(1)ASTM D2216-98 试验室测定土和岩石含水量标准试验方法
岩石力学实验-煤和岩石含水率测定实验
实验二、岩石含水率的测定
一、实验目的
煤或岩石含水率是指煤或岩石在天然状态下所含水分的质量与其烘干后的质量之比。
通过本实验,要了解煤(岩石)含水率测试程序及测试仪器设备,掌握煤(岩石)含水率测试过程及计算方法。
二、实验仪器及工具
1、岩石试件
2、烘箱
3、干燥器
4、天平
三、实验原理
实验的含水率应按照下式计算:
−1)×100%
ω=(M1
M2
式中
ω—煤或岩石的自然吸水率;
M1—保持天然水分的试件质量,g;
M2—烘干的试件质量,g。
四、实验步骤
1、取保持天然含水状态,尺寸大于组成岩石最大矿物颗粒直径的10倍,且质量不少于50g的三个试件,立即称重得M1;
2、将不含结晶水的试样放在105~110o C的烘箱内烘干24h,放在干燥器内冷却至室温,称重得M2;
3、将含结晶水的试样放在55~65o C的烘箱内烘干24h,放在干燥器内冷却至室温,称重得M2。
五、实验现象及数据记录
六、实验结果及数据分析
将实验数据带入上述公式得:
−1)×100%
ω=(M1
M2
=0.138%
即所测试件的含水率为0.138%。
七、心得体会
通过本次实验,我不仅学会了如何测定煤和岩石的含水率,也对电热烘箱的使用方法有所了解。
做实验要时刻牢记实验步骤和原理,这样才能降低实验的失误率。
时刻保持专注也是保证实验成功的一个重要因素。
这个实验让我受益匪浅。
击实试验(轻型)
设计编号:D698-00a击实试验(轻型)标准参测试方法本规范是在制定设计编号:D698下出版的,紧随指定设计编号:的数字表明本规范最早被采用的年份,或者最后修正的年份,插入的数字表示最后修正的年份。
上标的字母表明从最近一次修正或评审以来的在编辑上的变化。
1. 范围1.1 该方法适用于确定土的含水量和干容重之间关系(压缩曲线)的实验。
这些试验将土置于直径为4-6 in.(101.6-152.4 mm)的磨具中,并用5.5 lbf(24.4N)的夯锤从12 in.(305mm)高度落下形成12400ft-lbf/ft3(600kN-m/m3)的作用力。
注1-试验设备和过程都比R. R. Proctor(Engineering New Record-1933.9.7)所提出的小,但是在以下方面是例外的:R. R. Proctor提出的夯锤打击方式采用固定长度12 in.(305 mm)的敲击而不是自由落体,因此,由此而产生不同的压缩作用力取决于实验者,但是其作用力范围在15000-25000 ft-lbf/ft3(700-1200kN-m/m3)之间。
标准的作用力测试(见3.2.2)有时是指Proctor实验。
注2-天然产生的粗粒或者细粒土,天然土的合成物或混合物,天然土和人工图的混合物,以及由粘土,砾石和压碎的岩石组成的团聚体都可以被认为是土以及土的团聚体混合物。
1.2 测试方法适用于含有小于等于30%的颗粒不能通过3/4 in.(19.0 mm)筛子的土。
注3-关于含有小于等于30%的颗粒不能通过3/4 in.(19.0 mm)的筛子的土的容重和含水量的关系受到可通过3/4 in.(19.0mm)的筛子的颗粒的容重和含水量的影响,见实践D4718。
1.3 本标准提供了3个可供选择的实验方法。
对于待测的材料,应该按照说明选择实验方法,如果说明没有指定实验方法,则应该根据材料的颗粒级配选择实验方法。
土壤含水量测定方法小结
土壤含水量测定方法小结1.干湿法称重法干湿法称重法是一种比较常用的测定土壤含水量的方法,它是通过比较土壤的湿重和干重来计算土壤含水量的。
具体步骤如下:(1)从待测土壤样品中取一定质量的土壤样本,记录其湿重并置于105℃下干燥至恒重。
(2)计算土壤的含水量,公式为:土壤含水量(%)=(湿重-干重)/湿重×100%。
这种方法简单易行,不需要复杂的仪器设备,但存在一定的误差。
2.速效土壤含水量的测定速效土壤含水量是指土壤中表层土壤(一般为0-30厘米)中的土壤含水量,它对农作物的生长和灌溉决策具有重要意义。
常见的速效土壤含水量测定方法包括压实法、蓄水法和电导率法等。
(1)压实法:将土壤样品放入标准容器中,进行标准重力处理,然后测定容器中土壤和水的质量,从而计算土壤容重。
(2)蓄水法:将土壤样品放入带孔的土壤柱中,通过灌溉一定量的水,测定出流水的数量,从而计算土壤含水量。
(3)电导率法:利用土壤含水量与土壤电导率之间的关系来测定土壤含水量。
通过测定土壤电导率,可以反推出土壤含水量。
3.艾弗姆法艾弗姆法是一种常用的测定土壤含水量的方法,它是利用土壤中的吸力作为土壤含水量的指示器,通过测定土壤中的吸力来计算土壤含水量。
这种方法需要使用土壤水分特性曲线,还需要相关的仪器和设备进行测定。
4.放射性测定法放射性测定法是一种利用放射性同位素测定土壤含水量的方法。
通过测定土壤中放射性同位素的衰减和浓度变化,可以计算出土壤含水量。
这种方法需要专门的设备和保护措施,操作较为复杂。
5.土壤水分传感器法土壤水分传感器法是一种利用土壤水分传感器测定土壤含水量的方法。
这种方法可以实时、连续地监测土壤水分变化,在农田灌溉和土壤水分管理中具有广泛的应用。
根据传感器的不同原理,包括电容法、电阻法、微波法等多种类型。
总结起来,测定土壤含水量的方法有干湿法称重法、速效土壤含水量的测定方法、艾弗姆法、放射性测定法以及土壤水分传感器法等。
不同规范土的含水率试验方法比较与分析
不同规范土的含水率试验方法比较与分析作者:王协群周琪周申培黄珍来源:《中国教育技术装备》2020年第20期摘要土的含水率試验是一项最基本的土的物理性质试验,国内外试验方法较多。
对国外应用较多的美国材料与试验协会(ASTM)标准和我国国标(GB)及两种行业标准(JTG和DL)中关于含水率的试验方法进行对比分析,找出国内外规范以及国内不同行业规范之间的异同,使学生了解不同规范间的差别,并为土木工程从业人员结合实际工程情况选择合适的试验方法提供参考。
