1-2-3-2数学证明导学案

合集下载

新人教A版必修1高中数学2.1.2-3指数函数及其性质导学案

新人教A版必修1高中数学2.1.2-3指数函数及其性质导学案

高中数学 2.1.2-3指数函数及其性质导学案 新人教A 版必修1学习目标:深入学习指数函数的性质学习重点:能解决与指数函数有关的综合应用问题 学习过程:一、 关于定义域:求下列函数的定义域 1、1621-=xy2、191-⎪⎭⎫ ⎝⎛=xy3、x y 416-=二、 关于值域: 1、求下列函数的值域(1)3121+⎪⎭⎫ ⎝⎛=x y(2)xy ⎪⎭⎫⎝⎛=32(3)212225.0+-=x x y(4)231-=+x y ,[]0,2-∈x (5)121-=x y2、函数)1,0(≠>=a a a y x 在[]2,1上的最大值比最小值大2a ,则a 的值为______三、 关于单调性:1、 求下列函数的单调区间 (1)12.01-=xy(2)322-+=x x a y )(1,0≠>a a2、 已知x x a a a a -++>++122)2()2(,则x 的取值范围是_____________四、 关于奇偶性 1、判断函数xx f 2121)(+-=的奇偶性2、已知函数x x eaa e x f +=)( )0(>a 是R 上的偶函数,求a 的值 一、选择题1、 若指数函数y a x =+()1在()-∞+∞,上是减函数,那么( ) A 、 01<<a B 、 -<<10a C 、 a =-1 D 、 a <-12、已知310x =,则这样的( )A 、 存在且只有一个B 、 存在且不只一个C 、 存在且x <2D 、 根本不存在 3、函数f x x ()=-23在区间()-∞,0上的单调性是( ) A 、 增函数 B 、 减函数C 、 常数D 、 有时是增函数有时是减函数4、下列函数图象中,函数y a a a x =>≠()01且,与函数y a x =-()1的图象只能是( )y y y yO x O x O x O xA B C D11115、函数f x x ()=-21,使f x ()≤0成立的的值的集合是( )A 、 {}x x <0B 、 {}x x <1C 、 {}x x =0D 、 {}x x =16、函数f x g x x x ()()==+22,,使f x g x ()()=成立的的值的集合( ) A 、 是φ B 、 有且只有一个元素 C 、 有两个元素 D 、 有无数个元素7、若函数(1)x y a b =+-(0a >且1a ≠)的图象不经过第二象限,则有 ( )A 、1a >且1b <B 、01a <<且1b ≤C 、01a <<且0b >D 、1a >且0b ≤ 8、F(x)=(1+)0)(()122≠⋅-x x f x是偶函数,且f(x)不恒等于零,则f(x)( )A 、是奇函数B 、可能是奇函数,也可能是偶函数C 、是偶函数D 、不是奇函数,也不是偶函数 二、填空题9、 函数y x =-322的定义域是_________。

高一下学期数学必修二导学案(总体离散程度的估计)

高一下学期数学必修二导学案(总体离散程度的估计)

9.2.4 总体离散程度的估计【学习目标】1.会求样本的标准差、方差;2.理解离散程度参数的统计含义;3.会应用相关知识解决实际统计问题.【知识梳理】一、请同学们预习课本9.2.4节(第209-213页),完成下列知识梳理。

1、预习课本中的问题3,回答下列问题(1)计算甲乙两名运动员射击成绩的平均数、中位数、众数是、、。

(2)作出两名运动员射击成绩的频率图(如下)甲的成绩比较,乙的成绩相对,即甲的成绩波动幅度比较大,而乙的成绩比较稳定。

可见,他们的射击成绩是存在差异的。

2、度量数据离散程度的方法-极差度量数据程度的一种方法是用极差。

极差在一定程度上刻画了数据的程度.但因为极差只使用了数据中、两个值的信息,对其他数据的取值情况没有涉及,所以极差所含的信息量很少。

3、平均距离的一种表示形式假设一组数据是x1,x2,⋯,x n,用x̅表示这组数据的平均数. 我们用每个数据与平均数的差的绝对值作为“距离”,即|x i−x̅|(i=1,2,⋯,n)作为x i到x̅的“距离”.可以得到这组数据x1,x2,⋯,x n到x̅的“平均距离”为1 n ∑|x i−x| ni=14、方差和标准差(1)一组数据是x1,x2,⋯,x n,这组数据的方差是1 n ∑(x i−x)2ni=1,或1n∑x i2ni=1−x̅2,(你能证明两者是相等的吗?)(2)由于方差的单位是原始数据的单位的,为了使二者数据单位一致,我们取方差的算术平方根,得到这组数据的标准差√1n∑(x i−x)2ni=1,或 √1n∑x i2ni=1−x̅2,(3)总体方差S2和总体标准差S=√S2S2=1N∑(Y i−Y)2Ni=1=1N∑Y i2Ni=1−Y̅2,也可以写成加权的形式S2=1N∑f i(Y i−Y)2ki=1,(4)样本方差s2和样本标准差s=√s2s2=1n∑(y i−y)2ni=1(5)标准差刻画了数据的程度或幅度,标准差越大,数据的离散程度越;标准差越小,数据的离散程度越。

江苏省盐城市时杨中学2016-2017学年高中数学选修1-2:直接证明学案

江苏省盐城市时杨中学2016-2017学年高中数学选修1-2:直接证明学案

《直接证明》导学案
编制:徐粉芹 审核: 林汉新 批准:
【学习目标】
1.结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法; 2.了解分析法和综合法的思考过程、特点. 【问题情境】
1.在数学证明中,证明引用一些真实的命题来确定某一命题真实性的思维形式.在过去的学习中,我们曾经证明过许多的命题.那么这些命题的证明是如何进行的呢?
2.活动1:如图,四边形ABCD 是平行四边形,求证:CD AB =,DA BC =.
证明:连结AC ,∵四边形ABCD 是平行四边形 ∴CD AB //,DA BC // 故21∠=∠,43∠=∠
又∵CA AC = ∴CDA ABC ∆≅∆ ∴CD AB =,DA BC = 问题1:以上证明方法有什么特点?
3.什么是直接证明?直接证明的一般形式是什么?
4.活动2:阅读课本第46~47页.
问题2:这两种证明方法有什么不同之处?
备 注
第1页共4页
【自主探究】
1.已知CD AB ,相交于点O ,BDO ACO ∆≅∆,BF AE =,求证:DF CE =.
2.设b a ,为两个互不相等的正数,且1=+b a ,分别用分析法、综合法证明:
41
1>+b
a .
备 注
第2页共4页
第3页共4页
第4页共4页。

郑:2-3-1.2.2 组合(2)导学案-006

郑:2-3-1.2.2  组合(2)导学案-006

【知识链接】:1、排列:( )叫做从n 个不同元素中取出m 个元素的一个排列。

2、排列数:用符号m n A 表示,mn A =3、组合: ( ),叫做从n 个不同元素中取出m 个元素的一个组合4、组合数:用符号m n C 表示,mn C =m n A与mn C关系公式是4、组合数的两个性质 (1) (2):自主学习一、排列组合混合问题先选后排策略解决排列组合混合问题,先选后排是最基本的指导思想例1、对某种产品的6件不同的正品和4件不同的次品,一一进行测试,至区分出所有次品为止,若所有次品恰好在第5次测试时全部发现,则这样的测试方法有种可能?例2、有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.练习题:1、一个班有6名战士,其中正副班长各1人现从中选4人完成四种不同的任务,每人完成一种任务,且正副班长有且只有1人参加,则不同的选法有 种2、3 名医生和 6 名护士被分配到 3 所学校为学生体检,每校分配 1 名医生和 2 名护士,不同的分配方法共有 种:合作探究二、平均分组问题除法策略6本不同的书,按下列条件,各有多少种不同的分法;1、无序等分:若干个不同的元素局部“等分”有 m个均等堆,要将选取出每一个堆的组合数的乘积除以m! 例1:分成三份,每份两本;反思:一般地:将mn 个元素平均分成n 组(每组m 个元素),共有 _______________________________________2、有序等分:要明确堆的顺序时,必须先分堆后再把堆数当作元素个数作全排列例2:分给甲、乙、丙三人,每人两本;3、无序不等分:非均分堆问题,只要按比例取出分完再用乘法原理作积.例3:分成三份,一份1本,一份2本,一份3本;4、有序不等分:要明确堆的顺序时,必须先分堆后再把堆数当作元素个数作全排列.例4:分给甲、乙、丙3人,一人1本,一人2本,一人3本;5、无序局部等分例5:一堆四本,两堆各一本。

