代数式知识点、经典例题、习题及答案解析

合集下载

代数式知识点、经典例题、习题及答案

代数式知识点、经典例题、习题及答案

1.2 代数式【考纲说明】1、理解字母表示数的意义及用代数式表示规律。

2、用代数式表示实际问题中的数量关系,求代数式的值。

【知识梳理】1、代数式:指含有字母的数学表达式。

2、一个代数式由数、表示数的字母、运算符号组成。

单个字母或数字也是代数式。

3、代数式的值:一般地,用数值代替代数式里的字母,计算后所得的结果叫做代数式的值。

4、用字母表示数的规范格式:(1)、数和表示数的字母相乘,或字母和字母相乘时,乘号可以省略不写,或用".”来代替。

(2)、当数和字母相乘,省略乘号时,要把数字写到前面,字母写后面。

如:100a或100•a,na或n•a。

(3)、后面接单位的相加式子要用括号括起来。

如:( 5s )时(4)、除法运算写成分数形式。

(5)、带分数与字母相乘时,带分数要写成假分数的形式。

5、列代数式时要注意:(1)语言叙述中关键词的意义,如"大”"小”"增加”"减少”。

"倍”"几分之几”等词语与代数式中的运算符号之间的关系。

(2)要理清运算顺序和正确使用括号,以防出现颠倒等错误,例如"积的和”与"和的积”"平方差”"差的平方”等等。

(3)在同一问题中,不同的数量必须用不同的字母表示。

【经典例题】【例1】(2012重庆,9,4分)下列图形都是由同样大小的五角星按一定的规律组成。

其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中的五角星的个数为( )【解析】仔细观察图形的特点,它们都是轴对称图形,每一行的个数都是偶数,分别是2,4,6,…,6,4,2,故第⑥个图形中五角星的个数为2+4+6+8+10+12+10+8+6+4+2=72。

答案:D【例2】(2011甘肃兰州,20,4分)如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去,已知第一个矩形的面积为1,则第n 个矩形的面积为 . 【解析】由中点四边形的性质可知,每次所得新中点四边形的面积是前一个图形的12,故后一个矩形的面积是前一个矩形的14,所以第n 个矩形的面积是第一个矩形面积的1221142n n --⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,已知第一个矩形面积为1,则第n 个矩形的面积为2212n -⎛⎫ ⎪⎝⎭。

初中数学竞赛代数专题讲义之代数式求值含例题习题及详解

初中数学竞赛代数专题讲义之代数式求值含例题习题及详解

代数式求值由数与字母经有限次代数运算(加、减、乘、除、乘方、开方)所组成的表达式叫做代数式。

已知一个代数式,把式中的字母用给定数值代替后,运算所得结果叫做在字母取给定数值时代数式的值。

一、专题知识1.基本公式(1)立方和公式:2233()()a b a ab b a b +-+=+(2)立方差公式:2233()()a b a ab b a b-++=-(3)完全立方和:33223()33a b a a b ab b +=+++(4)完全立方差:33223()33a b a a b ab b -=-+-2.基本结论(1)33322()33a b a b a b ab +=+--(2)33322()33a b a b a b ab -=-+-(3)22()()4a b a b ab-=+-二、经典例题例题1已知y z x z x yx y z+++==求代数式y z x +的值。

【解】(1)0x y z ++≠,由等比性质得2()2x y z y zx y z x+++==++;(2)0x y z ++=,则y z x +=-,所以1y zx+=-。

例题2已知234100x y +-=,求代数式y x x y xy y x x 65034203152223--++++的值。

【解】32221532043506x x y xy y x x y++++--322222215205034103410105(3410)(3410)(3410)1010x xy x x y y y x y x x y y x y x y =+-++-++-+=+-++-++-+=例题3实数,,a b c满足条件:231224a b ab -=+=-,求代数式2a b c ++的值。

【解】22222442318224a b a ab b ab c ab ⎧-=⇒-+=⎪⎨+=-⇒+=-⎪⎩两式相加得,()2220a b ++=只有2=0a b +且0c =,所以20a b c ++=。

代数式求值经典题型(含详细答案)

代数式求值经典题型(含详细答案)

代数式求值经典题型(含详细答案)1、已知x+y=3,求代数式x²-xy的值。

解:将x+y=3代入式中,得x²-xy=x²-(3-x)x=2x²-3x,再将x+y=3代入式中,得x=3-y,代入原式中,得2(3-y)²-3(3-y),化简得-6y+15,所以代数式x²-xy的值为15-6y。

2、已知a+b=3ab,求代数式a+b的值。

解:将a+b=3ab代入式中,得a+b=3(a+b)ab,移项得3ab(a+b)-a-b=0,因式分解得(3ab-1)(a+b)=0,因为a+b≠0,所以3ab=1,代入a+b=3ab中,得a+b=3/3=1.4、已知2x-y=6,x²+y²=13,求代数式x-y的值。

解:将2x-y=6代入式中,得y=2x-6,代入x²+y²=13中,得x²+(2x-6)²=13,化简得5x²-24x+25=0,解得x=1或5,代入y=2x-6中,得y=-4或4,所以x-y的值为5或-3.6、已知y/x=2,则x的值是多少?解:将y/x=2代入式中,得y=2x,代入x-y=6中,得x-2x=6,解得x=-6,所x的值是-6.7、已知x-3xy+y/xy=27,求代数式3x-xy+3y的值。

解:将x-3xy+y/xy=27代入式中,得xy²-3xy+y=27xy,移项得xy²-3xy+y-27xy=0,化简得y(x-3)(y-9)=0,因为y≠0,所以x=3或y=9,代入3x-xy+3y中,得3(3)-3(3)(2)+3(9)=12,所以代数式3x-xy+3y的值为12.8、已知x-5=4y-4-y,则代数式2+4的值是多少?解:将x-5=4y-4-y代入式中,得x=3y-1,代入2+4中,得2+4=2+(3y-1)+4=3y+5,所以代数式2+4的值为3y+5.9、化简求值:(2x+2)/(2x+1)÷(x-3)/(x+1),其中x≠-1,-1/2.解:将(2x+2)/(2x+1)÷(x-3)/(x+1)化简得(2x+2)/(2x+1)×(x+1)/(x-3),分子分母同时约分,得(x+1)/(2x-3),将x=-1/2代入式中,得-1,所以代数式的值为-1.10、x-4x²+1=0,求代数式x的值。

专题02 代数式【考点精讲】(解析版)

专题02 代数式【考点精讲】(解析版)

考点1:代数式的概念与求值1.代数式:用运算符号把数或表示数的字母连接而成的式子叫做代数式.2.代数式的值:用具体数代替代数式中的字母,按运算顺序计算出的结果叫做代数式的值。

求代数式的值分两步:第一步,代数;第二步,计算.要充分利用“整体”思想求代数式的值。

【例1】(2021·四川乐山市·中考真题)某种商品m 千克的售价为n 元,那么这种商品8千克的售价为( )A .8n m (元)B .8n m (元)C .8m n (元)D .8m n(元)【答案】A【分析】先求出1千克售价,再计算8千克售价即可;【详解】∵m 千克的售价为n 元,∴1千克商品售价为n m,∴8千克商品的售价为8n m (元);故选A.专题02 代数式【例2】(2021·内蒙古中考真题)若1x =+,则代数式222x x -+的值为( )A .7B .4C .3D.3-【答案】C 【分析】先将代数式222x x -+变形为()211x -+,再代入即可求解.【详解】解:())22222=111113x x x -+-+=+-+=.故选:C【例3】(2021·贵州铜仁市·中考真题)观察下列各项:112,124,138,1416,…,则第n 项是______________.【答案】12nn +【分析】根据已知可得出规律:第一项:1111122=+,第二项:2112242=+,第三项:3113382=+…即可得出结果.【详解】解:根据题意可知:第一项:1111122=+,第二项:2112242=+,第三项:3113382=+,第四项:41144162=+,…则第n 项是12n n +;故答案为:12n n +.有关代数式的常见题型为用代数式表示数字或图形的变化规律. 数与图形的规律探索问题,关键要能够通过观察、分析、联想与归纳找出数或图形的变化规律,并用代数式表示出来.1.(2021·浙江金华市·中考真题)某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是()A.先打九五折,再打九五折B.先提价50%,再打六折C.先提价30%,再降价30%D.先提价25%,再降价25%【答案】B【分析】设原件为x元,根据调价方案逐一计算后,比较大小判断即可.【详解】设原件为x元,∵先打九五折,再打九五折,∴调价后的价格为0.95x×0.95=0.9025x元,∵先提价50%,再打六折,∴调价后的价格为1.5x×0.6=0.90x元,∵先提价30%,再降价30%,∴调价后的价格为1.3x×0.7=0.91x元,∵先提价25%,再降价25%,∴调价后的价格为1.25x×0.75=0.9375x元,∵0.90x<0.9025x<0.91x<0.9375x故选B2.(2021·四川达州市·中考真题)如图是一个运算程序示意图,若开始输入x的值为3,则输出y值为___________.【答案】2【分析】根据运算程序的要求,将x=3代入计算可求解.【详解】解:∵x =3<4∴把x =3代入1(4)y x x =-£,解得:312y =-=,∴y 值为2,故答案为:2.3.(2021·湖南常德市·中考真题)如图中的三个图形都是边长为1的小正方形组成的网格,其中第一个图形有11´个正方形,所有线段的和为4,第二个图形有22´个小正方形,所有线段的和为12,第三个图形有33´个小正方形,所有线段的和为24,按此规律,则第n 个网格所有线段的和为____________.(用含n 的代数式表示)【答案】2n 2+2n【分析】本题要通过第1、2、3和4个图案找出普遍规律,进而得出第n 个图案的规律为S n =4n +2n ×(n -1),得出结论即可.【详解】解:观察图形可知:第1个图案由1个小正方形组成,共用的木条根数141221,S =´=´´第2个图案由4个小正方形组成,共用的木条根数262232,S =´=´´第3个图案由9个小正方形组成,共用的木条根数383243,S =´=´´第4个图案由16个小正方形组成,共用的木条根数4104254,S =´=´´…由此发现规律是:第n 个图案由n 2个小正方形组成,共用的木条根数()22122,n S n n n n =+=+g 故答案为:2n 2+2n .考点2:整式相关概念1.单项式:只含有数字与字母的积的代数式叫做单项式.单独的一个数或一个字母也是单项式.2.多项式:几个单项式的和叫做多项式. 多项式中次数最高的项的次数,叫做这个多项式的次数.3.整式:单项式与多项式统称整式.4.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项.所有的常数项都是同类项.【例4】(2021·青海中考真题)已知单项式4272m a b -+与223m n a b +是同类项,则m n +=______.【答案】3【分析】根据同类项的定义(所含字母相同,相同字母的指数相同),求出m ,n 的值,再代入代数式计算即可.【详解】解:∵单项式4272m a b -+与223m n a b +是同类项,∴2m =4,n +2=-2m +7,解得:m =2,n =1,则m +n =2+1=3.故答案是:3.【例5】(2021·云南中考真题)按一定规律排列的单项式:23456,4,9,16,25a a a a a ,……,第n 个单项式是( )A .21n n a +B .21n n a -C .1n n n a +D .()21n n a +【答案】A【分析】根据题目中的单项式可以发现数字因数是从1开始的正整数的平方,字母的指数从1开始依次加1,然后即可写出第n 个单项式,本题得以解决.【详解】解:∵一列单项式:23456,4,9,16,25a a a a a ,...,∴第n 个单项式为21n n a +,故选:A .【例6】已知(m ﹣3)x 3y |m |+1是关于x ,y 的七次单项式,求m 2﹣2m +2= .【答案】17【分析】直接利用单项式的次数确定方法分析得出答案.【详解】解:∵(m ﹣3)x 3y |m |+1是关于x ,y 的七次单项式,∴3+|m |+1=7且m ﹣3≠0,解得:m =﹣3,∴m 2﹣2m +2=9+6+2=17.故答案为:17.1.①单项式中的数字因数称为这个单项式的系数;②一个单项式中,所有字母的指数的和叫做这个单项式的次数2.几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数1.(2021·上海中考真题)下列单项式中,23a b 的同类项是()A .32a b B .232a b C .2a b D .3ab 【答案】B【分析】比较对应字母的指数,分别相等就是同类项【详解】∵a 的指数是3,b 的指数是2,与23a b 中a 的指数是2,b 的指数是3不一致,∴32a b 不是23a b 的同类项,不符合题意;∵a 的指数是2,b 的指数是3,与23a b 中a 的指数是2,b 的指数是3一致,∴232a b 是23a b 的同类项,符合题意;∵a 的指数是2,b 的指数是1,与23a b 中a 的指数是2,b 的指数是3不一致,∴2a b 不是23a b 的同类项,不符合题意;∵a 的指数是1,b 的指数是3,与23a b 中a 的指数是2,b 的指数是3不一致,∴3ab 不是23a b 的同类项,不符合题意;故选B2.关于多项式5x 4y ﹣3x 2y +4xy ﹣2,下列说法正确的是( )A .三次项系数为3B .常数项是﹣2C .多项式的项是5x 4y ,3x 2y ,4xy ,﹣2D .这个多项式是四次四项式【答案】B【分析】根据多项式的项、次数的定义逐个判断即可.【详解】解:A 、多项式5x 4y ﹣3x 2y +4xy ﹣2的三次项的系数为﹣3,错误,故本选项不符合题意;B 、多项式5x 4y ﹣3x 2y +4xy ﹣2的常数项是﹣2,正确,故本选项符合题意;C 、多项式5x 4y ﹣3x 2y +4xy ﹣2的项为5x 4y ,﹣3x 2y ,4xy ,﹣2,错误,故本选项不符合题意;D 、多项式5x 4y ﹣3x 2y +4xy ﹣2是5次四项式,错误,故本选项不符合题意;故选:B .3.若单项式﹣x 3y n +5的系数是m ,次数是9,则m +n 的值为 .【答案】0【分析】先依据单项式的系数和次数的定义确定出m 、n 的值,然后求解即可.【解答】解:根据题意得:m =﹣1,3+n +5=9,解得:m =﹣1,n =1,则m +n =﹣1+1=0.故答案为:0.考点3:整式的运算1.幂的运算性质:(1)同底数幂相乘底数不变,指数相加. 即:a m ·a n =a m +n (m ,n 都是整数).(2)幂的乘方底数不变,指数相乘. 即:(a m )n =a mn (m ,n 都是整数).(3)积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘. 即:(ab )n =a n b n (n 为整数).(4)同底数幂相除底数不变,指数相减. 即:a m ÷a n =a m -n (a ≠0,m,n 都为整数).(5)a 0=1(a ≠0), a -n =a1 (a ≠0).2.整式的运算:(1)整式的加减:几个整式相加减,如果有括号就先去括号,再合并同类项.(2)整式的乘法:单项式与单项式相乘,把它们的系数、相同字母分别相乘;单项式与多项式相乘,用单项式去乘多项式的每一项,再把所得的积相加,即m (a +b +c )=ma +mb +mc ;多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加,即(m +n )(a +b )=ma +mb +na +nb .(3)整式的除法:单项式除以单项式,把系数与同底数幂分别相除,作为商的因式;多项式除以单项式,先把这个多项式的每一项分别除以这个单项式,再把所得的商相加.3.乘法公式:(1)平方差公式:(a +b )(a -b )=a 2-b 2.(2)完全平方公式:(a ±b )2=a 2±2ab +b 2.(3)常用恒等变换:a 2+b 2=(a +b )2-2ab=(a -b )2+2ab ;(a -b )2=(a +b )2-4ab.【例7】(2021·河南中考真题)下列运算正确的是()A .22()a a -=-B .2222a a -=C .23a a a ×=D .22(1)1a a -=-【答案】C【分析】直接利用幂的运算性质和完全平方公式分别判断得出答案.【详解】解:A 、22()a a -=,原计算错误,不符合题意;B 、2222a a a -=,原计算错误,不符合题意;C 、23a a a ×=,正确,符合题意;D 、22(1)21a a a -=-+,原计算错误,不符合题意;故选:C .【例8】(2021·福建中考真题)下列运算正确的是()A .22a a -=B .()2211a a -=-C .632a a a ¸=D .326(2)4a a =【答案】D【分析】根据不同的运算法则或公式逐项加以计算,即可选出正确答案.解:A :()221a a a a -=-=,故 A 错误;B :()22121a a a -=-+,故 B 错误;C :63633a a a a -¸==,故C 错误;D :()()2232332622·44a a a a ´===.故选:D【例9】(2021·江苏连云港市·中考真题)下列运算正确的是()A .325a b ab+=B .22523a b -=C .277a a a +=D .()22112x x x -+-=【答案】D【分析】根据同类项与合并同类项、全完平方差公式的展开即可得出答案.【详解】解:A ,3a 与2b 不是同类项,不能合并,故选项错误,不符合题意;B ,25a 与22b 不是同类项,不能合并得到常数值,故选项错误,不符合题意;C ,合并同类项后2787a a a a +=¹,故选项错误,不符合题意;D ,完全平方公式:()22211221x x x x x =-++-=-,故选项正确,符合题意;故选:D .1.(2021·浙江丽水市·中考真题)计算:()24a a -×的结果是()A .8a B .6a C .8a -D .6a -【答案】B 【分析】根据乘方的意义消去负号,然后利用同底数幂的乘法计算即可.【详解】解:原式24246a a a a +=×==.2.(2021·四川宜宾市·中考真题)下列运算正确的是( )A .23a a a +=B .()32622a a =C .623a a a ¸=D .325a a a ×=【答案】D【分析】根据同底数幂相乘底数不变指数相加、同底数幂相除底数不变指数相减、乘积的幂等于各部分幂的乘积运算法则求解即可.【详解】解:选项A :a 与2a 不是同类项,不能相加,故选项A 错误;选项B :()32628a a =,故选项B 错误;选项C :62624a a a a -¸==,故选项C 错误;选项D :33522a a a a +×==,故选项D 正确;故选:D .3.(2021·黑龙江齐齐哈尔市·中考真题)下列计算正确的是()A .B .C .D .【答案】A【分析】根据平方根,幂的乘方与积的乘方,单项式乘以单项式及合并同类项的运算法则分别对每一个选项进行分析,即可得出答案.【详解】A 、,正确,故该选项符合题意;B 、,错误,故该选项不合题意;C 、,错误,故该选项不合题意;D 、与不是同类项,不能合并,故该选项不合题意;故选:A .考点4:整式化简求值【例10】(2021·湖南永州市·中考真题)先化简,再求值:,其中.【分析】先计算完全平方公式、平方差公式,再计算整式的加减法,然后将代入求值即可得.4=±()2234636m n m n =24833a a a ×=33xy x y -=4=±()2234639m n m n =24633a a a ×=3xy 3x ()()212(2)x x x +++-1x =1x =【详解】解:原式,,将代入得:原式.1.(2021·四川南充市·中考真题)先化简,再求值:,其中.【分析】利用平方差公式和完全平方公式,进行化简,再代入求值,即可求解.【详解】解:原式===,当x =-1时,原式==-22.2.(2020•凉山州)化简求值:(2x +3)(2x ﹣3)﹣(x +2)2+4(x +3),其中x=【分析】先利用平方差公式、完全平方公式、单项式乘多项式法则展开,再去括号、合并同类项即可化简原式,继而将x 的值代入计算可得答案.【详解】原式=4x 2﹣9﹣(x 2+4x +4)+4x +12=4x 2﹣9﹣x 2﹣4x ﹣4+4x +12=3x 2﹣1,当x原式=3×2﹣1=3×2﹣1=6﹣1=5.考点5:因式分解因式分解的步骤:(概括为“一提,二套,三检查”)(1)先运用提公因式法:ma +mb +mc =m (a +b +c ).(2)再套公式:a 2-b 2=(a +b )(a -b ),a 2±2ab +b 2=(a ±b )2(乘法公式的逆运算).(3)最后检查:分解因式是否彻底,要求必须分解到每一个多项式都不能再分解为止.22214x x x =+++-25x =+1x =2157=´+=2(21)(21)(23)x x x +---1x =-2241(4129)x x x ---+22414129x x x --+-1210x -()12110´--【例11】(2021·广西贺州市·中考真题)多项式32242x x x -+因式分解为( )A .()221x x -B .()221x x +C .()221x x -D .()221x x +【答案】A 【分析】先提取公因式2x ,再利用完全平方公式将括号里的式子进行因式分解即可【详解】解:32242x x x -+()()2222121x x x x x =-+=-故答案选:A .【例12】(2021·浙江杭州市·中考真题)因式分解:214y -=( )A .()()1212y y -+B .()()22y y -+C .()()122y y -+D .()()212y y -+【答案】A 【分析】利用平方差公式因式分解即可.【详解】解:214y -=()()1212y y -+,故选:A .【例13】(2020•成都)已知a =7﹣3b ,则代数式a 2+6ab +9b 2的值为 .【答案】49【分析】先根据完全平方公式变形,再代入,即可求出答案.【详解】∵a =7﹣3b ,∴a +3b =7,∴a 2+6ab +9b 2=(a +3b )2=72=49,故答案为:49.本考点是中考的高频考点,其题型一般为填空题,难度中等。

