韦达定理的应用专题
韦达定理经典例题及解题过程
韦达定理经典例题及解题过程
摘要:
1.危险的事物
2.普通的事物
3.迅速的事物
4.威武的事物
5.锋利的事物
正文:
在我们的生活中,危险的事物无处不在,比如狂风暴雨、悬崖峭壁等。
这些危险的事物往往会给我们带来威胁,因此我们需要保持警惕,采取防范措施。
与此同时,我们生活中也有很多普通的事物,如阳光、空气和水,它们对我们来说不可或缺,但却常常被我们忽略。
而迅速的事物,如闪电、高铁等,则让我们感受到了世界的快速发展和便捷。
威武的事物,如狮子、老虎等,则代表了一种强大的力量,有时也会引发我们的敬畏之情。
至于锋利的事物,如
刀剑、针尖等,它们既可以是工具,也可能是危险的源头。
因此,我们在使用这些锋利的事物时,需要格外小心,以免造成意外伤害。
专题12 韦达定理及其应用(解析版)
专题12 韦达定理及其应用1.一元二次方程根与系数的关系(韦达定理)如果方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么a b x x -=+21,acx x =21。
也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。
2.根与系数的关系的应用,主要有如下方面: (1)验根;(2)已知方程的一根,求另一根; (3)求某些代数式的值; (4)求作一个新方程。
【例题1】(2020•泸州)已知x 1,x 2是一元二次方程x 2﹣4x ﹣7=0的两个实数根,则x 12+4x 1x 2+x 22的值是 . 【答案】2【分析】根据根与系数的关系求解. 【解析】根据题意得则x 1+x 2=4,x 1x 2=﹣7 所以,x 12+4x 1x 2+x 22=(x 1+x 2)2+2x 1x 2=16﹣14=2【对点练习】(2019湖北仙桃)若方程x 2﹣2x ﹣4=0的两个实数根为α,β,则α2+β2的值为( ) A .12 B .10 C .4 D .﹣4【答案】A【解析】∵方程x 2﹣2x ﹣4=0的两个实数根为α,β,∴α+β=2,αβ=﹣4,∴α2+β2=(α+β)2﹣2αβ=4+8=12【例题2】(2020•江西)若关于x的一元二次方程x2﹣kx﹣2=0的一个根为x=1,则这个一元二次方程的另一个根为.【答案】-2【分析】利用根与系数的关系可得出方程的两根之积为﹣2,结合方程的一个根为1,可求出方程的另一个根,此题得解.【解析】∵a=1,b=﹣k,c=﹣2,=−2.∴x1•x2=ca∵关于x的一元二次方程x2﹣kx﹣2=0的一个根为x=1,∴另一个根为﹣2÷1=﹣2.【对点练习】已知方程的一个根是-1/2,求它的另一个根及b的值。
【答案】x1=3 b=-5【解析】设方程的另一根为x1,则由方程的根与系数关系得:解得:【点拨】含字母系数的一元二次方程中,若已知它的一个根,往往由韦达定理可求另一根,并确定字母系数的值。
专题1《韦达定理的应用》
专题(一)韦达定理的应用 姓名:一、知识要点1.韦达定理:设一元二次方程)0(02≠=++a c bx ax 有两个实数根21,x x ,则a b x x -=+21; ac x x =⋅21 2.韦达逆定理:如果21,x x 满足a b x x -=+21;a c x x =⋅21,那么21,x x 是一元二次方程)0(02≠=++a c bx ax 的两个实数根3.韦达定理的应用有一个重要前提,就是一元二次方程必须有解,即根的判别式042≥-=∆ac b二、应用示范(一)利用韦达定理求代数式的值例题1已知n m ,是方程01222=++x x 的两根,则代数式mn n m 322++的值为( ) 9.A 3.±B 3.C 5.D变式1:设n m ,是一元二次方程0732=-+x x 的两根,则=++n m m 42 。
变式2:已知046,04622=+-=+-b b a a ,则=+ba ab 。
变式3:二次函数5432-+=x x y 在x 轴上截得的线段长为 。
说明:应用韦达定理求代数式的值,要熟练掌握以下等式变形: 2122122212)(x x x x x x ⋅-+=+;21212111x x x x x x ⋅+=+;212212214)()(x x x x x x ⋅-+=-; 21221214)(x x x x x x ⋅-+=-(二)利用韦达定理构一元二次方程例题2(1)已知关于x 的方程)0(02≠=++n n mx x ,求出一个一元二次方程,使它的两个根分别是已知方程两根的倒数;(2)已知c b a ,,满足16,0==++abc c b a ,求正数c 的最小值。
变式:已知实数c b a ,,满足9,62-=-=ab c b a 。
求证:b a =(三)利用韦达定理解决图像中的交点问题例题3如图,直线121+-=x y 与y 轴交于点A ,与双曲线xk y =在第一象限交于B ,C 两点,B ,C 两点的纵坐标分别为21,y y ,则21y y +的值是 。
初中数学 一元二次方程的韦达定理有什么应用
初中数学一元二次方程的韦达定理有什么应用一元二次方程的韦达定理是数学中一个重要的定理,它提供了一种快速计算一元二次方程根的和与积的方法。
韦达定理在实际生活中有着广泛的应用,下面将详细介绍一些常见的应用场景。
1. 判定方程根的性质:韦达定理可以用来判定方程的根的性质。
通过计算根的和与积,我们可以得到关于根的一些信息。
例如,当根的和与根的积都为正数时,说明方程的两个根都是正数;当根的和为负数而根的积为正数时,说明方程的两个根一个为正数一个为负数。
这种信息对于解决实际问题非常有用,可以帮助我们了解方程的解的情况。
2. 求解方程的根:韦达定理可以用于求解一元二次方程的根。
通过将方程的系数带入韦达定理的公式,我们可以计算出方程的根的和与积。
进一步求解根的具体数值,可以使用一些代数方法,如配方法、因式分解或求根公式。
韦达定理为我们提供了一个快速计算根的和与积的方法,从而更方便地解决一元二次方程。
3. 拟合数据:韦达定理可以用于数据的拟合。
通过找到满足给定数据点的一元二次方程,我们可以使用韦达定理计算方程的根的和与积。
根的和与积可以提供关于数据的整体趋势和特征的信息。
这种方法在统计学和数据分析中非常有用,可以帮助我们找到最佳拟合曲线并预测未知数据的值。
4. 解决实际问题:韦达定理在解决实际问题中起到重要的作用。
例如,在物理学中,我们可以使用韦达定理来计算自由落体运动中物体的最大高度和落地时间;在经济学中,韦达定理可以用来分析成本和收益之间的关系,帮助我们做出合理的决策;在工程学中,韦达定理可以用于计算电路中的电流和电压,从而设计合适的电路。
总结:一元二次方程的韦达定理是数学中一个重要的定理,它提供了一种快速计算方程根的和与积的方法。
韦达定理在判定方程根的性质、求解方程的根、拟合数据以及解决实际问题等方面有着广泛的应用。
了解韦达定理及其应用可以帮助我们更好地理解和解决一元二次方程相关的数学问题,同时也可以在实际生活中应用这些知识来解决各种问题。
韦达定理应用的典型例题
韦达定理应用的典型例题韦达定理(Viviani's theorem)是解析几何中的一条定理,它是由意大利数学家韦达(Vincenzo Viviani)在17世纪提出的。
该定理描述了一个正四面体内部的特殊关系,也可以被看作是勾股定理在空间中的推广。
韦达定理可以用以下方式表述:如果在一个正四面体的每个面上都选择一个点,连接这些点所得到的三条线段的长度之和等于这个正四面体的高,则这三条线段的长度是相等的。
现在,让我们来看几个典型的例题,应用韦达定理来解决。
例题1:一个正四面体的高为6 cm,求连接每个顶点与相对面的中点所得到的三条线段的长度。
解析:根据韦达定理,我们知道连接每个顶点与相对面的中点所得到的三条线段的长度之和等于正四面体的高。
由于正四面体的高为6 cm,所以这三条线段的长度之和也为6 cm。
由于这三条线段的长度相等,所以每条线段的长度为2 cm。
例题2:一个正四面体的一条棱长为8 cm,求连接每个顶点与相对面的中点所得到的三条线段的长度。
解析:首先,我们需要确定正四面体的高。
一个正四面体的高是连接底面的一个顶点与相对面的中点所得到的线段。
根据勾股定理,这个高的长度等于底面棱长的一半,即4 cm。
根据韦达定理,连接每个顶点与相对面的中点所得到的三条线段的长度之和等于正四面体的高。
所以,这三条线段的长度之和也为4cm。
由于这三条线段的长度相等,所以每条线段的长度为4/3 cm。
这两个例题展示了如何应用韦达定理来解决正四面体中连接顶点和相对面中点的线段长度问题。
通过理解韦达定理的几何意义,我们能更好地理解空间几何中的关系,并能更灵活地应用于解决其他几何问题。
韦达定理应用
韦达定理应用(总7页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除韦达定理的应用一、典型例题例1:已知关于x的方程2x-(m+1)x+1-m=0的一个根为4,求另一个根。
解:设另一个根为x1,则相加,得x例2:已知方程x-5x+8=0的两根为x1,x2,求作一个新的一元二次方程,使它的两根分别为和.解:∵又∴代入得,∴新方程为例3:判断是不是方程9x-10x-2=0的一个实数根?解:∵二次实数方程实根共轭,∴若是,则另一根为∴,。
∴以为根的一元二次方程即为.例4:解方程组解:设∴.∴A=5. ∴x-y=5 又xy=-6.∴解方程组∴可解得例5:已知Rt ABC中,两直角边长为方程x-(2m+7)x+4m(m-2)=0的两根,且斜边长为13,求S的值解:不妨设斜边为C=13,两条直角边为a,b,则2。
又a,b为方程两根。
∴ab=4m(m-2)∴S但a,b为实数且∴∴∴m=5或6 当m=6时,∴m=5 ∴S.例6:M为何值时,方程8x-(m-1)x+m-7=0的两根①均为正数②均为负数③一个正数,一个负数④一根为零⑤互为倒数解:①∵∴m>7②∵∴不存在这样的情况。
③∴m<7④∴m=7⑤∴m=15.但使∴不存在这种情况【模拟试题】(答题时间:30分钟)1. 设n为方程x+mx+n=0(n≠0)的一个根,则m+n等于2. 已知方程x+px-q=0的一个根为-2+,可求得p= ,q=3. 若方程x+mx+4=0的两根之差的平方为48,则m的值为()A.±8 B.8 C.-8 D.±44. 已知两个数的和比a少5,这两个数的积比a多3,则a为何值时,这两个数相等?5. 已知方程(a+3)x+1=ax有负数根,求a的取值范围。
6. 已知方程组的两组解分别为,,求代数式a1b2+a2b1的值。
7. ABC中,AB=AC, A,B,C的对边分别为a,b,c,已知a=3,b和c是关于x 的方程x+mx+2-m=0的两个实数根,求ABC的周长。
韦达定理应用复习
a(x- x1 )(x- x2).
1.设x1、x2是方程2x2-6x+3=0的根,
则
(1)
x2
x1
x1 x2
(2)(x1 2)(x2 2)
(3) x1 x2
(4).x1 x2
2.若方程x2-3x-2=0的两根为x1、
10.*已知实数a、b满足2a2-a = 2b2-b=2,
求
a b
+
b a
的值.
11.已知一元二次方程ax2-√2 bx+c=0的两个根满足|x1x2|=2-√2,a、b、c分别是 △ABC中∠A、∠B、∠C 的对边,并且c=√2a,试判断 △ABC是什么三角形?并证 明.
韦达定理及 其应用(一)
如果方程ax2+bx+c=0(a≠0)
的两根为x1、x2,则
x1·x2=
c a
.
x1+x2=
-
b a
,
如果方程x2+px+q=0(a≠0)的
两根为x1、x2,则 x1+x2= -p ,
x1·x2=q .
