人教中考数学专题训练---圆的综合的综合题分类及详细答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、圆的综合真题与模拟题分类汇编(难题易错题)
1.如图,点A、B、C分别是⊙O上的点, CD是⊙O的直径,P是CD延长线上的一点,AP=AC.
(1)若∠B=60°,求证:AP是⊙O的切线;
(2)若点B是弧CD的中点,AB交CD于点E,CD=4,求BE·AB的值.
【答案】(1)证明见解析;(2)8.
【解析】
(1)求出∠ADC的度数,求出∠P、∠ACO、∠OAC度数,求出∠OAP=90°,根据切线判定推出即可;
(2)求出BD长,求出△DBE和△ABD相似,得出比例式,代入即可求出答案.
试题解析:连接AD,OA,
∵∠ADC=∠B,∠B=60°,
∴∠ADC=60°,
∵CD是直径,
∴∠DAC=90°,
∴∠ACO=180°-90°-60°=30°,
∵AP=AC,OA=OC,
∴∠OAC=∠ACD=30°,∠P=∠ACD=30°,
∴∠OAP=180°-30°-30°-30°=90°,
即OA⊥AP,
∵OA为半径,
∴AP是⊙O切线.
(2)连接AD,BD,
∵CD是直径,
∴∠DBC=90°,
∵CD=4,B为弧CD中点,
∴BD=BC=,
∴∠BDC=∠BCD=45°,
∴∠DAB=∠DCB=45°,
即∠BDE=∠DAB,
∵∠DBE=∠DBA,
∴△DBE∽△ABD,
∴,
∴BE•AB=BD•BD=.
考点:1.切线的判定;2.相似三角形的判定与性质.
2.如图,已知Rt△ABC中,C=90°,O在AC上,以OC为半径作⊙O,切AB于D点,且BC=BD.
(1)求证:AB为⊙O的切线;
(2)若BC=6,sinA=3
5
,求⊙O的半径;
(3)在(2)的条件下,P点在⊙O上为一动点,求BP的最大值与最小值.
【答案】(1)连OD,证明略;(2)半径为3;(3)最大值5,5【解析】
分析:(1)连接OD,OB,证明△ODB≌△OCB即可.
(2)由sinA=3
5
且BC=6可知,AB=10且cosA=
4
5
,然后求出OD的长度即可.
(3)由三角形的三边关系,可知当连接OB交⊙O于点E、F,当点P分别于点E、F重合时,BP分别取最小值和最大值.
详解:(1)如图:连接OD、OB.
在△ODB和△OCB中:
OD=OC,OB=OB,BC=BD;
∴△ODB≌△OCB(SSS).
∴∠ODB=∠C=90°.
∴AB为⊙O的切线.
(2)如图:
∵sinA=3
5,∴
CB3
AB5
,
∵BC=6,∴AB=10,∵BD=BC=6,
∴AD=AB-BD=4,
∵sinA=3
5,∴cosA=
4
5

∴OA=5,∴OD=3,
即⊙O的半径为:3.
(3)如图:连接OB,交⊙O为点E、F,
由三角形的三边关系可知:
当P点与E点重合时,PB取最小值.
由(2)可知:OD=3,DB=6,
∴OB=22
3635
+=.
∴PB=OB-OE=353
-.
当P点与F点重合时,PB去最大值,
PB=OP+OB=3+35.
点睛:本题属于综合类型题,主要考查了圆的综合知识.关键是对三角函数值、勾股定理、全等三角形判定与性质的理解.
3.如图,已知AB是⊙O的直径,点C,D在⊙O上,BC=6cm,AC=8cm,∠BAD=45°.点E在⊙O外,做直线AE,且∠EAC=∠D.
(1)求证:直线AE是⊙O的切线.
(2)求图中阴影部分的面积.
【答案】(1)见解析;(2) 25-50
4
π
.
【解析】
分析:(1)根据圆周角定理及推论证得∠BAE=90°,即可得到AE是⊙O的切线;(2)连接OD,用扇形ODA的面积减去△AOD的面积即可.
详解:证明:(1)∵AB是⊙O的直径,
∴∠ACB=90°,
即∠BAC+∠ABC=90°,
∵∠EAC=∠ADC,∠ADC=∠ABC,
∴∠EAC=∠ABC
∴∠BAC+∠EAC =90°,
即∠BAE= 90°
∴直线AE是⊙O的切线;
(2)连接OD
∵ BC=6 AC=8 ∴ 226810AB =+=
∴ OA = 5
又∵ OD = OA
∴∠ADO =∠BAD = 45°
∴∠AOD = 90°
∴AOD ODA S S S ∆-阴影扇形=
=90155553602
π⨯⨯-⨯⨯ 25504
π-= (2cm )
点睛:此题主要考查了圆周角定理和圆的切线的判定与性质,关键是利用圆周角定理和切线的判定与性质,结合勾股定理的和弓形的面积的求法求解,注意数形结合思想的应用.