2019-2020学年高中数学 第三章 导数及其应用 3.2.2 导数的运算法则导学案 新人教A版选修1-1.doc

2019-2020学年高中数学 第三章 导数及其应用 3.2.2 导数的运算法则导学案 新人教A版选修1-1.doc

2019-2020学年高中数学 第三章 导数及其应用 3.2.2 导数的运算法则导学案 新人教A 版选修1-1能利用给出的基本初等函数的导数公式表和导数的四则运算法则求简单函数的导数. 重点:导数的四则运算法则及其运用. 难点:导数的四则运算法则的理解运用. 方 法:合作探究 一新知导学 思维导航我们已经会求幂函数、指数函数、对数函数及y =sinx ,y =cosx 的导数,那么怎样求f(x)与g(x)的和、差、积、商的导数呢? 1.设函数f (x )、g (x )是可导函数,则:(f (x )±g (x ))′=________________; (f (x )·g (x ))′=______________________.2.设函数f (x )、g (x )是可导函数,且g (x )≠0,⎝ ⎛⎭⎪⎪⎫f (x )g (x )′=____________________________.牛刀小试1.已知函数f (x )=ax 2+c ,且f ′(1)=2,则a 的值为( ) A .1 B . 2 C .-1 D .0 2.函数y =x4+sinx 的导数为( ) A .y ′=4x3 B .y ′=cosx C .y ′=4x3+sinxD .y ′=4x3+cosx3.下列运算中正确的是( )A .(sin x -2x 2)′=(sin x )′-2′(x 2)′ B .(ax 2+bx +c )′=a (x 2)′+bx ′ C .(sin x x 2)′=(sin x )′-(x 2)′x2D .(cos x ·sin x )′=(sin x )′cos x +(cos x )′cos x 4.求下列函数的导数(1)y =2x2-3x +1,y ′=__________. (2)y =(x +2)2,y ′=__________.课堂随笔:(3)y =sinx +cosx ,y ′=__________. (4)y =tanx ,y ′=__________.(5)y =(x +2)(3x -1),y ′=__________. 二.例题分析例1函数的下列导数求: (1)y =(x +1)2(x -1); (2)y =x 2sin x ; (3)y =1x +2x 2+3x3;(4)y =x tan x -2cos x .(5)y =sin2x练习:求下列函数的导数: (1)y =(2x 2+3)(3x -2); (2)y =x -sin x 2·cos x2.例2偶函数f(x)=ax4+bx3+cx2+dx +e 的图象过点P(0,1),且在x =1处的切线方程为y =x -2,求y =f(x)的解析式.练习:已知抛物线y =ax2+bx -7经过点(1,1),过点(1,1)的切线方程为4x -y -3=0,求a 、b 的值.例3已知直线l1为曲线y =x2+x -2在点(1,0)处的切线,l2为该曲线的另一条切线,且l1⊥l2. (1)求直线l2的方程;(2)求由直线l1,l2和x 轴所围成的三角形的面积.练习:已知函数f(x)=2x3+ax 与g(x)=bx2+c 的图象都过点P(2,0),且在点P 处有公共切线,求f(x),g(x)的表达式. 三.作业 基础题一、选择题1.曲线y =-x 2+3x 在点(1,2)处的切线方程为( ) A .y =x +1 B .y =-x +3 C .y =x +3 D .y =2x 2.函数y =x ·ln x 的导数是( )A .y ′=xB .y ′=1xC .y ′=ln x +1D .y ′=ln x +x3.已知f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值是( ) A .193 B .163 C .133 D .1034.曲线运动方程为s =1-t t2+2t 2,则t =2时的速度为( )A .4B .8C .10D .12 5.函数y =cos xx的导数是( )A .y ′=-sin xx2B .y ′=-sin xC .y ′=-x sin x +cos xx 2D .y ′=-x cos x +cos xx 26.若函数f (x )=f ′(1)x 3-2x 2+3,则f ′(1)的值为( ) A .0 B .-1 C .1 D .2 二、填空题7.函数f (x )=x +1x,则f ′(x )=________.8.若函数f (x )=1-sin xx,则f ′(π)=________________.9.(2015·天津文)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________.三、解答题10.函数f (x )=x 3-x 2-x +1的图象上有两点A (0,1)和B (1,0),在区间(0,1)内求实数a ,使得函数f (x )的图象在x =a 处的切线平行于直线AB .提高题一、选择题1.(2015·长安一中质检)设a ∈R ,函数f (x )=e x+a ·e -x的导函数是f ′(x ),且f ′(x )是奇函数.若曲线y =f (x )的一条切线的斜率是32,则切点的横坐标为( )A .ln2B .-ln2C .ln22D .-ln222.若函数f (x )=e xsin x ,则此函数图象在点(4,f (4))处的切线的倾斜角为( )A .π2 B .0 C .钝角 D .锐角3.曲线y =xx +2在点(-1,-1)处的切线方程为( )A .y =2x +1B .y =2x -1C .y =-2x -3D .y =-2x -24.(2015·山西六校联考)已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(e )+ln x ,则f ′(e )( )A .e -1B .-1C .-e -1D .-e 二、填空题后记与感悟:5.直线y =4x +b 是曲线y =13x 3+2x (x >0)的一条切线,则实数b =________.6.设a ∈R ,函数f (x )=x 3+ax 2+(a -3)x 的导函数是f ′(x ),若f ′(x )是偶函数,则曲线y =f (x )在原点处的切线方程为________. 三、解答题7.已知函数f (x )=x 3+bx 2+cx +d 的图象过点P (0,2),且在点M (-1,f (-1))处的切线方程为6x -y +7=0,求函数f (x )的解析式. 8.已知函数f (x )=x 3+x -16.(1)求曲线y =f (x )在点(2,-6)处的切线的方程;(2)直线l 为曲线y =f (x )的切线,且经过原点,求直线l 的方程及切点坐标;(3)如果曲线y =f (x )的某一切线与直线y =-14x +3垂直,求切点坐标与切线的方程.答案基础题acdbcd 7.1-1x28.π-1π2 9.310.[解析] 直线AB 的斜率k AB =-1,f ′(x )=3x 2-2x -1,令f ′(a )=-1 (0<a <1), 即3a 2-2a -1=-1, 解得a =23.提高题acac 5.-4236.y =-3x7.[解析] 由f (x )的图象经过点P (0,2),知d =2,所以f (x )=x 3+bx 2+cx +2.f ′(x )=3x 2+2bx +c .因为在M (-1,f (-1))处的切线方程是6x -y +7=0,可知-6-f (-1)+7=0, 即f (-1)=1,f ′(-1)=6.∴⎩⎪⎨⎪⎧3-2b +c =6,-1+b -c +2=1.即⎩⎪⎨⎪⎧2b -c =-3,b -c =0,解得b =c =-3.故所求的解析式是f (x )=x 3-3x 2-3x +2. 8.[解析] (1)∵f ′(x )=3x 2+1,∴f (x )在点(2,-6)处的切线的斜率为k =f ′(2)=13. ∴切线的方程为13x -y -32=0. (2)解法一:设切点为(x 0,y 0), 则直线l 的斜率为f ′(x 0)=3x 20+1,∴直线l 的方程为y =(3x 20+1)(x -x 0)+x 30+x 0-16, 又∵直线l 过原点(0,0),∴0=(3x 20+1)(-x 0)+x 30+x 0-16,整理得,x 30=-8,∴x 0=-2,∴y 0=-26,k =13. ∴直线l 的方程为y =13x ,切点坐标为(-2,-26). 解法二:设直线l 的方程为y =kx ,切点为(x 0,y 0),则k =y 0-0x 0-0=x 30+x 0-16x 0,又∵k =f ′(x 0)=3x 20+1,∴x 30+x 0-16x 0=3x 20+1,解之得,x 0=-2,∴y 0=-26,k =13.∴直线l 的方程为y =13x ,切点坐标为(-2,-26). (3)∵切线与直线y =-x4+3垂直,∴切线的斜率k =4.设切点坐标为(x 0,y 0),则f ′(x 0)=3x 20+1=4,∴x 0=±1,∴⎩⎪⎨⎪⎧x 0=1y 0=-14,或⎩⎪⎨⎪⎧x 0=-1y 0=-18.∴切点坐标为(1,-14)或(-1,-18),切线方程为y =4x -18或y =4x -14.。