初中数学代数式知识点总复习有答案解析

初中数学代数式知识点总复习有答案解析

初中数学代数式知识点总复习有答案解析一、选择题1.如图,是一块直径为2a +2b 的圆形钢板,从中挖去直径分别为2a 、2b 的两个圆,则剩下的钢板的面积为( )A .ab πB .2ab πC .3ab πD .4ab π【答案】B【解析】【分析】剩下钢板的面积等于大圆的面积减去两个小圆的面积,利用圆的面积公式列出关系式,化简即可.【详解】解:S 剩下=S 大圆- 1S 小圆-2S 小圆 =2222a+2b 2a 2b --222πππ()()() =()222a+b -a -b π⎡⎤⎣⎦=2ab π, 故选:B【点睛】此题考查了整式的混合运算,涉及的知识有:圆的面积公式,完全平方公式,去括号、 合并同类项法则,熟练掌握公式及法则是解本题的关键.2.观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;已知按一定规律排列的一组数:250、251、252、、299、2100,若250=a ,用含a 的式子表示这组数的和是( )A .2a 2-2aB .2a 2-2a -2C .2a 2-aD .2a 2+a【答案】C【解析】【分析】由等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2,得出规律:2+22+23+…+2n =2n+1-2,那么250+251+252+…+299+2100=(2+22+23+…+2100)-(2+22+23+…+249),将规律代入计算即可.【详解】解:∵2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;…∴2+22+23+…+2n=2n+1-2,∴250+251+252+…+299+2100=(2+22+23+...+2100)-(2+22+23+ (249)=(2101-2)-(250-2)=2101-250,∵250=a,∴2101=(250)2•2=2a2,∴原式=2a2-a.故选:C.【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出规律:2+22+23+…+2n=2n+1-2.3.下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(a2)3=a6D.(ab)2=ab2【答案】C【解析】试题解析:A.a2与a3不是同类项,故A错误;B.原式=a5,故B错误;D.原式=a2b2,故D错误;故选C.考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.4.如果多项式4x4+ 4x2+A是一个完全平方式,那么A不可能是().A.1 B.4 C.x6D.8x3【答案】B【解析】【分析】根据完全平方式的定义,逐一判断各个选项,即可得到答案.【详解】∵4x4+ 4x2+1=(2x+1)2,∴A=1,不符合题意,∵4x4+ 4x2+ 4不是完全平方式,∴A=4,符合题意,∵4x4+ 4x2+x6=(2x+x3)2,∴A= x6,不符合题意,∵4x4+ 4x2+8x3=(2x2+2x)2,∴A=8x3,不符合题意.故选B.【点睛】本题主要考查完全平方式的定义,熟练掌握完全平方公式,是解题的关键.5.下列计算正确的是( )A .235x x x +=B .236x x x =gC .633x x x ÷=D .()239x x = 【答案】C【解析】【分析】根据合并同类项的法则,同底数的乘除法以及幂的乘方的运算法则分别求出结果再起先判断即可得解.【详解】A. 2x 与3x 不能合并,故该选项错误;B. 235x x x =g ,故该选项错误;C. 633x x x ÷=,计算正确,故该选项符合题意;D. ()236x x =,故该选项错误.故选C.【点睛】此题主要考查了合并同类项,同底数的乘除法以及幂的乘方的运算,熟练掌握运算法则是解决此题的关键.6.下列运算或变形正确的是( )A .222()a b a b -+=-+B .2224(2)a a a -+=-C .2353412a a a ⋅=D .()32626a a =【答案】C【解析】【分析】根据合并同类项,完全平方公式,同底数幂的乘法以及幂的乘方与积的乘方计算法则解答.【详解】A 、原式中的两项不是同类项,不能合并,故本选项错误;B 、原式=(a-1)2+2,故本选项错误;C 、原式=12a 5,故本选项正确;D 、原式=8a 6,故本选项错误;故选:C .【点睛】此题考查单项式的乘法,因式分解,解题关键在于熟记计算法则.7.下列各式中,计算正确的是( )A .835a b ab -=B .352()a a =C .842a a a ÷=D .23a a a ⋅= 【答案】D【解析】【分析】分别根据合并同类项的法则、同底数幂的乘法法则、幂的乘方法则以及同底数幂除法法则解答即可.【详解】解:A 、8a 与3b 不是同类项,故不能合并,故选项A 不合题意;B 、()326a a =,故选项B 不合题意;C 、844a a a ÷=,故选项C 不符合题意;D 、23a a a ⋅=,故选项D 符合题意.故选:D .【点睛】本题主要考查了幂的运算性质以及合并同类项的法则,熟练掌握运算法则是解答本题的关键.8.(x 2﹣mx +6)(3x ﹣2)的积中不含x 的二次项,则m 的值是( )A .0B .23C .﹣23D .﹣32 【答案】C【解析】试题解析:(x 2﹣mx+6)(3x ﹣2)=3x 3﹣(2+3m )x 2+(2m+18)x ﹣12,∵(x 2﹣mx+6)(3x ﹣2)的积中不含x 的二次项,∴2+3m=0,解得,m=23-, 故选C .9.下列各运算中,计算正确的是( )A .2a•3a =6aB .(3a 2)3=27a 6C .a 4÷a 2=2aD .(a+b)2=a 2+ab+b 2【答案】B【解析】试题解析:A 、2a •3a =6a 2,故此选项错误;B 、(3a 2)3=27a 6,正确;C 、a 4÷a 2=a 2,故此选项错误;D 、(a+b )2=a 2+2ab +b 2,故此选项错误;故选B .【点睛】此题主要考查了积的乘方运算以及同底数幂的除法运算、完全平方公式、单项式乘以单项式等知识,正确化简各式是解题关键.10.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为6cm ,宽为5cm )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分的周长之和等于( )A .19cmB .20cmC .21cmD .22cm【答案】B【解析】【分析】 根据图示可知:设小长方形纸片的长为a 、宽为b ,有:26a b +=(cm),则阴影部分的周长为:2(62)2(52)2(6)2(5)-+-+-+-b b a a ,计算即可求得结果.【详解】解:设小长方形纸片的长为a 、宽为b ,由图可知:26a b +=(cm),阴影部分的周长为:2(62)2(52)2(6)2(5)-+-+-+-b b a a ,化简得:444(2)-+a b ,代入26a b +=得:原式=44−4×6=44−24=20(cm),故选:B .【点睛】本题主要考查整式加减的应用,关键分清图形②如何用小长方形纸片的长和宽表示.11.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b )n 的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b )20的展开式中第三项的系数为( )A .2017B .2016C .191D .190【答案】D【解析】试题解析:找规律发现(a+b )3的第三项系数为3=1+2;(a+b )4的第三项系数为6=1+2+3;(a+b )5的第三项系数为10=1+2+3+4;不难发现(a+b )n 的第三项系数为1+2+3+…+(n ﹣2)+(n ﹣1),∴(a+b )20第三项系数为1+2+3+…+20=190,故选 D .考点:完全平方公式.12.下列计算,正确的是( )A .2a a a -=B .236a a a =C .933a a a ÷=D .()236a a = 【答案】D【解析】A.2a 和a,和不能合并,故本选项错误;B.2356a a a a ⋅=≠ ,故本选项错误;C.9363a a a a ÷=≠,和不能合并,故本选项错误;D.()236 a a =,故本选项正确;故选D.13.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑥个图形中菱形的个数为( )A .42B .43C .56D .57【答案】B【解析】【分析】 根据题意得出得出第n 个图形中菱形的个数为n 2+n+1;由此代入求得第⑧个图形中菱形的个数.【详解】第①个图形中一共有3个菱形,3=12+2;第②个图形中共有7个菱形,7=22+3;第③个图形中共有13个菱形,13=32+4;…,第n 个图形中菱形的个数为:n 2+n+1;第⑥个图形中菱形的个数62+6+1=43.故选B .【点睛】此题考查图形的变化规律,找出图形之间的联系,找出规律是解决问题的关键.14.已知x=2y+3,则代数式9-8y+4x 的值是( )A .3B .21C .5D .-15【答案】B【解析】【分析】直接将已知变形进而代入原式求出答案.【详解】解:∵x=2y+3∴x-2y=3∴98494(2y x y x -+=--⨯)=9-4(-3)=21故选:B【点睛】此题主要考查了整式的加减以及代数式求值,正确将原式变形是解题关键.15.计算1.252 017×2?01945⎛⎫ ⎪⎝⎭的值是( ) A .45 B .1625 C .1 D .-1【答案】B【解析】【分析】根据同底数幂的乘法底数不变指数相加,可得积的乘方,根据积的乘方等于乘方的积,可得答案.【详解】原式=1.252017×(45)2017×(45)2=(1.25×45)2012×(45)2=16 25.故选B.【点睛】本题考查了积的乘方,利用同底数幂的乘法底数不变指数相加得出积的乘方是解题关键.16.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+1【答案】B【解析】【详解】∵观察可知:左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为:2,,…,,下边三角形的数字规律为:1+2,,…,,∴最后一个三角形中y与n之间的关系式是y=2n+n.故选B.【点睛】考点:规律型:数字的变化类.17.计算(-2)2009+(-2)2010的结果是()A.22019 B.22009 C.-2 D.-22010【答案】B【解析】(-2)2009+(-2)2010=(-2)2009+(-2)2009+1=(-2)2009+(-2)2009×(-2)=(-2)2009×[1+(-2)]=-22009×(-1)=22009,故选B.18.若(x+4)(x﹣1)=x2+px+q,则()A .p =﹣3,q =﹣4B .p =5,q =4C .p =﹣5,q =4D .p =3,q =﹣4【答案】D【解析】【分析】根据整式的运算法则即可求出答案.【详解】解:∵(x +4)(x ﹣1)=x 2+3x ﹣4∴p =3,q =﹣4故选:D .【点睛】考查整式的运算,解题的关键是熟练运用整式的运算法则.19.下列运算中,正确的是( )A .236x x x ⋅=B .333()ab a b =C .33(2)6a a =D .239-=-【答案】B【解析】【分析】分别根据同底数幂的乘法法则,积的乘方法则以及负整数指数幂的运算法则逐一判断即可.【详解】x 2•x 3=x 5,故选项A 不合题意;(ab )3=a 3b 3,故选项B 符合题意;(2a )3=8a 6,故选项C 不合题意; 3−2=19,故选项D 不合题意. 故选:B .【点睛】 此题考查同底数幂的乘法,幂的乘方与积的乘方以及负整数指数幂的计算,熟练掌握幂的运算法则是解题的关键.20.观察下列图形:( )它们是按一定规律排列的,依照此规律,那么第7个图形中共有五角星的个数为( ) A .20 B .21 C .22 D .23【答案】C【解析】【分析】设第n个图形共有a n(n为正整数)个五角星,根据各图形中五角星个数的变化可找出变化规律“a n=3n+1(n为正整数)”,再代入n=7即可得出结论.【详解】解:设第n个图形共有a n(n为正整数)个五角星,∵a1=4=3×1+1,a2=7=3×2+1,a3=10=3×3+1,a4=13=3×4+1,…,∴a n=3n+1(n为正整数),∴a7=3×7+1=22.故选:C.【点睛】本题考查了规律型:图形的变化类,根据各图形中五角星个数的变化,找出变化规律“a n=3n+1(n为正整数)”是解题的关键.。

最新代数式(基础篇)(Word版 含解析)

最新代数式(基础篇)(Word版 含解析)

