程中的应用在工程领域中,平方根也有着重要的应用,比如在计算机图形学、建筑设计、材料力学等方面都需要用到平方根。

初一下册平方根知识点总结上课讲义

初一下册平方根知识点总结上课讲义

概念:一般地,如果一个数的平方等于 a ,这个数就叫做 a 的平方根(或二次方根) .
就是说,如果 x2 = a (a≥ 0),那么 x 就叫做 a 的平方根.记作
a
求一个数 a 的平方根的运算,叫做开平方。
例 1:求下列各数的平方根:
( 1) 81
( 2) 4 ( 3) 100 25
( 4)0.49
精品文档
个性化教学辅导方案
教学 内容 教学 目标
重点 难点
平方根
1. 解平方根和算术平方根的概念,了解平方与开平方的关系。 2、学会平方根、算术平方根的表示法和平方根、算术平方根,并运用以上知识解决实际问题。 平方根的概念; 平方根的概念和平方根的表示方法;
知识梳理
知识点一 算术平方根 例 1:一张正方形桌面的面积为 1.44m2,边长是多少 m?
注意:因为负数没有平方根,所以
a 中的被开方数 a≥ 0,当 a <0 时, a 没有意义 .
例 1:下列各数有平方根?如果有,求出它的平方根,如果没有,说明理由。
- 64、 0 ,
2
4,
例 2:若 3a+1 没有算术平方根,则 a 的取值范围是
的取值范围是

。若 3x- 6 总有平方根,则 x
精品文档
例 1:求下列各数的算术平方根。
( 1) 100
(2) 9 16
( 3) 0.25
(4) 3
例 2:求下列各数的值。
( 1) 25
( 2) 0.09
( 3) ( 6) 2
知识点二 平方根
精品文档
精品文档
例: 因为 32 = 9 , ( 3)2 = 9, 所以一个数的平方等于 9,这个数是 3 或-3 。

平方根与立方根知识点小结上课讲义

平方根与立方根知识点小结上课讲义

“平方根”与“立方根”知识点小结一、知识要点1、平方根:⑴、定义:如果x 2=a ,则x 叫做a 的平方根,记作“a ±”(a 称为被开方数)。

⑵、性质:正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

;负数没有平方根。

⑶、算术平方根:正数a 的正的平方根叫做a 的算术平方根,记作“a ”。

2、立方根:⑴、定义:如果x 3=a ,则x 叫做a 的立方根,记作“3a ”(a 称为被开方数)。

⑵、性质:正数有一个正的立方根;0的立方根是0;负数有一个负的立方根。

;负数有一个负的立方根。

3、开平方(开立方):求一个数的平方根(立方根)的运算叫开平方(开立方)。

二、规律总结:1、平方根是其本身的数是0;算术平方根是其本身的数是0和1;立方根是其本身的数是0和±1。

2、每一个正数都有两个互为相反数的平方根,其中正的那个是算术平方根;任何一个数都有唯一一个立方根,这个立方根的符号与原数相同。

这个立方根的符号与原数相同。

3、a 本身为非负数,即a ≥0;a 有意义的条件是a ≥0。

4、公式:⑴(a )2=a (a ≥0);⑵3a -=3a -(a 取任何数)。

5、非负数的重要性质:若几个非负数之和等于0,则每一个非负数都为0(此性质应用很广,务必掌握)。

例1 求下列各数的平方根和算术平方根求下列各数的平方根和算术平方根(1)64;(2)2)3(-; (3)49151; ⑷ 21(3)- 例2 求下列各式的值求下列各式的值 (1)81±; (2)16-; (3)259; (4)2)4(-.(5)44.1,(6)36-,(7)4925±(8)2)25(-例3、求下列各数的立方根:求下列各数的立方根:⑴ 343; ⑵ 10227-; ⑶ 0.729二、巧用被开方数的非负性求值.大家知道,当a ≥0时,时,a a 的平方根是±a ,即a 是非负数是非负数. . 例4、若,622=----y x x 求y x 的立方根的立方根. .练习:已知,21221+-+-=x x y 求yx 的值.三、巧用正数的两平方根是互为相反数求值.我们知道,当a ≥0时,时,a a 的平方根是±a ,而.0)()(=-++a a 例5、已知:一个正数的平方根是2a-1与2-a 2-a,求,求a 的平方的相反数的立方根的平方的相反数的立方根. .练习:若32+a 和12-a 是数m 的平方根,求m 的值的值..四、巧解方程 例6、解方程(解方程(11)(x+1x+1))2=36(2)27(x+1)3=64五、巧用算术平方根的最小值求值.我们已经知道0≥a ,即a=0时其值最小时其值最小,,换句话说a 的最小值是零的最小值是零. .例4、已知:已知:y=y=)1(32++-b a ,当a 、b 取不同的值时,取不同的值时,y y 也有不同的值也有不同的值..当y 最小时最小时,,求b a 的非算术平方根的非算术平方根. .练习①已知233(2)0x y z -+-++=,求xyz 的值。