以x1、x2为根的一元二次方程 (二次项系数为1)是
x2-( x1+x2 )x+ x1·x2 =0.
m-2=0;当m
时,有两
个互为相反数的实根;当m
时,有一种根为零.
6.若有关x的方程x2+(2k+1)x+k2-
2=0的两根的平方和是11,则
k=
.
7.若方程x2+2x+m=0的两根之差 为√6,则m= .
专题 韦达定理(解析版)
专题02 韦达定理韦达定理虽是初二一元二次方程时的内容,但因为考试没有要求,很多学校都没怎么系统的讲过,很多学生还不是很了解韦达定理,更别提掌握和灵活运用了。
而韦达定理在高中阶段运用的非常频繁,许多知识点都要结合韦达定理来做,希望通过本章学习让学生能够理解掌握韦达定理.韦达定理实际上就是一元二次方程中根与系数的关系,韦达定理简单的形式中包含了丰富的数学内容,应用广泛,它与代数、几何中许多知识可有机结合,生成丰富多彩的数学问题,而解这类问题常用到对称分析、构造等数学思想方法.韦达定理具有对称性,设而不求、整体代入是利用韦达定理解题的基本思路.【例1】已知方程5x 2+kx -6=0的一个根是2,求它的另一个根及k 的值. 【难度】★★ 【答案】见解析【解析】由于已知了方程的一个根,可以直接将这一根代入,求出k 的值,再由方程解出另一个根.但由于我们学习了韦达定理,又可以利用韦达定理来解题,即由于已知了方程的一个根及方程的二次项系数和常数项,于是可以利用两根之积求出方程的另一个根,再由两根之和求出k 的值.设方程的另一个根为1x,知识梳理知识结构模块一: 运用韦达定理,求方程中参数典例剖析则5621-=x ,531-=∴x .由52)53(k-=+-,得7-=k .所以,方程的另一个根为53-.k 的值为-7.1.1x 和2x 为一元二次方程013222=-+-m x x 的两个实根,并1x 和2x 满足不等式142121<-+x x x x ,则实数m 的值范围是 . 【难度】★★ 【答案】5132m -<≤2.0519998081999522=++=+-b b a a 及已知,求ba的值. 【难度】★★ 【答案】58 【解析】由方程的结构可知a 、b 1是方程08199952=+-x x 的两根,由韦达定理可得58=b a【例2】若x 1和x 2分别是一元二次方程2x 2+5x -3=0的两根. (1) 求|x 1-x 2|的值; (2) 求222111x x +的值; (3) 求31x +32x 的值. 【难度】★★ 【答案】见解析【解析】分析:分别变形为可以利用x 1+x 2和x 1x 2来表示的形式.解:∵x 1和x 2分别是一元二次方程2x 2+5x -3=0的两根,2521-=+∴x x ,2321-=x x .(1)∵|x 1-x 2|2=21x +22x -2x 1x 2=(x 1+x 2)2-4x 1x 2)23(4)25(2-⨯--=6425+=449=, 27||21=-∴x x . 对点精练模块二:运用韦达定理,求代数式的值典例剖析(2)493425)23()23(2)25()(2)(112222121221222122212221+=--⨯--=-+=⋅+=+x x x x x x x x x x x x 937=. (3)31x +32x =(x 1+x 2)(21x -x 1x 2+22x )=(x 1+x 2)[(x 1+x 2)2-3x 1x 2]8215)]23(3)25[()25(2-=-⨯--⨯-=.评析:利用根与系数的关系求值,要熟练掌握以下等式变形:一元二次方程的两根之差的绝对值是一个重要的量,今后我们经常会遇到求这一个量的问题(相关地,抛物线与x 轴两交点间的距离),为了解题简便,我们可以探讨出其一般规律:设x 1和x 2分别是一元二次方程ax 2+bx +c =0(a ≠0)的两根,则a acb b x 2421-+-=,aacb b x 2422---=,||4|242||2424|||222221a acb a ac b a ac b b a ac b b x x -=-=-----+-=-∴||a ∆=. 于是有下面的结论:【例3】已知α、β是方程x 2+2x -5=0的两个实数根,则α2+αβ+2α的值为_______. 【难度】★★ 【答案】见解析【解析】分析:运用根的意义和根与系数关系解题.解:由于α、β是方程x 2+2x -5=0的实数根,∴α2+2α-5=0,αβ=-5,∴α2+2α=5 ∴α2+αβ+2α=α2+2α+αβ =5-5=0评析:注意利用变形为可以用根系关系表示的形式.注:应用韦达定理的代数式的值,一般是关于1x 、2x 的对称式,这类问题可通过变形用1x +2x 、1x 2x 表示求解,而非对称式的求值常用到以下技巧: (1) 恰当组合;(2) 根据根的定义降次; (3) 构造对称式.【例4】关于x 的方程240x x m ++=的两根为x 1,x 2满足| x 1-x 2|=2,求实数m 的值. 【难度】★★ 【答案】31.已知α、β是方程210x x --=的两个实数根,则代数式)2(22-+βαα的值为 . 【难度】★★ 【答案】02.设a ,b 是相异的两实数,满足ab b a b b a a 2222,34,34++=+=求的值. 【难度】★★ 【答案】3100-3.设实数a ,b 分别满足,01999,01991922=++=++b b a a 且ba ab ab 14,1++≠求的值. 【难度】★★ 【答案】-5【例5】已知关于x 的方程x 2+2(m -2)x +m 2+4=0有两个实数根,并且这两个实数根的平方和比两个根的积大21,求m 的值. 【难度】★★ 【答案】见解析【解析】分析:本题可以利用韦达定理,由实数根的平方和比两个根的积大21得到关于m 的方程,从而解得m 的值.但在解题中需要特别注意的是,由于所给的方程有两个实数根,因此其根的判别式应大于等于零.解:设x 1,x 2是方程的两根,由韦达定理,得对点精练模块三:利用韦达定理并结合根的判别式,讨论根的情况典例剖析x 1+x 2=-2(m -2),x 1·x 2=m 2+4. ∵21x +22x -x 1·x 2=21, ∴(x 1+x 2)2-3x 1·x 2=21, 即[-2(m -2)]2-3(m 2+4)=21,化简,得m 2-16m -17=0,解得m =-1,或m =17. 当m =-1时,方程为x 2-6x +5=0,Δ>0,满足题意;当m =17时,方程为x 2+30x +293=0,Δ=302-4×1×293<0,不合题意,舍去. 综上,m = -1.评析:在本题的解题过程中,也可以先研究满足方程有两个实数根所对应的m 的范围,然后再由“两个实数根的平方和比两个根的积大21”求出m 的值,取满足条件的m 的值即可.在今后的解题过程中,如果仅仅由韦达定理解题时,还要考虑到根的判别式Δ是否大于或等于零.因为,韦达定理成立的前提是一元二次方程有实数根.【例6】已知x 1、x 2是关于x 的一元二次方程4x 2+4(m -1)x +m 2=0的两个非零实数根,问x 1和x 2能否同号?若能同号,请求出相应的m 的取值范围;若不能同号,请说明理由. 【难度】★★ 【答案】见解析【解析】分析:利用判别式和根与系数关系共同解决本题. 解:由Δ=-32m +16≥0得21≤m .x 1+x 2=-m +1,041221≥=m x x . ∴x 1与x 2可能同号,分两种情况讨论:(1)若x 1>0,x 2>0,则⎩⎨⎧>>+002121x x x x ,解得m <1且m ≠0.21≤∴m 且m ≠0. (2)若x 1<0,x 2<0,则⎩⎨⎧><+002121x x x x ,解得m >1,与21≤m 相矛盾.综上所述:当21≤m 且m ≠0时,方程的两根同号.【例7】一元二次方程240x x a -+=有两个实根,一个比3大,一个比3小,求a 的取值范围.【难度】★★ 【答案】【解析】构造二次函数()a x x x f +-=42,由()03<f 即可满足题意【例8】已知一元二次方程222(9)560x a x a a +-+-+=一个根小于0,另一根大于2,求a 的取值范围. 【难度】★★ 【答案】【解析】构造二次函数()()659222+-+-+=a a x a x x f ,由()00<f 且()02<f 即可满足题意1.已知关于x 的一元二次方程07)1(82=-+++m x m x 有两个负数根,那么实数m 的取值范围是 . 【难度】★★ 【答案】m >72.设1x 、2x 是方程02324222=-++-m m mx x 的两个实数根,当m 为何值时,2221x x + 有最小值?并求出这个最小值. 【难度】★★ 【答案】见解析 【解析】3<a 382<<a 对点精练3.已知关于x 的方程:04)2(22=---m x m x .(1) 求证:无论m 取什么实数值,这个方程总有两个不相等的实根.(2) 若这个方程的两个实根1x 、2x 满足212+=x x ,求m 的值及相应的1x 、2x . 【难度】★★ 【答案】见解析【解析】分析: 对于(2),先判定1x 、2x 的符号特征,并从分类讨论入手. 解:(1)△=2m 2-4m +4=2(m -1)2+2>0, ∴方程总有两个不相等的实数根;(2) ∵x 1·x 2=24m -≤0,∴1x 、2x 异号或其中一根为0,∴对212+=x x 可分两种情况讨论,去掉绝对值.当x 1≥0,x 2<0时,-x 2-x 1=2,即-(m -2)=2,解得m =0, 此时,方程为x 2+2x =0,解得x 1=0,x 2=-2; 当x 1≤0,x 2>0时,x 2+x 1=m -2=2,解得m =4, 当m =4时,x 2-2x -4=0,解得151x =-+,251x =+.4.若关于x 的方程20x x a ++=的两个根,一个大于1、另一根小于1,求实数a 的取值范围. 【难度】★★ 【答案】2a <-【例9】如果a 、b 都是质数,且0132=+-m a a ,0132=+-m b b ,那么baa b +的值为( ) A .22123 B .22125或2 C .22125 D .22123或2 【难度】★★模块四:利用韦达定理逆定理,构造一元二次方程辅助解题等典例剖析【答案】B【解析】评析 可将两个等式相减,得到a 、b 的关系,由于两个等式结构相同,可视a 、b 为方程0132=+-m x x 的两实根,这样就为根与系数关系的应用创造了条件.【例10】解方程121193482232222=+-++-++x x x x x x x x . 【难度】★★ 【答案】-1,-4,28952895-+,. 【解析】分析:观察方程左边两式的关系,用换元法,令t x x xx =-++4322代入求解.1.△ABC 的一边长为5,另两边长恰为方程01222=+-m x x 的两根,则m 的取值范围是 . 【难度】★★ 【答案】11182m <≤ 【解析】提示:根据两边之和、两边之差的关系及△≥0得到.2.已知:四边形ABCD 中,AB ∥CD ,且AB 、CD 的长是关于x 的方程047)21(222=+-+-m mx x 的两个根.(1) 当m =2和m >2时,四边形ABCD 分别是哪种四边形? 并说明理由;(2) 若M 、N 分别是AD 、BC 的中点,线段MN 分别交AC 、BD 于点P ,Q ,PQ=1,且AB<CD ,求AB 、CD 的长;(3) 在(2)的条件下,AD=BC=2,求一个一元二次方程,使它的两个根分别是tan ∠BDC 和tan ∠BCD . 【难度】★★★ 【答案】见解析【解析】(1)当m =2时,x 2-4x +4=0. ∵△=0,方程有两个相等的实数根.∴AB=CD ,此时AB ∥CD ,则该四边形是平行四边形; 当m >2时,△=m -2>0,对点精练又∵AB+CD=2m >0, AB•CD=217()24m -+ >0, ∴AB≠CD . 该四边形是梯形.(2) 根据三角形的中位线定理可以证明:连接梯形的两条对角线的中点的线段等于梯形的上下底的差的一半.则根据PQ=1,得CD -AB=2. 