一、初一数学代数式解答题压轴题精选(难)1.某商场计划投入一笔资金采购一批紧俏商品,经过市场调查发现,如果月初出售,可获利15﹪,并可用本金和利润再投资其他商品,到月末又可获利10﹪;如果月末出售可获利30﹪,但要付出仓储费用700元.(1)若商场投资元,分别用含的代数式表示月初出售和月末出售所获得的利润;(2)若商场投资40000元,问选择哪种销售方式获利较多?此时获利多少元?【答案】(1)由题意可得:该商月初出售时的利润为:15%x+(1+15%)×10%x=0.265(元);该商月末出售时的利润为:30%x-700=(0.3x-700)(元);(2)当x=40000时,该商月初出售时的利润为:0.265×40000=10600(元),该商月末出售时的利润为:0.3×40000-700=11300(元),∵11300>10600,∴选择月末出售这种方式,即若商场投资40000元,选择月末销售方式获利较多,此时获利11300元.【解析】【分析】(1)根据题意列代数式表示出月初出售和月末出售两种销售方式获得的利润即可;(2)将x=40000分别代入(1)中的代数式求值,通过比较,即可得解。

2.已知x1, x2, x3,…x2016都是不等于0的有理数,若y1= ,求y1的值.当x1>0时,y1= = =1;当x1<0时,y1= = =﹣1,所以y1=±1(1)若y2= + ,求y2的值(2)若y3= + + ,则y3的值为________;(3)由以上探究猜想,y2016= + + +…+ 共有________个不同的值,在y2016这些不同的值中,最大的值和最小的值的差等于________.【答案】(1)解:∵ =±1, =±1,∴y2= + =±2或0(2)±1或±3(3)2017;4032【解析】【解答】解:(2)∵ =±1, =±1, =±1,∴y3= + + =±1或±3.故答案为±1或±3,( 3 )由(1)(2)可知,y1有两个值,y2有三个值,y3有四个值,…,由此规律可知,y2016有2017个值,最大值为2016,最小值为﹣2016,最大值与最小值的差为4032.故答案分别为2017,4032.【分析】(1)根据题意先求出=±1,=±1,就可求出y2的3个值。

最新代数式的概念知识点总结及习题

最新代数式的概念知识点总结及习题

第12讲 代数式【知识要点】 1、 代数式代数式的概念:指用运算符号连接而不是用等号或不等号连接成的式子。

如:3,),(2,,),1(),1(34a ts n m ab b a x x x x +++++-+等等。

代数式的书写:(1)省略乘号,数字在前; (2)除法变分数; (3)单位前加括号; (4)带分数化成假分数。

2、代数式求值的方法步骤:(1)代入:用具体数值代替代数式中的字母; (2)计算:按照代数式指明的运算计算出结果。

【典型例题】【例1】(用字母表示数量关系)若a ,b 表示两个数,则a 的相反数的2倍与b 的倒数的和是什么?【例2】(用字母表示图形面积)如下图,求阴影部分面积。

【例3】下列各式中哪些是代数式?哪些不是代数式?(1)123+x ;(2)2=a ;(3)π;(4)2R S π=;(5)27;(6)5332>。

【例4】在式子15.0+xy ,x ÷2,)(21y x +,3a ,bc a 2438-中,符合代数式书写要求的有 。

【例5】某超市中水果糖价格为12元/千克,奶糖价格为22元/千克,若买a 千克水果糖和b 千克奶糖,应付多少钱?【例6】当a=2,b=-1,c=-3时,求下列各代数式的值: (1) b 2-4ac ;(2)a 2+ b 2+ c 2+2ab+2bc+2ac ;(3)(a+b+c )2。

【课堂练习】 一、填空三、a kg 商品售价为p 元,则6 kg 商品的售价为 元; 四、温度由30℃下降t ℃后是 ℃; 五、某长方形的长是宽的23倍,且长是a cm ,则该长方形的周长是 cm ; 六、棱长是a cm 的正方体的体积是 cm 3 ; 七、产量由m kg 增长10%,就达到 kg ;八、学校购买了一批图书,共a 箱,每箱有b 册,将这批图书的一半捐给社区,注意:单独一个数或一个字母也是代数式。

在捐给社区的图书为 册;九、拿100元钱去买钢笔,买了单价为3元的钢笔n 支,则剩下的钱为 元,最多可以买这种钢笔 支。

代数式知识归纳与题型训练(6类题型清单)(解析版)—2024-2025学年七年级数学上册(浙教版)

代数式知识归纳与题型训练(6类题型清单)(解析版)—2024-2025学年七年级数学上册(浙教版)

《代数式》知识归纳与题型训练(6类题型)一、代数式与代数式的值代数式:由数、表示数的字母和运算符号组成的数学表示称为代数式.代数式值:一般地,用数值代替代数式例的字母,计算后所得的结果叫作代数式的值.要点诠释:(1)代数式中的运算包括:加、减、乘、除、乘方和开方(2)单独的一个数或者一个字母也称代数式(3)代数式求值常需要用到整体思想二、整式单项式:由数与字母或字母与字母相乘组成的代数式叫作单项式;单独的一个数或一个字母也叫单项式;单项式的系数:单项式中的数字因数叫作这个单项式的系数;单项式的次数:单项式中所有字母的指数的和叫作这个单项式的次数;多项式:由几个单项式相加组成的代数式叫作多项式;在多项式中,每个单项式叫作多项式的项,不含字母的项叫作常数项,次数最高的项的次数就是这个多项式的次数,多项式根据其次数和项数,可以称为“几次几项式”;整式:单项式和多项式统称为整式;要点诠释:(1)单项式中只含有乘法运算;分数是一个完整的数,不拆开来算;单独的一个数或字母也叫单项式(2)单项式的系数包含前面的符号,去掉字母部分,剩余的即为单项式的系数(3)单独的数字的系数是其本身,次数为0;单独的字母的系数是1,次数为1(4)多项式中含有“乘法——加法——减法”运算;三、合并同类项同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项,叫作同类项;合并同类项:把多项式中的同类项合并成一项,叫作合并同类项;合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