第二章 推理与证明导学案

第二章 推理与证明导学案

§2.1.1 合情推理(1)1. 结合已学过的数学实例,了解归纳推理的含义;2. 能利用归纳进行简单的推理,体会并认识归纳推理在数学发现中的作用.2830在日常生活中我们常常遇到这样的现象:(1)看到天空乌云密布,燕子低飞,蚂蚁搬家,推断天要下雨;(2)八月十五云遮月,来年正月十五雪打灯.以上例子可以得出推理是的思维过程.二、新课导学※学习探究探究任务:归纳推理问题1:哥德巴赫猜想:观察6=3+3, 8=5+3, 10=5+5, 12=5+7, 12=7+7, 16=13+3, 18=11+7, 20=13+7, ……, 50=13+37, ……, 100=3+97,猜想:. 问题2:由铜、铁、铝、金等金属能导电,归纳出.新知:归纳推理就是由某些事物的,推出该类事物的的推理,或者由的推理.简言之,归纳推理是由的推理.※典型例题例1 观察下列等式:1+3=4=22,1+3+5=9=23,1+3+5+7=16=24,1+3+5+7+9=25=25,……你能猜想到一个怎样的结论?变式:观察下列等式:1=11+8=9,1+8+27=36,1+8+27+64=100,……你能猜想到一个怎样的结论?例2已知数列{}n a的第一项11a=,且nnn aaa+=+11(1,2,3.n=,试归纳出这个数列的通项公式.变式:在数列{na}中,11()2n nna aa=+(2n≥),试猜想这个数列的通项公式.2※ 动手试试练1..练2. 在数列{n a }中,11a =,122nn n a a a +=+(*n N ∈),试猜想这个数列的通项公式.三、总结提升※ 学习小结1.归纳推理的定义.2. 归纳推理的一般步骤:①通过观察个别情况发现某些相同的性质;②从已知的相同性质中推出一个明确表述的一般性命题(猜想).※ 知识拓展1.费马猜想:法国业余数学家之王—费马(1601-1665)在1640年通过对020213F =+=,121215F =+=,2222117F =+=,32321257F =+=,4242165537F =+=的观察,发现其结果都是素数,提出猜想:对所有的自然数n ,任何形如221nn F =+的数都是素数. 后来瑞士数学家欧拉发现5252142949672976416700417F =+==⨯不是素数,推翻费马猜想.2.四色猜想:1852年,毕业于英国伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色.”,四色猜想成了世界数学界关注的问题.1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用1200个小时,作.※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 ※ 当堂检测(时量:5分钟 满分:10分)计分: 1.下列关于归纳推理的说法错误的是( ). A.归纳推理是由一般到一般的一种推理过程 B.归纳推理是一种由特殊到一般的推理过程 C.归纳推理得出的结论具有或然性,不一定正确 D.归纳推理具有由具体到抽象的认识功能2.若2()41,f n n n n N =++∈,下列说法中正确的是( ).A.()f n 可以为偶数B. ()f n 一定为奇数C. ()f n 一定为质数D. ()f n 必为合数3.已知2()(1),(1)1()2f x f x f f x +==+ *x N ∈(),猜想(f x )的表达式为( ).A.4()22x f x =+ B.2()1f x x =+ C.1()1f x x =+ D.2()21f x x =+4.111()1()23f n n N n +=+++⋅⋅⋅+∈,经计算得357(2),(4)2,(8),(16)3,(32)222f f f f f =>>>>猜测当2n ≥时,有__________________________. 5. 从22211,2343,345675=++=++++=中得出_____________ . 1. 对于任意正整数n ,猜想(21)n -与2(1)n +的大小关系.2. 已知数列{n a }的前n 项和n S ,123a =-,满足12(2)n n n S a n S ++=≥,计算1234,,,,S S S S 并猜想n S 的表达式.4§2.1.2 演绎推理1.结合已学过的数学实例和生活中的实例,体会演绎推理的重要性;2.掌握演绎推理的基本方法,并能运用它们进行一些简单的推理.3942复习1:归纳推理是由到的推理.类比推理是由到的推理.复习2:合情推理的结论.二、新课导学※学习探究探究任务一:演绎推理的概念问题:观察下列例子有什么特点?(1)所有的金属都能够导电,铜是金属,所以;(2)太阳系的大行星都以椭圆形轨道绕太阳运行,冥王星是太阳系的大行星,因此;(3)在一个标准大气压下,水的沸点是100C︒,所以在一个标准大气压下把水加热到100C︒时,;(4)一切奇数都不能被2整除,2007是奇数,所以;(5)三角函数都是周期函数,sinα是三角函数,所以;(6)两条直线平行,同旁内角互补.如果A与B是两条平行直线的同旁内角,那么. 新知:演绎推理是从出发,推出情况下的结论的推理.简言之,演绎推理是由到的推理.探究任务二:观察上述例子,它们都由几部分组成,各部分有什么特点?新知:“三段论”是演绎推理的一般模式:大前提——;小前提——;结论——. 试试:请把探究任务一中的演绎推理(2)至(6)写成“三段论”的形式.※典型例题例1 在锐角三角形ABC中,,AD BC BE AC⊥⊥,D,E是垂足. 求证:AB的中点M到D,E的距离相等.新知:用集合知识说明“三段论”:大前提:小前提:结论:例2证明函数2()2f x x x=-+在(],1-∞-上是增函数.小结:应用“三段论”解决问题时,首先应该明确什么是大前提和小前提,但为了叙述简洁,如果大前提是显然的,则可以省略.例 3 下面的推理形式正确吗?推理的结论正确吗?为什么?所有边长相等的凸多边形是正多边形,(大前提)菱形是所有边长都相等的凸多边形,(小前提)菱形是正多边形. (结论)小结:在演绎推理中,只要前提和推理形式是正确的,结论必定正确.6§2.1 合情推理与演绎推理(练习)1. 能利用归纳推理与类比推理进行一些简单的推理;2. 掌握演绎推理的基本方法,并能运用它们进行一些简单的推理;3. 体会合情推理和演绎推理的区别与联系.2840复习1:归纳推理是由 到 的推理. 类比推理是由 到 的推理.合情推理的结论 .复习2:演绎推理是由 到 的推理.演绎推理的结论 .二、新课导学※ 典型例题 例1 观察(1)(2)000000tan10tan 20tan 20tan 60tan 60tan101;++=000000tan5tan10tan10tan 75tan 75tan51++=由以上两式成立,推广到一般结论,写出你的推论.变式:已知:23150sin 90sin 30sin 222=++23125sin 65sin 5sin 222=++ 通过观察上述两等式的规律,请你写出一般性的命题,并给出的证明.例 2 在Rt ABC ∆中,若90C ∠=︒,则22cos cos 1A B +=,则在立体几何中,给出四面体性质的猜想.变式:已知等差数列{}n a 的公差为d ,前n 项和为n S ,有如下性质:(1)()n m a a n m d =+-,(2)若*,(,,,)m n p q m n p q N +=+∈,则m n p q a a a a +=+,类比上述性质,在等比数列{}n b 中,写出类似的性质.8§2.2.1 综合法和分析法(1)1. 结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;2. 会用综合法证明问题;了解综合法的思考过程.3. 根据问题的特点,结合综合法的思考过程、特点,选择适当的证明方法.4547复习1:两类基本的证明方法: 和 . 复习2:直接证明的两中方法: 和 .二、新课导学※ 学习探究探究任务一:综合法的应用 问题:已知,0a b >, 求证:2222()()4a b c b c a abc +++≥.新知:一般地,利用,经过一系列的推理论证,最后导出所要证明的结论成立,这种证明方法叫综合法.反思:框图表示: 要点:顺推证法;由因导果.※ 典型例题 例1已知,,a b c R +∈,1a b c ++=,求证:1119a b c ++≥变式:已知,,a b c R +∈,1a b c ++=,求证: 111(1)(1)(1)8a b c---≥.小结:用综合法证明不等式时要注意应用重要不等式和不等式性质,要注意公式应用的条件和等号成立的条件,这是一种由因索果的证明.例2 在△ABC 中,三个内角A 、B 、C 的对边分别为a 、b 、c ,且A 、B 、C 成等差数列,a 、b 、c 成等比数列. 求证:为△ABC 等边三角形.变式:设在四面体P ABC -中,90,,ABC PA PB PC ∠=︒==D 是AC 的中点.求证:PD 垂直于ABC ∆所在的平面.小结:解决数学问题时,往往要先作语言的转换,如把文字语言转换成符号语言,或把符号语言转换成图形语言等,还要通过细致的分析,把其中的隐含条件明确表示出来.1011§2.2.1 综合法和分析法(二)学习目标 1. 会用分析法证明问题;了解分析法的思考过程. 2. 根据问题的特点,结合分析法的思考过程、特点,选择适当的证明方法.学习过程一、课前准备(预习教材P 48~ P 50,找出疑惑之处) 复习1:综合法是由 导 ;复习2:基本不等式:二、新课导学※ 学习探究探究任务一:分析法 问题:如何证明基本不等式(0,0)2a bab a b +≥>>新知:从要证明的结论出发,逐步寻找使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.