由CD -AB=||||21a x x ∆=-解得m =3 当m =3时,则有x 2-6x +8=0, ∴x =2或x =4, 即AB=2,CD=4(3)根据该梯形是等腰梯形,平移一腰,则得到等边△BEC . ∴∠BCD=60°,∠BDC=30°.∵tan ∠BDC+tan ∠BCD=tan ∠BDC•tan ∠BCD=1.∴所求作的方程是y 2-+1=0. 评析:对于(2),易建立含AC 、BD 及m 的关系式,要求出m 值,还需运用与中点相关知识找寻CD 、AB 的另一隐含关系式.注:在处理以线段的长为根的一元二次方程问题时,往往通过韦达定理、几何性质将几何问题从“形”向“数”(方程)转化,既要注意通过根的判别式的检验,又要考虑几何量的非负性.3.如图,已知在△ABC 中,∠ACB=90°,过C 作CD ⊥AB 于D ,且AD=m ,BD=n ,AC 2:BC 2=2:1;又关于x 的方程012)1(24122=-+--m x n x 两实数根的差的平方小于192,求:m ,n 为整数时,一次函数y =mx +n 的解析式.【难度】★★★【答案】见解析 【解析】解:易证△ABC ∽△ACD ,∴AC ABAD AC=,AC 2=AD•AB ,同理BC 2=BD•AB , ∵2221AC BC =,∴21m n = ∴m =2n …①, ∵关于x 的方程14x 2-2(n -1)x +m 2-12=0有两实数根, ∴△=[-2(n -1)]2-4×14×(m 2-12)≥0,∴4n 2-m 2-8n +16≥0,把①代入上式得n ≤2…②, 设关于x 的方程14x 2-2(n -1)x +m 2-12=0的两个实数根分别为x 1,x 2, 则x 1+x 2=8(n -1),x 1•x 2=4(m 2-2),依题意有(x 1-x 2)2<192,即[8(n -1)]2-16(m 2-12)<192, ∴4n 2-m 2-8n +4<0,把①式代入上式得n >12…③, 由②、③得12<n ≤2, ∵m 、n 为整数,∴n 的整数值为1,2,当n =1,m =2时,所求解析式为y =2x +1,当n =2,m =4时,解析式为y =4x +2.韦达定理在高中阶段是一种非常常用且重要的解题手段,同学们一定要在充分理解的基础上加以掌握及灵活运用.同学们要能掌握根与系数的关系,知道韦达定理的常见变式与常规题型,注重设而不解,注重整体,通过整体带入来解决问题.一、选择题1.设1x 、2x 是关于x 的方程02=++q px x 的两根,1x +1、2x +1是关于x 的方程的两根,则02=++p qx x 反思总结课后练习p 、q 的值分别等于( )A .1,-3B .1,3C .-1,-3D .-1,3 【难度】★★ 【答案】C2.在R t △ABC 中,∠C=90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,a 、b 是关于x 的方程0772=++-c x x 的两根,那么AB 边上的中线长是( ) A .23 B .25C .5D .2 【难度】★★ 【答案】B3.方程019972=++px x 恰有两个正整数根1x 、2x ,则)1)(1(21++x x p的值是 ( )A .1B .-lC .21-D .21 【难度】★★ 【答案】C4.两个质数a 、b 恰好是整系数方程x 2-99x +m =0的两个根,则baa b +的值是 ( ) A .9413 B .1949413 C .999413 D .979413【难度】★★ 【答案】B5.设方程有一个正根1x ,一个负根2x ,则以1x 、2x 为根的一元二次方程为 ( ) A .0232=---m x x B .0232=--+m x x C .02412=---x m x D .02412=+--x m x 【难度】★★ 【答案】D6.如果方程0)2)(1(2=+--m x x x 的三根可以作为一个三角形的三边之长,那么实数m 的取值范围是( ) A .0≤m ≤1 B .m ≥43 C .143≤<m D .43≤m ≤1【答案】C二、填空题7.关于x 的一元二次方程22(1)10m x x m -++-=有一根为0,则m 的值为______ 【难度】★★ 【答案】-18.CD 是R t △ABC 斜边上的高线,AD 、BD 是方程0462=+-x x 的两根,则△ABC 的面积是 . 【难度】★★ 【答案】69.已知α、β是方程012=--x x 的两个根,则βα34+的值为 . 【难度】★★ 【答案】510.已知方程02=++q px x 的两根均为正整数,且28=+q p ,那么这个方程两根为 . 【难度】★★ 【答案】见解析【解析】解:设x 1,x 2是方程的两个根,则①x 1+x 2=-p ,②x 1x 2=q , ∵②-①得:p+q=28, ∴x 1x 2-x 1-x 2=28, ∴x 1x 2-x 1-x 2+1=28+1, ∴x 1(x 2-1)-(x 2-1)=29, 即(x 1-1)(x 2-1)=29, ∵两根均为正整数,∴x 1-1=1,x 2-1=29或x 1-1=29,x 2-1=1,∴方程的两个根是:x 1=2,x 2=30.或x 1=30,x 2=2. 故答案为:x 1=30,x 2=2.三、解答题11. 若关于x 的一元二次方程3x 2+3(a +b )x +4ab =0的两个实数根满足关系式:)1)(1()1()1(212211++=+++x x x x x x ,判断4)(2≤+b a 是否正确?【答案】见解析【解析】解:(a +b )2≤4正确.理由:原式可化为(x 1+x 2)2-=3x 1x 2+1, ∴(a +b )2=4ab +1,∵△=9(a +b )2-4×3×4ab ≥0, ∴3(a +b )2-4×4ab ≥0, ∴(a +b )2≥163ab ,即4ab +1≥163ab ∴4ab ≤3,∴4ab +1≤4,即(a +b )2≤4.12.已知关于x 的方程01)32(22=++--k x k x . (1) 当k 为何值时,此方程有实数根;(2) 若此方程的两个实数根1x 、2x 满足:312=+x x ,求k 的值. 【难度】★★ 【答案】(1)512k ≤;(2) 0.13.设m 是不小于1-的实数,使得关于x 的方程033)2(222=+-+-+m m x m x 有两个不相等的实数根1x 、2x . (1) 若62221=+x x ,求m 的值.(2) 求22212111x mx x mx -+-的最大值. 【难度】★★ 【答案】见解析【解析】解:∵方程有两个不相等的实数根,∴△=b 2-4ac =4(m -2)2-4(m 2-3m +3)=-4m +4>0,∴m <1, 结合题意知:-1≤m <1.(1)∵x 12+x 22=(x 1+x 2)2-2x 1x 2=4(m -2)2-2(m 2-3m +3)=2m 2-10m +10=6 ∴m=,∵-1≤m <1,∴m=∴当m =-1时,式子取最大值为10.14.设a 、b 、c 为三个不同的实数,使得方程210x ax ++=和20x bx c ++=有一个相同的实数根,并且使方程20xx a ++=和20x cx b ++=也有一个相同的实数根,试求a b c ++的值.【难度】★★★ 【答案】见解析【解析】解:设x 12+ax 1+1=0,x 12+bx 1+c =0,两式相减,得(a -b )x 1+1-c =0,解得x 1=1c a b--, 同理,由x 22+x 2+a =0,x 22+cx 2+b =0,得x 2=(1)1a bc c -≠- ∴x 2=11x , 由韦达定理的两根之积的关系知,11x 是第一个方程的根, ∴x 2是方程x 2+ax +1=0和x 2+x +a =0的公共根, 因此两式相减有(a -1)(x 2-1)=0, 当a =1时,这两个方程无实根, 故x 2=1,从而x 1=1, 于是a =-2,b +c =-1, 所以a +b +c =-3.。
韦达定理的应用题_证明_公式
韦达定理的应用题_证明_公式(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--根的判别式和韦达定理是实系数一元二次方程的重要基础知识,利用它们可进一步研究根的性质,也可以将一些表面上看不是一元二次方程的问题转化为一元二次方程来讨论.1.判别式的应用例1 (1987年武汉等四市联赛题)已知实数a、b、c、R、P满足条件PR>1,Pc+2b+R a=0.求证:一元二次方程ax2+2bx+c=0必有实根.证明△=(2b)2-4ac.①若一元二次方程有实根,必须证△≥0.由已知条件有2b=-(Pc+Ra),代入①,得△ =(Pc+Ra)2-4ac=(Pc)2+2PcRa+(Ra)2-4ac=(Pc-Ra)2+4ac(PR-1).∵(Pc-Ra)2≥0,又PR>1,a≠0,(1)当ac≥0时,有△≥0;(2)当ac<0时,有△=(2b)2-4ac>0.(1)、(2)证明了△≥0,故方程ax2+2bx+c=0必有实数根.例2 (1985年宁波初中数学竞赛题)如图21-1,k是实数,O是数轴的原点,A是数轴上的点,它的坐标是正数是数轴上另一点,坐标是x,x<a,且OP2=k·PA·OA.(1) k为何值时,x有两个解x1,x2(设x1<x2);此处无图(2)若k>1,把x1,x2,0,a按从小到大的顺序排列,并用不等号“<”连接.解(1)由已知可得x2=k·(a-x)·a,即x2+kax-ka2=0,当判别式△>0时有两解,这时△ =k2a2+4ka2=a2k(k+4)>0.∵a>0,∴k(k+4)>0,故k<-4或k>0.(2)x1<0<x2<a.例3(1982年湖北初中数学竞赛题)证明不可能分解为两个一次因式之积. 分析若视原式为关于x的二次三项式,则可利用判别式求解.证明将此式看作关于x的二次三项式,则判别式△ =显然△不是一个完全平方式,故原式不能分解为两个一次因式之积.例3 (1957年北京中学生数学竞赛题)已知x,y,z是实数,且x+y+z=a,①②求证:0≤x≤0≤y≤0≤z≤分析将①代入②可消去一个字母,如消去z,然后整理成关于y的二次方程讨论.证明由①得z=a-x-y,代入②整理得此式可看作关于y的实系数一元二次方程,据已知此方程有实根,故有△ =16(x-a)2-16(4x2-4ax+a2)≥0≥0≤x≤同理可证:0≤y≤,0≤z≤.例5设a1,a2,a3,b是满足不等式(a1+a2+a3)2≥2()+4b的实数.求证:a1a2+a2a3+a3a1≥3b.证明由已知可得≤0.设则∵a3是实数,故△≥0,即有(a1+a2)2≥()-2a1a2+4b+r≥2()-(a1+a2)2+4b.于是(a1+a2)2≥()+2b,∴a1a2≥b.同理有a2a3≥b,a3a1≥b.三式相加即得a1a2+a2a3+a3a1≥3b.例6 设a、b、c为实数,方程组与均无实数根.求证:对于一切实数x都有>证明由已知条件可以推出a≠0,因为若a=0,则方程组至少有一个有实数解.进一步可知,方程ax2+bx+c=±x无实根,因此判别式△=<0,于是(b-1)2+(b+1)-8ac<0.即 4ac-b2>1.∴>2.韦达定理的应用例7 (1899年匈牙利数学奥林匹克竞赛题)假设x1、x2是方程x2-(a+d)x+ad-bc=0的根.证明这时是方程的根.证明由已知条件得∴=a3+d3+3abc+3bcd,由韦达定理逆定理可知,、是方程的根.例8已知两个系数都是正数的方程a1x2+b1x+c1=0,①a2x2+b2x+c2=0,②都有两个实数根,求证:(1)这两个实数根都是负值;(2)方程 a1a2x2+b1b2x+c1c2=0 ③③也有两个负根.证明∵方程①有两个实数根,∴>0. ④同理>0. ⑤又a1、b1、c1都是正数,∴>0,<0.由此可知方程①的两根是负值.同样可证方程②的两根也是负值.显然a1c1<4a1c1代入④,得>0,⑥由>0,得>⑦∴△=≥=>0,∴方程③也有两个实数根.又a1a2>0,b1b2>0,c1c2>0,∴>0,<0.由此可知方程③的两个根也是负值.例9(1983年上海初中数学竞赛题)对自然数n,作x的二次方程x2+(2n+1)x+n2=0,使它的根为αn和βn.