平方根知识点总结

平方根知识点总结

平方根知识点总结平方根,是数学中一个重要的概念,它在解决各种数学问题和实际应用中都有着广泛的用途。

接下来,让我们一起深入了解平方根的相关知识。

一、平方根的定义如果一个数的平方等于 a,那么这个数叫做 a 的平方根。

用数学语言表示为:若 x²= a,则 x 叫做 a 的平方根,记为±√a 。

例如,因为 3²= 9,(-3)²= 9,所以 9 的平方根是 ±3,即±√9 = ±3 。

需要注意的是,正数有两个平方根,它们互为相反数;0 的平方根是 0;负数没有平方根。

二、平方根的性质1、一个正数有两个平方根,它们互为相反数。

比如 4 的平方根是 ±2,2 和-2 互为相反数。

2、 0 的平方根是 0。

这是一个比较特殊的情况,因为 0 的平方还是 0 。

3、负数没有平方根。

因为任何数的平方都是非负数,所以负数不存在平方根。

4、算术平方根正数 a 的正的平方根叫做 a 的算术平方根,记为√a 。

例如,9 的算术平方根是 3,即√9 = 3 。

三、平方根的表示方法平方根通常用符号“±√”来表示,读作“正负根号”。

例如,±√16 表示 16 的平方根,即 ±4 。

算术平方根则用“√”表示。

四、开平方运算求一个数 a 的平方根的运算叫做开平方,其中 a 叫做被开方数。

开平方与平方互为逆运算。

例如,求 25 的平方根,就是进行开平方运算:±√25 = ±5 。

五、平方根的应用1、在几何中例如,计算正方形的边长。

如果已知正方形的面积为16 平方厘米,那么它的边长就是面积的平方根,即√16 = 4 厘米。

2、在实际生活中比如,在建筑工程中计算面积、体积等问题时,常常会用到平方根。

3、在数学计算中解方程时,也可能会涉及到平方根的运算。

六、平方根与立方根的区别1、定义不同平方根是指一个数的平方等于另一个数,那么这个数就是另一个数的平方根;而立方根是指一个数的立方等于另一个数,那么这个数就是另一个数的立方根。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

欢迎阅读平方根知识点总结
【学习目标】
1.了解平方根、算术平方根的概念,会用根号表示数的平方根.
2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.【要点梳理】
要点一、平方根和算术平方根的概念
1.算术平方根的定义
如果一个正数x的平方等于a,即2x a
=,那么这个正数x叫做a的算术平方根(规定0的算术
2.
如果. a(a≥
1
2
.因此,
.例如:
类型一、平方根和算术平方根的概念
1、若2m-4与3m-1是同一个正数的两个平方根,求m的值.
【思路点拨】由于同一个正数的两个平方根互为相反数,由此可以得到2m-4=-(3m-1),解方程即可求解.
【答案与解析】
解:依题意得 2m-4=-(3m-1),
解得m=1;
∴m的值为1.
【总结升华】此题主要考查了平方根的性质:一个正数有两个平方根,它们互为相反数.
举一反三:
【变式】已知2a -1与-a +2是m 的平方根,求m 的值.
【答案】2a -1与-a +2是m 的平方根,所以2a -1与-a +2相等或互为相反数.
解:①当2a -1=-a +2时,a =1,所以m =()()22
212111a -=⨯-=
②当2a -1+(-a +2)=0时,a =-1,
所以m =()()22221[2(1)1]39a -=⨯--=-=
2、x 为何值时,下列各式有意义?
(4)
解:(1)(2)(3)(4)【答案】
∴11a b
+= 类型二、平方根的运算
3、求下列各式的值.
2234+; 【思路点拨】(1)首先要弄清楚每个符号表示的意义.(2)注意运算顺序.
【答案与解析】
解:2234+257535==⨯=;
110.63035=⨯-⨯90.26 1.72
=--=-. 【总结升华】(1)混合运算的运算顺序是先算平方开方,再乘除,后加减,同一级运算按先后顺序进行.(2)初学
(0)a a =>来解.
类型三、利用平方根解方程
4、求下列各式中的x .
(1
(3解:(1 (2 x (3 ∴99x x ==-或 【总结升华】本题的实质是一元二次方程,开平方法是解一元二次方程的最基本方法.(2)(3)小题中运用了整体思想分散了难度.
举一反三:
【变式】求下列等式中的x :
(1)若2 1.21x =,则x =______; (2)2169x =,则x =______;
(3)若29,4
x =则x =______; (4)若()222x =-,则x =______.
【答案】(1)±1.1;(2)±13;(3)32
±
;(4)±2. 类型四、平方根的综合应用
5、已知a 、b |0b -=,解关于x 的方程2(2)1a x b a ++=-. 【答案与解析】
解:∵a 、b |0b -=0≥,|0b -≥,
∴260a +=,0b -=.
6 250x =.
∵ x >0,
∴ x =
∴ 长方形纸片的长为cm .
∵ 50>49,
7>.
∴ 21>, 即长方形纸片的长大于20cm .
cm, 可知其边长为20cm,
由正方形纸片的面积为400 2
∴ 长方形的纸片长大于正方形纸片的边长.
答: 小丽不能用这块纸片裁出符合要求的长方形纸片.
【总结升华】本题需根据平方根的定义计算出长方形的长和宽,再判断能否用边长为20cm的正方形纸片裁出长方形纸片.。

相关文档
最新文档