反思:框图表示要点:逆推证法;执果索因※ 典型例题例1求证3526+>+变式:求证:3725+<小结:证明含有根式的不等式时,用综合法比较困难,所以我们常用分析法探索证明的途径.例 2 在四面体S ABC -中,,SA ABC AB BC ⊥⊥面,过A 作SB 的垂线,垂足为E ,过E 作SC 的垂线,垂足为F ,求证AF SC ⊥.变式:设,,a b c 为一个三角形的三边,1()2s a b c =++,且22s ab =,试证2s a <.小结:用题设不易切入,要注意用分析法来解决问题.12§2.2.1 综合法和分析法(3)1. 能结合已经学过的数学示例,了解综合法和分析法的思考过程和特点;2. 学会用综合法和分析法证明实际问题,并理解分析法和综合法之间的内在联系;3. 养成勤于观察、认真思考的数学品质.5051 复习1:综合法是由 导 ; 复习2:分析法是由 索 .二、新课导学※ 学习探究探究任务一:综合法和分析法的综合运用问题:已知,()2k k Z παβπ≠+∈,且2sin cos 2sin ,sin cos sin ,θθαθθβ+=∙=求证:22221tan 1tan 1tan 2(1tan )αβαβ--=++.新知:用P 表示已知条件、定义、定理、公理等,用Q 表示要证明的结论,则上述过程可用框图表示为:试试:已知tan sin ,tan sin a b αααα+=-=,求证: 222()16a b ab -=.反思:在解决一些复杂、技巧性强的题目时,我们可以把综合法和分析法结合使用.※ 典型例题例 1 已知,A B 都是锐角,且2A B π+≠,(1tan )(1tan )2A B ++=,求证:45A B +=︒变式:已知1tan 12tan αα-=+,求证:3sin 24cos 2αα=-.小结:牢固掌握基础知识是灵活应用两种方法证明问题的前提,本例中,三角公式发挥着重要作用.例 2 在四面体P ABC -中,P D A B C ⊥∆,AC BC =,D 是AB 的中点,求证:AB PC ⊥.变式:如果,0a b >,则lg lg lg 22a b a b++≥.小结:本题可以单独使用综合法或分析法进行证明.※知识拓展14§2.2.2 反证法1. 结合已经学过的数学实例,了解间接证明的一种基本方法——反证法;2. 了解反证法的思考过程、特点;3. 会用反证法证明问题.5254复习1:直接证明的两种方法: 和 ; 复习2: 是间接证明的一种基本方法.二、新课导学※ 学习探究探究任务:反证法 问题(1):将9个球分别染成红色或白色,那么无论怎样染,至少有5个球是同色的,你能证明这个结论吗? 问题(2):三十六口缸,九条船来装,只准装单,不准装双,你说怎么装?新知:一般地,假设原命题 ,经过正确的推理,最后得出 ,因此说明假设 ,从而证明了原命题 .这种证明方法叫 .试试:证明:5,3,2不可能成等差数列.反思:证明基本步骤:假设原命题的结论不成立 → 从假设出发,经推理论证得到矛盾 → 矛盾的原因是假设不成立,从而原命题的结论成立方法实质:反证法是利用互为逆否的命题具有等价性来进行证明的,即由一个命题与其逆否命题同真假,通过证明一个命题的逆否命题的正确,从而肯定原命题真实.※ 典型例题例 1 已知0a ≠,证明x 的方程ax b =有且只有一个根.变式:证明在ABC ∆中,若C ∠是直角,那么B ∠一定是锐角.小结:应用关键:在正确的推理下得出矛盾(与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实矛盾等).例2求证圆的两条不是直径的相交弦不能互相平分.变式:求证:一个三角形中,至少有一个内角不少于60︒.小结:反证法适用于证明“存在性,唯一性,至少有一个,至多有一个”等字样的一些数学问题.16第二章 推理与证明(复习)1. 了解合情推理和演绎推理的含义;2. 能用归纳和类比进行简单的推理;掌握演绎推理的基本模式;3. 能用综合法和分析法进行数学证明;.2855复习1:归纳推理是由 到 的推理. 类比推理是由 到 的推理.合情推理的结论 .演绎推理是由 到 的推理. 演绎推理的结论 .复习2:综合法是由 导 ;分析法是由 索 .直接证明的两种方法: 和 ; 是间接证明的一种基本方法.二、新课导学※ 学习探究探究任务一:合情推理与演绎推理问题:合情推理与演绎推理是相辅相成的,前者是后者的前提,后者论证前者的可靠性.你能举出几个用合情推理和演绎推理的例子吗?探究任务一:直接证明和间接证明问题:你能分别说出这几种证明方法的特点吗?结合自己以往的数学学习经历,说说一般在什么情况下,你会选择什么相应的证明方法?※ 典型例题例1 已知数列{}n a 的通项公式 21()(1)n a n N n +=∈+,记12()(1)(1)(1)n f n a a a =--⋅⋅⋅-,试通过计算(1),(2),(3)f f f 的值,推测出()f n 的值.变式:已知数列()()1111,,,,1335572121n n ⨯⨯⨯-+ ⑴求出1234,,,S S S S ;⑵猜想前n 项和n S . (理科)(3)并用数学归纳法证明你的猜想是否正确?小结:归纳推理是由特殊到一般的推理,是一种猜想,推理的结论都有待进一步证明.例2已知tan α,tan β是关于x 的一元二次方程x 2+px +2=0的两实根.(1)求证:tan()p αβ+=;(2)求证:3sin()cos()0p αβαβ++-=.变式:如右图所示,SA ⊥平面ABC ,AB BC ⊥,过A 作SB 的垂线,垂足为E ,过E 作SC 的垂线,垂足为F ,求证:⑴SAB BC ⊥面;⑵AF SC ⊥.小结:证明问题对思维的深刻性、严谨性和灵活性AB C S F E※知识拓展18理:§2.3 数学归纳法(1)1. 了解数学归纳法的原理,并能以递推思想作指导,理解数学归纳法的操作步骤;2. 能用数学归纳法证明一些简单的数学命题,并能严格按照数学归纳法证明问题的格式书写; 3. 数学归纳法中递推思想的理解.104106,找出疑惑之处) 复习1:在数列{}n a 中,*111,,()1n n n aa a n N a +==∈+,先算出a 2,a 3,a 4的值,再推测通项a n 的公式.复习2:2()41f n n n =++,当n ∈N 时,()f n 是否都为质数?二、新课导学※ 学习探究探究任务:数学归纳法 问题:在多米诺骨牌游戏中,能使所有多米诺骨牌全部倒下的条件是什么?新知:数学归纳法两大步:(1)归纳奠基:证明当n 取第一个值n 0时命题成立;(2)归纳递推:假设n =k (k ≥n 0, k ∈N *)时命题成立,证明当n =k +1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立.原因:在基础和递推关系都成立时,可以递推出对所有不小于n 0的正整数n 0+1,n 0+2,…,命题都成立.试试:你能证明数列的通项公式1n a n=这个猜想吗?反思:数学归纳法是一种特殊的证明方法,主要用于研究与正整数有关的数学问题.关键:从假设n =k 成立,证得n =k +1成立.※ 典型例题例1 用数学归纳法证明2222*(1)(21)123,6n n n n n N ++++++=∈变式:用数学归纳法证明2*1427310(31)(1),n n n n n N ⨯+⨯+⨯+++=+∈小结:证n =k +1时,需从假设出发,对比目标,分析等式两边同增的项,朝目标进行变形.例2 用数学归纳法证明:首项是1a ,公差是d 的等差数列的通项公式是1(1)n a a n d =+-,前n 项和的公式是1(1)2n n n S na d -=+.变式:用数学归纳法证明:首项是1a ,公比是q 的等差数列的通项公式是11n n a a q-=,前n 项和的公式是1(1)1n n a q S q-=-.(1q ≠)小结:数学归纳法经常证明数列的相关问题.)*20中山市东升高中 高二数学◆选修1-2&2-2◆导学案 执笔:董卜毓 审核:李志敏理:§2.3 数学归纳法(2)1.能用数学归纳法证明一些简单的数学命题,并能严格按照数学归纳法证明问题的格式书写;2.数学归纳法中递推思想的理解.107108,找出疑惑之处) 复习1:数学归纳法的基本步骤?复习2:数学归纳法主要用于研究与 有关的数学问题.二、新课导学※ 学习探究探究任务:数学归纳法的各类应用 问题:已知数列 1111,,,,1447710(32)(31)n n ⋅⋅⋅⨯⨯⨯-⨯+,猜想n S 的表达式,并证明.新知:数学归纳法可以应用于:(1)数列的先猜后证;(2)证明不等式;(3)证明整除性问题;(4)证明几何问题.试试:已知数列1111,,,,,1223314(1)n n ⋅⋅⋅⨯⨯⨯⨯+ ,计算123,,S S S ,由此推测计算n S 的公式.反思:用数学归纳法证明时,要注意从n k =时的情形到1n k =+的情形是怎样过渡的.※ 典型例题例1平面内有n 个圆,任意两个圆都相交于两点,任何三个圆都不相交于同一点,求证这n 个圆将平面分成f (n )=n 2-n +2个部分变式:证明凸n 边形的对角线的条数1()(3)(4)2f n n n n =-≥小结:用数学归纳法证明几何问题的关键是找项,即几何元素从k 到1k +所证的几何量增加多少.例2 证明:3*5()n n n N +∈能被6整除.变式:证明:2121n n x y --+能被x y +整除.小结:数学归纳法证明整除性问题的关键是凑项,而采用增项、减项、拆项和因式分解的手段,凑出n k =的情形,从而利用归纳假设使问题获证.22。