四、整式的加减整式的加减:若干个整式相加减时,可以归结为去括号与合并同类项去括号法则:括号前是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变号;括号前是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号.要点诠释:(1)去括号法则的字母表达式——:+(a+b-c)=a+b-c;-(a+b-c)=-a-b+c去括号法则主要是去括号时的变号问题,当括号外是“—”时,去掉括号后的各项均要改变符号(2)整式的化简求值问题:先去括号、再合并同类项,最后再将字母的值代入化简后的结果计算出答案(3)化简求值问题中,如果说结果与一个字母无关,则最后化简的结果中含该字母的项的系数整体=0题型一 代数式例题:1.(2023秋•西湖区校级期中)下面式子中符合代数式书写要求的是( )A.ab3B.2C.D.x+3克【分析】根据代数式的书写要求即可作出判断.【解答】解:A:ab3应写成3ab,故A错误;B:应写成,故B错误;C:书写正确,故C正确;D:x+3克应写成(x+3)克,故D错误.故选:C.2.(2023秋•义乌市期中)代数式3(y﹣3)的正确含义是( )A.3乘y减3B.y的3倍减去3C.y与3的差的3倍D.3与y的积减去3【分析】按照代数式的意义和运算顺序:先运算括号内的,再运算括号外的计算即可判断各项.【解答】解:代数式3(y﹣3)的正确含义应是y与3的差的3倍.故选:C.3.(2023秋•江北区期末)某人骑自行车t(小时)走了s(km),若步行s(km),则比骑自行车多用3(小时),那么骑自行车每小时比步行多走( )(km).A.B.C.s(t+s)D.5(t﹣3)【分析】根据速度=路程÷时间,结合题中的条件即可求解.【解答】解:由题意得:,故选:B.4.(2023秋•温州期中)现计划采购一批文具用品,若笔记本单价为a元,钢笔单价为b元,则购买35本笔记本和20支钢笔共需付 (35a+20b) 元.【分析】分别表示出购买笔记本和钢笔的费用再相加即可.【解答】解:由题意得:共需付:(35a+20b)元,故答案为:(35a+20b).巩固训练5.(2023秋•龙湾区校级期中)下列代数式中,书写规范的是( )A.B.a÷b C.D.﹣1ab【分析】根据代数式的书写要求判断即可【解答】解:A.应该写为,故A错误,不符合题意;B.a÷b应该写为,故B错误,不符合题意误;C.书写正确,故C正确,符合题意;D.﹣1ab应该写为﹣ab,故D错误,不符合题意.故选:C.6.(2023秋•仙居县校级期中)用代数式表示“a的2倍与3的和”,下列表示正确的是( )A.2a﹣3B.2a+3C.2(a﹣3)D.2(a+3)【分析】a的2倍就是2a,与3的和就是2a+3,根据题目中的运算顺序就可以列出式子,从而得出结论.【解答】解:a的2倍就是:2a,a的2倍与3的和就是:2a与3的和,可表示为:2a+3.故选:B.7.(2024•杭州一模)一个直径为6cm的圆中阴影部分面积为S,现在这个圆与正方形在同一平面内,沿同一条直线同时相向而行,圆每秒滚动3cm,正方形每秒滑动2cm,第 4或6 秒时,圆与正方形重叠部分面积是S.【分析】先求出圆阴影部分的垂直长度1cm,再分圆与正方形刚接触后,相交1厘米;圆与正方形将要分开时,相交1厘米,两种情况运动的距离.最后用相遇距离除以速度和,就是所求的相遇时间.【解答】解:①=4(秒);②=6(秒)答:第4秒或6秒时,圆与正方形重叠部分面积是S.题型二 代数式的求值例题:1.(2023秋•西湖区期中)已知2m﹣3n=﹣2,则代数式4m﹣6n+1的值为( )A.﹣1B.3C.﹣3D.2【分析】将代数式适当变形后,利用整体代入的方法解答即可.【解答】解:∵2m﹣3n=﹣2,∴原式=2(2m﹣3n)+1=2×(﹣2)+1=﹣4+1=﹣3.故选:C.2.(2023秋•海曙区校级期中)如果代数式4y2﹣2y+5的值是7,那么代数式2y2﹣y+1的值等于( )A.2B.3C.﹣2D.4【分析】根据4y2﹣2y+5的值是7得到2y2﹣y=1,然后利用整体代入思想计算即可.【解答】解:∵4y2﹣2y+5=7,∴2y2﹣y=1,∴2y2﹣y+1=1+1=2.故选:A.3.(2022秋•萧山区月考)如图是某一长方形闲置空地,宽为3a米,长为b米.为了美化环境,准备在这个长方形空地的四个顶点处分别修建一个半径a米的扇形花圃(阴影部分),然后在花圃内种花,中间修一条长b米,宽a米的小路,剩余部分种草.(1)小路的面积为 ab 平方米;种花的面积为 πa2 平方米;(结果保留π)(2)请计算该长方形场地上种草的面积;(结果保留π)(3)当a=2,b=10时,请计算该长方形场地上种草的面积.(π取3.14,结果精确到1)【分析】(1)利用长方形和扇形面积公式求解;(2)根据种草的面积是整个长方形的面积减去小路面积和扇形花圃面积即可;(3)由此利用已知数据求出种草的面积即可.【解答】解:(1)依题意得小路的面积为ab平方米,种花的面积为平方米,故答案为:ab,πa2;(2)该长方形场地上种草的面积为:3a⋅b﹣ab﹣πa2=(2ab﹣πa2)平方米,故长方形场地上种草的面积为(2ab﹣πa2)平方米;(3)当a=2,b=10时,2ab﹣πa2≈2×2×10﹣3.14×2×2=27.44≈27平方米.答:该长方形场地上种草的面积为27平方米.巩固训练4.(2023秋•桐乡市期末)若a+3b﹣2=0,则代数式1+2a+6b的值是( )A.5B.4C.3D.2【分析】由已知条件可得a+3b=2,将原式变形后代入数值计算即可.【解答】解:∵a+3b﹣2=0,∴a+3b=2,∴1+2a+6b=1+2(a+3b)=1+2×2=5,故选:A.5.(2023秋•鄞州区校级月考)已知3x2﹣4x+6=9,则= 5 .【分析】利用代入法,代入所求的式子即可.【解答】解:∵3x2﹣4x+6=9,∴3x2﹣4x=3,∴当3x2﹣4x=3时,原式=﹣+6=﹣+6=5.故答案为:5.6.(2023秋•海曙区校级期中)如图所示是一个长方形.(1)根据图中尺寸大小,用含x的代数式表示阴影部分的面积S;(2)若x=3,求S的值.【分析】根据图形可知:阴影部分的面积可用长方形的面积减去两个直角三角形的面积.【解答】解:(1)由图形可知:S=4×8﹣×4×8﹣×4(4﹣x)=16﹣8+2x=(8+2x)cm2.另解:大三角形面积为:×4×8=16cm2,小直角三角形的面积为:×(8﹣4)×(4﹣x)=(8﹣2x)cm2,∴S=8×4﹣16﹣(8﹣2x)=(8+2x)cm2.(2)将x=3代入上式,S=8+2×3=14cm2.7.(2023秋•拱墅区校级期中)某校决定为体育组添置一批体育器材.学校准备在网上订购一批某品牌足球和跳绳,在查阅天猫网店后发现足球每个定价140元,跳绳每条定价30元.现有A、B两家网店均提供包邮服务,并提出了各自的优惠方案.A网店:买一个足球送一条跳绳;B网店:足球和跳绳都按定价的90%付款.已知要购买足球60个,跳绳x条(x>60).(1)若在A (6600+30x) 元(用含x的代数式表示);若在B网店购买,需付款 (7560+27x) 元(用含x的代数式表示);(2)若x=100时,通过计算说明此时在哪家网店购买较为合算?(3)当x=100时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法,并计算需付款多少元?【分析】(1)由题意在A店购买可列式:60×140+(x﹣60)×30=(6600+30x)元;在网店B购买可列式:(60×140+30x)×0.9=(7560+27x)元;(2)将x=100分别代入A网店,B网店的代数式计算,再比较即可求解;(3)由于A店是买一个足球送跳绳,B店是足球和跳绳都按定价的90%付款,所以可以在A店买60个足球,剩下的40条跳绳在B店购买即可.【解答】解:(1)A店购买可列式:60×140+(x﹣60)×30=(6600+30x)元;在网店B购买可列式:(60×140+30x)×0.9=(7560+27x)元;故答案为:(6600+30x),(7560+27x).(2)当x=100时,在A网店购买需付款:6600+30×100=9600(元),在B网店购买需付款:7560+27×100=10260(元),∵9600<10260,∴当x=100时,应选择在A网店购买合算.(3)由(2)可知,当x=100时,在A网店付款9600元,在B网店付款10260元,在A网店购买60个足球配送60个跳绳,再在B网店购买40个跳绳合计需付款:140×60+30×40×0.9=9480,∵9480<9600<10260,∴省钱的购买方案是:在A网店购买60个足球配送,60个跳绳,再在B网店购买40个跳绳,付款9480元.题型三 单项式与多项式例题:1.(2023秋•北仑区期末)单项式﹣的系数和次数分别是( )A.B.C.D.﹣2,2【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式系数、次数的定义,单项式﹣的系数和次数分别是,3.故选:B.2.(2023秋•婺城区校级月考)整式0.34x2y,0,,x2﹣y,abc,中单项式有( )A.2个B.3个C.4个D.5个【分析】根据单项式的定义对各式进行判断即可.【解答】解:整式0,0.34x2y,abc,,x2﹣y,中,单项式有0,0.34x2y,abc,故选:B.3.(2022秋•鄞州区校级期中)若多项式4x2y|m|﹣(m﹣1)y2+1是关于x,y的三次三项式,则常数m= ﹣1 .【分析】直接利用多项式的次数与项数确定方法分析得出答案.【解答】解:∵多项式4x2y|m|﹣(m﹣1)y2+1是关于x,y的三次三项式,∴2+|m|=3,m﹣1≠0,解得:m=﹣1.故答案为:﹣1.4.(2022秋•鄞州区校级期中)对多项式按如下的规则确定它们的先后次序:先看次数,次数高的多项式排在次数低的多项式前面;再看项数,项数多的多项式排在项数少的多项式前面;最后看字母的个数,字母个数多的多项式排在字母个数少的多项式前面.现有以下多项式:①a2b2+ab+2;②a4+a3b+a2b2+ab3+b4;③a4+b4+a4b;④a2+2ab+b2;⑤a2+2a+1.(1)按如上规则排列以上5个多项式是 ③②①④⑤ (写序号);(2)请你写出一个排列后在以上5个多项式最后面的多项式.【分析】(1)通过确定各多项式的次数、项数及字母个数进行排序;(2)根据规定写一个含一个字母,次数为一次或次数是2的二项式即可.【解答】解:(1)∵多项式a2b2+ab+2的次数是4,项数是3,且含有2个字母;a4+a3b+a2b2+ab3+b4的次数是4,项数是5,且含有2个字母;a4+b4+a4b的次数是5,项数是3,且含有2个字母;a2+2ab+b2的次数是2,项数是3,且含有2个字母;a2+2a+1的次数是2,项数是3,且含有1个字母,∴按题目规则排列以上5个多项式是:③②①④⑤.故答案为:③②①④⑤;(2)a﹣1就是符合题意的多项式之一.巩固训练5.(2023秋•金东区期末)下列说法中正确的是( )A.单项式的系数是,次数是1B.单项式a3b没有系数,次数是4C.单项式的系数是,次数是4D.单项式﹣5y的系数是﹣5,次数是1【分析】根据单项式的系数:单项式中的数字因式,次数:所有字母的指数和,进行判断即可.【解答】解:A、单项式的系数是,次数是2.故原选项错误;B、单项式a3b的系数是1,次数是4.故原选项错误;C、单项式的系数是,次数是3.故原选项错误;D、单项式﹣5y的系数是﹣5,次数是1.故原选项正确;故选:D.6.(2023秋•玉环市校级期中)在下列代数式:ab,,ab2+b+1,﹣9,x3+x2﹣3中,多项式有( )A.2个B.3个C.4个D.5个【分析】直接利用多项式的定义分析得出答案.【解答】解:ab,,ab2+b+1,﹣9,x3+x2﹣3中,多项式有:,ab2+b+1,x3+x2﹣3共3个.故选:B.7.(2023秋•鄞州区校级期中)请写出一个只含有字母x的三次三项式 x3+x2+x(答案不唯一) .【分析】根据多项式的定义进行作答即可.【解答】x的三次三项式为:x3+x2+x,故答案为:x3+x2+x.8.(2023秋•东阳市月考)xy﹣x+y是 二 次 三 项式.【分析】一个多项式中,次数最高的项的次数,叫做这个多项式的次数;多项式的项数就是多项式中包含的单项式的个数.【解答】解:﹣x的次数为1,y的次数为1,xy的次数为2,故多项式的次数为2,该多项式共含有3个单项式,故多项式的项数为3,故答案为:二;三.题型四 同类项与合并同类项例题:1.(2023秋•沭阳县校级期中)在下列各组单项式中,不是同类项的是( )A.5x2y和﹣7x2y B.m2n和2mn2C.﹣3和99D.﹣abc和9abc【分析】根据同类项的定义判断即可.定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,几个常数项也是同类项.【解答】解:A.5x2y和﹣7x2y所含字母相同,并且相同字母的指数也相同,是同类项,故本选项不合题意;B.m2n和2mn2所含字母相同,但相同字母的指数不相同,故不是同类项,故本选项符合题意;C.﹣3和99是同类项,故本选项不合题意;D.﹣abc和9abc所含字母相同,并且相同字母的指数也相同,是同类项,故本选项不合题意.故选:B.2.(2023秋•宿豫区期末)请你写出一个2a2b的同类项 a2b或3a2b等(答案不唯一) .【分析】根据同类项的定义可知,写出的同类项只要符合只含有a,b两个未知数,并且a的指数是2,b的指数是1即可.【解答】解:a2b或3a2b等(答案不唯一).故答案为:a2b或3a2b等(答案不唯一).3.(2023秋•西湖区校级月考)下列计算中正确的是( )A.2x+3y=5xy B.6x2﹣(﹣x2)=5x2C.4mn﹣3mn=1D.﹣7ab2+4ab2=﹣3ab2【分析】运用合并同类项的方法对各选项进行逐一计算、辨别.【解答】解:∵2x与3y不是同类项不能合并,∴选项A不符合题意;∵6x2﹣(﹣x2)=7x2,∴选项B不符合题意;∵4mn﹣3mn=mn,∴选项C不符合题意;∵﹣7ab2+4ab2=﹣3ab2,∴选项D符合题意;故选:D.4.(2023秋•庆元县校级月考)若多项式8x2+(m+1)xy﹣5y+xy﹣8(m是常数)中不含xy项,则m的值为 ﹣2 .【分析】根据合并同类项法则把原式合并同类项,根据题意列出方程,解方程得到答案.【解答】解:8x2+(m+1)xy﹣5y+xy﹣8=8x2+(m+2)xy﹣5y﹣8由题意得,m+2=0,解得,m=﹣2故答案为:﹣2.5.(2022秋•西湖区校级期中)合并同类项:(1)5m+3m﹣10m;(2)2ab2﹣3ab2﹣6ab2;(3)5x+2y﹣3x﹣7y;(4)11xy﹣3x2﹣7xy+x2.【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.据此解答即可.【解答】解:(1)5m+3m﹣10m=(5+3﹣10)m=﹣2m;(2)2ab2﹣3ab2﹣6ab2;=(2﹣3﹣6)ab2=﹣7ab2;(3)5x+2y﹣3x﹣7y=(5x﹣3x)+(2y﹣7y)=2x﹣5y;(4)11xy﹣3x2﹣7xy+x2=(11﹣7)xy+(1﹣3)x2=4xy﹣2x2.6.(2023秋•江干区校级期中)(1)已知2x2+ax﹣y+6﹣2bx2+3x﹣5y﹣1的值与x的取值无关,求a和b的值.(2)已知关于x的四次三项式ax4﹣(a﹣12)x3﹣(b+3)x2﹣bx+11中不含x3及x2项,试写出这个多项式,并求当x=﹣1时,这个多项式的值.【分析】(1)先合并同类项,再根据值与x的取值无关,即含x项的系数都为0,据此求解即可;(2)根据不含x3及x2项,则﹣(a﹣12)=0,﹣(b+3)=0,求出a、b的值,进而得到原多项式,再代值计算即可.【解答】解:(1)2x2+ax﹣y+6﹣2bx2+3x﹣5y﹣1=(2﹣2b)x2+(a+3)x﹣6y+5,∵2x2+ax﹣y+6﹣2bx2+3x﹣5y﹣1的值与x的取值无关,∴2﹣2b=0,a+3=0,∴a=﹣3,b=1;(2)∵关于x的四次三项式ax4﹣(a﹣12)x3﹣(b+3)x2﹣bx+11中不含x3及x2项,∴﹣(a﹣12)=0,﹣(b+3)=0,∴a=12,b=﹣3,∴原多项式为12x4+3x+11,当x=﹣1时,原式=12×(﹣1)4+3×(﹣1)+11=12×1﹣3+11=20.巩固训练7.(2023秋•舟山期末)下列计算正确的是( )A.5m﹣2m=3B.6x3+4x7=10x10C.3a+2a=5a2D.8a2b﹣8ba2=0【分析】依据同类项的定义与合并同类项法则求解即可.【解答】解:A、5m﹣2m=3m,故A错误;B、6x3与4x7不是同类项,不能合并,故B错误;C、3a+2a=5a,故C错误;D、8a2b﹣8ba2=0,故D正确.故选:D.8.(2023秋•南浔区期中)如果2x n+2y3与﹣3x3y2m﹣1是同类项,那么m,n的值是( )A.m=2,n=1B.m=0,n=1C.m=2,n=2D.m=1,n=2【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,得出关于m,n的方程,求得m,n的值.【解答】解:∵2x n+2y3与﹣3x3y2m﹣1是同类项,∴n+2=3,2m﹣1=3,∴m=2,n=1,故选:A.9.(2023秋•苍南县期末)已知单项式5x m y3和是同类项,则m+n= 5 .【分析】根据同类项的概念求解.定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【解答】解:∵单项式5x m y3和是同类项,∴m=2,n=3,∴m+n=2+3=5,故答案为:5.10.(2023秋•义乌市月考)若﹣6x2y n与2x m+4y3的和是单项式,则mn的值是 ﹣6 .【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.据此可得m、n的值,再代入计算即可.【解答】解:∵﹣6x2y n与2x m+4y3的和是单项式,即﹣6x2y n与2x m+4y3是同类项,∴m+4=2,n=3,解得:m=﹣2,n=3,∴mn=(﹣2)×3=﹣6.故答案为:﹣611.(2023秋•瑞安市月考)计算:= ﹣ab2 .【分析】根据合并同类项的法则进行即可.【解答】解:﹣ab2﹣3ab2=(﹣﹣3)ab2=﹣ab2.故答案为:﹣.12.(2023秋•西湖区校级期中)请回答下列问题:(1)若多项式mx2+4xy﹣2y2﹣x2+nxy﹣2y+6的值与x的取值无关,求(m+n)3的值;(2)若关于x、y的多项式3mx2+2nxy+32x+2xy﹣x2+y+4不含二次项,求m﹣n的值;(3)若2x|k|+2y+(k﹣1)x2y+1是关于x、y的四次三项式,求k值.【分析】(1)先把多项式合并同类项,再令含x项的系数等于0,求出m、n的值即可;(2)先把多项式合并同类项,然后根据多项式不含二次项,得到关于m、n的一次方程,求出m、n的值,再代入计算即可.(3)根据四次三项式的概念,得关于k的方程,求解即可.【解答】解:(1)原式=(m﹣1)x2+(4+n)xy﹣2y2﹣2y+6.∵原式的值与x的值无关,∴m﹣1=0,4+n=0,∴m=1,n=﹣4,∴(m+n)3=(1﹣4)3=﹣27,(2)原式=(3m﹣1)x2+(2n+2)xy+9x+y+4,∵多项式不含二次项,∴3m﹣1=0,2n+2=0.∴m=,n=﹣1∴m﹣n=+1=.(3)由题意得:|k|+1+2=4,∴k=±1.又∵k﹣1≠0,∴k≠1.∴k=﹣1.题型五 去括号与添括号例题:1.(2023秋•瑞安市月考)下列各式去括号正确的是( )A.﹣(a﹣3b)=﹣a﹣3bB.a+(5a﹣3b)=a+5a﹣3bC.﹣2(x﹣y)=﹣2x﹣2yD.﹣y+3(y﹣2x)=﹣y+3y﹣2x【分析】如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反,由此即可判断.【解答】解:A、﹣(a﹣3b)=﹣a+3b,故A不符合题意;B、a+(5a﹣3b)=a+5a﹣3b,故B符合题意;C、﹣2(x﹣y)=﹣2x+2y,故C不符合题意;D、﹣y+3(y﹣2x)=﹣y+3y﹣6x,故D不符合题意.故选:B.2.(2022秋•新昌县期末)代数式,添上一个括号后,正确的是( )A.B.C.D.【分析】根据添括号方法解答.【解答】解:=.故选:B.3.(2024•东阳市二模)多项式a﹣(﹣b+c)去括号的结果是 a+b﹣c .【分析】根据去括号的方法进行解题即可.【解答】解:a﹣(﹣b+c)=a+b﹣c.故答案为:a+b﹣c.巩固训练4.(2023秋•娄星区校级期中)下列去括号或添括号的变形中,正确的是( )A.2a﹣(3b﹣c)=2a﹣3b﹣c B.3a+2(2b﹣1)=3a+4b﹣1C.a+2b﹣3c=a+(2b﹣3c)D.m﹣n+a﹣b=m﹣(n+a﹣b)【分析】根据去括号法则和添括号法则进行分析即可.【解答】解:A、2a﹣(3b﹣c)=2a﹣3b+c,错误;B、3a+2(2b﹣1)=3a+4b﹣2,错误;C、a+2b﹣3c=a+(2b﹣3c),正确;D、m﹣n+a﹣b=m﹣(n﹣a+b),错误;故选:C.5.(2023秋•吴兴区期中)下列各式可以写成a﹣b+c的是( )A.a﹣(+b)﹣(+c)B.a﹣(+b)﹣(﹣c)C.a+(﹣b)+(﹣c)D.a+(﹣b)﹣(+c)【分析】根据有理数的加减混合运算的符号省略法则化简,即可求得结果.【解答】解:根据有理数的加减混合运算的符号省略法则化简,得,A的结果为a﹣b﹣c,B的结果为a﹣b+c,C的结果为a﹣b﹣c,D的结果为a﹣b﹣c,故选:B.6.(2023春•衢江区期中)添括号:﹣x2﹣1=﹣( x2+1 ).【分析】根据添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号,是解题的关键,即可.【解答】解:﹣x2﹣1=﹣(x2+1).故答案为:x2+1.题型六 整式的加减与化简求值例题:1.(2022秋•拱墅区期末)化简(2a+b)﹣(2a﹣b)的结果是( )A.4a B.2b C.0D.4a+2b【分析】去括号后再合并即可得到答案.【解答】解:(2a+b)﹣(2a﹣b)=2a+b﹣2a+b=2b,故选:B.2.(2023秋•椒江区校级期末)已知关于x,y的多项式2x+my﹣12与多项式nx﹣3y+6的差中不含有关于x,y的一次项,则m+n+mn= ﹣7 .【分析】先将多项式直减并合并同类项;再根据差中不含有关于x,y的一次项,求出m和n的值;最后代入式子中,即可求出结果.【解答】解:2x+my﹣12﹣(nx﹣3y+6)=2x+my﹣12﹣nx+3y﹣6=(2﹣n)x+(m+3)y﹣18,∵差中不含有关于x,y的一次项,∴2﹣n=0;m+3=0,解得n=2;m=﹣3.将n=2;m=﹣3代入,则m+n+mn=﹣3+2+(﹣3)×2=﹣7,故答案为:﹣7.3.(2023秋•仙居县期末)若A=x2y+2x+3,B=﹣2x2y+4x,则2A﹣B=( )A.3B.6C.4x2y+6D.4x2y+3【分析】先去括号,再合并同类项即可得到答案【解答】解:∵A=x2y+2x+3,B=﹣2x2y+4x,∴2A﹣B=2(x2y+2x+3)﹣(﹣2x2y+4x)=2x2y+4x+6+2x2y﹣4x=(2x2y+2x2y)+(4x﹣4x)+6=4x2y+6,故选:C.4.(2023秋•仙居县校级期中)计算:(1)3m2﹣2n2+2(m2﹣n2);(2)2x﹣y﹣(x+5y).【分析】(1)根据整式的加减法,去括号,合并同类项即可解决问题;(2)根据整式的加减法,去括号,合并同类项即可解决问题.【解答】解:(1)3m2﹣2n2+2(m2﹣n2)=3m2﹣2n2+2m2﹣2n2=5m2﹣4n2;(2)2x﹣y﹣(x+5y)=2x﹣y﹣x﹣5y=x﹣6y.5.(2023秋•宜城市期末)先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2.其中a=1,b=﹣3.【分析】根据整式的加减混合运算法则把原式化简,代入计算即可.【解答】解:原式=2a2b+2ab2﹣2a2b+2﹣ab2﹣2=ab2,当a=1,b=﹣3时,原式=1×(﹣3)2=9.6.(2023秋•临海市期中)先化简,再求值:5x2﹣2(3y2+6xy)+(2y2﹣5x2),其中x=,y=.【分析】先去括号,再合并同类项,最后代入计算即可得.【解答】解:原式=5x2﹣6y2﹣12xy+2y2﹣5x2=﹣4y2﹣12xy,当x=,y=时,原式=﹣4×(﹣)2﹣12××(﹣)=﹣4×+2=﹣1+2=1.7.(2022秋•兰溪市期中)已知A=2x2﹣x﹣1,B=3x2﹣2x﹣1,C=x2﹣2x,求A﹣(B﹣C)的值,其中x=﹣.【分析】把A、B、C的式子代入A﹣(B﹣C)后,先去括号,合并同类项,把多项式化为最简形式后,把x=﹣代入计算即可.【解答】解:∵A=2x2﹣x﹣1,B=3x2﹣2x﹣1,C=x2﹣2x,∴A﹣(B﹣C)=2x2﹣x﹣1﹣[3x2﹣2x﹣1﹣(x2﹣2x)]=2x2﹣x﹣1﹣(3x2﹣2x﹣1﹣x2+2x)=2x2﹣x﹣1﹣3x2+2x+1+x2﹣2x=﹣x,当x=﹣时,原式=﹣(﹣)=.巩固训练8.(2023秋•嵊州市期末)如图,某长方形花园的长为(x+y)米,宽为(x﹣y)米.现根据实际需要对该花园进行整改,长方形花园的长增加(x﹣y)米,宽增加(x﹣2y)米,则整改后该花园的周长为( )A.(4x﹣3y)米B.(4x﹣6y)米C.(8x﹣3y)米D.(8x﹣6y)米【分析】根据整改的方案,表示出整改后的长与宽,再结合长方形的周长公式进行求解即可.【解答】解:整改后的花园周长为:2[(x+y+x﹣y)+(x﹣y+x﹣2y)]=2(2x+2x﹣3y)=2(4x﹣3y)=(8x﹣6y)米,故选:D.9.(2023秋•玉环市期末)长方形的长为2a+b,宽为3a﹣2b,则它的周长可表示为 10a﹣2b .【分析】根据长方形的周长公式计算即可.【解答】解:由题意得:长方形的周长为:(2a+b+3a﹣2b)×2=10a﹣2b故答案为:10a﹣2b.10.(2023秋•越城区校级期末)已知A+2B=3a2﹣4ab,B=﹣5a2+6ab﹣7.(1)用含有a,b的代数式表示A.(2)当a=﹣1,b=﹣2时,求A的值.【分析】(1)将B代入,移项,去括号,合并同类项,即可求解;(2)将a、b的值,代入计算即可求解;【解答】解:(1)∵A+2B=3a2﹣4ab,∴A=3a2﹣4ab﹣2B=3a2﹣4ab﹣2(﹣5a2+6ab﹣7)=3a2﹣4ab+10a2﹣12ab+14=13a2﹣16ab+14;(2)解:当a=﹣1,b=﹣2时,A=13×(﹣1)2﹣16×(﹣1)×(﹣2)+14=13﹣32+14=﹣5.11.(2023秋•襄城区期末)先化简,再求值:5(3a2b﹣ab2)﹣(ab2+3a2b),其中a=,b=.【分析】根据整式的加减混合运算法则把原式化简,代入计算即可.【解答】解:5(3a2b﹣ab2)﹣(ab2+3a2b)=15a2b﹣5ab2﹣ab2﹣3a2b=12a2b﹣6ab2当a=,b=时,原式=12××﹣6××=1﹣=.12.(2023秋•温岭市校级期中)先化简再求值:2(x2y+xy)﹣3(x2y﹣xy)﹣4x2y,其中x=1,y=﹣1.【分析】先去括号,然后合并同类项得到原式=﹣5x2y+5xy,然后把x、y的值代入计算即可.【解答】解:原式=2x2y+2xy﹣3x2y+3xy﹣4x2y=﹣5x2y+5xy,当x=1,y=﹣1时,原式=﹣5×1×(﹣1)+5×1×(﹣1)=0.。