求下式的值:+解由韦达定理得=而=(n≥3),∴原式=+=例10(1989年全国初中联赛试题)首项不相等的两个二次方程(a-1)x2-(a2+2)x+(a2+2a)=0 ①及(b-1)x2-(b2+2)x+(b2+2b)=0 ②(其中a,b为正整数)有一公共根,求的值.解由题得知,a,b为大于1的整数,且a≠b.设x0是方程①②的公共根,则x0≠1,否则将x=1代入①得a=1,矛盾.得x0代入原方程,并经变形得③及④所以a,b是关于t的方程相异的两根,因此于是 ab-(a+b)=2,即(a-1)(b-1)=3.由或解得或∴例11 (仿1986年全国高中联赛题)设实数a,b,c满足①②求证:1≤a≤9.证明由①得bc=a2-8a+7.①-②得 b+c=所以实数b,c可看成一元二次方程的两根,则有△≥0,即≥0,即(a-1)(a-9)≤0,∴1≤a≤9.例12 (1933年福建初中数学竞赛题)求证:对任一矩形A,总存在一个矩形B,使得矩形A和矩形B的周长和面积比都等于常数k(k≥1).分析设矩形A及B的长度分别是a,b及x,y,为证明满足条件的矩形B存在,只须证明方程组(k,a,b为已知数)有正整数解即可.再由韦达定理,其解x,y可以看作是二次方程z2-k(a+b)z+kab=0的两根.∵k≥1,故判别式△ =k2(a+b)2-4kab≥k2(a+b)2-4k2ab=k2(a-b)2≥0,∴上述二次方程有两实根z1,z2.又z1+z2=k(a+b)>0,z1z2=kab>0,从而,z1>0,z2>0,即方程组恒有x>0,y>0的解,所以矩形B总是存在的.练习二十一1.填空题(1)设方程的两根为m,n(m>n),则代数式的值是_____ __;(2)若r和s是方程x2-px+q=0的两非零根,则以r2+和为根的方程是_____ _____;(3)已知方程x2-8x+15=0的两根可以写成a2+b2与a-b,其中a与b是方程x2+px+q=0的两根,那么|p|-q=__________.2.选择题(1)若p,q都是自然数,方程px2-qx+1985=0的两根都是质数,则12p2+q的值等于( ).(A)404 (B)1998 (C)414 (D)1996(2)方程的较大根为r,的较小根为s,则r-s等于( ).(A) (B)1985 (C) (D)(3)x2+px+q2=0(p≠0)的两个根为相等的实数,则x2-qx+p2=0的两个根必为().(A) 非实数 (B)相等两实数 (C)非实数或相等两实数 (D)实数(4)如果关于方程mx2-2(m+2)x+m+5=0没有实数根,那么关于x的方程(m-5)x2-2(m +2)x+m=0的实根个数为(A)2 (B)1 (C)0 (D)不确定3.(1983年杭州竞赛)设a1≠0,方程a1x2+b2x+c1=0的两个根是1-a1和1+a1;a1x2+b1x+c2=0的两个根是和;a1x2+b1x+c1=0的两根相等,求a1,b1,c1,b2,c2的值.4.常数a是满足1≤a≤50的自然数.若关于x的二次方程(x-2)2+(x-a)2=x2的两根都是自然数,试求a的值.5.设x2、x2为正系数方程ax2+bx+c=0的两根,x1+x2=m,x1·x2=n2,且m,n.求证:(1) 如果m<n,那么方程有不等的实数根;(2) 如果m>n,那么方程没有实数根.6.求作一个以两正数α,β为根的二次方程,并设α,β满足7.(1987年全国初中竞赛题)当a,b为何值时,方程x2+(1+a)x+(3a2+4ab+4b2+2)=0有实根?8.(1985年苏州初中数学竞赛题)试证:1986不能等于任何一个整系数二次方程ax2+bx+c=0的判别式的值.9.(第20届全苏中学生数学竞赛题)方程x2+ax+1=b的根是自然数,证明a2+b2是合数.10.(1972年加拿大试题)不用辅助工具解答:(1)证满足的根在和197.…间;(2)同(1)证<1..练习二十一1.(1)(2)(3)3.B A.3.=a+2±由于x为自然数,可知a为完全平方数即a=1,4,9,16,25,36,49.5.略+2=0.7.因为方程有实根,所以判别式8.设1986=4k+2(其中k是自然数).令△=b2-4ac=4k+2,这时b2能被2整除,因而b也能被2整除.取b=2t,这时b2=4t2,且4t2-4ac=4k+2.这时等式左边的数能被4整除,而右边的数不能被4整除,得出矛盾,故命题得证.10.由,可得x2-198x+1=0,其根。
韦达定理的应用专题(供初三复习用)
韦达定理的应用专题训练★热点专题诠释1.熟练掌握一元二次方程根与系数的关系(韦达定理及逆定理). 2.能够灵活运用一元二次方程根与系数关系确定字母系数的值;求关于两根的对称式的值;根据已知方程的根,构作根满足某些要求的新方程.★典型例题精讲考点1 求待定字母的值或范围【例1】关于x 的一元二次方程2210x x k +++=的实数解是1x 、2x .如果12121x x x x +-<-,且k 为整数,求k 的值.解:由韦达定理,得122x x +=-,121x x k =+. ∵12121x x x x +-<-,∴2(1)1k --+<-,∴2k >-. 又∵原方程有实数解,∴224(1)0k -+≥,0k ≤. ∴20k -<≤.而k 为整数,∴1,0k =-.【方法指导】当运用一元二次方程的根与系数的关系时,前提条件是方程有根,即判别式△≥0. 【例2】(2012·包头)关于x 的一元二次方程25(5)0x mx m -+-=的两个正实数根分别为1x 、2x ,且1227x x +=,则m 的值是( B )A .2B .6C .2或6D .7解:由韦达定理,得12125(5)x x mx x m +=⎧⎨=-⎩ ,消去m ,得121255250x x x x --+=,∴12(5)(5)0x x --= ,∴15x =或25x =.又∵1227x x +=,∴1253x x =⎧⎨=-⎩或1215x x =⎧⎨=⎩.又∵原方程有两个正实根,12125(5)0x x m x x m +=>⎧⎨=->⎩,∴5m >.∴126m x x =+=.【方法指导】对一元二次方程的根与系数的关系要善于从方程(组)的角度来把握.【例3】已知方程22(2)430x m x m ++++=,根据下列条件求m 的取值范围或值. (1)方程两根互为相反数; (2)方程有两个负根;(3)方程有一个正根,一个负根.解:(1)2(2)0430m m -+=⎧⎨+≤⎩,∴2m =-.(2)2[2(2)]4(43)02(2)0430m m m m ⎧+-+≥⎪-+<⎨⎪+>⎩,∴34m >-.(3)430m +<,∴34m <-. 【方法指导】一元二次方程:有两个正根:△≥0且120x x +>,120x x >;有两个负根:△≥0且120x x +<,120x x >; 一正一负根:120x x <;两根互为相反数:120x x +=,120x x ≤; 两根互为倒数:△≥0且121x x =.考点2 求两根的对称式的值【例4】设1x 、2x 是方程2310x x +-=的两个实数根,求下列代数式的值:(1)2221x x +; (2)2112x x x x +; (3)212()x x - 解:由韦达定理,得123x x +=-,121x x =-.(1)2212x x +=21212()2x x x x +-=11(2)2112x x x x +=2121212()2x x x x x x +-=-11 (3)212()x x -=21212()4x x x x +-=13【方法指导】只要代数式符合两根的对称式,经过适当的变形可得到只含“两根和”、“两根积”的代数式,代入求值即可.考点3 利用根与系数的关系及根的定义求代数式的值【例5】已知m 、n 是一元二次方程2210x x --=的两个实数根.求下列代数式的值. (1)222441m n n +--; (2)35m n +.解:(1)∵m 、n 是一元二次方程2210x x --=的两个实数根,∴2m n +=,1mn =-,221n n -=. ∴222441m n n +--=2222()2(2)1m n n n ++-- =222[()2]2(2)1m n mn n n +-+-- =2(42)211++⨯-=13.(2)∵m 、n 是一元二次方程2210x x --=的两个实数根,∴2m n +=,221m m =+.∴35m n +=(21)5m m n ++=225m m n ++ =2(21)5m m n +++=5()2m n ++=522⨯+=10. 【方法指导】此类代数式不属于对称式,仅仅用根与系数的关系是不够的.常常需要结合根的定义,将式中的高次降低,直至出现对称式,再利用根与系数的关系求值.考点4 构造一元二次方程求值【例6】 (1)已知21550a a --=,21550b b --=,求a bb a+的值; (2) 已知22510m m --=,21520nn +-=,且m n ≠,求11m n+的值.解:(1)当a b =时,2a bb a+=; 当a b ≠时,由已知可把a 、b 看作是一元二次方程21550x x --=的两根.∴15a b +=,5ab =-.∴222()2a b a b a b ab b a ab ab ++-+===2152(5)5-⨯--=47-. (2)由21520n n +-=,得22510n n --=,而22510m m --=,m n ≠,∴可把m 、n 看作是一元二次方程22510x x --=的两根.∴52m n +=,12mn =-. ∴11m n +=m nmn+=5-. 【方法指导】构造一元二次方程的依据是方程根的定义,能用此法解题,必须是题目中两个方程的形式相同,或经过适当的变形后可变成形式相同的两个方程,便可利用根与系数的关系.考点5 韦达定理与抛物线的结合 【例7】若1x 、2x 是一元二次方程20(0)ax bx c a ++=≠的两个根,则方程的两个根1x 、2x 和系数a 、b 、c 有如下关系:12b x x a +=-,12cx x a=.把它称为一元二次方程根与系数关系定理.如果设二次函数2(0)y ax bx c a =++≠的图象与x 轴的两个交点A (1x ,0),B (2x ,0).利用根与系数关系定理可以得到A 、B 两个交点间的距离为:AB=12||x x -=21212()4x x x x +-=24()bc a a--=24||b aca -.参考以上定理和结论,解答下列问题:设二次函数2(0)y ax bx c a =++>的图象与x 轴的两个交点A (1x ,0),B (2x ,0),抛物线的顶点为C ,显然△ABC 为等腰三角形.(1)当△ABC 为直角三角形时,求24b ac -的值; (2)当△ABC 为等边三角形时,求24b ac -的值.解:(1)当△ABC 为直角三角形时,过C 作CE ⊥AB 于E ,则AB =2CE .∵抛物线与x 轴有两个交点,∴240b ac ∆=->,则22|4|4ac b b ac -=-.∵0a >,∴2244b ac b acAB --==又∵2244||44ac b b acCE a a--==, ∴224424b ac b aca--=⨯, ∴22442b ac b ac --,∴222(4)44b ac b ac --=,而240b ac ->,∴244b ac -=.(2)当△ABC 为等边三角形时,由(1)知3CE AB =, ∴224344b ac b ac a --=240b ac ->, ∴2412b ac -=.★解题方法点睛一元二次方程根与系数关系作为升学考试的考点之一,在试卷中频频出现,只要同学们掌握了根与系数的关系的常见应用,就能化难为易迅速找到解题的方法.运用中: 1.要善于运用整体思想求两根的对称式的值; 2.已知两根的有关代数式的值求待定字母的值时,一定别忘了判别式的限制作用; 3.要注意从方程(组)的角度看待韦达定理.4.注意由此及彼的思维方法的运用.★中考真题精练1.(2014·玉林)1x 、2x 是关于x 的一元二次方程220x mx m -+-=的两个实数根,是否存在实数m 使12110x x +=成立?则正确的结论是( A ) A .0m =时成立 B . 