关键词土的含水率试验;试验仪器;烘干法;酒精燃烧法;比重法;炒干法;微波炉法中图分类号:G642 文献标识码:B文章编号:1671-489X(2020)20-0117-03Abstract Soil moisture content test is a basic geotechnical test, which has various test methods at home and abroad. The moisture content test methods in the standard of American Society for Testing and Materials (ASTM) which is widely used abroad and the national standard (GB) and two industry standards (JTG and DL) in China areselected to introduce and compare. To find out the similarities anddifferences between domestic and foreign codes and codes of diffe-rent industries, so that university students can understand the diffe-rences between different codes, and provide references for civil engi-neering practitioners to choose appropriate test methods based on actual engineering conditions.Key words soil moisture content testt; drying method; alcohol bur-ning method; specific gravity method; fried dry method; microwave oven method1 前言土的含水率是指土中水的质量与土固体颗粒质量的比值,以百分数表示[1]。
土的含水量试验
土的含水量试验土的含水量试验(烘干法、酒精燃烧法)土的含水量试验(烘干法、酒精燃烧法)烘干法一、定义土的含水量是在105-110℃下烘至恒量时所失去的水分质量和达恒量后干土质量的比值,以百分数表示,本法是测定含水量的标准方法。
二、适用范围粘质土、粉质土、砂类土和有机质土类。
三、主要仪器设备烘箱:可采用电热烘箱或温度能保持105-110℃的其他能源烘箱,也可用红外线烘箱天平:感量0.01g。
称量盒(定期调整为恒质量)四、计算公式含水量=(湿土质量-干土质量)/干土质量×100%注:计算至0.1%。
五、允许差值本试验须进行二次平行测定,取其平均算术平均值,允许平行差值应符合如下规定含水量(%)允许平行差值(%)5以下0.340以下≤140以上≤2酒精燃烧法一、适用范围本法适用于快速简易测定细粒土(含有机质的除外)的含水量。
二、主要仪器设备称量盒(定期调整为恒质量)。
天平:感量0.01g。
酒精:纯度95%。
三、其余同"烘干法"土的颗粒分析试验(筛分法、比重计法)筛分法一、适用范围适用于分析粒径大于0.074mm的土。
二、主要仪器设备标准筛:粗筛(圆孔):孔径为60mm、40mm、20mm、10mm、5mm、2mm;细筛:孔径为2mm、0.5mm、0.25mm、0.074mm。
天平:称量5000g,感量5g;称量1000g,感量1g;称量200g,感量0.2g。
三、试样从风干、松散的土样中,用四分法按照下列规定取出具有代表性的试样:小于2mm颗粒的土100-300g。
最大粒径小于10mm的土300-900g。
最大粒径小于20mm的土1000-2000g。
最大粒径小于40mm的土2000-4000g。
最大粒径大于40mm的土4000g以上。
四、计算公式按下式计算小于某粒径颗粒质量百分数:X=(A/B)×100式中:X-小于某粒径颗粒的质量百分数,%;A-小于某粒径的颗粒质量,g;B-试样的总质量,g。
岩石的含水率试验方法
岩石的含水率试验方法
1. 依据标准:《公路工程岩石试验规程》JTG E41-2005 (T0202-2005 );
2. 试验目的及适用范围:
2.1含水率试验用于测定岩石在天然状态下的含水率。
岩石的含水率可
以间接地反映岩石中空隙的多少、岩石的致密程度等特性。
2.2本试验采用烘干法。
对于不含结晶水矿物的岩石烘干温度为105°C~11C°C;对于含结晶水矿物的岩石温度宜控制在600C~± 50C下进行测定。
3. 试验环境:进入试验室内先检查温湿度仪,并在记录中注明试验时室内的温湿度。
4. 试验准备:
4.1仪器设备
4.2试样制备
4.2.1保持天然含水率的试件应在现场采取,严禁用爆破法或湿钻法。
试件在采
取、运输、储存和制备过程中,含水率变化不应超过过1%。
土的含水量试验(烘干法)检测_secret
土的含水量试验(烘干法)检测1 定义和适用范围1.1 目的:土的含水量是在105~110℃下烘至恒量时所失去的水分质量和达恒量后干土质量的比值,以百分数表示,本法是测定含水量的标准方法。
1.2 本试验方法适用于粘质土、粉质土、砂类土和有机质土类。
2 仪器设备2.1 烘箱:可采用电热烘箱或温度能保持105~110℃的其它能源烘箱,也可用红外线烘箱。
2.2 天平:感量0.01g。
2.3 其它:干燥器、称量盒(为简化计算手续,可将盒质量定期(3~6个月)调整为恒质量值)等。
3 试验步聚3.1 取具有代表性试样,细粒上15~30g,砂类上、有机质土为50g,放入称量盒内,立即盖好盒盖,称质量。
称量时,可在天平一端放上与该称量盒等质量的法码,移动天平游码,平衡后称量结果即为湿土质量。
3.2 揭开盒盖,将试样和盒放入烘箱内,在温度105~110℃恒温下烘干。
烘干时间对细粒上不少于8h,对砂类上不得少于6h。
对含有机质超过5%的土,应将温度控制在65~70℃的恒温下烘干。
3.3 将烘干后的试样和盒取出,放入干燥器内冷却(一般只需0.5h ~1h 即可)。
冷却后盖好盒盖,称质量,准确至0.01g 。
4 计算4.1 按下式计算含水量:100m m -m w ss ⨯= 式中:w ——含水量,%;m ——湿土质量,g ;m s ——干土质量,g ;计算至0.1%。
5 精密度和允许差本试验须进行二次平行测定,取其算术平均值作为测定结果。
允许平行差值如表3.4-1。
含水量测定的允许平行差值 表3.4-16 出报告6.1 报告中应写出土的鉴别分类和代号。
6.2 土的含水量。
7 注意事项7.1 测试前后应仔细检查仪器的安装联结状况,确保仪器处于正常工作状态。
7.2 试验结果若超出允许差范围,则应重新取样,进行试验。
7.3 测试过程中,若发生停电等意外情况,应待有电或意外情况消除后,再进行试验。
7.4 试验过程中,若仪器、设备发生故障或损坏,应待仪器、备修复后,再进行试验。
土工试验含水率测定方法
土工试验含水率测定方法
《土工试验含水率测定方法》
嘿,大家知道不,在土工试验里,含水率的测定那可是相当重要的事儿呢!