高中数学第1章算法初步1-2流程图1-2-3循环结构教材梳理导学案

高中数学第1章算法初步1-2流程图1-2-3循环结构教材梳理导学案

高中数学第1章算法初步1-2流程图1-2-3循环结构教材梳理导学案庖丁巧解牛知识·巧学1.循环结构的概念根据指定条件决定是否重复执行一条或多条指令的控制结构称为循环结构,也称为“重复结构”.循环结构是程序设计中不可缺少又有变化的一种基本结构.2.循环结构的形式根据执行情况及循环结束条件的不同可分为以下两种循环:(1)直到型循环(又称Until循环):其流程图如图1-2-18所示.图1-2-18执行过程:先执行循环体A,然后判断给定的条件P是否成立,如果P不成立,则继续执行A,然后再对条件P进行判断,如果P 仍不成立,则重复执行A,直到给定的条件P成立为止.注意循环的条件是不满足P时才重复执行循环体.(2)当型循环(又称While循环):其流程图如图1-2-19所示.图1-2-19执行过程:先判断条件P,如果条件成立,则执行循环体A,执行完A 后,再判断P是否成立,如果仍成立,继续执行A,如果不成立,则退出循环,执行下一步骤.辨析比较①当型循环可能一次也不执行循环体,而直到型循环至少要执行一次循环体.②当型循环与直到型循环可互相转化,条件互补.(1)循环结构中必须包含条件结构,以保证在适当时候终止循环;循环结构只有一个入口和一个出口,结构内不存在死循环,即无终止的循环.(2)循环结构的三要素:循环变量、循环体、循环的终止条件.(3)循环结构的设计步骤:①确定循环结构的循环变量和初始条件;②确定算法中需要反复执行的部分,即循环体;③确定循环的终止条件.深化升华循环结构中常用的变量:计数器:即计数变量,用来记录某个事件发生的次数,如i←i+1,n←n+1.累加器:即累加变量,用来计算数据之和,如sum←sum+i.累乘器:即累乘变量,用来计算数据之积,如p←p×i.联想发散算法的基本逻辑结构有三种,即顺序结构、条件结构和循环结构.其中顺序结构是最简单的结构,也是最基本的结构,循环结构必然包含条件结构,所以这三种基本逻辑结构是相互支撑的,它们共同构成了算法的基本结构,无论怎样复杂的逻辑结构,都可以通过这三种结构来表达.典题·热题知识点一利用循环结构设计算法例1用直到型循环写出1+2+3+…+100的算法并画出流程图.思路分析:100个数实现相加,我们又称之为累加,设计算法时必须用循环来实现,同时注意观察这100个数是有规律的,相邻两数相差1,所以可在循环中实现这些数.设一变量I,I初值为1,每循环依次其值加1,实现1,2,3,…,100,设一变量S,每产生一个数就加到S中,S←S+I.解:算法如下:S1 I←1;S2 S←0;S3 S←S+I;S4 I←I+1;S5 如果I>100,则到下一步,否则返回S3重复执行;S6 输出S的值.流程图如图1-2-20:图1-2-20巧妙变式若用当型循环结构来画流程图,又当如何?思路分析:抓住直到型循环与当型循环的本质区别及联系,在改写时,循环体不变,但位置要放到条件之后,循环条件变为原来的相反条件.解:流程图如图1-2-21图1-2-21方法归纳 循环结构可以大大地简化算法的表述;循环变量在构造循环结构中发挥了关键作用,本质上,这就是“函数的思想”.例2已知有一列数,设计流程图实现求该列数前20项的和.1,,43,32,21+n n 思路分析:该列数中每一项的分母是分子数加1,单独观察分子,恰好是1,2,3,4, …,n,因此可用循环结构实现,设计数器i ,用i=i+1实现分子,设累加器为S ,用S=S+可实现累加,注意i 只能加到20.1+i i 解:(1)直到型循环流程图如图1-2-22;(2)当型循环流程图如图1-2-23;图1-2-22 图1-2-23方法归纳 ①在解决一些有规律的计算问题时,往往要利用循环结构. ②在实现累加求和或累乘时,对于这些变量,在程序开始时,一般要先赋初值,可根据实际问题合理选择初始值,一般情况下,计数器可设初值为0或1,累加器为0,累乘器为1.③当有较多的数相加或相乘时,应首先找出其中数的规律,并把这个规律在循环结构中实现,注意初始值、循环条件的设置.知识点二 通过循环结构读算法例3阅读图1-2-24中所示的流程图,回答下列问题:图1-2-24(1)变量y 在这个算法中的作用是什么?(2)这个算法的循环体是哪一部分,功能是什么?(3)这个算法的处理是什么?思路分析:按照历法的规定,如果y 为闰年,那么或者y 能被4整除不能被100整除,或者y 被400整除;按程序箭头方向来看,我们可以知道该流程图描述的就是此内容.解:(1)变量y 是循环变量,控制着循环的开始和结束;(2)流程图中的第②部分是循环体,其功能是判断年份y 是否是闰年,并输出结果;(3)该算法的处理功能是:判断2000年—2500年中,哪些年份是闰年,哪些年份不是闰年,并输出结果.方法归纳 由循环结构的流程图理解该结构的执行;关键把握好初值、循环体与循环条件.问题·探究交流讨论探究问题 1 对同一个问题,如何合理选择当型循环还是直到型循环来完成其算法?探究过程:同学甲:遇到需重复使用的算法设计时,一定要找出反复执行的部分作为循环体放在条件之前或之后,根据需要可合理选择直到型或当型循环.同学乙:直到型循环改为当型循环时,只要把循环体作为一个整体放到条件之后,同时把条件变为原来的相反条件即可.老师:事实上,我们对这两个循环结构的把握只要放在“当”与“直到”;顾名思义,“当”指“指定时间,指定条件”;而“直到”,很容易地,它应该是先执行,执行到某一个条件.同学丙:显然,循环结构中一定包含条件结构.同学乙:对,而且一个是前测型的,一个是后测型的.探究结论:要正确理解当型、直到型循环,明确两种结构的功能,关键要找出它们的异同点,注意怎样实现两种循环的互化.交流讨论探究问题2 设计含循环结构的流程图时,应注意什么?探究过程:同学甲:使用循环结构设计算法流程图,在进入循环前,应设置初始条件,同时在循环过程中,应注意修改条件,以便程序退出循环.老师:如果不修改条件或错误修改,会怎么样呢?同学乙:可能会导致程序不能退出循环,即进入“死循环”.老师:对了,还有在循环结构中都有一个计数变量和累加变量.它们的作用分别是什么?同学甲:计数变量用于记录循环次数,累加变量用于输出结果.同学乙:计数变量和累加变量一般是同步执行的,累加一次,计数一次.探究结论:刚接触循环结构,我们有必要通过模仿、探索、实践,明确用流程图设计循环结构的方法、过程,注意以下3个方面的设置:初值、循环体、循环条件,并把它们正确有机地结合起来.此级HS4的大图若接排前加,若另面则不加。

高中数学 第三章 导数及其应用 3.2.2 导数的运算法则导学案 新人教A版选修1-1

高中数学 第三章 导数及其应用 3.2.2 导数的运算法则导学案 新人教A版选修1-1
二、填空题
5.直线y=4x+b是曲线y= x3+2x(x>0)的一条切线,则实数b=________.
6.设a∈R,函数f(x)=x3+ax2+(a-3)x的导函数是f′(x),若f′(x)是偶函数,则曲线y=f(x)在原点处的切线方程为________.
三、解答题
7.已知函数f(x)=x3+bx2+cx+d 的图象过点P(0,2),且在点M(-1,f(-1))处的切线方程为6x-y+7=0,求函数f(x)的解析式.
A. B.0 C.钝角D.锐角
3.曲线y= 在点(-1,-1)处的切线 方程为()
A.y=2x+1B.y=2x-1
C.y=-2x-3D.y=-2x-2
4.(2015·山西六校联考)已知函数f(x)的导函数为f ′(x),且满足f(x)=2xf′(e)+lnx,则f′(e)()
A.e-1 B.-1 C.-e-1D.-e
(2)y=x-sin ·cos .
例2偶函数f(x)=ax4+bx3+cx2+dx+e的图象过点P(0,1),且在x=1处的切线方程为y=x-2,求y=f(x)的解析式.
练习:已知抛物线y=ax2+bx-7经过点(1,1),过点(1,1 )的切线方程为4x-y-3=0,求a、b的值.
例3已知直线l1为曲线y=x2+x-2在点(1,0)处的切线,l2为该曲线的另一条切线,且l1⊥l2.
f′(x)=3x2-2x-1,
令f′(a)=-1(0<a<1),
即3a2-2a-1=-1,
解得a= .
提高题acac
5.-
6.y=-3x
7.[解析]由f(x)的图象经过点P(0,2),知d=2,所以f(x)=x3+bx2+cx+2.f′(x)=3x2+2bx+c.因为在M(-1,f(-1))处的切线方程是6x-y+7=0,