2m =时成立 C .0m =或2时成立 D .不存在2.(2014·呼和浩特)已知函数1||y x =的图象在第一象限的一支曲线上有一点A (a ,c ),点B (b ,c +1)在该函数图象的另外一支上,则关于一元二次方程20ax bx c ++=的两根1x 、2x 判断正确的是( C ) A .121x x +>,120x x > B .120x x +<,120x x > C .1201x x <+<,120x x >D .12x x +与12x x 的符号都不能确定 3.(2015·泸州)设1x 、2x 是一元二次方程2510x x --=的两实数根,则2212x x +的值为 27 .4.(2015·江西)已知一元二次方程2430x x --=的两根是m ,n ,则22m mn n -+= 25 .5.(2014·德州)方程222210x kx k k ++-+=的两个实数根1x 、2x 满足22124x x +=,则k 的值为 1 .6.(2014·济宁)若一元二次方程2(0)ax b ab =>的两个根分别是1m +与24m -,则ba= 4 . 7.已知关于x 的一元二次方程2(3)10x m x m ++++=.(1)求证:无论m 取何值,原方程总有两个不相等的实数根;(2)若1x 、2x 是原方程的两根,且12||22x x -=,求m 的值.(1)证明:△=2(3)4(1)m m +-+=225m m ++ =2(1)4m ++.无论m 取何值,2(1)440m ++≥>,即0∆>. ∴无论m 取何值,原方程总有两个不相等的实数根. (2)由韦达定理,得12(3)x x m +=-+,121x x m =+, ∴2121212||()4x x x x x x -=+-=2[(3)]4(1)m m -+-+=225m m ++,而12||22x x -=,∴22522m m ++=,即2230m m +-=, ∴1m =或3m =-.8.已知关于x 的方程222(1)0x k x k --+=有两个实数根1x 、2x .(1)求k 的取值范围;(2)若1212||1x x x x +=-,求k 的值. 解:(1)由已知,得0∆≥,即22[2(1)]40k k ---≥,∴12k ≤. (2)∵12k ≤,∴122(1)10x x k +=-≤-<,∴1212||()2(1)x x x x k +=-+=--.而212x x k =,1212||1x x x x +=-, ∴2221k k -+=-,即2230k k +-= , ∴1k =或3k =-.而12k ≤,∴3k =-. 9.请阅读下列材料:问题:已知方程210x x +-=,求一个一元二次方程,使它的根分别是已知方程根的2倍.解:设所求方程的根为y ,则2y x = ,∴2y x =. 把2y x =代入已知方程,得2()1022y y+-=,化简,得2240y y +-=.故所求方程为2240y y +-=.这种利用方程根的代换求新方程的方法,我们称为“换根法”. 请用阅读村料提供的“换根法”求新方程(要求:把所求方程化为一般形式): (1)已知方程220x x +-=,求一个一元二次方程,使它的根分别为己知方程根的相反数,则所求方程为: ;(2)己知关于x 的一元二次方程20(0)ax bx c a ++=≠有两个不等于零的实数根,求一个一元二次方程,使它的根分别是己知方程根的倒数. 解:(1)设所求方程的根为y ,则y x =-,∴x y =-. 把x y =-代入已知方程,得220y y --=,∴所求方程为220y y --=;(2)设所求方程的根为y ,则1y x=(0x ≠), ∴1x y=(0y ≠ ) 把1x y =代入方程20ax bx c ++=,得20a bc y y++=,∴20cy by a ++=.若0c =,有20ax bx +=,∴方程20ax bx c ++=有一个根为0,不符合题意,∴0c ≠.∴所求方程为20cy by a ++=(0c ≠). 10.(2014•孝感)已知关于x的方程22(23)10x k x k --++=有两个不相等的实数根1x 、2x .(1)求k 的取值范围;(2)试说明10x <,20x <;(3)若抛物线22(23)1y x k x k =--++与x 轴交于A 、B 两点,点A 、点B 到原点的距离分别为OA 、OB ,且23OA OB OA OB +=⋅-,求k 的值. 解:(1)由题意,得0∆>,即22[(23)]4(1)0k k ---+> ,解得512k <. (2)∵512k <,∴12230x x k +=-<, 而21210x x k =+>,∴10x <,20x <.(3)由题意,不妨设A (1x ,0),B (2x ,0). ∴OA +OB =1212|||()(23)x x x x k +=-+=--,21212||||1OA OB x x x x k ⋅===+.∵23OA OB OA OB +=⋅-,∴2(23)2(1)3k k --=+-,解得1k =或2k =-.而512k <,∴2k =-. ★课后巩固提高1.已知方程23(4)10x m x m ++++=的两根互为相反数,则m = -42.关于x 的方程222(1)0x m x m +++=的两根互为倒数,则m = 1 .已知12x x ≠,且满足211320x x +-=,222320x x +-=,则12(1)(1)x x -- = 2 .3.(2014·呼和浩特)已知m ,n 是方程2250x x +-=的两个实数根,则23m mn m n -++= 8 . 4.(2015·荆门)已知关于x 的一元二次方程2(3)10x m x m ++++=的两个实数根为1x ,2x ,若22124x x +=,则m 的值为 -1或-3 .5.(2014•襄阳)若正数a 是一元二次方程250x x m -+=的一个根,a -是一元二次方程250x x m +-=的一个根,则a的值是 5 .6.设2210a a +-=,42210b b --=,且210ab -≠,则22531()ab b a a+-+= -32 .7.(2014·扬州)已知a 、b 是方程230x x --=的两个根,则代数式32223115a b a a b ++--+的值为 23 .8.已知方程230x x k ++=的两根之差为5,则k = -4 .9.已知抛物线2y x px q =++与x 轴交于A 、B 两点,且过点(-1,-1),设线段AB 的长为d ,当p = 2 时,2d 取得最小值,最小值为 4 .10.已知1x 、2x 是关于x 的方程22(21)(1)0x m x m ++++=的两个实数根.(1)用含m 的代数式表示2212x x +; (2)当221215x x +=时,求m 的值.解:由韦达定理,得12(21)x x m +=-+,2121x x m =+. ∴2212x x +=21212()2x x x x +-=22[(21)]2(1)m m -+-+ =2241m m +-.(2)由(1)得,224115m m +-=,解得14m =-,22m =. 当4m =-时,原方程无实根;当2m =时,原方程有实根. ∴2m =.11.(2014·鄂州)一元二次方程2220mx mx m -+-=. (1)若方程有两实数根,求m 的范围.(2)设方程两实数根为1x 、2x ,且12||1x x -=,求m . 12.已知方程23730x x -+=的两根1x 、2x (12x x >).求下列代数式的值. (1(2)2212x x -.解:由韦达定理,得1273x x +=,121x x =. (1. (2)∵12x x >,∴120x x ->.∴12x x -=∴2212x x -=1212()()x x x x +-=73=13.(2015·湖北孝感)已知关于x 的一元二次方程:2(3)0x m x m ---=.(1)试判断原方程根的情况;(2)若抛物线2(3)y x m x m =---与x轴交于1(,0)A x ,2(,0)B x 两点,则A ,B 两点间的距离是否存在最大或最小值?若存在,求出这个值;若不存在,请说明理由. 解:(1)22[(3)]4()29m m m m ∆=----=-+ =2(1)8m -+ ∵2(1)m -≥0,∴2(1)80m ∆=-+> ∴原方程有两个不相等的实数根. (2)存在.由题意知1x 、2x 是原方程的两根. ∴12123,x x m x x m +=-=- ∵12||AB x x =-∴222121212()()4AB x x x x x x =-=+- 22(3)4()(1)8m m m =---=-+ ∴当1m =时,2AB 有最小值8 ∴AB有最小值,即AB =14.(2014·荆门)已知函数2(31)21y ax a x a =-+++(a 为常数).(1)若该函数图象与坐标轴只有两个交点,求a 的值; (2)若该函数图象是开口向上的抛物线,与x 轴相交于点A (1x ,0),B (2x ,0)两点,与y 轴相交于点C ,且212x x -=. ①求抛物线的解析式;② 作点A 关于y 轴的对称点D ,连结BC 、DC ,求sin DCB ∠的值.解:(1)①当a =0时,1y x =-+,其图象与坐标轴有两个交点(0,1),(1,0);②当a ≠0且图象过原点时,210a +=,∴12a =-,有两个交点(0,0),(1,0);③当a ≠0且图象与x 轴只有一个交点时,令y =0,则有0∆=,即2[(31)]4(21)0a a a -+-+=.解得a =-1,有两个交点(0,-1),(1,0);综上:a =0或12-或1-时,函数图象与坐标轴有两个交点. (2)①由题意令y =0时,123a x x a ++=,1221a x x a+=.∵212x x -=,∴221()4x x -=,∴21212()44x x x x +-= ,则(24(21)31()4a a a a ++-=,解得113a =-,21a =由题意,得00a >⎧⎨∆>⎩,即20[(31)]4(21)0a a a a >⎧⎨-+-+>⎩, ∴13a =-应舍去.1a =符合题意. ∴抛物线的解析式为243y x x =-+.②令y =0得2430x x -+=,解得1x =或3x =.w W∴A (1,0),B (3,0).由已知可得,D (-1,0),C (0,3). ∴OB =OC =3,OD =1,BD =4. 如图,过D 作DE ⊥BC 于E ,则有∴sin 45DE BD =⋅︒=而CD∴在Rt △CDE 中,sin ∠DCB =DE CD.。
韦达定理在实际问题中的应用
韦达定理在实际问题中的应用韦达定理是一个非常有用的几何定理,它被广泛应用于各种实际问题中,包括工程学、物理学和金融学等领域。
本文将讨论韦达定理的定义、证明和一些实际应用。
一、韦达定理的定义韦达定理是一个三角形内部的一个重要定理,它阐述了三角形内任意一点到三边的距离之积等于这个点到三边的三条距离之积。
图1:韦达定理示意图设三角形ABC的三条边分别为AB、BC和AC,三角形内任意一点P到三条边的距离分别为d1、d2和d3,则根据韦达定理有:AB × PC × d1= BC × PA × d2= AC × PB × d3二、韦达定理的证明韦达定理的证明可以使用相似三角形和割线定理来完成。
首先,我们利用相似三角形证明了韦达定理在三角形底边上的一个特殊情况。
例如,在图1中,我们可以通过相似三角形证明: PB/AB = PC/AC令 d1 = h1、d2 = h2,则 h1/h2 = PB/PC因此,韦达定理的底边情况成立。
接下来,我们可以使用割线定理继续证明韦达定理。
在图1中,我们从点P引一条平行于AB的直线,它与BC和AC的交点分别为Q和R。
根据割线定理,有:PB/PC = BQ/CR又因为三角形PAB和PCQ相似,三角形PAR和PRB相似,因此有以下等式成立:PA/PC = AB/BQRA/RB = AP/PB将上述等式代入割线定理公式中得:PB/PC = AB/BQ = AP/CR = RA/RB = h3/h4因此,有以下等式成立:AB × PC × d1 = BC × PA × d2 = AC × PB × d3 = h1 × h2 × h3/h4由此可知,韦达定理成立。