我记得有一次在实验室里,我们就进行了一次含水率测定的实验。
那场面,可有意思啦!我们先把从工地取回来的土样小心翼翼地放在托盘上,就好像对待宝贝一样。
然后呢,把它放进烘箱里,那烘箱就像是一个大烤炉,要把土样里的水分都给烤出来。
在等待的过程中,我们一群人就在旁边眼巴巴地看着烘箱,心里都在想着:“哎呀,这土样的水分啥时候才能被烤干呀。
”时间一分一秒地过去,感觉过得好慢好慢哦。
终于,烘箱的时间到啦,我们迫不及待地把土样拿出来。
哇,那土样变得干巴巴的,和之前完全不一样了。
接着,我们就得称一称这干土的重量啦。
拿着天平,那感觉就像是在称金子一样仔细。
称完了干土重,再和之前取土样时的重量一对比,就能算出含水率啦。
你可别小看这个含水率的测定,它能告诉我们很多关于土的性质呢,对工程建设可是有着很大的影响哟!
这就是我亲身经历的土工试验含水率测定的过程,是不是还挺有趣的呀。
每次想到这个实验,我都觉得特别有意思,也更加深刻地体会到了含水率测定的重要性呢!哈哈!。
含水量试验指导书
土工试验指导书上海大学土木系目录一、含水量试验 (1)二、密度试验 (3)三、土粒比重试验 (5)四、界限含水量试验 (8)五、颗粒分析试验 (18)六、砂的相对密度 (22)七、固结综合试验 (26)八、直接剪切试验 (34)九、三轴压缩试验 (37)试验一:含水量试验一、概述土的含水量是指土在温度105~110℃下烘到恒重时所失去的水质量与达到恒重后干土质量的比值,以百分数表示。
含水量是土的基本物理性质指标之一,它反映了土的干、湿状态。
含水量的变化将使土物理力学性质发生一系列的变化,它可使土变成半固态、可塑状态或流动状态,可使土变成稍湿状态、很湿状态或饱和状态,也可造成土在压缩性和稳定性上的差异。
含水量还是计算土的干密度、孔隙比、饱和度、液性指数等不可缺少的依据,也是建筑物地基、路堤、土坝等施工质量控制的重要指标。
二、试验方法及原理含水量试验方法有烘干法、酒精燃烧法、比重法、碳化钙气压法、炒干法等,其中以烘干法为室内试验的标准方法。
(一) 烘干法烘干法是将试样放在温度能保持105~110℃的烘箱中烘至恒重的方法,是室内测定含水量的标准方法。
1. 仪器设备(1) 保持温度为105~110℃的自动控制电热恒温烘箱或沸水烘箱、红外烘箱、微波炉等其他能源烘箱;(2) 称量200g 、最小分度值0.01g 的天平; (3) 装有干燥剂的玻璃干燥缸; (4) 恒质量的铝制称量盒。
2. 操作步骤(1) 从土样中选取具有代表性的试样15~30g(有机质土、砂类土和整体状构造冻土为50g),放入称量盒内,立即盖上盒盖,称盒加湿土质量,准确至0.01g 。
(2) 打开盒盖,将试样和盒一起放入烘箱内,在温度105~110℃下烘至恒量。
试样烘至恒量的时间,对于粘土和粉土宜烘8~10h ,对于砂土宜烘6~8h 。
对于有机质超过干土质量5%的土,应将温度控制在65~70℃的恒温下进行烘干。
(3) 将烘干后的试样和盒从烘箱中取出,盖上盒盖,放入干燥器内冷却至室温。
土壤含水量检测
迪信泰检测平台
土壤含水量检测
土壤含水量一般是指土壤绝对含水量,即100g烘干土中含有的水分,也称土壤含水率。
测定土壤含水量可掌握作物对水的需要情况,对农业生产有很重要的指导意义。
迪信泰检测平台采用生化法,可高效的检测土壤含水量。
此外,我们还提供其他土壤常规八项类检测服务,以满足您的不同需求。
生化法测定土壤含水量样本要求:
1. 请确保样本量大于0.2g或者0.2mL。
周期:2~3周。
项目结束后迪信泰检测平台将会提供详细中英文双语技术报告,报告包括:
1. 实验步骤(中英文)。
2. 相关参数(中英文)。
3. 图片。
4. 原始数据。
5. 土壤含水量信息。
迪信泰检测平台可根据需求定制其他物质测定方案,具体可免费咨询技术支持。
测泥土的含水量实训报告
一、实训目的本次实训旨在通过实际操作,掌握测定土壤含水量的一般方法,了解不同土壤类型的水分状况,分析土壤水分与植物生长的关系,以及土壤水分在农业生产中的重要性。
二、实训时间与地点实训时间:2023年X月X日实训地点:XX农业大学土壤实验室三、实训材料与仪器1. 实验材料:- 土壤样品- 干燥的容器- 烘箱2. 实验仪器:- 电子天平- 烘箱- 滤纸- 烘干器四、实训原理土壤含水量是指土壤中水分的质量占土壤总质量的百分比。
测定土壤含水量通常采用烘干法,即取一定量的土壤样品,放入烘箱中烘干至恒重,然后计算水分含量。
五、实训步骤1. 样品采集:在实验地点随机选取多个点,采集土壤样品,混合均匀后作为实验样品。
2. 样品处理:将采集的土壤样品放入干燥的容器中,避免样品受到污染。
3. 称重:使用电子天平准确称取土壤样品的质量,记录为m1。
4. 烘干:将土壤样品放入烘箱中,设置温度为105℃,烘干至恒重。
烘干过程中,每隔一定时间称重,直至连续两次称重差值小于0.01g。
5. 计算水分含量:根据烘干前后土壤样品的质量差,计算土壤含水量。
土壤含水量(%)=(m1 - m2)/ m1 × 100%其中,m1为烘干前土壤样品的质量,m2为烘干后土壤样品的质量。
六、实训结果与分析1. 实验数据:| 土壤样品编号 | 烘干前质量(g) | 烘干后质量(g) | 水分含量(%) ||--------------|----------------|----------------|--------------|| 1 | 20.0 | 18.0 | 10.0 || 2 | 25.0 | 23.0 | 8.0 || 3 | 30.0 | 28.0 | 6.7 |2. 结果分析:通过实验结果可以看出,不同土壤样品的水分含量存在差异。
这可能与土壤类型、土壤质地、气候条件等因素有关。
一般来说,砂质土壤的水分含量较低,粘质土壤的水分含量较高。
土工试验方法标准
土工试验方法标准土工试验是对土壤进行性质与力学性能测试的一种方法,是工程设计、施工及监测过程中重要的一环。
土工试验方法的标准是指对土工试验进行规范的文件或指南,用于指导试验的具体操作步骤、仪器设备要求、数据处理等方面。
目前,国际上常用的土工试验方法标准主要有以下几类:1. 土壤物理性质试验方法标准:包括土壤颗粒组成、密度、含水量、孔隙比、渗透系数等试验方法。
常用的标准有ASTM D4318《土壤颗粒组成及压实度测定方法》、ASTM D2216《液塑性上下限测定方法》等。
2. 土壤力学性质试验方法标准:包括土壤抗剪强度、压缩性及固结性等试验方法。
常用的标准有ASTM D3080《剪切强度参数的测定方法》、ASTM D2435《一维压缩和固结性能的测定方法》等。
3. 土壤动力性质试验方法标准:用于评估土壤对动荷载的响应性能,包括颗粒滑动研究、剪切波传播速度等试验方法。
常用的标准有ASTM D4254《颗粒滑移角试验方法》、ASTMD4829《剪切波传播速度测定方法》等。
4. 土壤渗透性试验方法标准:用于评估土壤的渗透性能,包括液体渗透试验、气体渗透试验等。
常用的标准有ASTMD5856《土壤渗透系数的测定方法》、ASTM D5913《渗透系数及透水试验方法》等。
5. 土壤抗风蚀性试验方法标准:用于评估土壤的抗风蚀能力,包括风蚀试验、风沙流速测定等。
常用的标准有ASTMD7371《土壤抗风蚀性的测定方法》、ASTM D6455《风速与风沙流速测定方法》等。
综上所述,土工试验方法标准是土工试验的操作规范,确保试验结果准确可靠,对于土工工程的设计和施工具有重要的指导作用。
在进行土工试验时,应根据具体需要选择对应的标准,并严格按照标准要求进行试验操作、数据处理和结果分析,以保证土工试验的可靠性和有效性。
岩土工程试验指导书
土工试验指导书第一章 含水率试验第一节 概述土体含水率()是土的物理性质指标之一。
土体含水率高低与粘性土的强度和压缩具有密切的关系。
土体在各种状态下的含水率是计算其它物理性质指标、测量其它物理状态指标的最基本试验。
第二节 试验原理土样含水率是指土样在105℃至110℃的温度下烘干至恒重时所失去的水分质量与烘干土质量的比值,用百分数表示。
即:%100⨯-=ssm m m ω (1-1) 式中:——土样含水率(%);m ——湿土质量,单位:克(g );——烘干土质量,单位:克(g )。
含水率试验的室内试验方法以烘干法为标准方法。
在野外,如条件不满足可依土的性质和工作条件选用如下试验方法:1. 酒精燃烧法;2. 比重法(适用于砂性土); 3. 实容积法(适用于粘性土); 4. 炒干法(适用于砾质土)。
含水率试验的上述方法在水中还会发生水解适用于无机土(有机质含量低于5%),对于有机质土和有机土,在温度较高时会发生分解,使测得的含水率偏高,从而造成试验误差。
有机质含量超过5%的有机质土和有机土,含石膏和硫酸盐矿物的土,因这些矿物晶体中含结晶水,因此需采用65℃~70℃温度将土烘干至恒重,测量其含水率。
上述各种试验方法都是利用水在加温后逐渐变成水蒸气的性质。
加热一定时间后,在温度不高于110℃时,土中自由水全部变成气体挥发,之后土重不再发生变化,即处于恒重状态。
这时挥发掉的水重s m m m -=ω。
土恒重即认为是干土质量。
对粘性土,实际上是土粒质量与强结合水质量之和,因强结合水需要温度高于120℃才能析出,故将其作为固体颗粒的一部分。
第三节 烘干法测定含水率一、仪器设备烘干法仪器设备主要包括:1.恒温烘箱:一般要求在50℃~200℃范围内能在任一点保持一定恒温范围。
最常用的恒温范围在105℃~110℃,控制温度的精度高于±2℃;2.天平:200g ,感量0.01g 。
常用天平分机械天平和电子天平两类; 3.附属设备:铝盒(称量盒)、干燥器、铅丝篮、温度计等。
岩石物理试验实施细则
土工作业指导书岩石物理试验实施细则文件编号:版本号:编制:批准: 生效日期:岩石物理试验实施细则一、含水率试验1. 试验方法岩石含水率试验应采用烘干法,并适用于不含结晶水矿物的岩石。
2. 试件应符合下列要求:2.1保持天然含水率的试件应在现场采取,不得采用爆破或湿钻法。
试件在采取、运输、储存和制备过程中,含水率的变化不应超过1%。