七年级上代数式知识点梳理+例题讲解+测试题

七年级上代数式知识点梳理+例题讲解+测试题

知识梳理用字母表示数:示出来。

代数式:1.用基本运算符号(+.-为代数式。

注:单独一个数或一个字母也是代数式。

Π是数字不是字母。

2.或省略不写,单项式:1.2.3.注:单独一个数或一个字母也是单项式。

多项式:1.几个单项式的和叫做多项式。

计算所得的结果叫0,5ba3+,a2+2ab+b2,aa5+,-k.一个字母也是单项式,-k;多项式:5ba3+,a2-k;【练1a2x+ax,x2-3x+4,-Πx,0单项式集合:{多项式集合:{整式集合:{一次整式集合:{二次整式集合:{【例2(1)单项式4yx -3Π(2)多项式ab-2a-100常数项是. (3)多项式2xy-xy2-13是,它是次【分析】.是.m│+2=5,可k的值.【重难点四】代数式求值【例4】当x=3,y=2,求22x 【分析】本题中,具体数值为x=3字母所对应数值带入求解可得。

解答:22x -4xy+3y原式=2×23-4×3×2+3×2=18-24+6 =0【练4】若2)2(+a +丨b-1丨=0【重难点五】整体代入思想求值【例5】若2=-b a ,求代数式5分析:本题中没有给出a 、b 间的关系,b a 22-是b a -的2解答:原式=)(25b a -+=5+2×2 =9的值。

【例6】【分析】根据程序框图的算法,输入一个数x 第一步先算x-1,第二步再算一、选择题1、代数式-23xy 3A .-2,4B .-6,2、若220x x +-=,则322x x +- A .2017 B .3、代数式 , ,, , A. 个B. 个4、某商店在甲批发市场以每包m场以每包n 元(m>n)A .盈利了 B .亏损了 5、图1中3,6,9,··称为正方形数.下列数既是三角形数又是正方形数的是 ( )A .2010B .2012C .2014D .2016,单项式-23πa 2b 的系数是x 的值为81,则第2016次输出的结果为3、已知A 是关于a 的三次多项式,B 是关于a 的二次多项式,则A +B 的的值是×4=43+4,…,若a b ×10=a b.220b -=;②212a b c x y -++是一a 2c -3a 2b)-4a 2c]-abc 的值.2、当x=-2时,代数式633-++cx bx ax 值为8,求当x=2时,代数式633-++cx bx ax 的值。

七年级上代数式知识点及习题

七年级上代数式知识点及习题

七年级上代数式知识点及习题一、 知识框架二、 代数式1、定义:像10a+b ,,2这样含有字母的数学表达式称为代数式,一个代数式由数、表示数的字母和运算符号组成,单独的一个数或者一个字母也称代数式。

这里的运算是指加、减、乘、除、乘方和开方,不含有等号或不等号。

2、 代数式书写注意事项数字写在字母前面 ;数字与字母、字母与字母之间的乘号可以省略分数与字母的乘积不能出现带分数 ;除法结果写成分数形式一个代数式就是一个整体,出现加减运算时常用括号括起来三、 代数式的值概念:用数值代替代数式里的字母,计算所得的结果叫做代数式的值。

注意:代数式里的字母取值要使代数式有意义,例如分母不能为0。

四、 整式单项式:由数与字母或字母与字母相乘组成的代数式叫做单项式 单独的一个数或一个字母也叫单项式,例如1,a ;单项式中的数字因数叫做这个单项式的系数,例-3a 的系数是-3一个单项式中,所有字母的指数的和叫做这个单项式的次数 例如-3x 的次数是1,ab 的次数是2多项式:由几个单项式相加组成的代数式叫做多项式,在多项式中,每个单项式叫做多项式的项,不含字母的项叫做常数项,次数最高的项的次数就是这个多项式的次数。

单项式、多项式统称为整式。

判断是单项式还是多项式,整式,要理解它们的定义,单项式和多项式的分母里面不含字母,也都不含开方运算,是常数(是一个无理数)而不是字母。

五、 合并同类项同类项:两个相同点:(1)字母相同 (2)相同的字母的指数相同两个无关:(1)与系数无关 (2)与字母顺序无关所有的常数项都是同类项法则:把同类项的系数相加,所得的结果做为系数。

字母和字母的指数不变六、 整式的加减去括号法则:括号前面是“+”号,把括号和前面的“+”号去掉,括号里面的各项都不改变符号。

括号前面是“-”,把括号和它前面的“-”去掉,括号里面的各项都改变符号。

练习1、 列出表示下列各题结果的代数式(1)一个三角形的底边长为a ,高线长为b+1,则他的面积为多少?用字母表示数代数式 列代数式 代数式的值 整 式 单项式 多项式 去括号 合并同类项 整式加减⑵X 与Y 两数的立方和为多少?⑶a 与c 两数和的立方为多少?⑷a 除以b 、c 两数和所得的商为多少?⑸a 的三倍与b 的差为多少?2、已知a ,,…,则=_______(用含a 的代数式表示)3、(1)已知a-b=2,a-c=,那么代数式=_________(2)若实数a 满足,则2为_______4、 单项式-5y 的系数是_____,次数是_____单项式a 3b 的系数是_____,次数是_____单项式2πr 的系数是_____,次数是____5a 2-3ab 2-2的项分别有_____________,第二项为系数为 ,次数为 ,常数项是_________,最高次项的次数是___________,该多项式为 次 项式。

代数式知识点及专项训练(含答案解析)

代数式知识点及专项训练(含答案解析)

代数式知识点及分类训练(含答案解析)知识点一:代数式的定义1. 用基本的运算符号把数或表示数的字母连接而成的式子叫做代数式。

如:16n ,2a+3b ,34 ,n,(a+b)2等式子;代数式不含有等号或不等号,单独的2一个数或一个字母也是代数式。

知识点二:代数式的规范书写1. 数字与数字相乘用“×”;数字与字母、字母与字母相乘乘号, 通常用“·”表示或省略不写;2. 字母与数字相乘,数字因式应放在字母因式之前(之前/之后),带分数与字母相乘,带分数要化为假分数3. 代数式中的除号一般用“分数线”表示;4. 几个字母相乘时,一般按字母顺序排列。

5. 如果字母前面的数字是1,通常省略不写.知识点三:列代数式在解决实际问题时,常常先把问题中与数量有关的词语用代数式表示出来,即列出代数式,使问题变得简洁,更具一般性.1.重点:用字母表示数与数之间的关系;2.比谁的几倍多(少)几的问题;3.比谁的几分之几多(少)几的问题;4.折扣问题:例:八折是乘0.8,八五折是乘0.855.提价与降价问题:例:一个商品原价a,先提价20%,在降价20%,即a(1+20%)(1-20%)6.路程问题:掌握公式:s=vt7.出租车计费问题:分类讨论思想,将总路程切割成不同的段(例:前三公里收费7元,之后每公里1.6元,公里数x,总费用y)y={7 x≤3 1.6(x−3)+7 x>38.已知各数位上的数字,表示数的问题:字母乘10表示在十位上,乘100表示在百位上。

9.特定字母的意义:C:周长 S:面积 V:体积 r:半径 d:直径s:路程 t:时间 v:速度n:正整数知识点三:代数式的值1. 用数值代表代数式里的字母,按照代数式中的运算关系计算得出的结果叫做代数式的值。

2. 代数式的值的求解步骤:一是代入,二是计算。

在过程中一要弄清楚运算符号,二要注意运算顺序.在计算时,要注意按代数式指明的运算进行.3. 求代数式的值的方法3.1 直接代入法:将字母的值直接代入代数式中求值3.2 转换代入法:按指定的程序代入计算3.3 整体代入法:即整体思想:把“整体”看作一个新字母代入计算【知识点1:代数式的概念】1. 下列式子中,符合代数式书写格式的是( )A .813a 2b 3B .−y xC .xy ·5D .−1c【答案】B【解析】选项A 正确的书写格式是253a 2b 3,选项B 的书写格式是正确的,选项C 正确的书写格式是5xy ,选项D 正确的书写格式是-c.故选:B .2. 下列式子中,不属于代数式的是( )A .a+3B .mn 2C .√6D .x >y 【答案】D .【解析】A 、是代数式,故本选项错误;B 、是代数式,故本选项错误;C 、是代数式,故本选项错误;D 、不是代数式,故本选项正确;故选D .3. 下列各式符合代数式书写规范的是( )A .a bB . a×3C . 2m ﹣1个D . 125m 【答案】A .【解析】A 、符合代数式的书写,故A 选项正确;B 、a×3中乘号应省略,数字放前面,故B 选项错误;C 、2m ﹣1个中后面有单位的应加括号,故C 选项错误;D 、125m 中的带分数应写成假分数,故D 选项错误.4. 判断下列各式中哪些是代数式,哪些不是代数式?0,10x−1,F =ma ,m+2>m ,2x 2﹣3x+11,112,13≠12,6x 2+y 23,﹣y ,6π. 【答案】代数式的有:0,10x−1,2x2﹣3x+11,112,6x 2+y 23,﹣y ,6π.不是代数式的有:F =ma ,m+2>m ,13≠12.【解析】根据代数式的概念选择5. 指出下列各式哪些是代数式,哪些不是代数式?①0;②a+b=3;③b;④x+2>4;⑤1x ;⑥2mn;⑦1+x;⑧x 3.【答案】①、③、⑤、⑥、⑦、⑧是代数式,②、④不是代数式【解析】②a+b=3,④x+2>4中的“=”“>” 它们不是运算符号,因此②④都不是代数式;①0,③b,都是代数式,因为单个数字和字母是代数式;⑤1x ,⑦1+x,⑧x3,都是除、加、乘方等运算符号连接起来的,因此是代数式;综上,①、③、⑤、⑥、⑦、⑧是代数式,②、④不是代数式.6. 下列哪些是代数式?哪些不是代数式?(1)3x+y ;(2)a ≠0;(3)s=πr 2;(4)ab a+b ;(5)-1>-2;(6)65;(7)m.【答案】代数式有(1),(4),(6),(7);不是代数式的有(2),(3),(5).【解析】根据代数式的概念,用运算符号把数字与字母连接而成的式子叫做代数式.单独的一个数或一个字母也是代数式.代数式有:3x+y ,ab a+b ,65,m.不是代数式的有:a ≠0,s=πr 2,-1>-2.7. 指出下列各式中,哪些是代数式,哪些不是代数式?(1)2x-1;(2)a=1;(3)S=πR 2;(4)π;(5)72;(6)12>13.【答案】(2)(3)是等式不是代数式;(6)不是等式不是代数式;(1)(4)(5)是代数式.【解析】根据代数式的概念,用运算符号把数字与字母连接而成的式子叫做代数式.单独的一个数或一个字母也是代数式.解:(2)(3)是等式不是代数式;(6)不是等式不是代数式;(1)(4)(5)是代数式.【知识点2:列代数式】1.购买1个单价为a元的面包和3瓶单价为b元的饮料,所需钱数为()A.(a+b)元B.3(a+b)元C.(3a+b)元D.(a+3b)元【答案】D.【解析】求购买1个面包和2瓶饮料所用的钱数,我们需要用一个面包的价钱加上3瓶饮料的价钱即可,即(a+3b)元,故选D.2.x减去y的平方的差,用代数式表示正确的是().A.(x-y)2B.x2-y2C.x2-yD.x-y2【答案】D【解析】本题主要考查了列代数式,关键是正确理解文字语言中的关键词;y的平方为y2,所以x减去y的平方的差为x-y2,故选D.3.根据题意列式:(1)x的平方的3倍与5的差,用代数式表示为 .(2)操作电脑时,甲4小时打x个字,乙3小时打y个字,甲乙两人每小时共打个字.【答案】(1)3x2-5 (2)(x4+y3)【解析】(1)本题主要考查了列代数式,关键是正确理解文字语言中的关键词;x的平方为x2,它的3倍为3x2,所以再与5的差为3x2-5;(2)已知甲4小时打x个字,则甲每小时打x4个字;乙3小时打y个字,则乙每小时打y3个字,所以甲、乙两人每小时共同打(x4+y3)个字4.校园里刚栽下1.8m高的小树苗,以后每年长0.3m,则n年后是 m.【答案】(0.3n+1.8);【解析】解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系。

2.1.1 代数式(一)(解析版)

2.1.1 代数式(一)(解析版)