三、韦达定理在许多实际问题中都有广泛的应用。
以下是一些例子。
1.测量塔的高度韦达定理可以用于测量一座塔的高度,方法是测量一个与塔底线平行的直线段和它到塔顶的距离,以及一个与塔底线垂直的直线段和它到塔顶的距离。
韦达定理初三常考题型
韦达定理初三常考题型1. 韦达定理的基本概念:韦达定理,也称为乘法定理,是指对于一个多项式函数,如果其两个根分别为a和b,那么可以通过这两个根来表示该多项式的一个因式。
具体而言,如果多项式的根为a和b,那么可以将多项式表示为(x-a)(x-b)的形式。
2. 韦达定理的应用:韦达定理在初三数学中常常用于解多项式方程和因式分解。
通过韦达定理,我们可以根据已知的根来确定多项式的因式,进而解出方程或进行因式分解。
在考试中,常常会给出一个多项式的根,然后要求解出该多项式的其他根或进行因式分解。
3. 韦达定理的相关题型:a) 解多项式方程,考题可能给出一个多项式的一个根,然后要求解出该多项式的其他根。
解题思路是使用韦达定理,将已知的根代入(x-a)(x-b)的形式,然后通过求解方程得到其他根。
b) 因式分解,考题可能给出一个多项式的一个根,然后要求进行因式分解。
解题思路是使用韦达定理,将已知的根代入(x-a)(x-b)的形式,然后将多项式进行因式分解。
c) 综合运用,考题可能给出一个多项式的两个根,然后要求解出该多项式的其他根或进行因式分解。
解题思路是使用韦达定理,将已知的根代入(x-a)(x-b)的形式,然后通过求解方程或进行因式分解。
4. 解题步骤:a) 根据题目给出的已知条件,确定多项式的一个或多个根。
b) 使用韦达定理,将已知的根代入(x-a)(x-b)的形式。
c) 根据题目要求,进行方程求解或因式分解,得到其他根或多项式的因式。
总结:韦达定理是初中数学中的一个重要定理,常常在初三的数学考试中出现。
通过韦达定理,我们可以根据已知的根来确定多项式的因式,进而解出方程或进行因式分解。
解题时需要注意题目给出的已知条件,正确运用韦达定理,并根据题目要求进行方程求解或因式分解。
希望以上解答能够帮助到你,如果还有其他问题,请继续提问。
人教九上:专题三--韦达定理的应用(含解析)
专题三韦达定理的应用1.设x1、x2是关于x的方程x2+kx+2=0的两个实数根,求代数式1x1+1x2+k2的值.2.已知关于x的一元二次方程x2−(k+3)x+3k=0.(1)求证:无论k为何值,此方程总有一个根是定值;(2)若直角三角形的一边为4,另两边恰好是这个方程的两根,求k的值.3.已知关于x的一元二次方程x2+(2k−3)x+k2−1=0的两个实数根分别为x1,x2.(1)求k的取值范围;(2)若x1,x2满足x21+x22=1+x1⋅x2,求实数k的值.4.已知关于x的方程x2−2x+m−1=0.有一个实数根是5,求此方程的另一个根以及m的值.5.关于x的一元二次方程x2−6x+k=0,若方程的一个根x1=2,求k的值和方程的另一个根x2.6.若关于x的一元二次方程x2−bx+2=0有一个根是x=1,求b的值及方程的另一个根.7.关于x的一元二次方程x2+2x−3m=0有两个不相等的实数根.(1)求m的取值范围;(2)当m=1时,求方程的根.8.已知x1,x2是关于x的一元二次方程.x2+2x+c=0的两个不相等的实数根.(1)求c的取值范围;(2)若x1x2=−1,直接写出c的值;(3)若x1=−3,直接写出c的值.9.若关于x的一元二次方程x2+4x+m−1=0有两个相等的实数根,求m的值及方程的根.10.已知3,t是方程2x2+2mx−3m=0的两个实数根,求m及t的值.11.若关于x的一元二次方程x2+bx−6=0有一个根是x=2,求b的值及方程的另一个根.12.已知关于x的一元二次方程x2−(m+1)x+m+6=0的其中一个根为3.求m的值及方程的另一个根.13.关于x的一元二次方程x2−8x+m=0有一个根是x=3,求m的值及方程的另一个根.14.已知关于x的方程x2−kx+12=0的一个根为3,求k的值及它的另一个根.15.若关于x的一元二次方程x2−4x+m+3=0有两个相等的实数根,求m的值及此方程的根.16.关于x的一元二次方程x2+2x−m=0有两个不相等的实数根.(1)求m的取值范围:(2)当m=8时,求方程的根.17.已知:关于x的方程x2+mx−8=0有一个根是−4,求另一个根及m的值.18.已知x=−1是一元二次方程x2−2x+c=0的一个根,求c的值及方程另一个根.参考答案1.0【分析】利用根与系数的关系求出x1+x2=−k,x1x2=2,然后根据分式的加减对原式进行变形,整体代入计算即可求出答案.【详解】解:∵x1、x2是关于x的方程x2+kx+2=0的两个实数根,∴x1+x2=−k,x1x2=2,又∵边长k>0,∴k=7,综上所述,k的值为5或7.3.(1)k≤1312(2)k=1【分析】本题主要考查了一元二次方程根的判别式,一元二次方程根与系数的关系,解一元二次方程,对于一元二次方程ax2+bx+c=0(a≠0),若Δ=b2−4ac>0,则方程有两个不相等的实数根,若Δ=b2−4ac=0,则方程有两个相等的实数根,若Δ=b2−4ac<0,则方程没有实数根,若x1,x2是该方程的两个实数根,则x1+x2=−b,x1x2=c a.a(1)根据题意可得Δ=(2k−3)2−4(k2−1)≥0,据此可得答案;(2)根据根与系数的关系得到x1+x2=−(2k−3),x1⋅x2=k2−1,再由已知条件和完全平方公式的变形得到(2k−3)2−3(k2−1)=1,解方程即可得到答案.【详解】(1)解:∵关于x的一元二次方程x2+(2k−3)x+k2−1=0的两个实数根分别为x1,x2,∴Δ=(2k−3)2−4(k2−1)≥0,∴4k2−12k+9−4k2+4≥0,∴k≤13;12(2)解:∵关于x的一元二次方程x2+(2k−3)x+k2−1=0的两个实数根分别为x1,x2,∴x1+x2=−(2k−3),x1⋅x2=k2−1,∵x21+x22=1+x1⋅x2,∴x21+x22−x1⋅x2=1∴(x1+x2)2−3x1x2=1,∴(2k−3)2−3(k2−1)=1,∴4k2−12k+9−3k2+3=1,∴k2−12k+11=0解得:k1=1,k2=11(舍去)∴k=1.4.x2=−3;m=−14.【分析】本题考查了一元二次方程的解以及根与系数的关系,代入x=5可求出m的值,再利用两根之和等于−b,即可求出方程的另一个根,解题的关键是熟练掌握一元二次方程根与系数的关系.a【详解】解:当x=5时,原方程为52−2×5+m−1=0,解得:m=−14,设方程的另一个实数根为x2,∵5+x2=2,∴x2=−3,∴方程的另一个根为−3,m的值为−14.5.k=8,x2=4【分析】利用根与系数的关系表示出两根之和与两根之积,由一个根为2,求出另一根,进而确定出k的值.【详解】设另一根为x2,∴2+x2=6,2x2=k,则x2=4,k=8,则6∴1把则7(2)((【详解】(1)解:∵一元二次方程有两个不相等的实数根,∴Δ=b2−4ac=4−4×1×(−3m)>0,解得:m>−1,3(2)当m=1时,方程为x2+2x−3=0,(x+3)(x−1)=0,解得x1=−3,x2=1.8.(1)c<1(2)c=−1(3)c=−3【分析】本题考查了根与系数的关系、根的判别式以及一元二次方程的解.(1)根据方程的系数,结合根的判别式Δ<0,可得出关于c的一元一次不等式,解之即可得出c的取值范围;(2)利用根与系数的关系,可得出x1x2=c,结合x1x2=−1,即可得出c的值;(3)代入x1=−3,即可求出c的值.【详解】(1)解:∵关于x的一元二次方程x2+2x+c=0有两个不相等的实数根,∴Δ=22−4×1×c>0,解得:c<1,∴c的取值范围是c<1;(2)解:∵x1,x2是关于x的一元二次方程x2+2x+c=0的两个不相等的实数根,∴x1x2=c,又∵x1x2=−1,∴c=−1;(3)解:将x1=−3代入原方程得9+2×(−3)+c=0,解得:c=−3,∴若x1=−3,则c的值为−3.9.m=5,x1=x2=−2【分析】本题考查一元二次方程根的判别式及解法,根据当Δ=0时,方程有两个相等的实数根求得m 值,进而解一元二次方程即可求解.【详解】解:∵一元二次方程x2+4x+m−1=0有两个相等的实数根,∴Δ=42−4(m−1)=0,则m=5,∴x2+4x+4=0,解得x1=x2=−2.10.t=3,m=−6【分析】利用根与系数的关系,建立二元一次方程组进行求解.【详解】解:∵3,t是方程2x2+2mx−3m=0的两个实数根,∴3+t=−2m2,3t=−3m2,3+t=−m①2t=−m②,∴3+t=2t,解得:t=3,∴m=−2×3=−6,答:t=3,m=−6.【点睛】本题考查了根与系数的关系,二元一次方程组,解题的关键是能利用根与系数的关系建立二元一次方程组.11.b=1,方程的另一个根为−3【分析】本题考查了一元二次方程的根及解一元二次方程.将x=2代入x2+bx−6=0求得b的值,然后解方程组即可.【详解】∵x=2是方程x2+bx−6=0有一个根,∴4+2b−6=0,∴b=1当b=1时,原方程为x2+x−6=0,解得x1=2,x2=−3.∴b=1,方程的另一个根为−3.12.m=6,另一个根为4【分析】把x=3代入方程求出m的值,然后解方程求出另一个根即可.【详解】解:把x=3代入x2−(m+1)x+m+6=0,得9−3(m+1)+m+6=0,解得m=6,把m=6代入原方程得x2−7x+12=0,∴(x−3)(x−4)=0,∴x1=3,x2=4,即方程的另一个根为4.【点睛】本题考查了一元二次方程的解,以及一元二次方程的解法,熟练掌握一元二次方程的解法是解答本题的关键.13.m的值为15,另一根为5【分析】本题考查一元二次方程的根与系数的关系,掌握ax2+bx+c=0(a≠0)的两根为x1,x2,则有x1+x2=−ba ,x1x2=ca是解题的关键.【详解】解:设另一根为a,则a+3=8,3a=m,解得:a=5,m=15,∴m的值为15,另一根为5.14.k=7,另一根为4【分析】由于一根为3,把x=3代入方程即可求得k的值.然后根据两根之积即可求得另一根.【详解】解:∵方程x2−kx+12=0的一个根为3,∴32−k×3+12=0,解得k=7,设另一根为x,∵3x=12,∴x=4,∴另一根为4.【点睛】本题考查了一元二次方程的解和根与系数的关系,解题时可利用根与系数的关系使问题简化,难度不大.15.m=1,x1=x2=2【分析】本题考查的是一元二次方程根的判别式的应用以及解一元一次方程,根据Δ=0时,方程有两个相等的两个实数根列出方程,解方程求出m,利用因式分解法解方程求出方程的根.【详解】解:∵关于x的方程x2−4x+m+3=0有两个相等的实数根,∴△=b2−4ac=(−4)2−4×1×(m+3)=4−4m=0,解得,m=1,∴方程为x2−4x+4=0,∴(x−2)2=0解得:x1=x2=2.16.(1)m>−1(2)x1=−4,x2=2【分析】本题考查一元二次方程根的判别式及解一元二次方程,对于一元二次方程ax2+bx+c=0(a≠0),判别式Δ>0时方程有两个不相等的实数根;Δ=0时方程有两个相等的实数根;Δ<0时方程没有实数根;熟练掌握一元二次方程根与判别式的关系及解一元二次方程的方法是解题关键.(1)根据方程x2+2x−m=0有两个不相等的实数根可得判别式Δ>0,列不等式求出m的取值范围即可;(2)把m=8代入x2+2x−m=0,利用因式分解法解一元二次方程即可.【详解】(1)解:∵关于x的一元二次方程x2+2x−m=0有两个不相等实数根,∴Δ=b2−4ac=22−4×1×(−m)>0,解得:m>−1.∴m的取值范围为m>−1.(∴∴x17∴∴18∴1∴c设另一个根为x2,则−1⋅x2=−3,∴x2=3,∴c的值是−3,另一个根是x=3.。
韦达定理应用ppt课件.pptx
x2 4 +y2=1
(2)设过点 A 的动直线 l 与 E 相交于 P,Q 两点,当△OPQ 的面积最大时,求 l 的方程.