高中数学必修一 《3 2 函数的基本性质》获奖说课导学案

高中数学必修一 《3 2 函数的基本性质》获奖说课导学案

3.2.1 函数的单调性与最大(小)值1.理解增函数、减函数、单调区间、单调性概念;2.掌握增(减)函数的证明与判断;3.能利用单调性求函数的最大(小)值;4.学会运用函数图象理解和研究函数的性质。

1.教学重点:函数单调性的概念,函数的最值;2.教学难点:证明函数的单调性,求函数的最值。

1、增函数与减函数的定义:一般地,设函数f (x )的定义域为I :如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2,当x 1<x 2时,都有 ,那么就说函数f (x )在区间D 上是增函数。

一般地,设函数f (x )的定义域为I :如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2,当x 1<x 2时,都有 ,那么就说函数f (x )在区间D 上是减函数2.函数的单调性与单调区间如果函数y =f (x )在区间D 上是 ,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的 。

3.函数的最大(小)值一般地,设函数y =f(x)的定义域为I ,如果存在实数M 满足:对于任意的x ∈I ,都有f(x) M ,存在x 0∈I ,使得 =M 。

称M 是函数y =f(x)的最大值。

一般地,设函数y =f(x)的定义域为I ,如果存在实数M 满足:对于任意的x ∈I ,都有f(x) M ,存在x 0∈I ,使得 =M 。

称M 是函数y =f(x)的最小值。

一、探索新知探究一 单调性1、思考:如何利用函数解析式2)(x x f 描述“随着x 的增大,相应的f(x)随着增大?”2、你能类似地描述2)(x x f =在区间)0,(-∞上是减函数吗?3、思考:函数||)(x x f =,2)(x x f -=各有怎样的单调性 ?吗?该区间上一定是增函数在那么函数且满足在定义域的某区间上、思考:函数)(),()(,,存在)(4212121x f y x f x f x x x x x f y =<<=5、思考:函数的单调性是对定义域内某个区间而言的,你能举出在整个定义域内是单调递增的函数例子吗?你能举出在定义域内的某些区间单调递增但在另一些区间上单调递减的函数例子吗?牛刀小试:1、如图是定义在闭区间[-5,5]上的函数y=f(x)的图象,根据图象说出y=f(x)的单调区间,以及在每一个单调区间上,f(x)是增函数还是减函数。

数学人教七年级上册(2012年新编)1-3-2 有理数的减法(第1课时 有理数的减法法则)(导学案)

数学人教七年级上册(2012年新编)1-3-2 有理数的减法(第1课时 有理数的减法法则)(导学案)

1.3.2 有理数的减法(第1课时有理数的减法法则)学案1. 了解有理数减法的意义,理解有理数的减法与有理数的加法互为逆运算.2. 掌握有理数的减法法则,会熟练地进行有理数的减法运算.★知识点1:有理数的减法法则减去一个数,等于加上这个数的相反数,字母表示:a-b=a+(-b).0减去任何一个数都得这个数的相反数.有理数的减法没有交换律,被减数与减数不能交换位置,也不能简单地应用结合律.★知识点2:有理数减法的计算步骤(1)先进行两个变化:①将减数变成它的相反数;②将减法变成加法.(2)再按加法的运算法则进行计算.★知识点3:涉及的数学思想有理数的减法运算法则体现了转化的数学思想.把减法运算转化为加法运算,在转化中,要同时改变两个符号:一个是运算符号由“-”变为“+”,另一个是减数的性质符号变成与原来相反的符号.1. 有理数的减法法则:减去一个数,等于加上这个数的.即a-b=a+.2. 计算:(1)0-(-6.3);(2)5-7;(3)(+4)-(-6);(4)(-3)-(-5).3. 填空:(1)+3比-3大,(2)比-2小9的数是.4. 填空:(1)零上24℃比零下24℃高℃;(2)月球表面温度中午是101℃,半夜是-153℃,中午比半夜温度高℃.计算:(1)4 + 16 = (2)(-2)+(-27)=(3)(-9)+ 10 = (4)45 +(-60)=(5)(-7)+ 7 = (6)16 +0 =(7)0 +(-8)=问题1:温差是指最高气温减最低气温. 下面是满洲里市某天的气温,(-3~4℃)(1)根据你的生活经验,你会说出这天的温差吗?(2)你还能从温度计上看出4℃比-3℃高℃吗?(3)你会列式求该天满洲里市的温差?追问1:怎样理解4-(-3)=7;①追问2:想一想,4+ =7;②追问3:观察①,②两个等式的结果,你发现了什么?从结果中你能看出减-3相当于加哪个数?问题2:将上式中的4,换成0,-1,-5,用上面的方法考虑:0-(-3),-1-(-3),-5-(-3).追问:这些数减-3的结果与它们加+3的结果相同吗?问题3:计算:9-8= ,9-(-8)= .15-7= ,15-(-7)= .从以上两式中,你可以得到什么结论?有理数减法法则:减去一个数,等于加上这个数的相反数.a-b=a+(-b)例1:计算下列各题:(1)-3-(-5);(2)0-7;(3)7.2-(-4.8);(4)11 3524⎛⎫--⎪⎝⎭.1. 在小学,只有当a大于或等于b时,我们才会做a-b(例如2-1,10-6).现在,a小于b时做减法a -b(例如1-2,6-10) ,你会做吗?2. 一般地,较小的数减去较大的数,所得的差的符号是什么?1. 计算:(1)6-9;(2)(+4)-(-7);(3)(-5)-(-8);(4)0-(-5);(5)(-2.5)-5.9;(6)35 46⎛⎫--⎪⎝⎭.2. 计算:(1)比2℃低8℃的温度;(2)比-3℃低6℃的温度.3. 世界上最高的山峰是珠穆朗玛峰,其海拔高度大约是8844米,吐鲁番盆地的海拔高度大约是-155米,两处高度相差多少米?4. 潜水员甲潜入海平面以下10m,潜水员乙潜入海平面以下20m,问甲的位置比乙的位置高多少米?1. 下列说法正确的是()A. 两数之差一定小于被减数;B. 减去一个负数,差一定大于被减数;C. 减去一个正数,差一定大于被减数;D. 0减去任何数,差都是负数.2. 若a>0,b<0,则a-b一定是()A.正数B.负数C.0D.不能确定3. 设a>0,b<0,则下列各式的符号是正数和是负数?(1)a-b(2)-a+b1.(2022•呼和浩特中考)计算-3-2的结果是()A.-1B.1C.-5D.52.(2022•滨州中考)某市冬季中的一天,中午12时的气温是-3℃,经过6小时气温下降了7℃,那么当天18时的气温是()A.10℃B.-10℃C.4℃D.-4℃3.(2022•扬州中考)扬州某日的最高气温为6℃,最低气温为-2℃,则该日的日温差是℃.1. 内容总结:减去一个数等于加上这个数的相反数,即:a-b=a+(-b).2. 注意事项:进行减法运算,要注意两变一不变,减号变成了加号,减数的符号也改变了,但被减数的符号不改变.3. 有理数减法转化成加法进行运算. 这里体现了化不熟悉知识为熟悉知识的转化的数学思想.【参考答案】1. 相反数;(-b);2.(1)6.3;(2)-2;(3)10;(4)2;3.(1)6;(2)-11;4.(1)48;(2)254.计算:(1)20;(2)-29;(3)1;(4)-15;(5)0;(6)16;(7)-8;例1:解:(1)-3-(-5)=-3+5=2.(2)0-7=0+(-7)=-7.(3)7.2-(-4.8)=7.2+4.8=12.(4)111133535824244⎛⎫⎛⎫⎛⎫--=-+-=-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.1.(1)-3;(2)11;(3)3;(4)5;(5)-8.4;(6)19 12.2. 解:(1)2-8=-6(℃);(2)-3-6=-9(℃).3. 解:8844-(-155)=8844+155=8999(米).答:两地高度差是8999米.4. 解:10-(-20)=10+20=30(m)答:甲的位置比乙的位置高30米.1. B;2. A;3. 解:(1)a-b=a+(-b),因为a>0,b<0,所以-b>0,所以,a+(-b)是两个正数相加,所以a+(-b)>0(2)因为a>0,b<0,所以-a是负数,b是负数,所以-a+b是两个负数的和,所以结果是负数.1.【解答】解:-3-2=-5.故选:C.2.【解答】解:-3-7=-10(℃),故选:B.3.【解答】解:根据题意得:6-(-2)=6+2=8(℃),则该日的日温差是8℃.故答案为:8.。