4.如图,已知四边形ABCD 是矩形,点P 在BC 边的延长线上,且PD=BC ,⊙A 经过点B ,与AD 边交于点E ,连接CE .
(1)求证:直线PD 是⊙A 的切线;
(2)若PC=25,sin ∠P=23
,求图中阴影部份的面积(结果保留无理数).
【答案】(1)见解析;(2)20-4π.
【解析】
分析:(1)过点A 作AH ⊥PD ,垂足为H ,只要证明AH 为半径即可.
(2)分别算出Rt △CED 的面积,扇形ABE 的面积,矩形ABCD 的面积即可.
详解:(1)证明:如图,过A 作AH ⊥PD ,垂足为H ,
∵四边形ABCD是矩形,
∴AD=BC,AD∥BC,∠PCD=∠BCD=90°,∴∠ADH=∠P,∠AHD=∠PCD=90°,
又PD=BC,∴AD=PD,
∴△ADH≌△DPC,∴AH=CD,
∵CD=AB,且AB是⊙A的半径,
∴AH=AB,即AH是⊙A的半径,
∴PD是⊙A的切线.
(2)如图,在Rt△PDC中,∵sin∠P=
2
3
CD
PD
,PC=25,
令CD=2x,PD=3x,由由勾股定理得:(3x)2-(2x)2=(25)2,解得:x=2,∴CD=4,PD=6,
∴AB=AE=CD=4,AD=BC=PD=6,DE=2,
∵矩形ABCD的面积为6×4=24,Rt△CED的面积为1
2
×4×2=4,
扇形ABE的面积为1
2
π×42=4π,
∴图中阴影部份的面积为24-4-4π=20-4π.
点睛:本题考查了全等三角形的判定,圆的切线证明,三角形的面积,扇形的面积,矩形的面积.
5.如图所示,以Rt△ABC的直角边AB为直径作圆O,与斜边交于点D,E为BC边上的中点,连接DE.
(1)求证:DE是⊙O的切线;
(2)连接OE,AE,当∠CAB为何值时,四边形AOED是平行四边形?并在此条件下求sin∠CAE的值.
【答案】(1)见解析;(2)10
.
【解析】
分析:(1)要证DE 是⊙O 的切线,必须证ED ⊥OD ,即∠EDB+∠ODB=90°
(2)要证AOED 是平行四边形,则DE ∥AB ,D 为AC 中点,又BD ⊥AC ,所以△ABC 为等腰直角三角形,所以∠CAB=45°,再由正弦的概念求解即可.
详解:(1)证明:连接O 、D 与B 、D 两点,
∵△BDC 是Rt △,且E 为BC 中点,
∴∠EDB=∠EBD .(2分)
又∵OD=OB 且∠EBD+∠DBO=90°,
∴∠EDB+∠ODB=90°.
∴DE 是⊙O 的切线.
(2)解:∵∠EDO=∠B=90°,
若要四边形AOED 是平行四边形,则DE ∥AB ,D 为AC 中点,
又∵BD ⊥AC ,
∴△ABC 为等腰直角三角形.
∴∠C AB=45°.
过E 作EH ⊥AC 于H ,
设BC=2k ,则EH=22k ,AE=5k , ∴sin ∠CAE=1010
EH AE .
点睛:本题考查的是切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.
6.已知:如图1,∠ACG=90°,AC=2,点B 为CG 边上的一个动点,连接AB ,将△ACB 沿AB 边所在的直线翻折得到△ADB ,过点D 作DF ⊥CG 于点F .
(1)当23 时,判断直线FD 与以AB 为直径的⊙O 的位置关系,并加以证明; (2)如图2,点B 在CG 上向点C 运动,直线FD 与以AB 为直径的⊙O 交于D 、H 两点,连接AH ,当∠CAB=∠BAD=∠DAH 时,求BC 的长.
【答案】(1)直线FD与以AB为直径的⊙O相切,理由见解析;(2)222
.【解析】
试题分析:(1)根据已知及切线的判定证明得,直线FD与以AB为直径的⊙O相切;(2)根据圆内接四边形的性质及直角三角形的性质进行分析,从而求得BC的长.
试题解析:
(1)判断:直线FD与以AB为直径的⊙O相切.
证明:如图,
作以AB为直径的⊙O;
∵△ADB是将△ACB沿AB边所在的直线翻折得到的,
∴△ADB≌△ACB,
∴∠ADB=∠ACB=90°.