过点A的动直线l与E相交于P,Q两点
设直线y=kx-2, 代入x2+4y2=4, 整理得:(1+4k2)x2-16kx+12=0
△ =……>0,x1+x2=……,x1x2=……
题干中的条件2:已知曲线C上A、B两点满足
题干中的条件3:其它
21、已知椭圆
x2 a2
y2 b2
1a
b
0 ,动直线
l:
y
kx
m 与椭圆只有一个公共点。
(1)求 b2
m2 a2k2
的值;
(2)矩形 ABCD 各边所在直线均与椭圆只有一个公共点,且 A、B 在直线 l 上,求矩形 ABCD
的面积 S 的最大值。
韦达定理代入:
解得SAOB1 2 NhomakorabeaAB d
题干中的条件2:已知曲线C上A、B两点满足
4.已知动圆 M 过定点 E(2,0),且在 y 轴上截得的弦 PQ 的长为 4.
(1)求动圆圆心 M 的轨迹 C 的方程;
r2=(x-2)2+y2=4+x2
y2=4x
(2)设 A,B 是轨迹 C 上的两点,且 · =-4,F(1,0),记 S=S△OFA+S△OAB,求 S 的最小值.
O
4、P 是抛物线 y2=2x 上的动点,点 B、C 在 y 轴上,圆(x-1)2+y2=1 内切于△PBC,求面积 △PBC 的最小值。
P y
B x
O
C
A、B是y2=4x上两点:
A
最新韦达定理(根与系数的关系)六大应用
{
△>0 X1X2<0
2
{
△≥0
X1X2>0
X1+X2>0
{
△≥0 X 1X 2> 0
X1+X2<0
例6 方程 mx 2mx m 1 0(m 0) 有一个正根,一个负根,求m的取值范围。
例6 方程 mx 2mx m 1 0(m 0) 有一个正根,一个负根,求m的取值范围。
新方程的两根之和为 新方程的两根之积为
③已知其中一根,求另一根与参数
例3 如果-1是方程 2 x - x + m = 0 的一个根,则另一个根是___m=____。
2
④已知两根关系,求参数(或取值范围 ) 2 x 已知方程 kx k 2 0 的两个实数根
例4
2 2 x x 是 1, 2 且 x1 x2 4 求k的值。
3. x1 - x2 = ( x1 - x2 ) = ( x1 + x2 ) - 4 x1 x2
将所求的代数式化成含两根之和,两根之积的形式,再整体代入.
2 2
②已知两根,求作新的方程
以 x1 , x2为两根的一元二次方(二次项系数为1)为:
x ( x1 x2 ) x x1 x2 0
解:由根与系数的关系得 X1+X2=-k, X1X2=k+2
又
X12+ X2 2 = 4
即(X1+ X2)2 -2X1X2=4
练
已知方程 x -3x + k +1 = 0 的根的平 方和小于5,求k的取值范围。
2
⑤ 已知两根和与积,求这两个数
例6 已知两个数的和是1,积是-2,求这两个数
解析几何专题:方法篇之韦达定理
解析几何专题之韦达定理一、 基本应用 直线与圆锥曲线相交相关的弦长、弦的中点、垂直等问题 例1、椭圆122=+byax 与直线01=-+y x 相交于A 、B ,点C 是AB 的中点,若22=AB ,OC 的斜率为22,求椭圆的方程。
例2、已知椭圆E 的中心在坐标原点O ,焦点在x 轴上,离心率23=e ;直线l :01=++y x 与椭圆E 交于Q P ,两点,且OQ OP ⊥,求椭圆E 的方程。
例3.已知直角OAB ∆的直角顶点O 为原点,A 、B 在抛物线()022>=p px y 上。
(1)分别求A 、B 两点的横坐标之积,纵坐标之积; (2)求证:直线AB 经过一个定点,求出该定点的坐标;(3)过定点(,0)M p 任作抛物线的一弦PQ ,求证:2211M P M Q+为定值。
二、综合应用 直线与椭圆相交问题:同一条直线上的线段之比问题、三角形及四边形面积问题、三点共线、定值定直线等问题4.如图,已知点(1,0)F ,直线:1l x =-,P 为平 面上的动点,过P 作直线l 的垂线,垂足为点Q ,且Q P Q F F P F Q ⋅=⋅ 。
(Ⅰ)求动点P 的轨迹C 的方程;(Ⅱ)过点F 的直线交轨迹C 于,A B 两点,交直线l 于点M ,已知1M A AF λ= ,2M B BF λ=, 求12λλ+的值。
例5.如图,已知椭圆22221(0)xya b a b+=>>的左右焦点分别为12,F F ,A 、B 、C 是椭圆上的三个动点,且111222,AF F B AF F C λλ==,若已知椭圆的离心率2e =。
(1)求12λλ+的值;(2)求△ABC 与△12AF F 的面积之比的最小值。
例6.如图,设抛物线214C y mx =:(0)m >的准线与x 轴交于1F ,焦点为2F ;以12F F 、为 焦点,离心率12e =的椭圆2C 与抛物线1C 在x 轴上方的一个交点为P 。
韦达定理在解析几何中的应用
解:设 A(x1,y1),B(x2,y2),直线 L 的方程为 y=kx-1. 联立方程组 y=kx-1 和 y=x2 2
消去 y 得
x2+2kx-2=0. 因 4k 2 8 0 ,所以直线与曲线有两不同交点 由韦达定理得 x1+x2=-2k, x1x2= -2.
y1 y2 kx1 1 kx2 1 x1 x2 2 k k 1 又x x x x2 x1 x2 1 2 1
所以: (3 2 y1 )(3 2 y2 ) y1 y2 0 ,整理得: 5 y1 y2 6( y1 y2 ) 9 0 又由 x2+y2+x-6y+m=0 与 x+2y-3=0 联立消去 x 得: 6m 2 y y 5 y 20 y 6 m 0 ,由韦达定理得: y1 y2 4 , 1 2 5 6m 5 6 4 9 0 所以: ,解得 m 9 5
韦达定理在解析几何 中的应用
p 2
一.求弦长
2 y 例1.已知直线L的斜率为2,且过抛物线 2 px
的焦点,求直线L被抛物线截得的弦长。
p 解:易知直线 L 的方程为 y=2(x- 2 ). 联立方程组 p y2=2px 和 y=2(x- 2 ) 消去 x 得 y2-py-p2=0.∵△=5p2>0,
则直线 L 的方程为 y = x-1.
作业 3:求 m 的值,使圆 x2+y2+x-6y+m=0 与直线 x+2y-3=0 的两个交点 A、B 满足 OA⊥OB.
解析:设 A( x1 , y1 ), B( x2 , y2 ) 因为 OA
y y OB ,所以: x x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
韦达定理的应用一.综述直线与圆锥曲线相交问题是解析几何综合题中最典型问题,主要考查二次方程韦达定理的应用.一般地解题的框架为:1、直线方程代入曲线方程,判别式保证有两解,准备好韦达定理; 2、主要目标分析,合理转化;3、韦达定理代入,整理求解.二.例题精讲破解规律例1. 已知抛物线C:y2=2px(p>0)的焦点为F,过点F的直线l1与C交于A,B两点,设A(x1,y1),B(x2,y2),证明:x1x2=p24,y1y2=−p2;点评:当直线恒过x轴上的点时,可以考虑设直线方程为x=my+n,这样联立方程消去x比较容易.规律总结:直线与圆锥曲线相交问题,可以利用韦达定理设而不求来解决问题.要注意联立后的二次方程判别式是否为正.现学现用1: 椭圆C:x 2a +y2b=1(a>b>0)离心率为√63,F1,F2是椭圆的左、右焦点,以F1为圆心,√3+1为半径的圆和以F2为圆心、√3−1为半径的圆的交点在椭圆C上.(1)求椭圆C的方程;(2)设椭圆C的下顶点为A,直线l:y=kx+32与椭圆C交于两个不同的点M,N,是否存在实数k使得以AM,AN为邻边的平行四边形为菱形?若存在,求出k的值;若不存在,说明理由.(),0n例2. 已知双曲线与双曲线的渐近线相同,且经过点.(1)求双曲线的方程;(2)已知双曲线的左右焦点分别为,直线经过,倾斜角为,与双曲线交于两点,求的面积.点评:三角形面积问题,常转化为求弦长和点到直线距离.有些题目也可借助坐标轴将三角形分割.规律总结:圆锥曲线中的弦长、面积等问题,常将直线与圆锥曲线方程的联立,利用韦达定理和弦长公式来处理.现学现用2: 已知椭圆的中心在原点,焦点为F 1(−2√3,0),F 2(2√3,0),且长轴长为8.(Ⅰ)求椭圆的方程;(Ⅱ)直线y =x +2与椭圆相交于A ,B 两点,求弦长|AB|.例3:已知双曲线的左右两个顶点是,,曲线上的动点关于轴对称,直线与交于点, (1)求动点的轨迹的方程;(2)点,轨迹上的点满足,求实数的取值范围.()2222:10,0x y C a b a b -=>>22162y x -=()2,3C C 12F F 、l 2F 34πl C ,A B 1F AB ∆22:14x C y -=1A 2A C ,P Q x 1A P 2A Q M M D ()0,2E D ,A B EA EB λ=u u u r u u u rλ规律总结:牵涉到共线线段的长度比,或三角形面积比问题,可以转化为坐标的比值,结合韦达定理消去坐标参数.也可以直接利用求根公式,结合坐标比值求解,现学现用3: 已知双曲线的离心率为2,右顶点为.(1)求双曲线的方程;(2)设直线与轴交于点,与双曲线的左、右支分别交于点,且,求的值.三.课堂练习 强化技巧1. 已知椭圆过,且离心率为.(1)求椭圆的方程;(2)过右焦点的直线与椭圆交于两点, 点坐标为,求直线的斜率之和.2. 已知椭圆C 的中心在原点,焦点在x 轴上,左、右焦点分别为F 1,F 2,且|F 1F 2|=2,点(1,)在椭圆C 上. (1)求椭圆C 的方程;(2)过F 1的直线l 与椭圆C 相交于A ,B 两点,且△AF 2B 的面积为,求以F 2为圆心且与直线l 相切的圆的方程。