§2数学证明导学案

§2数学证明导学案

§2数学证明[学习目标]1.结合已学过的数学实例和生活中的实例,体会演绎推理的重要性;2.掌握演绎推理的形式,并能运用它们进行一些简单的推理.[学习重难点]重点:了解演绎推理的含义,能利用三段论进行一些简单的推理. 难点:用三段论证明简单的数学问题.[自主学习]阅读教材p58—59页内容,解决以下问题1. _________是最常见的演绎推理形式。

2.演绎推理的模式(1)演绎推理的模式采用“三段论”:①大前提——已知的___________(M是P);②小前提——所研究的__________(S是M);③结论——根据一般原理,对特殊情况做出的判断(S是P).(2)从集合的角度看演绎推理:①大前提:x∈M且x具有性质P;②小前提:y∈S且S⊆M③结论__________.【效果检测】(1)所有的金属都能够导电,铜是金属,所以;(2)太阳系的大行星都以椭圆形轨道绕太阳运行,冥王星是太阳系的大行星,因此;(3)在一个标准大气压下,水的沸点是100C︒,所以在一个标准大气压下把水加热到100C︒时,;(4)一切奇数都不能被2整除,2007是奇数,所以;(5)三角函数都是周期函数,sin 是三角函数,所以;[合作探究]1.演绎推理的结论一定正确吗?2.合情推理与演绎推理的区别与联系?区别:(1)从推理形式上看,归纳推理是由________到_______,由个别到一般的推理,类比是由_________到______的推理;演绎推理是由________到________的推理.(2)从推理所得的结论来看,合情推理的结论_____________,有待进一步证明;演绎推理在_______和___________都正确的前提下,得到的结论一定正确.联系:[典例导学]例1.把下列演绎推理写成三段论的形式.①所有导体通电时发热,铁是导体,所以铁通电时发热;②平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分;③一次函数是单调函数,函数y=3x-2是一次函数,所以函数y=3x-2是单调函数.例2.下面的推理形式正确吗?推理的结论正确吗?为什么?所有边长相等的凸多边形是正多边形,(大前提)菱形是所有边长都相等的凸多边形,(小前提)菱形是正多边形. (结论)例3.求证:函数ƒ(x)=- x2+2x在(-∞,1)上为增函数.【当堂检测】1. 因为指数函数x y a =是增函数,1()2x y =是指数函数,则1()2x y =是增函数.这个结论是错误的,这是因为( )A.大前提错误B.小前提错误C.推理形式错误D.非以上错误2. 有这样一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”结论显然是错误的,是因为( )A.大前提错误B.小前提错误C.推理形式错误D.非以上错误3. 有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b ⊆/平面α,直线a ≠⊂平面α,直线b ∥平面α,则直线b ∥直线a ”的结论显然是错误的,这是因为( )A.大前提错误B.小前提错误C.推理形式错误D.非以上错误4.用演绎推理证明函数3y x =是增函数时的大前提是( ).A.增函数的定义B.函数3y x =满足增函数的定义C.若12x x <,则12()()f x f x <D.若12x x <, 则12()()f x f x >5. 用三段论证明:3()()f x x x x R =+∈为奇函数.【收获与困惑】【课后巩固】1. 下列表述正确的是( ).①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理.A.①②③;B.②③④;C.②④⑤;D.①③⑤.2. 演绎推理是以下列哪个为前提,推出某个特殊情况下的结论的推理方法().A.一般的原理原则;B.特定的命题;C.一般的命题;D.定理、公式.3.已知ΔABC 中,∠A=30°∠B=60°求证:a<b.证明:∵∠A=30°,∠B=60°∴∠A<∠B ∴a<b 画线部分是演绎推理的().A.大前提B.小前提C.结论D.三段论4、把下列演绎推理写成“三段论”的形式.(1)三角函数都是周期函数,y=tanx 是三角函数,所以y=tanx 是周期函数.(2)一切奇数都不能被2 整除,(2 100 +1)是奇数,所以(2 100 +1)不能被2 整除.5、用三段论证明:三角形内角和等于180°.。

新人教版七年级上册数学导学案(全册)

新人教版七年级上册数学导学案(全册)

七年级数学(上册)导学案第一章有理数1.1 正数和负数(1)【学习目标】1、掌握正数和负数概念;2、会区分两种不同意义的量,会用符号表示正数和负数;3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。

【导学指导】一、:1、小学里学过哪些数请写出来:、、。

2、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题:3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?二、自主学习1、正数与负数的产生(1)、生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。

请你也举一个具有相反意义量的例子:。

(2)负数的产生同样是生活和生产的需要2、正数和负数的表示方法(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。

正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。

(2)活动两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.(3)阅读P3练习前的内容3、正数、负数的概念1)大于0的数叫做,小于0的数叫做。

2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。

【课堂练习】:1. P3第1题到第2题(课本上做)2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么取出2万元应记作_______,-4万元表示________________。

3.已知下列各数:51-,432-,3.14,+3065,0,-239; 则正数有_____________________;负数有____________________。

4.下列结论中正确的是 …………………………………………( ) A .0既是正数,又是负数 B .O 是最小的正数C .0是最大的负数D .0既不是正数,也不是负数5.给出下列各数:-3,0,+5,213-,+3.1,21-,2004,+2010; 其中是负数的有 ……………………………………………………( ) A .2个B .3个C .4个D .5个【要点归纳】:正数、负数的概念:(1)大于0的数叫做 ,小于0的数叫做 。

1-2-3-3综合法与分析法导学案

1-2-3-3综合法与分析法导学案

第三章 推理与证明 §3综合法与分析法基础自主预习1.综合法:从命题的条件出发,利用定义、公理、定理及运算法则,通过演绎推理,一步一步地接近证明的结论,直到完成命题的证明,这样的思维方法称为综合法。

若P 表明命题的条件,已有的定义、定理、公理等,Q 表示所要证明的结论,则综合法可以用以下的框图表示:它是从“已知”看“可知”,逐步推向“未知”,由因导果,其逐步推理实际上是寻找它的必要条件。