2.1.1代数式(一)代数式的概念题型一:代数式的概念【例题1】(2020·全国八年级课时练习)在式子3,12a ,34x =,3ab -,()4x y +中,代数式的个数为()A .5B .4C .3D .2【答案】B【分析】根据代数式的定义:用运算符号连接而成的式子逐一判断即可.【详解】解:3,12a ,3ab -,()4x y +是代数式,34x =是方程,不是代数式,所以是代数式的式子共4个.故选B .【点睛】本题考查的是代数式的定义,属于基础概念题型,熟知定义是解题关键.变式训练【变式1-1】(2018·河北沧州市·七年级期末)下列说法正确的是( )A .2a 是代数式,1不是代数式B .代数式2a b -表示2﹣a 除bC .当x =4时,代数式413x -的值为0D .零是最小的整数【答案】C【分析】根据代数式的定义、代数式表示的意义、代数式求值等知识点判断各项【详解】2a 是代数式,单独的数字也是代数式,故A 不正确;代数式2a b -表示2-a 除以b ,故B 不正确;当x=4时,代数式413x -的值为0,故C 正确;零是绝对值最小的整数,故D 不正确.故选C .【点睛】此题主要考查代数式的定义、代数式表示的意义、代数式求值等知识点.用数值代替代数式里的字母解题的关键【变式1-2】(2019·上海市西延安中学七年级月考)下列各式中,代数式有()个(1)a+b=b+a;(2)1;(3)2x-1 ;(4)23x x +;(5) s = πr 2;(6) -6k A .2B .3C .4D .5【答案】C【分析】根据代数式的定义即可求解.【详解】(1)a+b=b+a 为等式,故错误;(2)1为代数式,正确;(3)2x-1为代数式,正确;(4)23x x +为代数式,正确;(5) s = πr 2为等式,故错误;(6) -6k 为代数式,正确故选C.【点睛】此题主要考查代数式的识别,解题的关键是熟知代数式的定义.【变式1-3】(2020·正安县思源实验学校七年级期中)下列式子①23´②210x -=③y ④s vt =⑤ 3.14π>⑥1a ⑦()()x y x y +-⑧452x x +,其中代数式有( )A .3个B .4个C .5个D .6个【答案】C【分析】代数式是运算符号把数和表示数的字母连接而成的式子,据此确定解答即可.【详解】解:代数式是运算符号把数和表示数的字母连接而成的式子,所以以上八个式子中,是代数式的有①③⑥⑦⑧五个.故选:C【点睛】本题考查了代数式的定义,准确理解代数式的定义是解题关键.题型二:用字母表示数【例题2】三个连续整数中,中间一个是m ,则最大的一个是()A .m+1B .m+2C .m+3D .m+4【答案】A【分析】根据三个连续的自然数两两之间相差1,可知中间一个是m ,那么最大的一个数就是m+1.【详解】解:三个连续的自然数两两之间相差1,中间一个是m ,最大的一个数就是m+1.故选A .【点睛】明确相邻的两个自然数之间相差1是解决此题关键.变式训练【变式2-1】下列说法正确的是( )A .-a 一定是负数B .a 的倒数是1aC .2a 一定是分数D .a 2一定是非负数【答案】D【解析】【分析】本题考查的是负数、倒数、分数、非负数的定义,根据负数、倒数、分数、非负数的定义依次判断各项即可.A 、当a 是负数时,-a 是正数,故本选项错误;B 、当a 是0时,a 没有倒数,故本选项错误;C 、当a=4时,a 2=2,是整数,故本选项错误; D 、2a 一定是非负数,本选项正确,故选D.【点睛】本题考查了用字母表示数,解题的关键是掌握好负数、倒数、分数、非负数的定义.【变式2-2】a +1的相反数是()A .-a +1B .-(a +1)C .a -1D .11a +【答案】B【详解】1a +的相反数是:(1)a -+.点睛:表示一个式子的相反数只需把这个式子用括号括起来,再在括号前面添上一个“-”即可.【变式2-3】(2019·山东)甲数比乙数的3倍大2,若甲数为x ,则乙数为( )A .3x -2B .3x+2C .23x +D .23-x 【答案】D【分析】本题主要考查列代数式,根据甲数比乙数的3倍大2,可知甲数减去2是乙数的3倍,再除以3即可得到结果.【详解】根据题意,得乙数为23x -.选D.【点睛】本题考查了列代数式,解题的关键是正确理解文字语言中的关键词,从而明确其中的运算关系,正确地列出代数式.题型三:找规律型列代数式【例题3】(2020·江西省于都中学七年级期中)观察如图所示图形,则第n 个图形中三角形的个数是( )A .2n +2B .4n +4C .4nD .4n -4【分析】由已知的三个图可得到一般的规律,即第n个图形中三角形的个数是4n,根据一般规律解题即可.【详解】解:根据给出的3个图形可以知道:第1个图形中三角形的个数是4,第2个图形中三角形的个数是8,第3个图形中三角形的个数是12,从而得出一般的规律,第n个图形中三角形的个数是4n.故选C.【点睛】此题考查了学生由特殊到一般的归纳能力.解此题时要注意寻找各部分间的联系,找到一般规律.变式训练【变式3-1】(2020·广州市育才中学七年级期中)用棋子摆出下列一组“口”字,按照这种方法摆下去,则第n个“口”字需要用棋子( )A.(4n﹣4)枚B.4n枚C.(4n+4)枚D.n2枚【答案】B【分析】观察图形可知,构成每个“口”字的棋子数量,等于构成边长为(n+1)的正方形所需要的棋子数量减去构成边长为(n+1-2)的正方形所需要的棋子数量.【详解】解:由图可知第n个“口”字需要用棋子的数量为(n+1)2-(n+1-2)2=4n,故选择B.【点睛】本题考查了规律的探索.【变式3-2】(2020·广东七年级期末)下列图案由边长相等的黑、白两色正方形按一定的规律拼接而成,依此规律,第n个图形中白色正方形的个数为( )A .4n +1B .4n ﹣1C .3n ﹣2D .3n +2【答案】D 【分析】第一个图形中有5个白色正方形;第2个图形中有531+´个白色正方形;第3个图形中有532+´个白色正方形;…由此得出第n 个图形中有53(1)32nn +´+﹣=个白色正方形.【详解】解:第一个图形中有5个白色正方形;第2个图形中有531+´个白色正方形;第3个图形中有532+´个白色正方形;…第n 个图形中有53(1)32nn +´+﹣=个白色正方形.故选:D 。

数学代数式知识点

数学代数式知识点

数学代数式知识点一、知识概述《数学代数式知识点》①基本定义:代数式呢,就是用运算符号(像加、减、乘、除、乘方、开方)把数和表示数的字母连接而成的式子。

比如3x,这里的3和x通过乘号连接起来就成了代数式;再比如a + b,也是代数式,就是字母a和b用加号连起来。

还有单独的一个数或者一个字母也是代数式,像5或者m都是。

②重要程度:在数学里那可太重要了。

它就像是数学表达的一种“语言”。

从简单的算术题到复杂的方程求解、函数研究都离不开代数式。

在中学数学里,整个代数的基础就是建立在代数式这个概念之上的。

③前置知识:得先知道数字的一些基本运算(加、减、乘、除、乘方、开方这些),还有字母可以代表数这个概念。

就像学走路要先学会站立一样,这些前置知识就是学会代数式的基础。

④应用价值:在实际生活里很多。

比如去商店买东西,一个苹果x元,买了3个就是3x元。

家里装修算面积,正方形房间边长是a米,那面积就是a²平方米,这些都是代数式实实在在的用处。

二、知识体系①知识图谱:代数式在数学这棵大树里就像是树干的一部分分枝。

它和数论、方程式、函数等知识都有密切联系。

方程就是代数式加上等号组成的等式,函数是以代数式为表达式的一种特殊关系。

②关联知识:跟整数、有理数、实数这些数的概念有联系,因为代数式中的数经常是这些类型的数。

也和运算律相关,因为代数式运算时也遵循这些运算律。

像乘法分配律对于代数式ax + bx = (a + b)x这个变形就非常关键。

③重难点分析:重点是理解代数式的概念和它包含的各种运算。

难点说实话是在复杂代数式的化简和求值计算中,因为可能涉及到很多运算步骤和规则。

比如说式子(2x + 3y)²,展开的时候既要有乘方运算,又要注意各项的系数和符号,特别容易出错。

④考点分析:在考试里经常出现。

从填空、选择考查基本概念,比如判断一个式子是不是代数式;到解答题考查代数式的化简求值,像已知x = 2时,求2x²- 3x + 1的值这种题型。

代数式求值经典题型(含详细答案)

代数式求值经典题型(含详细答案)

初中数学《代数式求值》已知a+b= 2 ,a-b= 3求代数式a(a+2b)+b(2a-b)的值1 / 36已知a²+a-3=0求代数式13a3+52a2的值3 / 36已知x - 1x= 2,求代数式x²- 1x²的值5 / 366 / 36已知x - y = 5求代数式(x²- y²)²- 10(x²+y²)的值7 / 369 / 36若x²-2x -2=0,求代数式x4+410x²的值。

10 / 3611 / 36已知x(x+y)-y(x+1)=x(x-2)求代数式x²+xy-y²y²+2xy12 / 3613 / 36已知x+y= -2求代数式x²+ 2y(x+1)+(y-1)²14 / 36已知x是最大的负整数,y是绝对值最小的有理数,求代数式3x3+ 2y2x+(2y+3x)²16 / 3617 / 36已知x-y=2求代数式x3-6xy-y318 / 3619 / 36已知3x²-x-1 =0,求代数式6x3+7x²-5x-201820 / 36题目:已知a-b= -1,b-c=2,求代数式(a+b+c)(a-b-c)(1 - ca)2 的值22 / 36已知x、y是正数,且x=7y²2x+5y,求代数式4x²-2x+xy +2y-5y²+3 的值24 / 36已知x+y =3,x²+y²=6求代数式2x²+2x²y+2xy+xy²+y3的值26 / 3628 / 36(2)-(1)得:4xy=3-4x²y²,把-4x²y²移到左边4x²y²+4xy=3 两边同时加上1,得:4x²y²+4xy+1=4,即(2xy+1)²=4 ,两边同时开方,2xy+1= ±2因为x、y是正数,那么2xy+1也是正数,所以2xy+1=-2(舍去)故2xy+1=2 ,即xy= 12--------------(3)把(3)代入到(2),得,x²+ 2×12+y²=3 则有:x²+y²=2----(4)29 / 3630 / 36已知x2-3x+1=0,求代数式x² - 1 x²31 / 36已知x、y是正数,且x - y=3,xy= 5,Array求代数式x3+x2y+x2y+y3的值33 / 3634 / 3636 / 36。