3. 已知是圆: 上的动点, 在轴上的射影为,点是线2222:1(0,0)x y C a b a b-=>>()1,0C y x m =-+y P C ,Q R 2PQ PR=m 2222:1(0)x y C a b a b +=>>31,2E ⎛⎫ ⎪⎝⎭12e =C F l ,A B D ()4,3,DA DB 327P C 224x y +=P x P 'M段的中点,当在圆上运动时,点形成的轨迹为曲线.(1)求曲线的方程;(2)经过点的直线与曲线相交于点, ,并且,求直线的方程.四.课后作业 巩固内化1. 已知过抛物线的焦点,斜率为的直线交抛物线于两点.(1)求线段的长度;(2) 为坐标原点, 为抛物线上一点,若,求的值.2. 已知椭圆经过点,离心率为. (Ⅰ)求椭圆的方程;(Ⅱ)直线与椭圆交于两点,线段的垂直平分线交轴于点,且,求直线的方程.3. 已知F 1,F 2为椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,点P (1,32)在椭圆EPP 'P C ME E ()02A ,l E C D 35AC AD =u u u v u u u vl 28y x=()()112212,,,()A x y B x y x x <AB O C +OC OA OB λ=u u u ru u u ru u u rλ2222:1(0)x y C a b a b +=>>1,2⎛⎫ ⎪ ⎪⎝⎭2C l C ,A B AB y 30,2P ⎛⎫ ⎪⎝⎭AB =l上,且|PF 1|+|PF 2|=4. (1)求椭圆E 的方程;(2)过F 1的直线l 1,l 2分别交椭圆E 于A ,C 和B ,D ,且l 1⊥l 2,问是否存在常数λ,使得1|AC |,λ,1|BD |成等差数列?若存在,求出λ的值,若不存在,请说明理由.4. 如图,已知椭圆: , 其左右焦点为及,过点的直线交椭圆于两点,线段的中点为, 的中垂线与轴和轴分别交于两点,且、、构成等差数列.(1)求椭圆的方程;(2)记的面积为, (为原点)的面积为,试问:是否存在直线,使得?说明理由.5. 设抛物线的顶点在坐标原点,焦点在轴正半轴上,过点的直线交抛物线于两点,线段的长是, 的中点到轴的距离是.C 22221(0)x y a b a b+=>>()11,0F -()21,0F 1F C ,A B AB G AB x y ,D E 1AF 12F F 2AF C 1GF D ∆1S OED ∆O 2S AB 1212S S =F x F P Q ,PQ 10PQ y 4(1)求抛物线的标准方程;(2)过点作斜率为的直线与抛物线交于两点,直线交抛物线于,①求证: 轴为的角平分线; ②若交抛物线于,且,求的值.6. 椭圆的左、右焦点分别是,且点在上,抛物线与椭圆交于四点(I )求的方程;(Ⅱ)试探究坐标平面上是否存在定点,满足?(若存在,求出的坐标;若不存在,需说明理由.)7 已知抛物线,过点的动直线与相交于两点,抛物线在点和点处的切线相交于点.()-10H ,0)t t <(,A B AF M x AHM ∠BF N 6AF BF FMFN+=t ()2222:10x y a b a bΓ+=>>())12,F F )PΓ2y xm =+Γ.,,,.A B C D ΓQ QA QB QC QD ===Q 2:4C x y =()()0.0P m m >l C ,A B C A B Q(Ⅰ)写出抛物线的焦点坐标和准线方程; (Ⅱ)求证:点在直线上;韦达定理的应用答案一.综述直线与圆锥曲线相交问题是解析几何综合题中最典型问题,主要考查二次方程韦达定理的应用.一般地解题的框架为:1、直线方程代入曲线方程,判别式保证有两解,准备好韦达定理; 2、主要目标分析,合理转化;3、韦达定理代入,整理求解.二.例题精讲 破解规律例1. 已知抛物线C:y 2=2px(p >0)的焦点为F ,过点F 的直线l 1与C 交于A ,B 两点,设A(x 1,y 1),B(x 2,y 2),证明:x 1x 2=p 24,y 1y 2=−p 2;分析:设直线l 1的方程为:x =my +p2,与抛物线联立得y 2−2pmy −p 2=0,利用韦达定理即可证得; 答案:见解析解析:设直线l 1的方程为:x =my +p2, 联立方程{x =my +p2y 2=2px化简得:y 2−2pmy −p 2=0,易知所以y 1y 2=−p 2,而x 1x 2=y 122p ⋅y 222p =p 24.点评:当直线恒过x 轴上的点时,可以考虑设直线方程为x =my +n,这样联立方程消去x 比较容易.规律总结:直线与圆锥曲线相交问题,可以利用韦达定理设而不求来解决问题.要Q y m =->0∆(),0n注意联立后的二次方程判别式是否为正.现学现用1: 椭圆C:x 2a 2+y 2b 2=1(a >b >0)离心率为√63,F 1,F 2是椭圆的左、右焦点,以F 1为圆心,√3+1为半径的圆和以F 2为圆心、√3−1为半径的圆的交点在椭圆C 上.(1)求椭圆C 的方程;(2)设椭圆C 的下顶点为A ,直线l:y =kx +32与椭圆C 交于两个不同的点M,N ,是否存在实数k 使得以AM,AN 为邻边的平行四边形为菱形?若存在,求出k 的值;若不存在,说明理由. 解析: (1)由题知,解得,故,椭圆的方程为(2)由题意知k ≠0,联立方程{y =kx+32x 23+y 2=1,整理得,Δ=81k 2−4(1+3k 2)⋅154>0(化简可得),①设,则,x 1x 2=154(1+3k 2),设MN 中点为H ,由,知,所以点H 的坐标为H(−9k2+6k 2,32+6k 2),因为|AM |=|AN |,所以AH ⊥MN , 又直线AM,MN 斜率均存在,所以k AH ⋅k MN =−1. 于是k AH ⋅k MN =32+6k 2+1−9k 2+6k 2−0⋅k =−1,解得,即k =±√63,将k =±√63代入①,满足Δ>0.故存在k 使得以AM,AN 为邻边的平行四边形可以是菱形,k 值为±√63.例2. 已知双曲线与双曲线的渐近线相同,且经过点.(1)求双曲线的方程;()2222:10,0x y C a b a b -=>>22162y x -=()2,3C(2)已知双曲线的左右焦点分别为,直线经过,倾斜角为,与双曲线交于两点,求的面积.分析:第二问, 将直线方程代入曲线方程,化简后写出韦达定理,利用弦长公式求出弦长,点到直线距离求出高,进而得到面积.答案:(1)(2) 解析:(1)设所求双曲线方程为,代入点得,即所以双曲线方程为,即. (2).直线的方程为.设 联立得 满足 由弦长公式得点到直线的距离所以 点评:三角形面积问题,常转化为求弦长和点到直线距离.有些题目也可借助坐标轴将三角形分割.规律总结:圆锥曲线中的弦长、面积等问题,常将直线与圆锥曲线方程的联立,利用韦达定理和弦长公式来处理.现学现用2: 已知椭圆的中心在原点,焦点为F 1(−2√3,0),F 2(2√3,0),且长轴长为8.(Ⅰ)求椭圆的方程;(Ⅱ)直线y =x +2与椭圆相交于A ,B 两点,求弦长|AB|.解析:(Ⅰ)∵椭圆的中心在原点,焦点为F 1(−2√3,0),F 2(2√3,0), 且长轴长为8,∴c =2√3,a =4,∴b 2=a 2−c 2=4,C 12F F 、l 2F 34πl C ,A B 1F AB ∆2213y x -=1F AB S ∆=C 2262y x λ-=()2,3223262λ-=12λ=-C 221622y x -=-2213y x -=()()1220,20F F -,,AB ()2y x =--()()1122,,,A x y B x y ()222 13y x y x =---=⎧⎪⎨⎪⎩22470x x +-=0.∆>AB =6==()120F -,:20AB x y +-=d ==111622F AB S AB d ∆=⋅=⋅⋅=故要求的椭圆的方程为x 216+y 24=1.(Ⅱ)把直线y =x +2代入椭圆的方程化简可得5x 2+16x =0,∴x 1+x 2=−165,x 1⋅x 2=0, ∴弦长|AB|=√1+k 2⋅|x 1−x 2|=√2⋅√(x 1+x 2)2−4x 1⋅x 2=√2⋅√(165)2−0=16√25例3:已知双曲线的左右两个顶点是,,曲线上的动点关于轴对称,直线与交于点,(1)求动点的轨迹的方程;(2)点,轨迹上的点满足,求实数的取值范围. 分析:(1)借助题设条件运用两个等式相乘建立等式;(2)依据题设条件运用直线与椭圆的位置关系建立二次方程,运用判别式及根与系数的关系建立不等式,从而求出范围答案:(1);(2) . 解析:(1)由已知 ,设则直线 ,直线, 两式相乘得,化简得,即动点的轨迹的方程为;(2)过的直线若斜率不存在则或3,设直线斜率存在,, 22:14x C y -=1A 2A C ,P Q x 1A P 2A Q M M D ()0,2E D ,A B EA EB λ=u u u r u u u rλ2214x y +=1,33⎡⎤⎢⎥⎣⎦()()122,0,2,0A A-,.,22P t Q t ⎛⎫⎛- ⎪ ⎪ ⎪⎝⎭⎝⎭)1:2A P y x =+)2:2A Q y x =-()22144y x -=-2214xy +=M D 2214x y +=()0,2E 13λ=k ()()1122,,,A x y B x y ()222221416120440y kx k x kx x y ⎧⎨⎩=+⇒+++=+-=则由(2)(4)解得代入(3)式得 ,化简得,由(1)解得代入上式右端得,,解得, 综上实数的取值范围是.规律总结:牵涉到共线线段的长度比,或三角形面积比问题,可以转化为坐标的比值,结合韦达定理消去坐标参数.也可以直接利用求根公式,结合坐标比值求解,现学现用3: 已知双曲线的离心率为2,右顶点为.(1)求双曲线的方程;(2)设直线与轴交于点,与双曲线的左、右支分别交于点,且,求的值.解析:(1)∵,∴(2)设点横坐标为, 点横坐标为. 平行线分线段成比例定理:联立: 得: ,()()()()122122120116214123144k x x k x x k x x λ∆≥+=-+=⎧⎪⎪⎨+=⎪⎪⎪⎪⎩12,x x ()2222161214141k k kλλ-⎛⎫⋅= ⎪++⎝⎭+()22314641k λλ⎛⎫=+ ⎪⎝⎭+0∆≥234k ≥()2311641λλ<≤+133λ<<1,33⎡⎤⎢⎥⎣⎦2222:1(0,0)x y C a b a b-=>>()1,0C y x m =-+y P C ,Q R 2PQ PR=m 2,1,2,e a c b ====22:13y C x -=Q Q x P P x 2Q Px PQ PRx ==22{33y x m x y =-+-=222230x mx m +--=,则 或(舍)与实际情况不符故三.课堂练习 强化技巧1. 已知椭圆过,且离心率为. (1)求椭圆的方程;(2)过右焦点的直线与椭圆交于两点, 点坐标为,求直线的斜率之和.【答案】(1);(2)的斜率之和为2.解析(Ⅰ)解:由已知得解之得,a =2,b,c =1.所以椭圆方程为: (Ⅱ)设,由(1)得,设直线的方程为与椭圆联立得 消去x 得, 所以① 所以 ② 将①带入②,化简得:,P Qx =2QP x x ===21,1m m ==1m =-1m =2222:1(0)x y C a b a b +=>>31,2E ⎛⎫ ⎪⎝⎭12e =C F l ,A B D ()4,3,DA DB 22143x y +=,DA DB 222221911,,42c a b c a b a +===+22143x y +=()()1122,,,A x y B x y ()1,0F l ()1y k x =-221{ 43x y y kx k+==-()222223484120k x k x k +-+-=221212228412,4343k k x x x x k k -+==++121212121233333333=2444444DA DB y y kx k kx k k k k k k x x x x x x --------+=+=+++------()()()1212121281=233=2334+1+14+6x x k k k k x x x x x x ⎛⎫-+-++- ⎪---⎝⎭2DA DB k k +=当直线斜率不存在时,A (1, -),B (1, ),所以的斜率之和为2.2. 已知椭圆C 的中心在原点,焦点在x 轴上,左、右焦点分别为F 1,F 2,且|F 1F 2|=2,点(1,)在椭圆C 上. (1)求椭圆C 的方程;(2)过F 1的直线l 与椭圆C 相交于A ,B 两点,且△AF 2B 的面积为,求以F 2为圆心且与直线l 相切的圆的方程。