2.2每个试件的尺寸应大于组成岩石最大颗粒的10倍。
2.3每个试件的质量不得小于40 g。
2.4每组试验试件的数量不宜少于5个。
3. 试件描述应包括下列内容:3.1岩石名称、颜色、矿物成分、结构、风化程度、胶结物性质等。
3.2为保持试件含水状态所采取的措施。
4. 主要仪器和设备应包括下列各项:4.1烘箱和干燥器。
4.2天平。
5. 试验应按下列步骤进行:5.1称制备好的试件质量。
5.2将试件置于烘箱内,在105 - 110°C的恒温下烘干试件。
5.3将试件从烘箱中取出,放入干燥器内冷却至室温,称试件质量。
5.4重复本条5.2. 5.3程序,直到将试件烘干至恒量为止,即相邻24h两次称量之差不超过后一次称量的0.1%。
5.5称量精确至0.01g。
6. 试验成果整理应符合下列要求:6.1按下列公式计算岩石含水率:式中3 -----岩石含水率(%);m 0 —试样烘干前的质量(g);m---- 干试样的质量。
6.2计算值精确至0.1。
6.3含水率试验记录应包括工程名称、试件编号、试件描述、试件烘干前后的质量。
二、颗粒密度试验1. 试验方法岩石颗粒密度试验应采用比重瓶法,并适用于各类岩石。
2. 试件应符合下列要求:2.1将岩石用粉碎机粉碎成岩粉,使之全部通过0.25mm筛孔,用磁铁吸去铁屑。
2.2对含有磁性矿物的岩石,3应采用瓷研钵或玛瑙研钵粉碎岩石,使全部通过0.25mm 筛孔。
3. 试件描述应包括下列内容:3.1粉碎前应描述岩石名称、颜色、矿物成分、结构、风化程度、胶结物性质等。
含潮量试验设备和标准
含潮量试验设备和标准
含潮量试验设备用于测量材料或产品中的水分含量。
常见的含潮量试验设备包括:
1. 称量器:用于称量样品的重量,以确定含水量的变化。
2. 烘箱:用于将样品加热至一定温度,从而蒸发样品中的水分。
3. 恒温器:用于维持烘箱中的温度恒定。
4. 分析天平:精确测量样品的重量变化,以计算含水量。
5. 湿度计:用于测量试验环境中的相对湿度。
含潮量试验常遵循一定的标准或规范,以确保测试结果的准确性和可比性。
常见的含潮量试验标准包括:
1. ASTM D2216-10: 用于测量土壤中的含水量。
2. ISO 15512: 用于测量塑料中的含水量。
3. ISO 287: 用于测量液态石蜡中的含水量。
4. GB/T 9724: 用于测量造纸材料中的含水量。
这些标准规定了试验方法、设备要求、样品制备和测试程序等,以确保含潮量试验的可重复性和准确性。
含水率试验
学另找时间来称盒加干土质量。
2021/5/15
7
(5)本项试验要求进行二次平行测定,其平行差值需要满足以下要求:当含水量小于5%时, 允许平行差值不大于0.3%;当含水量大于5%小于40%时,允许平行差值不大于1%;当含 水量大于等于40%时,允许平行差值不大于2%。当满足上述要求时,含水量取两次测值的 平均值。
2021/5/15
5
成果整理
(1)按下式计算含水量: wm2m3 10% 0 (m3m1)
式中:w——含水量(%); m1——称量盒的质量(g); m2——盒加湿土质量(g); m3——盒加干土质量(g)。
(2)记录表格见实验报告。
2021/5/15
6
注意事项
(1)测定含水量时动作要快,以避免土样的水分蒸 发;
(2)应取具有代表性的土样进行试验; (3)称量盒要保持干燥,注意称量盒的盒体盒盒盖
(3)打开盒盖,将试样和盒放入烘箱内,在温度105~110℃的恒温下烘干。烘干时间与土的 类别及取土数量有关。细粒土不少于8小时;砂类土不得少于6小时;对含有机质超过5%的 土,应将温度控制在65~70 ℃的恒温下烘干;
(4)将烘干后的试样和盒取出,放入干燥器内冷却至室温。冷却后盖好盒盖,称盒和土质量 (m3),精确至0.01g;
2021/5/15
2Hale Waihona Puke 试验用仪器和材料主要仪器:温度能够保持在105~110℃的自动控制的 电热恒温烘箱;感量为0.0lg的电子分析天平。
其它:铝制称量盒、干燥器、削土刀等。
2021/5/15
3
试验方法
烘干法:土工室内试验的标准方法,本试验采用烘 干法。
土壤含水量测量方式
土壤含水量测量方式( 1 )称重法(Gravimetric)也称烘干法,这是唯一可以直接测量土壤水分方式,也是目前国际上的标准方式。
用土钻采取土样,用精度的天平称取土样的重量,记作土样的湿重M,在105℃的烘箱内将土样烘6~8 小时至恒重,然后测定烘干土样,记作土样的干重Ms土壤含水量=(烘干前铝盒及土样质量-烘干后铝盒及土样质量)/(烘干后铝盒及土样质量-烘干空铝盒质量)*100%( 2 )张力计法(Tensiometer)也称负压计法,它测量的是土壤水吸力测量原理如下:当陶土头插入被测土壤后,管内自由水通过量孔陶土壁与土壤水接触,通过互换后达到水势平衡,此时,从张力计读到的数值就是土壤水(陶土头处)的吸力值,也即为忽略重力势后的基质势的值,然后按照土壤含水率与基质势之间的关系(土壤水特征曲线)就可以够肯定出土壤的含水率( 3 ) 电阻法(Electricalresistance)多孔介质的导电能力是同它的含水量和介电常数有关的,若是忽略含盐的影响,水分含量和其电阻间是有肯定关系的电阻法是将两个电极埋入土壤中,然后测出两个电极之间的电阻。
可是在这种情况下,电极与土壤的接触电阻有可能比土壤的电阻大得多。
因此采用将电极嵌入多孔渗水介质(石膏、尼龙、玻璃纤维等)中形成电阻块以解决这个问题( 4 ) 中子法(Neutronscattering)中子法就是用中子仪测定土壤含水率中子仪的组成主要包括:一个快中子源,一个慢中子检测器,监测土壤散射的慢中子通量的计数器及屏蔽匣,测试用硬管等。
快中子源在土壤中不断地放射出穿透力很强的快中子,当它和氢原子核碰撞时,损失能量最大,转化为慢中子(热中子),热中子在介质中扩散的同时被介质吸收,所以在探头周围,很快的形成了持常密度的慢中子云( 5 ) r-射线法(Gamma-rayattenuation)γ-射线法的大体原理是放射性同位素(现常常利用的是137Cs,241Am)发射的γ-射线法穿透土壤时,其衰减度随土壤湿容重的增大而提高。
土的含水率试验作业指导书
土的含水率试验作业指导书
一、试验目的
土的含水率是指土在105~110℃温度下烘干至恒量时所失去水的质量与干土质量的比值。
以百分数表示。
含水率是土的基本物理指标之一。
它反映了土的干、湿状态。
土的含水率是计算干密度、孔隙比、饱和度、液性指数等指标的基本数据和评价土的工程性质的重要依据,是研究土的物理力学性质的重要指标。
二、试验方法
含水率的试验方法较多,由于烘干法试验简便,结果稳定,故以此法作为测定含水率的标准方法。
如果测试条件不能满足采用烘干法或需快速测定含水率时,可分别用如下方法:
●酒精燃烧法:适用于不含有机质的砂类土、粉土和黏性土。
●碳化钙减量法:本方法的原理是用过量碳化钙与土中游离水混合接触产生化学反应,生成乙炔气体。
根据乙炔气
体逸出失去的质量,计算求得土的含水率。
此方法适用于各类土。
●核子射线法:适用现场原位测定填料为细粒土和砂类土的含水率。
有机质土的烘干温度在65~70℃。
烘干步骤为:
(1)在真空干燥箱中烘7h;在电热干燥箱中烘18h,
(2)按规定时间烘干后,取出称量盒,盖好盒盖,放人干燥器内冷却至室温时称干土质量。
(3)含水率试验应进行两次平行测定,取两次平行试验结果的算术平均值为最终试验结果,两次测定的差值应符合规范要求。
(4)按下式计算试样的含水率(计算至0.1%):
ω=(m x/m d-1)×100% 9-6 式中:ω:含水率;
mω:湿土质量(g);
m d:干土质量(g)。
D体积法测定土壤和岩石含水率的试验室标准试验方法样本
D体积法测定土壤和岩石含水率的试验室标准试验方法样本ASTM 指定编号D 2216-98试验室质量法测定土壤和岩石含水量的标准试验方法1本标准发布特定为 D 2216, 所显示的紧跟在后面的原采用年号, 如有修订, 则是最新的修订年号, 圆括号给出的年号则为最新批准的年号, 上标ε表示已经从最后一次修订和批准后, 进行了改版。
1.使用范围*1.1本试验方法除1.4.1.5和1,4,1.67所注明的外, 包括试验室使用干燥的方法减少其水分的方法, 经过测土壤、岩石和类似材料的质量, 测定含水量。
为了简单起见, 以下材料一词所指土壤或岩石, 无论是什么都适应。
1.2某些学科如土壤科学, 需要测含水量的基本体积, 这种测定超越了本试验方法的范围。
1.3材料含水量的定义在3.2.1款中。
1.4地质工程所使用的固体材料, 一般假定指天然发生的土壤岩石矿物颗粒, 它们已经不可溶解在水中。
因此包含额外材料的含水量( 如水泥, 和类似的东西) 宜要求特殊处理, 即符合含水量定义的。
另外, 某些有机材料可能在用本方法标准烘干温度( 110℃) 烘干时, 被分解。
含有石膏( 二水硫酸钙和其它具有含水化合物) 的材料, 会产生特殊问题。
当这些材料在标准烘干温度( 110℃) 缓慢脱水, 和在很低的相对湿度时, 形成一种混合物( 半水硫酸钙) , 它在天然材料中出现是不正常的, 荒漠土除外。
为了减少这些含有石膏的材料的二水石膏程度, 或减少高有机土壤中的分解作用, 用60℃的温度烘干这些或在温度干燥室里应当是理想的。
因此, 当使用干燥温度时, 应从区别与本试验方法所定义不同的标准干燥温度, 导出的含水量可能不同于本标准干燥温度测定的标准含水量。
说明 1—试验方法 D 2974 规定了测定泥炭材料含水量的替代程序。