代数式10大必考考点精讲精练

代数式10大必考考点精讲精练

2022-2023学年七年级数学上学期复习备考高分秘籍【苏科版】专题1.2代数式10大必考考点精讲精练(知识梳理+典例剖析+变式训练)【目标导航】【知识梳理】1.代数式代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子.单独的一个数或者一个字母也是代数式.带有“<(≤)”“>(≥)”“=”“≠”等符号的不是代数式.注意:①不包括等于号(=)、不等号(≠、≤、≥、<、>、≮、≯)、约等号≈.②可以有绝对值.例如:|x|,|-2.25|等.2.列代数式(1)定义:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.(2)列代数式五点注意:①仔细辨别词义.列代数式时,要先认真审题,抓住关键词语,仔细辩析词义.如“除”与“除以”,“平方的差(或平方差)”与“差的平方”的词义区分.②分清数量关系.要正确列代数式,只有分清数量之间的关系.③注意运算顺序.列代数式时,一般应在语言叙述的数量关系中,先读的先写,不同级运算的语言,且又要体现出先低级运算,要把代数式中代表低级运算的这部分括起来.④规范书写格式.列代数时要按要求规范地书写.像数字与字母、字母与字母相乘可省略乘号不写,数与数相乘必须写乘号;除法可写成分数形式,带分数与字母相乘需把代分数化为假分数,书写单位名称什么时不加括号,什么时要加括号.注意代数式括号的适当运用.⑤正确进行代换.列代数式时,有时需将题中的字母代入公式,这就要求正确进行代换.3.单项式(1)单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.用字母表示的数,同一个字母在不同的式子中可以有不同的含义,相同的字母在同一个式子中表示相同的含义.(2)单项式的系数、次数单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.在判别单项式的系数时,要注意包括数字前面的符号,而形如a或-a这样的式子的系数是1或-1,不能误以为没有系数,一个单项式的次数是几,通常称这个单项式为几次单项式.4.多项式(1)几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.(2)多项式的组成元素的单项式,即多项式的每一项都是一个单项式,单项式的个数就是多项式的项数,如果一个多项式含有a个单项式,次数是b,那么这个多项式就叫b次a项式.5.整式(1)概念:单项式和多项式统称为整式.他们都有次数,但是多项式没有系数,多项式的每一项是一个单项式,含有字母的项都有系数.(2)规律方法总结:①对整式概念的认识,凡分母中含有字母的代数式都不属于整式,在整式范围内用“+”或“-”将单项式连起来的就是多项式,不含“+”或“-”的整式绝对不是多项式,而单项式注重一个“积”字.②对于“数”或“形”的排列规律问题,用先从开始的几个简单特例入手,对比、分析其中保持不变的部分及发展变化的部分,以及变化的规律,尤其变化时与序数几的关系,归纳出一般性的结论.6.数字的变化规律探究题是近几年中考命题的亮点,尤其是与数列有关的命题更是层出不穷,形式多样,它要求在已有知识的基础上去探究,观察思考发现规律.(1)探寻数列规律:认真观察、仔细思考,善用联想是解决这类问题的方法,通常将数字与序号建立数量关系或者与前后数字进行简单运算,从而得出通项公式.(2)利用方程解决问题.当问题中有多个未知数时,可先设出其中一个为x ,再利用它们之间的关系,设出其他未知数,然后列方程.【典例剖析】【考点1】用字母表示数【例1】(2021秋•江都区期中)用代数式表示“m 的7倍与n 的差的平方”,正确的是( )A .7m ﹣n 2B .(m ﹣7n )2C .7(m ﹣n )2D .(7m ﹣n )2【分析】表示出m 的7倍为7m ,与n 的差,再减去n 为7m −n ,最后是平方,于是答案可得.【解答】解:用代数式表示“m 的7倍与n 的差的平方”为(7m −n )2,故选:D .【变式1.1】(2022秋•高港区期中)下列式子,符合代数式书写格式的是( )A .a +bB .113a C .a ×8D .b a【分析】根据代数式的书写要求判断各项即可.【解答】解:A .正确,符合题意;B .113a 的正确书写格式是43a ,故错误,不符合题意;C .a ×8的正确书写形式是8a ,故错误,不符合题意;D .ba后面加(a ≠0),符合代数式的书写要求,故本选项正确;故选:A .【变式1.2】(2022秋•梁溪区期中)若n 是整数,则n +1,n +3表示( )A .两个奇数B .两个偶数C .两个整数D .两个正整数【分析】根据代数式、整数的定义解答即可.【解答】解:因为n 是整数,所以n +1,n +3是两个整数,可能是两个奇数,也可能是两个偶数;可能正数,也可能是负数.故选:C.【变式1.3】(2019秋•淮安区期中)代数式a2―1b的正确解释是( )A.a与b的倒数是差的平方B.a与b的差是平方的倒数C.a的平方与b的差的倒数D.a的平方与b的倒数的差【分析】说出代数式的意义,实际上就是把代数式用语言叙述出来.叙述时,要求既要表明运算的顺序,又要说出运算的最终结果.【解答】解:代数式a2―1b的正确解释是a的平方与b的倒数的差.故选:D.【考点2】列代数式【例2】(2020秋•江苏省江阴市期中)如图是一个长为a,宽为b的长方形,两个阴影图形的一组对边都在长方形的边上,其中一个是宽为1的长方形,另一个是一边长为1的平行四边形,则长方形中空白部分的面积等于( )A.ab﹣a﹣b B.ab﹣a﹣b+1C.ab﹣a﹣b﹣1D.ab﹣a+b﹣1【分析】根据图形,可以用含a、b的代数式表示出空白部分的面积.【解析】由图可得,长方形中空白部分的面积等于ab﹣a×1﹣1×(b﹣1)=ab﹣a﹣b+1,即长方形中空白部分的面积等于ab﹣a﹣b+1.故选:B.【变式2.1】(2022秋•扬州期中)为落实“双减”政策,某校利用课后服务时间开展读书活动.现需要购买甲、乙两种读本共100本供学生阅读,其中甲种读本的单价为10元/本,乙种读本的单价为8元/本,设购买甲种读本x本,则购买乙种读本的费用为( )A.8(100﹣x)元B.8x元C.10(100﹣x)元D.8(100﹣10x)元【分析】直接利用乙的单价×乙的本数=乙的费用,进而得出答案.【解答】解:设购买甲种读本x本,则购买乙种读本的费用为:8(100﹣x)元.故选:A.【变式2.2】(2022秋•梁溪区校级期中)如图为甲、乙、丙三根笔直的钢管平行摆放在地面上的情形.已知乙有一部分只与甲重叠,其余部分只与丙重叠,甲没有与乙重叠的部分的长度为3m,丙没有与乙重叠的部分的长度为4m.若乙的长度最长且甲、乙的长度相差xm,乙、丙的长度相差ym,则乙的长度为(用含有x、y的代数式表示)( )A.(x﹣y+7)m B.(x+y+7)m C.(2x+y﹣7)m D.(x+2y﹣7)m 【分析】设乙的长度为am,则甲的长度为:(a﹣x)m;丙的长度为:(a﹣y)m,甲与乙重叠的部分长度为:(a﹣x﹣3)m;乙与丙重叠的部分长度为:(a﹣y﹣4)m,由图可知:甲与乙重叠的部分长度+乙与丙重叠的部分长度=乙的长度,列出方程(a﹣x﹣3)+(a﹣y﹣4)=a,即可解答.【解答】解:设乙的长度为am,∵乙的长度最长且甲、乙的长度相差xm,乙、丙的长度相差ym,∴甲的长度为:(a﹣x)m;丙的长度为:(a﹣y)m,∴甲与乙重叠的部分长度为:(a﹣x﹣3)m;乙与丙重叠的部分长度为:(a﹣y﹣4)m,由图可知:甲与乙重叠的部分长度+乙与丙重叠的部分长度=乙的长度,∴(a﹣x﹣3)+(a﹣y﹣4)=a,a﹣x﹣3+a﹣y﹣4=a,a+a﹣a=x+y+3+4,a=x+y+7,∴乙的长度为:(x+y+7)m.故选:B.【变式2.3】(2022秋•玄武区期中)某船在相距skm的A、B两个码头之间航行,若该船在静水中的速度是50km/h,水流速度是akm/h,则该船从A到B顺水行驶的时间比从B到A逆水行驶的时间少( )A.(s50a―s50a)h B.(2s50a―2s50a)hC.(s50a ―s50a)h D.(2s50a―2s50a)h【分析】根据路程÷速度分别求出该船从B到A逆水行驶的时间和从A到B顺水行驶的时间,再相减即可求解.【解答】解:依题意有:该船从B到A逆水行驶的时间为s50ah,从A到B顺水行驶的时间为s50ah,则该船从A到B顺水行驶的时间比从B到A逆水行驶的时间少(s50a―s50a)h.故选:C .【考点3】单项式的有关概念【例3】(2021秋•苏州期中)若单项式﹣的系数是m ,次数是n ,则m +n 等于( )A .B .C .D .【分析】根据单项式的次数与系数的定义解决此题.【解答】解:由题意得:m =,n =3.∴m +n ==.故选:C .【变式3.1】(2022秋•宜兴市期中)在代数式1x,2x +y ,13a 2b ,x y π,0.5,a 中,单项式的个数是( )A .2个B .3个C .4个D .5个【分析】根据单项式的定义,数与字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式进行判断.【解答】解:单项式有13a 2b ,0.5,a ,共三个,故选:B .【变式3.2】(2022秋•海安市期中)下列四个单项式的系数、次数,正确的是( )A .πa 2b 系数为1,次数为3B .―15xy 系数为15,次数为3C .xy2系数为1,次数为2D .﹣5xy 2系数为﹣5,次数为3【分析】根据单项式的系数和次数的概念判断即可.【解答】解:A 、πa 2b 系数为π,次数为3,故本选项说法错误,不符合题意;B 、―15xy 系数为―15,次数为2,故本选项说法错误,不符合题意;C 、xy 2的系数为12,次数为2,故本选项说法错误,不符合题意;D 、﹣5xy 2系数为﹣5,次数为3,本选项说法正确,符合题意;故选:D .【变式3.3】(2022秋•宜兴市期中)如果单项式2a n b 2c 是六次单项式,那么n 的值取( )A .6B .5C .4D .3【分析】直接利用单项式的次数确定方法得出n 的值即可.【解答】解:∵单项式2a n b 2c 是六次单项式,∴n +2+1=6,解得:n =3,故n 的值取3.故选:D .【考点4】多项式的有关概念【例4】(2020秋•江苏省宝应县期中)下列说法中正确的个数是( )(1)a 和0都是单项式;(2)多项式﹣3a 2b +7a 2b 2﹣2ab +1是三次四项式;(3)单项式―xy 29的系数为﹣9;(4)多项式x 2+2xy ﹣y 2的项为x 2、2xy 、﹣y 2.A .1个B .2个C .3个D .4个【分析】根据单项式和多项式的相关定义解答即可.【解析】(1)a 和0都是单项式,原说法正确;(2)多项式﹣3a 2b +7a 2b 2﹣2ab +1是四次四项式,原说法错误;(3)单项式―xy 29的系数为―19,原说法错误;(4)多项式x 2+2xy ﹣y 2的项为x 2、2xy 、﹣y 2,原说法正确.说法中正确的个数是2个,故选:B .故选:C .【变式4.1】(2022秋•通州区期中)一次项系数为3的多项式可以是( )A .a 2+3B .3a 2+2a ﹣1C .13a 2+2a +3D .2a 2+3a【分析】先找出多项式的一次项,再找出项的系数即可.【解答】解:A .一次项系数为0,选项错误,不符合题意;B .一次项系数为2,选项错误,不符合题意;C .一次项系数为2,选项错误,不符合题意;D .一次项系数是3,选项正确,符合题意;故选:D .【变式4.2】(2022秋•高港区期中)下列说法正确的是( )A .多项式a 3+b ﹣1有3项,其中有一项是1B .单项式12πmn 3的次数是5次C .单项式12πmn 3的系数是12D .多项式―12x ﹣x 2y +2π是3次3项式【分析】根据单项式与多项式的定义解答即可.【解答】解:A 、多项式a 3+b ﹣1有3项,其中有一项是﹣1,不合题意;B 、单项式12πmn 3的次数是4次,不合题意;C 、单项式12πmn 3的系数是12π,不合题意;D 、多项式―12x ﹣x 2y +2π是3次3项式,符合题意.故选:D .【变式4.3】(2022秋•东海县期中)关于整式3x 2﹣y +3xy 3+x 3﹣1,理解错误的是( )A .它属于多项式B .它是三次五项式C .它的常数项是﹣1D .它的最高次项的系数是3【分析】先根据多项式的有关定义进行判断,不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数,如果一个多项式含有a 个单项式,次数是b ,那么这个多项式就叫b 次a 项式.【解答】解:∵3x 2﹣y +3xy 3+x 3﹣1的最高次项是3xy 3,次数为4,常数项为﹣1,它的最高次项的系数是3,∴它是四次五项式,∴A 不符合题意;B 符合题意;C 不符合题意;D 不符合题意;故选:B .【考点5】同类项【例5】(2020秋•江苏省阜宁县期中)如果单项式2x m y 2与12y n +4x 5是同类项,那么n m 等于( )A .﹣32B .﹣1C .2D .32【分析】根据同类项的定义即可求出答案.【解析】由题意可知:m =5,2=n +4,∴m =5,n =﹣2,∴原式=(﹣2)5=﹣32,故选:A.【变式5.1】(2022秋•盐都区期中)若单项式﹣3x m y2与7xy n是同类项,则m+n的值是( )A.2B.3C.4D.5【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,由此求出m,n的值,即可解答.【解答】解:∵﹣3x m y2与7xy n是同类项,∴m=1,n=2,∴m+n=3,故选:B.【变式5.2】(2022秋•启东市期中)若5a3b n与―52a m b2是同类项,则mn的值为( )A.3B.4C.5D.6【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出m、n的值,代入即可得出答案.【解答】解:∵5a3b n与―52a m b2是同类项,∴m=3,n=2,∴mn=3×2=6.故选:D.【变式5.3】(2021秋•泗阳县期末)下列两个项是同类项的是( )A.ab2与a2b B.4a与﹣24C.2a2bc与2ab2c D.﹣4xy与2yx【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关.【解答】解:A.所含相同字母的指数不相同,故A不符合题意;B.所含字母不相同,故B不符合题意;C.所含相同字母的指数不尽相同,故C不符合题意;D.所含字母相同且相同字母的指数也相同,故D符合题意;故选:D.【考点6】合并同类项【例6】(2019秋•江苏省江阴市期中)已知关于x、y的单项式2ax m y与3bx2m﹣3y的和是单项式.(1)求(8m﹣25)2020(2)已知其和(关于x、y的单项式)的系数为2,求(2a+3b﹣3)2019的值.【分析】(1)根据合并同类项和同类项的定义得到m=2m﹣3,然后求出m后再利用乘方的意义计算代数式的值;(2)利用合并同类项得到2a+3b=2,然后利用整体代入的方法和乘方的意义计算代数式的值.【解析】(1)∵关于x、y的单项式2ax m y与3bx2m﹣3y的和是单项式;∴m=2m﹣3,解得m=3,∴原式=(8×3﹣25)2020=1;(2)根据题意得2a+3b=2,所以原式=(2﹣3)2019=﹣1.【变式6.1】(2022秋•睢宁县期中)已知x a+3y3+(―13xy3)=23xy3,则a的值是( )A.﹣3B.﹣4C.0D.﹣2【分析】根据同类项的定义解答即可.【解答】解:由题意可得:x a+3y3与―13xy3是同类项,∴a+3=1,∴a=﹣2,故选:D.【变式6.2】(2022秋•建湖县期中)代数式5a3﹣4a3b+3a2b+2a2+4a3b﹣3a2b﹣7a3的值( )A.与字母a,b都有关B.只与a有关C.只与b有关D.与字母a,b都无关【分析】先找同类项,再根据合并同类项法则进行合并,然后得出答案即可.【解答】解:5a3﹣4a3b+3a2b+2a2+4a3b﹣3a2b﹣7a3=5a3﹣7a3﹣4a3b+4a3b+3a2b﹣3a2b+2a2=﹣2a3+2a2,则代数式5a3﹣4a3b+3a2b+2a2+4a3b﹣3a2b﹣7a3的值只与a有关;故选:B.【变式6.3】(2021秋•射阳县校级期末)若3x m+5y2与23x8y n+4的差是一个单项式,则代数式n m的值为( )A.﹣8B.6C.﹣6D.8【分析】根据同类项的定义,所含字母相同,相同字母的指数也相同,求出m,n的值,然后代入式子中进行计算即可解答.【解答】解:由题意得:m+5=8,n+4=2,∴m=3,n=﹣2,∴n m=(﹣2)3=﹣8,故选:A.【考点7】去括号【例7】(2020秋•江苏省清江浦区期中)计算:(1)﹣5a+b+(6a﹣9b);(2)﹣5(3m+4n)+8(3m+4n).【分析】(1)先去括号,然后合并同类项即可解答本题;(2)先去括号,然后合并同类项即可解答本题.【解析】(1)﹣5a+b+(6a﹣9b)=﹣5a+b+6a﹣9b=a﹣8b;(2)﹣5(3m+4n)+8(3m+4n)=﹣15m﹣20n+24m+32n=9m+12n.【变式7.1】(2022秋•玄武区期中)下列去括号正确的是( )A.a2﹣(2a﹣b2)=a2﹣2a﹣b2B.﹣(2x+y)﹣(﹣x2+y2)=﹣2x+y+x2﹣y2C.2x2﹣3(x﹣5)=2x2﹣3x+5D.﹣a﹣(﹣4a2+1﹣3a)=4a2﹣1+2a【分析】根据去括号法则逐个判断即可.【解答】解:A.a2﹣(2a﹣b2)=a2﹣2a+b2,故本选项不符合题意;B.﹣(2x+y)﹣(﹣x2+y2)=﹣2x﹣y+x2﹣y2,故本选项不符合题意;C.2x2﹣3(x﹣5)=2x2﹣3x+15,故本选项不符合题意;D.﹣a﹣(﹣4a2+1﹣3a)=﹣a+4a2﹣1+3a=4a2+2a﹣1,故本选项符合题意;故选:D.【变式7.2】(2022秋•江都区期中)若1﹣x=2,则﹣[﹣(﹣x)]= 1 .【分析】先求出x的值,再去括号,把x的值代入求解即可.【解答】解:∵1﹣x=2,∴x=﹣1,∴原式=﹣[x]=﹣x=1.故答案为:1.【变式7.3】(2016秋•泗洪县校级期中)﹣2x+3x2﹣5=﹣ (2x﹣3x2+5) ;5x2﹣2(3y2﹣3)= 5x2﹣6y2+6 .【分析】添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.【解答】解:﹣2x+3x2﹣5=﹣(2x﹣3x2+5);5x2﹣2(3y2﹣3)=5x2﹣6y2+6.故答案为:(2x﹣3x2+5),5x2﹣6y2+6.【考点8】代数式求值问题【例8】(2021秋•姜堰区期中)当x=2时,代数式mx2﹣2x+n的值为2,则当x=﹣2时,这个代数式的值为 .【分析】把x=2代入代数式得到4m+n=6,然后整体代入求值即可得出答案.【解答】解:当x=2时,mx2﹣2x+n=4m﹣4+n=2,∴4m+n=6,当x=﹣2时,mx2﹣2x+n=4m+4+n=6+4=10,故答案为:10.【变式8.1】(2022秋•盐城期中)多项式x2+x的值为4,则多项式2x2+2x﹣5的值为 3 .【分析】根据x2+x的值是4,然后应用整体代入法即可求出2x2+2x﹣3的值.【解答】解:∵x2+x=4,∴2x2+2x﹣3=2(x2+x)﹣3=2×4﹣5=3,故答案为:3.【变式8.2】(2022秋•盐都区期中)若代数式a2﹣3b的值为11,则代数式2a2+3﹣6b的值为 25 .【分析】根据代数式a2﹣3b的值为11,可得2a2﹣6b的值,进一步计算即可.【解答】解:∵代数式a2﹣3b的值为11,∴2a2﹣6b=2(a2﹣3b)=2×11=22,∴2a2+3﹣6b=22+3=25,故答案为:25.【变式8.3】(2022秋•睢宁县期中)如图所示是计算机程序计算,若开始输入x=﹣3,则最后输出的结果是 ﹣9 .【分析】利用程序图中的程序进行运算即可.【解答】解:开始输入x=﹣3,∵(﹣3)2﹣10=9﹣10=﹣1>﹣2,∴重新输入x=﹣1,∵(﹣1)2﹣10=1﹣10=﹣9<﹣2,∴最后输出的结果是﹣9.故答案为:﹣9.【考点9】整式的加减【例9】(2021秋•丹阳市期中)化简:(1)5x+y﹣x+2y;(2)4(5a2﹣a)﹣(a﹣2a2);(3)2(3x2﹣y2)﹣3(y2﹣2x2);(4)﹣2(﹣3xy+2z)+5(﹣2xy﹣5z)+4z.【分析】(1)直接合并同类项即可;(2)先去括号,再合并同类项即可;(3)先去括号,再合并同类项即可;(4)先去括号,再合并同类项即可.【解答】解:(1)原式=(5﹣1)x+(1+2)y =4x+3y;(2)原式=20a2﹣4a﹣a+2a2=22a2﹣5a;(3)原式=6x2﹣2y2﹣3y2+6x2=12x2﹣5y2;(4)原式=6xy﹣4z﹣10xy﹣25z+4z=﹣4xy﹣25z.【变式9.1】(2022秋•宝应县期中)化简:(1)6a﹣7b﹣5a+3b;(2)2(a2+3b3)―13(9a2﹣12b3).【分析】(1)利用合并同类项的法则进行运算即可;(2)先去括号,再合并同类项即可.【解答】解:(1)6a﹣7b﹣5a+3b =(6a﹣5a)+(﹣7b+3b)=a﹣4b;(2)2(a2+3b3)―13(9a2﹣12b3)=2a2+6b3﹣3a2+4b3=﹣a2+10b3.【变式9.2】(2022秋•丹徒区期中)化简:(1)x﹣y2+x﹣y2;(2)3(m2﹣2m﹣1)﹣(2m2﹣3m)+2.【分析】(1)合并同类项即可求解;(2)先去括号,然后合并同类项.【解答】解:(1)x﹣y2+x﹣y2=2x﹣2y2;(2)3(m2﹣2m﹣1)﹣(2m2﹣3m)+2=3m2﹣6m﹣3﹣2m2+3m+2=m2﹣3m﹣1.【变式9.3】(2022秋•盐都区期中)已知代数式M、N满足:M=2a2﹣3b+6,N=a2﹣2b+4.(1)计算:M﹣2N;(用含a,b的代数式表示)(2)对于M﹣2N的值,下列结论:①比﹣2大;②比﹣2小;③比b大;④比b 小.其中正确的结论是 ④ .(填序号)【分析】(1)根据整式的加减运算法则即可求出答案.(2)根据M﹣2N的化简式即可判断是否比﹣2大或比b大.【解答】解:(1)M﹣2N=(2a2﹣3b+6)﹣2(a2﹣2b+4)=2a2﹣3b+6﹣2a2+4b﹣8=b﹣2.(2)由于M﹣2N=b﹣2<b,故答案为:④.【考点10】整式的化简求值【例10】(2020秋•江苏省东台市期中)已知A=2x2+xy+3y,B=x2﹣xy.若(x+2)2+|y﹣3|=0;(1)求x,y的值.(2)求A﹣2B的值,【分析】(1)直接利用非负数的性质得出x,y的值;(2)直接合并同类项进而把(1)中所求代入求出答案.【解析】(1)∵(x+2)2+|y﹣3|=0,∴x+2=0,y﹣3=0,∴解得:x=﹣2,y=3;(2)A﹣2B=2x2+xy+3y﹣2(x2﹣xy)=2x2+xy+3y﹣2x2+2xy=3xy+3y,当x=﹣2,y=3时,原式=3xy+3y=3×(﹣2)×3+3×3=﹣9.【变式10.1】(2022秋•宝应县期中)先化简.再求值;5(3a2b﹣ab2﹣1)﹣(ab2+3a2b﹣5),其中a=12,b=―13.【分析】先将原式化简,然后将a与b的值代入原式即可求出答案.【解答】解:原式=15a2b﹣5ab2﹣5﹣ab2﹣3a2b+5=12a2b﹣6ab2,当a=12,b=―13时,原式=12×14×(―13)―6×14×19=﹣1―1 6=―7 6.【变式10.2】(2022秋•高港区期中)已知单项式4x a+1与﹣2x2y3b﹣1是同类项.(1)填空:a= 1 ,b= 13 ;(2)先化简,在(1)的条件下再求值:(5a2﹣3ab)﹣6(a2―13 ab).【分析】(1)根据同类项的概念可得a+1=2,3b﹣1=0,求出a、b的值即可;(2)先去括号合并同类项化简整式,然后代入a和b的值求值即可.【解答】解:(1)由题意,得a+1=2,3b﹣1=0,解得a=1,b=1 3.故答案为:1,1 3;(2)(5a2﹣3ab)﹣6(a2―13 ab)=5a2﹣3ab﹣6a2+2ab =﹣a2﹣ab,当a=1,b=13时,原式=﹣a2﹣ab=﹣1﹣1×13=―43.【变式10.3】(2022秋•丹徒区期中)已知:A=x2+2x﹣1,B=3x2﹣2ax+1.(1)当x=1,a=﹣3时,求B的值;(2)用含a,x的代数式表示3A﹣B;(3)若3A﹣B的值与x无关,求a的值.【分析】(1)直接把x=1,a=﹣3代入B,求值即可;(2)先把A、B表示的代数式代入,然后去括号,合并同类项;(3)根据代数式的值与x无关,得到关于a的方程,求解即可.【解答】解:(1)当x=1,a=﹣3时,B=3×12﹣2×(﹣3)×1+1=3+6+1=10;(2)3A﹣B=3(x2+2x﹣1)﹣(3x2﹣2ax+1)=3x2+6x﹣3﹣3x2+2ax﹣1=6x+2ax﹣4;(3)∵3A﹣B的值与x无关,∴6x+2ax=0∴6+2a=0.∴a=﹣3.。