∵O为AB的中点,连接DO,
∴OD=OB=AB,
∴点D在⊙O上.
在Rt△ACB中,BC=,AC=2;
∴tan∠CAB==,
∴∠CAB=∠BAD=30°,
∴∠ABC=∠ABD=60°,
∴△BOD是等边三角形.
∴∠BOD=60°.
∴∠ABC=∠BOD,
∴FC∥DO.
∵DF⊥CG,
∴∠ODF=∠BFD=90°,
∴OD⊥FD,
∴FD为⊙O的切线.
(2)延长AD交CG于点E,
同(1)中的方法,可证点C在⊙O上;
∴四边形ADBC是圆内接四边形.
∴∠FBD=∠1+∠2.
同理∠FDB=∠2+∠3.
∵∠1=∠2=∠3,
∴∠FBD=∠FDB,
又∠DFB=90°.
∴EC=AC=2.
设BC=x,则BD=BC=x,
∵∠EDB=90°,
∴EB=x .
∵EB+BC=EC,
∴x+x=2,
解得x=2﹣2,
∴BC=2﹣2.
7.如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC交于点D,DE⊥AC,垂足为E,交AB的延长线于点F.
(1)求证:EF是⊙O的切线;
(2)若∠C=60°,AC=12,求BD的长.
(3)若tan C=2,AE=8,求BF的长.
【答案】(1)见解析;(2) 2π;(3)103. 【解析】 分析:(1)连接OD ,根据等腰三角形的性质:等边对等角,得∠ABC=∠C ,∠ABC=∠ODB ,从而得到∠C=∠ODB ,根据同位角相等,两直线平行,得到OD ∥AC ,从而得证OD ⊥EF ,即 EF 是⊙O 的切线;
(2) 根据中点的性质,由AB=AC=12 ,求得OB=OD=12
AB =6,进而根据等边三角形的判定得到△OBD 是等边三角形,即∠BOD=600,从而根据弧长公式七届即可; (3)连接AD ,根据直角三角形的性质,由在Rt △DEC 中, tan 2DE C CE == 设CE=x,则DE=2x ,然后由Rt △ADE 中, tan 2AE ADE DE ∠=
= ,求得DE 、CE 的长,然后根据相似三角形的判定与性质求解即可.
详解:(1)连接OD ∵AB=AC ∴∠ABC=∠C
∵OD=OB ∴∠ABC=∠ODB
∴∠C=∠ODB ∴OD ∥AC
又∵DE ⊥AC ∴OD ⊥DE ,即OD ⊥EF
∴EF 是⊙O 的切线
(2) ∵AB=AC=12 ∴OB=OD=
12
AB =6 由(1)得:∠C=∠ODB=600
∴△OBD 是等边三角形 ∴∠BOD=600
∴BD =6062180
ππ⨯= 即BD 的长2π (3)连接AD ∵DE ⊥AC ∠DEC=∠DEA=900
在Rt △DEC 中, tan 2DE C CE == 设CE=x,则DE=2x ∵AB 是直径 ∴∠ADB=∠ADC=900 ∴∠ADE+∠CDE=900 在Rt △DEC 中,∠C+∠CDE=900
∴∠C=∠ADE 在Rt △ADE 中, tan 2AE ADE DE ∠=
= ∵ AE=8,∴DE=4 则CE=2
∴AC=AE+CE=10 即直径AB=AC=10 则OD=OB=5
∵OD//AE ∴△ODF ∽△AEF
∴ OF OD AF AE = 即:55108
BF BF +=+ 解得:BF=
103 即BF 的长为103. 点睛:此题考查了切线的性质与判定、圆周角定理、等腰三角形的性质、直角三角形以及相似三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.
8.如图,过⊙O 外一点P 作⊙O 的切线PA 切⊙O 于点A ,连接PO 并延长,与⊙O 交于C 、D 两点,M 是半圆CD 的中点,连接AM 交CD 于点N ,连接AC 、CM .
(1)求证:CM 2=MN.MA ;
(2)若∠P=30°,PC=2,求CM 的长.
【答案】(1)见解析;(2)2
【解析】
【分析】
(1)由CM DM =知CAM DCM ∠=∠,根∠CMA=∠NMC 据证ΔAMC ∽ΔCMN 即可得;
(2)连接OA 、DM ,由直角三角形PAO 中∠P=30°知()1122
OA PO PC CO =
=+,据此求得OA=OC=2,再证三角形CMD 是等腰直角三角形得CM 的长.