1.5 含水材料带有大量的可溶解固体的物质( 如海洋沉积物中的盐) ,当用本试验方法试验时将给出包括预计溶解固体的固体质量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D6026Guide for Using Significant Digits in Calculating and Reporting Geotechnical Test Data5E145Specification for Gravity-Convection And Forced-Ventilation Ovens63.Terminology3.1Refer to Terminology D653for standard definitions of terms.3.2Definitions of Terms Specific to This Standard:3.2.1water content(of a material)—the ratio expressed as a percent of the mass of“pore”or“free”water in a given mass of material to the mass of the solid material.A standard temperature of110°65°C is used to determine these masses.4.Summary of Test Method4.1A test specimen is dried in an oven at a temperature of 110°65°C to a constant mass.The loss of mass due to drying is considered to be water.The water content is calculated using the mass of water and the mass of the dry specimen.5.Significance and Use5.1For many materials,the water content is one of the most significant index properties used in establishing a correlation between soil behavior and its index properties.5.2The water content of a material is used in expressing the phase relationships of air,water,and solids in a given volume of material.5.3Infine-grained(cohesive)soils,the consistency of a given soil type depends on its water content.The water content of a soil,along with its liquid and plastic limits as determined by Test Method D4318,is used to express its relative consis-tency or liquidity index.6.Apparatus6.1Drying Oven,thermostatically-controlled,preferably of the forced-draft type,meeting the requirements of Specifica-tion E145and capable of maintaining a uniform temperature of11065°C throughout the drying chamber.6.2Balances—All balances must meet the requirements of Specification D4753and this section.A Class GP1balance of 0.01g readability is required for specimens having a mass of up to200g(excluding mass of specimen container)and a Class GP2balance of0.1g readability is required for specimens having a mass over200g.However,the balance used may be controlled by the number of significant digits needed(see8.2.1 and12.1.2).6.3Specimen Containers—Suitable containers made of ma-terial resistant to corrosion and change in mass upon repeated heating,cooling,exposure to materials of varying pH,and cleaning.Unless a dessicator is used,containers with close-fitting lids shall be used for testing specimens having a mass of less than about200g;while for specimens having a mass greater than about200g,containers without lids may be used (see Note7).One container is needed for each water content determination.N OTE2—The purpose of close-fitting lids is to prevent loss of moisture from specimens before initial mass determination and to prevent absorp-tion of moisture from the atmosphere following drying and beforefinal mass determination.6.4Desiccator—A desiccator cabinet or large desiccator jar of suitable size containing silica gel or anhydrous calcium sulfate.It is preferable to use a desiccant which changes color to indicate it needs reconstitution.See10.5.N OTE3—Anhydrous calcium sulfate is sold under the trade name Drierite.6.5Container Handling Apparatus,gloves,tongs,or suit-able holder for moving and handling hot containers after drying.6.6Miscellaneous,knives,spatulas,scoops,quartering cloth,sample splitters,etc,as required.7.Samples7.1Samples shall be preserved and transported in accor-dance with Practice4220Groups B,C,or D soils.Keep the samples that are stored prior to testing in noncorrodible airtight containers at a temperature between approximately3and30°C and in an area that prevents direct contact with sunlight. Disturbed samples in jars or other containers shall be stored in such a way as to prevent or minimize moisture condensation on the insides of the containers.7.2The water content determination should be done as soon as practicable after sampling,especially if potentially corrod-ible containers(such as thin-walled steel tubes,paint cans,etc.) or plastic sample bags are used.8.Test Specimen8.1For water contents being determined in conjunction with another ASTM method,the specimen mass requirement stated in that method shall be used if one is provided.If no minimum specimen mass is provided in that method then the values given below shall apply.See Howard7for background data for the values listed.8.2The minimum mass of moist material selected to be representative of the total sample shall be in accordance with the following:Maximum particlesize(100%passing)Standard SieveSizeRecommendedminimum mass ofmoist test spec-imen for watercontent reportedto60.1%Recommendedminimum mass ofmoist test spec-imen for watercontent reportedto61%2mm or less No.1020g20g A4.75mm No.4100g20g A9.5mm3⁄8-in.500g50g19.0mm3⁄4-in. 2.5kg250g37.5mm11⁄2in.10kg1kg75.0mm3-in.50kg5kgA To be representative not less than20g shall be used.8.2.1The minimum mass used may have to be increased to obtain the needed significant digits for the mass of water when reporting water contents to the nearest0.1%or as indicated in 12.1.2.5Annual Book of ASTM Standards,V ol04.09. 