【精选】代数式(基础篇)(Word版 含解析)

【精选】代数式(基础篇)(Word版 含解析)

一、初一数学代数式解答题压轴题精选(难)1.如图所示,在边长为a米的正方形草坪上修建两条宽为b米的道路.(1)为了求得剩余草坪的面积,小明同学想出了两种办法,结果分别如下:方法①:________ 方法②:________请你从小明的两种求面积的方法中,直接写出含有字母a,b代数式的等式是:________(2)根据(1)中的等式,解决如下问题:①已知:,求的值;②己知:,求的值.【答案】(1)(a-b)2;a2-2ab+b2;(a-b)2=a2-2ab+b2(2)解:①把代入∴,∴②原式可化为:∴∴∴【解析】【解答】解:(1)方法①:草坪的面积=(a-b)(a-b)= .方法②:草坪的面积= ;等式为:故答案为:,;【分析】(1)方法①是根据已知条件先表示出矩形的长和宽,再根据矩形的面积公式即可得出答案;方法②是正方形的面积减去两条道路的面积,即可得出剩余草坪的面积;根据(1)得出的结论可得出;(2)①分别把的值和的值代入(1)中等式,即可得到答案;②根据题意,把(x-2018)和(x-2020)变成(x-2019)的形式,然后计算完全平方公式,展开后即可得到答案.2.双11购物节期间,某运动户外专营店推出满500送50元券,满800送100元券活动,先领券,再购物。

某校准备到此专营店购买羽毛球拍和羽毛球若干.已知羽毛球拍60元1个,羽毛球3元一个,买一个羽毛球拍送3个羽毛球.(1)如果要购买羽毛球拍8个,羽毛球50个,要付多少钱?(2)如果购买羽毛球拍x个(不超过16个),羽毛球50个,要付多少钱?用含x的代数式表示.(3)该校买了羽毛球50个若干个羽毛球拍,共花费712元,请问他们买了几个羽毛球拍.【答案】(1)解:60×8+(50-8×3)×3-50=508(元)(2)解:x≤6时,60x+(50-3x)×3=150+51x; 7≤x≤12时,60x+(50-3x)×3-50=100+51x; 13≤x≤16时,60x+(50-3x)×3-100=50+51x(3)解:设共买了x个羽毛球拍,根据题意得,60x+(50-3x)×3-50=712,解得,x=12. 答:共买了12个羽毛球拍.【解析】【分析】(1)根据题意直接列式计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2 代数式【考纲说明】1、理解字母表示数的意义及用代数式表示规律。

2、用代数式表示实际问题中的数量关系,求代数式的值。

【知识梳理】1、代数式:指含有字母的数学表达式。

2、一个代数式由数、表示数的字母、运算符号组成。

单个字母或数字也是代数式。

3、代数式的值:一般地,用数值代替代数式里的字母,计算后所得的结果叫做代数式的值。

4、用字母表示数的规范格式:(1)、数和表示数的字母相乘,或字母和字母相乘时,乘号可以省略不写,或用“.”来代替。

(2)、当数和字母相乘,省略乘号时,要把数字写到前面,字母写后面。

如:100a或100•a,na或n•a。

(3)、后面接单位的相加式子要用括号括起来。

如:( 5s )时(4)、除法运算写成分数形式。

(5)、带分数与字母相乘时,带分数要写成假分数的形式。

5、列代数式时要注意:(1)语言叙述中关键词的意义,如“大”“小”“增加”“减少”。

“倍”“几分之几”等词语与代数式中的运算符号之间的关系。

(2)要理清运算顺序和正确使用括号,以防出现颠倒等错误,例如“积的和”与“和的积”“平方差”“差的平方”等等。

(3)在同一问题中,不同的数量必须用不同的字母表示。

【经典例题】【例1】(2012重庆,9,4分)下列图形都是由同样大小的五角星按一定的规律组成。

其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中的五角星的个数为( )【解析】仔细观察图形的特点,它们都是轴对称图形,每一行的个数都是偶数,分别是2,4,6,…,6,4,2,故第⑥个图形中五角星的个数为2+4+6+8+10+12+10+8+6+4+2=72。

答案:D【例2】(2011甘肃兰州,20,4分)如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去,已知第一个矩形的面积为1,则第n 个矩形的面积为 .【解析】由中点四边形的性质可知,每次所得新中点四边形的面积是前一个图形的12,故后一个矩形的面积是前一个矩形的14,所以第n 个矩形的面积是第一个矩形面积的1221142n n --⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,已知第一个矩形面积为1,则第n 个矩形的面积为2212n -⎛⎫⎪⎝⎭。

【例3】按一定规律排列的一列数依次为111111,,,,,,2310152635…,按此规律,第7个数是 。

【解析】先观察分子:都是1;再观察分母:2,3,10,15,26,…与一些平方数1,4,9,16,…都差1,2=12+1,3=22-1,10=32+1,15=42-1,26=52+1,…,这样第7个数为2117150=+。

答案:150【例4】已知:114a b -=,则2227a ab ba b ab---+的值为( ) A .6 B .--6 C .215- D .27-【解析】由已知114a b -=,得4b aab-=,∴4,4,2()242 6.2272()787b a ab a b ab a ab b a b ab ab ab a b ab a b ab ab ab∴-=-=-------∴===-+-+-+答案:A 【课堂练习】1、(2012湖北武汉,9,3分)一列数a1,a2,a3,…,其中a1=111,21n n a a -=+(n 为不小于2的整数),则4a =( ) A .58 B.85 C.138 D.8132、(2012四川宜宾,5,3分)将代数式2262)x x x p q ++++化成(的形式为( )3、(2012安徽5,4分)某企业今年3月份产值为a 万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( )4、(2012浙江丽水,10,3分)小明用棋子摆放图形来研究数的规律。

图1中棋子围成三角形,其颗数为3,6,9,12,…称为三角形数,类似的,图2中的4,8,12,16…称为正方形数。

下列数中既是三角形数也是正方形数的是( )A .2010 B. 2012 C. 2014 D. 20165、(2012四川成都,21,4分)已知当x=1时,22232ax bx x ax bx +=+的值为,则当时,的值为 。

6、(2012河北,17,3分)某数学活动小组的20位同学站成一列做报数游戏,规则是:从前面第一位同学开始,每位同学依次报自己顺序数的倒数加1,第1位同学报111⎛⎫+ ⎪⎝⎭,1212⎛⎫+ ⎪⎝⎭第位同学报,113⎛⎫+ ⎪⎝⎭第3位同学报…这样得到的20个数的积为 。

7、(2012辽宁沈阳,15,4分)有一组多项式:2243648,,,a b a b a b a b +-→+-,…,请观察它们的构成规律,用你发现的规律写出第10个多项式为 。

8、(2012山西,16,3分)如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n 个图案中阴影小三角形的个数是 (用含n 的代数式表示)。

9、(2012河北,18,3分)用4个全等的正八边形进行拼接,使相邻的两个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图①,用n 个全等的正六边形按这种方式拼接,如图②,若围成一圈后中间也形成一个正多边形,则n 的值为 。

10、(2012山东潍坊,17,3分)图中每一个小方格的面积为1,则可根据面积计算得到如下算式:1+3+5+7+…+(2n-1)= 。

(用n 表示,n 是正整数)11、(2012浙江宁波,20,6分)用同样大小的黑色棋子按如图所示的规律摆放:(1)、第5个图形有多少颗黑色棋子?(2)、第几个图形有2013颗黑色棋子?请说明理由。

12、(2012湖南益阳,19,10分)观察图形,解答问题:(1)按下表已填写的形式填写表中的空格:(2)请用你发现的规律求出图④中的数y 和图⑤中的数x 。

【课后作业】一、选择题1. (2007,白银)从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为( ) A .222()a b a b -=- B .222()2a b a ab b +=++ C .222()2a b a ab b -=-+ D .22()()a b a b a b -=+-2. (2008,重庆)某商场2006年的销售利润为a ,预计以后每年比上一年增长b %,那么2008年该商场的销售利润将是( )A . ()21a b +B . ()21%a b +C . ()2%a a b + D .2a ab +3. 如图,阴影部分的面积是( )A .112xyB .132xyC .6xyD .3xy4.(2007,襄阳)某商品原价为a 元,因需求量大,经营者连续两次提价,每次提价10%,后因市场物价调整,又一次降价20%,降价后这种商品的价格是( ) A .1.08a 元 B .0.88a 元 C .0.968a 元 D .a 元甲乙5.(2007,郴州)目前,财政部将证券交易印花税税率由原来的1‰(千分之一)提高到3‰.如果税率提高后的某一天的交易额为a 亿元,则该天的证券交易印花税(交易印花税=印花税率×交易额)比按原税率计算增加了( )亿元A .a ‰B . 2a ‰C . 3a ‰D .4a ‰6. 为了吸收国民的银行存款,今年中国人民银行对一年期银行存款利率进行了两次调整,由原来的2.52%提高到3.06%.现李爷爷存入银行a 万元钱,一年后,将多得利息( )万元.A .0.44a %B .0.54a %C .0.54aD .0.54%7.(2008,荆门)用四个全等的矩形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是144,小正方形的面积是4,若用x ,y 表示矩形的长和宽(x >y ),则下列关系式中不正确的是( ) A .x +y =12 B .x -y =2 C .xy =35 D .x 2+y 2=1448. 用代数式表示“a 的3倍与b 的差的平方”,正确的是( )A .2(3)a b - B .23()a b - C .23a b - D .2(3)a b - 9.(2009,乐门)在中央电视台2套“开心辞典”节目中,有一期的某道题目是:如图所示,天平中放有苹果、香蕉、砝码,且两个天平都平衡,则一个苹果的重量是一个香蕉的重量的( ) A .43倍 B .32倍 C .2倍 D .3倍10. (2009,太原)已知一个多项式与239x x +的和等于2341x x +-,则这个多项式是( )A .51x --B .51x +C .131x --D .131x + 11. 如果ab <0,那么下列判断正确的是( ).A .a <0,b <0B . a >0,b >0C . a ≥0,b ≤0D . a <0,b >0或a >0,b <0二、填空题12. 一盒铅笔12支,n 盒铅笔共有 支.yx13.(2002,株洲)针对药品市场价格不规范的现象,药监部门对部分药品的价格进行了调整.已知某药品原价为a 元,经过调整后,药价降低了60%,则该药品调整后的价格为_______________元.14. (2007,鄂尔多斯)在边长为a 的正方形纸片中剪去一个边长为b 的小正方形()a b >(如图(1)),把余下的部分沿虚线剪开,拼成一个矩形(如图(2)),分别计算这两个图形阴影部分的面积,可以验证的乘法公式是 (用字母表示).15.(2007,米,,第二次用去了余下的12,则剩余部分的长度为米.(结果要化简)16.(2007,云南) 一台电视机的原价为a 元,降价4%后的价格为_________________元.17.(2007,湖州)利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:222()2a b a ab b +=++.你根据图乙能得到的数学公式是 .18.(2008,青海)对单项式“5x ”,我们可以这样解释:香蕉每千克5元,某人买了x 千克,共付款5x 元.请你对“5x ”再给出另一个实际生活方面的合理解释: .19.(2009,广安)为了增加游人观赏花园风景的路程, 将平行四边形 花园中形如图1的恒宽为a 米的直路改为形如图2恒宽为a 米的曲路, 道路改造前后各余下的面积(即图中阴影部分面积)分别记为S 1和S 2,则S 1________S 2(填“>”“=”或“<”).20.(2009,海南)“a 的2倍与1的和”用代数式表示是 .21.(2009,宁德)张老师带领x 名学生到某动物园参观,已知成人票每张10元,学生票每张5元,设门票的总费用为y 元,则y = . 22.(2012湖南)用代数式表示“a 与b 的和”,式子为 .23.(2011,衡阳) 如图是一组有规律的图案,第1个 图案由4个基础图形组成,第2个图(1) 图(2)甲乙图1 图2图案由7个基础图形组成,……,第n (n 是正整数)个图案中由 个基础图形组成.24.(2009,上海)某商品的原价为100元,如果经过两次降价,且每次降价的百分率都是m ,那么该商品现在的价格是 元(结果用含m 的代数式表示). 25.(2009,云南)一筐苹果总重x 千克,筐本身重2千克,若将苹果平均分成5份,则每份重__________千克.26. (2010,长春)为了帮助玉树地区重建家园,某班全体师生积极捐款,捐款金额共3200元,其中5名教师人均捐款a 元,则该班学生共捐款 元(用含有a 的代数式表示).27. (2012,海南)某工厂计划a 天生产60件产品,则平均每天生产该产品__________件. 28. (2010,嘉兴)用代数式表示“a 、b 两数的平方和”,结果为 . 29. (2010,湖南)如果用s 表示路程(单位:千米),t 表示时间(单位:小时),v 表示速度(单位:千米/时),那么t = 小时 (用s 和v 表示).30. (2010,咸宁)惠民新村分给小慧家一套价格为12万元的住房.按要求,需首期(第一年)付房款3万元,从第二年起,每年应付房款0.5万元与上一年剩余房款的利息的和.假设剩余房款年利率为0.4%,小慧列表推算如下:若第n 年小慧家仍需还款,则第n 年应还款 万元(n >1).(1)(2)(3)……【参考答案】【课堂练习】1、A2、B3、B4、D5、66、217、1020a b - 8、4n-2或2+4(n-1) 9、610、n 211、(1)第5个图形有18颗黑色棋子。

相关文档
最新文档