【详解】 (1)O 中,M 点是半圆CD 的中点,
∴ CM DM =,
CAM DCM ∴∠=∠,

CMA NMC ∠=∠,
AMC CMN ∽∴∆∆, ∴ CM AM MN CM =,即2·CM MN MA =; (2)连接OA 、DM ,
PA 是O 的切线,
90PAO ∴∠=︒,
又30P ∠=︒,
()1122
OA PO PC CO ∴==+, 设O 的半径为r ,
2PC =,
()122
r r ∴=+, 解得:2r =,
又CD 是直径,
90CMD ∴∠=︒,
CM DM =,
CMD ∴∆是等腰直角三角形,
∴在Rt CMD ∆中,由勾股定理得222CM DM CD +=,即()2
22216CM r ==, 则28CM =, 22CM ∴=.
【点睛】
本题主要考查切线的判定和性质,解题的关键是掌握切线的性质、圆周角定理、相似三角形的判定和性质等知识点
9.如图,四边形
为菱形,且,以为直径作,与交于点.请仅用无刻度的直尺按下列要求画图.(保留作图痕迹)
(1)在如图中,过点作
边上的高. (2)在如图中,过点作的切线,与交于点.
【答案】(1)如图1所示.(答案不唯一),见解析;(2)如图2所示.(答案不唯一),见解析.
【解析】
【分析】
(1)连接AC 交圆于一点F ,连接PF 交AB 于点E,连接CE 即为所求.
(2)连接OF 交BC 于Q ,连接PQ 即为所求.
【详解】
(1)如图1所示.(答案不唯一)
(2)如图2所示.(答案不唯一)
【点睛】
本题考查作图-复杂作图,菱形和圆的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
10.如图①,已知Rt ABC ∆中,90ACB ∠=,8AC =,10AB =,点D 是AC 边上一点(不与C 重合),以AD 为直径作O ,过C 作CE 切O 于E ,交AB 于F .
(1)若O 的半径为2,求线段CE 的长;
(2)若AF BF =,求O 的半径; (3)如图②,若CE CB =,点B 关于AC 的对称点为点G ,试求G 、E 两点之间的距
离. 【答案】(1)42CE =;(2)O 的半径为3;(3)G 、E 两点之间的距离为9.6. 【解析】
【分析】
(1)根据切线的性质得出∠OEC=90°,然后根据勾股定理即可求得;
(2)由勾股定理求得BC ,然后通过证得△OEC ∽△BCA ,得到
OE BC =OC BA ,即r 8-r =610,解得即可;
(3)证得D 和M 重合,E 和F 重合后,通过证得△GBE ∽△ABC ,GB GE AB AC
=,即12108
GE =,解得即可. 【详解】
(1)如图,连结OE .
∵CE 切O 于E ,
∴90OEC ∠=︒.
∵8AC =,O 半径为2,
∴6OC =,2OE =.
∴2242CE OC OE =-=;
(2)设O 半径为r .
在Rt ABC ∆中,90ACB ∠=︒,10AB =,8AC =,
∴226BC AB AC -=. ∵
AF BF =, ∴
AF CF BF ==. ∴
ACF CAF ∠=∠. ∵CE 切O 于E ,
∴90OEC ∠=︒.
∴OEC ACB ∠=∠,
∴OEC BCA ∆~∆.
∴OE OC BC BA =, ∴8610
r r -=, 解得3r =.
∴O 的半径为3;
(3)连结EG 、OE ,设EG 交AC 于点M ,
由对称性可知,CB CG =.
又CE CB =,
∴CE CG =.
∴EGC GEC ∠=∠.
∵CE 切O 于E ,
∴90GEC OEG ∠+∠=︒.
又90EGC GMC ∠+∠=︒,
∴OEG GMC ∠=∠.又GMC OME ∠=∠,
∴OEG OME ∠=∠.
∴OE OM =.
∴点M 与点D 重合.
∴G 、D 、E 三点在同一条直线上.
连结AE 、BE ,
∵AD 是直径,
∴90AED ∠=︒,即90AEG ∠=︒.
又CE CB CG ==,
∴90BEG ∠=︒.
∴180AEB AEG BEG ∠=∠+∠=︒,
∴A 、E 、B 三点在同一条直线上.
∴E 、F 两点重合.
∵90GEB ACB ∠=∠=︒,B B ∠=∠,
∴GBE ABC ∆~∆.
∴GB GE AB AC =,即12108
GE =. ∴9.6GE =.
故G、E两点之间的距离为9.6.
【点睛】
本题考查了切线的判定,轴的性质,勾股定理的应用以及三角形相似的判定和性质,证得G、D、E三点共线以及A、E、B三点在同一条直线上是解题的关键.。

相关文档
最新文档