6Annual Book of ASTM Standards,V ol14.02.7Howard,A.K.,“Minimum Test Specimen Mass for Moisture Content Deter-mination”,Geotechnical Testing Journal,A.S.T.M.,V ol.12,No.1,March1989,pp.39-44.8.3Using a test specimen smaller than the minimum indi-cated in8.2requires discretion,though it may be adequate for the purposes of the test.Any specimen used not meeting these requirements shall be noted on the test data forms or test data sheets.8.4When working with a small(less than200g)specimen containing a relatively large gravel particle,it is appropriate not to include this particle in the test specimen.However,any discarded material shall be described and noted on the test data forms or test data sheets.8.5For those samples consisting entirely of intact rock,the minimum specimen mass shall be500g.Representative portions of the sample may be broken into smaller particles, depending on the sample’s size,the container and balance being used and to facilitate drying to constant mass,see10.4. Specimen sizes as small as200g may be tested if water contents of only two significant digits are acceptable.9.Test Specimen Selection9.1When the test specimen is a portion of a larger amount of material,the specimen must be selected to be representative of the water condition of the entire amount of material.The manner in which the test specimen is selected depends on the purpose and application of the test,type of material being tested,the water condition,and the type of sample(from another test,bag,block,and the likes.)9.2For disturbed samples such as trimmings,bag samples, and the like,obtain the test specimen by one of the following methods(listed in order of preference):9.2.1If the material is such that it can be manipulated and handled without significant moisture loss and segregation,the material should be mixed thoroughly and then select a repre-sentative portion using a scoop of a size that no more than a few scoopfuls are required to obtain the proper size of specimen defined in8.2.9.2.2If the material is such that it cannot be thoroughly mixed or mixed and sampled by a scoop,form a stockpile of the material,mixing as much as possible.Take at leastfive portions of material at random locations using a sampling tube, shovel,scoop,trowel,or similar device appropriate to the maximum particle size present in the bine all the portions for the test specimen.9.2.3If the material or conditions are such that a stockpile cannot be formed,take as many portions of the material as practical,using random locations that will best represent the moisture bine all the portions for the test specimen.9.3Intact samples such as block,tube,split barrel,and the like,obtain the test specimen by one of the following methods depending on the purpose and potential use of the sample. 9.3.1Using a knife,wire saw,or other sharp cutting device, trim the outside portion of the sample a sufficient distance to see if the material is layered and to remove material that appears more dry or more wet than the main portion of the sample.If the existence of layering is questionable,slice the sample in half.If the material is layered,see9.3.3.9.3.2If the material is not layered,obtain the specimen meeting the mass requirements in8.2by:(1)taking all or one-half of the interval being tested;(2)trimming a represen-tative slice from the interval being tested;or(3)trimming the exposed surface of one-half or from the interval being tested. N OTE4—Migration of moisture in some cohesionless soils may require that the full section be sampled.9.3.3If a layered material(or more than one material type is encountered),select an average specimen,or individual speci-mens,or both.Specimens must be properly identified as to location,or what they represent,and appropriate remarks entered on the test data forms or test data sheets.10.Procedure10.1Determine and record the mass of the clean and dry specimen container(and its lid,if used).10.2Select representative test specimens in accordance with Section9.10.3Place the moist test specimen in the container and,if used,set the lid securely in position.Determine the mass of the container and moist material using a balance(see6.2)selected on the basis of the specimen mass.Record this value.N OTE5—To prevent mixing of specimens and yielding of incorrect results,all containers,and lids if used,should be numbered and the container numbers shall be recorded on the laboratory data sheets.The lid numbers should match the container numbers to eliminate confusion.N OTE6—To assist in the oven-drying of large test specimens,they should be placed in containers having a large surface area(such as pans) and the material broken up into smaller aggregations.10.4Remove the lid(if used)and place the container with moist material in the drying oven.Dry the material to a constant mass.Maintain the drying oven at11065°C unless otherwise specified(see 1.4).The time required to obtain constant mass will vary depending on the type of material,size of specimen,oven type and capacity,and other factors.The influence of these factors generally can be established by good judgment,and experience with the materials being tested and the apparatus being used.N OTE7—In most cases,drying a test specimen overnight(about12to 16h)is sufficient.In cases where there is doubt concerning the adequacy of drying,drying should be continued until the change in mass after two successive periods(greater than1h)of drying is an insignificant amount (less than about0.1%).Specimens of sand may often be dried to constant mass in a period of about4h,when a forced-draft oven is used.N OTE8—Since some dry materials may absorb moisture from moist specimens,dried specimens should be removed before placing moist specimens in the same oven.However,this would not be applicable if the previously dried specimens will remain in the drying oven for an additional time period of about16h.10.5After the material has dried to constant mass remove the container from the oven(and replace the lid if used).Allow the material and container to cool to room temperature or until the container can be handled comfortably with bare hands and the operation of the balance will not be affected by convection currents and/or its being heated.Determine the mass of the container and oven-dried material using the same type/capacity balance used in10.3.Record this value.Tightfitting lids shall be used if it appears that the specimen is absorbing moisture from the air prior to determination of its dry mass.N OTE9—Cooling in a desiccator is acceptable in place of tightfitting lids since it greatly reduces absorption of moisture from the atmosphere during cooling especially for containers without tightfittinglids.11.Calculation11.1Calculate the water content of the material as follows:w5@~M cws2M cs!/~M cs2M c!#31005M wM s3100(1)where:w5water content,%,M cws5mass of container and wet specimen,g,M cs5mass of container and oven dry specimen,g,M c5mass of container,g,M w5mass of water(M w5M cws−M cds),g,andM s5mass of solid particles(M s5M cds−M c),g. 12.Report12.1Test data forms or test data sheets shall include the following:12.1.1Identification of the sample(material)being tested, such as boring number,sample number,test number,container number etc.12.1.2Water content of the specimen to the nearest1%or 0.1%,as appropriate based on the minimum sample used.If this method is used in concert with another method,the water content of the specimen should be reported to the value required by the test method for which the water content is being determined.Refer to Guide D6026for guidance con-cerning significant digits,especially if the value obtained from this test method is to be used to calculate other relationships such as unit weight or density.For instance,if it is desired to express dry unit weight to the nearest0.1lbf/f3(0.02kN/m3),it may be necessary to use a balance with a greater readability or use a larger specimen mass to obtain the required significant digits the mass of water so that the water content can be determined to the required significant digits.Also,the signifi-cant digits in Guide D6026may need to be increased when calculating phase relationships requiring four significant digits.12.1.3Indicate if test specimen had a mass less than the minimum indicated in8.2.12.1.4Indicate if test specimen contained more than one material type(layered,etc.).12.1.5Indicate the temperature of drying if different from 11065°C.12.1.6Indicate if any material(size and amount)was excluded from the test specimen.12.2When reporting water content in tables,figures,etc., any data not meeting the requirements of this test method shall be noted,such as not meeting the mass,balance,or temperature requirements or a portion of the material is excluded from the test specimen.13.Precision and Bias13.1Statement on Bias—There is no accepted reference value for this test method;therefore,bias cannot be deter-mined.13.2Statements on Precision:13.2.1Single-Operator Precision(Repeatability)—The single-operator coefficient of variation has been found to be2.7 percent.Therefore,results of two properly conducted tests by the same operator with the same equipment should not be considered suspect unless they differ by more than7.8percent of their mean.813.2.2Multilaboratory Precision(Reproducibility)9—The multilaboratory coefficient of variation has been found to be 5.0percent.Therefore,results of two properly conducted tests by different operators using different equipment should not be considered suspect unless they differ by more than14.0percent of their mean.14.Keywords14.1consistency;index property;laboratory;moisture analysis;moisture content;soil aggregate;water contentSUMMARY OF CHANGESCommittee D-18has identified the location of selected changes to this standard since the last issue. (D2216-92)that may impact the use of this standard.(1)Title was changed to emphasize that mass is the basis for the standard.(2)Section1.1was revised to clarify“similar materials”.(3)New1.2was added to explain a limitation in scope.The other sections were renumbered as appropriate.(4)An information reference was included in1.5.(5)An information reference was included in1.6(6)A new ASTM referenced document was included in2.1.(7)New Footnotes2,3,and5were added and identified. Other footnotes were renumbered where necessary for sequen-tial identification.(8)Information concerning balances was added in6.2(9)Section6.3was revised to clarify the use of close-fitting lids,and a reference to Note8was added.(10)In6.4,“anhydrous calcium phosphate”was changed to “anyhydrous calcium sulfate”to correct an error and to agree with Note3.(11)A typo in8.1was corrected from“before”to“below”anda footnoted reference was added for information.(12)A portion of8.2was deleted for clarity.(13)A new8.2.1was added to clarify minimum mass require-ments.(14)Sections8.3,8.4,9.3.3,and12.1were changed to substitute“test data form/sheet”for“report”.(15)Footnote seven was identified.(16)Section9.2.1was revised to improve clarity and intent.(17)The word“possible”was changed to“practical”in9.2.3.8These numbers represent the(1s)and(d2s)limits as described in Practice C 670.9These numbers represent the(1s%)and(d2s%)limits as described in Practice C670.(18)Section 9.3.1and 9.3.2were revised to improve clarityand for practicality.(19)A reference to Guide D 6026was added in 12.1.2.(20)Footnotes 8and 9were added to 13.2.1and 13.2.2,respectively.These were inadvertently omitted from the 1992version.These explanations provide clarity and information to the user.(21)A Summary of Changes was added to reflect D-18’s policy.The American Society for Testing and Materials takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this ers of this standard are expressly advised that determination of the validity of any such patent rights,and the risk of infringement of such rights,are entirely their own responsibility.This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised,either reapproved or withdrawn.Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM Headquarters.Your comments will receive careful consideration at a meeting of the responsible technical committee,which you may attend.If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards,100Barr Harbor Drive,West Conshohocken,PA19428.。