2.分析法:从求证的结论出发,一步一步地探索保证前个结论成立的充分条件。

直到归结为这个命题的条件,或者归结为定义、公理、定理等,这样的思维方法称为分析法。

若用Q 表示要证明的结论,则分析法可以用以下的框图表示:它是综合法的逆过程,即从“未知”看“需知”。

执果索因,逐步靠拢“已知”。

3.综合法与分析法的区别与联系:①综合法证明是“由因索果”,分析法证明是“执果索因”;②分析法便于寻找解题思路,而综合法便于叙述;③分析法的缺点是表述易错(注意分析法独特的表述!)综合法缺点是探路艰难,易生枝节;④对于难题,常把二者交互使用,互补优缺,形成了分析综合法.练习:设R b a ∈,,且b a >,则( )A.22b a >B.1<a bC.0)lg(>-b aD.ba⎪⎭⎫⎝⎛<⎪⎭⎫ ⎝⎛2121 【答案】D练习: ) A.综合法 B.分析法 C.间接证法 D.合情推理法 【答案】Btan(A分析法由要证明的结论Q思考,一步步知能达标训练1.命题“如果数列}{n a 的前n 项和n n S n -=2,那么数列}{n a 一定是等差数列”是否成立( )A.不成立B.成立C.不能判定 D 能判定. 【答案】B【解析】当2≥n 时,221-=-=-n S S a n n n ,当1=n 时,011211=-==S a 也满足上式,故)1(21≥=--n a a n n ,所以}{n a 是等差数列.2.(2010—2011学年度上学期中山市镇区高中高三联考文,3)已知a R ∈,则“2a >”是“22a a >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】A【解析】a a a 222>⇒> ,但222>⇒>a a a 或0<a .∴“2a >”是“22a a >”的充分不必要条件.3.已知函数xxx f +-=11lg )(,若b a f =)(,则)(a f -等于( ) A.a B.b - C.b 1 D. b1-【答案】B【解析】易证xxx f +-=11lg)(为奇函数,.)()(b a f a f -=-=-∴ 4.已知平面αβ,和直线m ,给出条件:①m α∥;②m α⊥;③m α⊂;④αβ⊥;⑤αβ∥.(1)当满足条件_____时,有m β∥,(2)当满足条件_____时,有m β⊥.(填所选条件的序号) 【答案】③⑤,②⑤ 【解析】对于(1),是据面面平行来证线面平行而得出的;对于(2),是据“一条直线垂直于两个平行平面中的一个,则其与另一个平面也垂直”这个结论来得的. 5.已知a b c +∈R ,,,且1a b c ++=,求证:.8)11)(11)(11(≥---cb a 证明过程如下:∵a b c +∈R ,,,且1a b c ++=,110b c a a +-=>∴,110a c b b +-=>,110a bc c+-=>,.)11)(11)(11(ac b c b a +=---8a c a b b c ++=·, 当且仅当a b c ==时取等号,∴不等式成立.这种证法是_________.(综合法、分析法或反证法) 【答案】综合法【解析】据综合法的证明思路便可得出.智能提升作业1.设a b c d ,,,,m n +∈R ,,P =Q = ) A.P Q ≥ B.P Q ≤ C.P Q > D.P Q < 【答案】B 【解析】cd ab abcd cd ab nadm m ncb cd ab n d m b nc ma Q +=++≥+++=+⋅+=22.若π04αβ<<<,sin cos a αα+=,sin cos b ββ+=,则( ) A.a b < B.a b > C.1ab < D.2ab > 【答案】A【解析】)4sin(2cos sin ),4sin(2cos sin πβββπααα+=+=+=+=b a且结合已知,有2444ππβπαπ<+<+<,故有a b <.3.已知函数1()2xf x ⎛⎫= ⎪⎝⎭,a b +∈R ,,2a b A f +⎛⎫= ⎪⎝⎭,B f =,ab C f a b ⎛⎫= ⎪+⎝⎭,则A B C ,,的大小关系( )A.A B C ≤≤ B.A C B ≤≤ C.B C A ≤≤ D.C B A ≤≤【答案】A【解析】据不等式的性质知b a ab ab b a +≥≥+2,又1()2xf x ⎛⎫= ⎪⎝⎭为单调递减函数,故有 A B C ≤≤.4.在ABC ∆中,有:①;BC AC AB =- ②;0=++CA BC AB ③若0)()(=-⋅+AC AB AC AB ,则A B C ∆为等腰三角形;④若,0>⋅AC AB 则ABC ∆为锐角三角形.上述说法正确的是( )A. ①②B. ①④C. ②③D. ②③④ 【答案】C【解析】=-,故①错;若,0>⋅则只能说明A 为锐角,ABC ∆不一定为锐角三角形,因为其它角可能不是锐角,故④错;据向量的运算规律与性质易知②③正确. 5.012<-+ax ax 恒成立,则a 的取值范围是( )A.0≤aB.4-<aC.04<<-aD. 04≤<-a 【答案】D【解析】需讨论:当0=a 时,有01<-,显然成立;当0≠a 时,只能0<a ,且042<+=∆a a 才成立,综合知04≤<-a .6.(昆明一中2011届高三年级第二次月考理,4)已知向量且)1,(sin ),2,(cos αα=-=∥4tan(πα-则)等( )A .3B .-3C .31D .-31【答案】B【解析】3tan 11tan )4tan(,21tan 0sin 21cos //-=+-=--=⇒=+⋅⇒ααπαααα. 7.三次函数3()1f x ax =-在),(+∞-∞内是减函数,则a 的取值范围是_______. 【答案】0a <【解析】因为3()1f x ax =-是减函数,只能3ax 是递减的,而3x y =是一个递增函数,故只能是0a <才行.8.若抛物线2y mx =与椭圆22195x y +=有一个共同的焦点,则m =_______.【答案】8±【解析】因为椭圆22195x y +=的焦点是)0,2(),0,2(-,故抛物线2y mx =中应有24±=m ,故8±=m .9.设函数()f x 对任意∈R ,x y ,都有()()()f x y f x f y +=+,且0x >时,()0f x <. (1)证明()f x 为奇函数;(2)证明()f x 在R 上为减函数.【证明】(1),,R y x ∈ ()()()f x y f x f y +=+,∴令0x y ==,(0)(0)(0)f f f =+,(0)0f =∴,令y x =-,代入()()()f x y f x f y +=+,得(0)()()f f x f x =+-, 而(0)0f =,()()()f x f x x -=-∈R ∴, ()f x ∴是奇函数;(2)任取12x x ∈R ,,且12x x <, 则210x x x ∆=->,21()()0f x f x x ∆=-<∴.又2121()()()f x x f x f x -=+-,()f x ∵为奇函数,11()()f x f x -=-∴,21()()()0f x f x f x ∆=-<∴,即21()()0f x f x -<, ()f x ∴在R 上是减函数.10.已知:a 2+b 2=1,x 2+y 2=1,求证:ax +by ≤1. 证法1:用综合法.∵2ax ≤a 2+x 2,2by ≤b 2+y 2, ∴2(ax +by )≤a 2+b 2+x 2+y 2. 又a 2+b 2=1,x 2+y 2=1, ∴2(ax +by )≤2, ∴ax +by ≤1. 证法2:用分析法.要证ax +by ≤1成立,只要证1-(ax +by )≥0. 只要证2-2ax -2by ≥0. 又∵a 2+b 2=1,x 2+y 2=1,∴只要证:a 2+b 2+x 2+y 2-2ax -2by ≥0. 即证:(a -x )2+(b -y )2≥0, 上式显然成立. ∴ax +by ≤1成立.教学参考本节主要学习证明问题的两种直接证法:综合法与分析法,从而为同学们熟练证明数学问题提供方向,所以同学们必须熟练掌握这两种证题方式,以能灵活运用. 一、教学内容分析通过本节内容的学习,结合已学过的数学实例,正确认识综合法和分析法在证明过程中的重要作用,针对具体问题选择合适的证明方法,养成勤于观察、善于思考的数学品质,实现自己数学学习的又一次飞跃. 二、教学重点难点教学重点:结合已学过的数学实例,了解直接证明的两种基本方法:综合法与分析法,以及其各自的思考过程、特点.教学难点:根据问题的特点,对照综合法与分析法各自的思考过程、特点,选择适当的方法来证明,或将两种不同的方法结合起来使用. 三、教学建议学生们对综合法与分析法在平时的证明问题中并不陌生,因为经常会用到它们来证明问题,但他们对这些证明方法的基本内涵和特点不一定非常清楚,为了帮助同学们理清证题思路,现归纳如下:分析法是从求证的结论出发,一步一步地探索保证前个结论成立的充分条件,此法解题 方向较为明确,利于寻找解题思路;综合法是从命题的条件出发,利用定义、公理、定理及运算法则,通过演绎推理,一步一步地接近证明的结论,直到完成命题的证明,综合法形式简捷,条理清晰,宜于表述.因此,在实际解题时,常常把分析法和综合法结合起来运用,先以分析法为主寻求解题思路,再用综合法有条理地表述解题过程.为了让学生们认识和理解两种方法的相似之处和内在联系以及用它们来熟练解决问题的方式,必须充分动用学生已有的数学活动和生活经验,在此基础上进行概括和总结,在理解证明方法的基础上,对证明的规范要有严格的要求,要重视证明的表述.作为重要的思维方法,综合法和分析法也是两种重要的探索方法,在教学中要注意解题思路的探索过程,要重视方法的运用,并相信学生会在今后的运用过程中,会深化对方法的认识,并提高能力.。

人教A版必修二高中数学第二章 2.2.1-2.2.2同步课堂导学案【含详细解析】

人教A版必修二高中数学第二章  2.2.1-2.2.2同步课堂导学案【含详细解析】

2.2直线、平面平行的判定及其性质2.2.1直线与平面平行的判定2.2.2平面与平面平行的判定[学习目标]1.理解直线与平面平行、平面与平面平行判定定理的含义.2.会用图形语言、文字语言、符号语言准确描述直线与平面平行、平面与平面平行的判定定理,并知道其地位和作用.3.能运用直线与平面平行的判定定理、平面与平面平行的判定定理证明一些空间线面关系的简单问题.[知识链接]1.直线与平面的位置关系有平行、相交、直线在平面内.2.直线a 与平面α平行的定义:直线与平面无公共点.[预习导引]a ∥β,b ∥β要点一线面平行判定定理的应用例1如图,空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.求证:(1)EH ∥平面BCD ;(2)BD ∥平面EFGH .证明(1)∵EH为△ABD的中位线,∴EH∥BD.∵EH⊄平面BCD,BD⊂平面BCD,∴EH∥平面BCD.(2)∵BD∥EH,BD⊄平面EFGH,EH⊂平面EFGH,∴BD∥平面EFGH.规律方法 1.利用直线与平面平行的判定定理证明线面平行,关键是寻找平面内与已知直线平行的直线.2.证线线平行的方法常用三角形中位线定理、平行四边形性质、平行线分线段成比例定理、平行公理等.跟踪演练1如图,四边形ABCD是平行四边形,S是平面ABCD外一点,M为SC的中点,求证:SA∥平面MDB.证明连接AC交BD于点O,连接OM.∵M为SC的中点,O为AC的中点,∴OM∥SA.∵OM⊂平面MDB,SA⊄平面MDB,∴SA∥平面MDB.要点二面面平行判定定理的应用例2如图所示,在三棱柱ABCA1B1C1中,点D,E分别是BC与B1C1的中点.求证:平面A1EB∥平面ADC1.证明由棱柱性质知,B1C1∥BC,B1C1=BC,又D,E分别为BC,B1C1的中点,所以C1E綊DB,则四边形C1DBE为平行四边形,因此EB∥C1D,又C1D⊂平面ADC1,EB⊄平面ADC1,所以EB∥平面ADC1.连接DE,同理,EB1綊BD,所以四边形EDBB1为平行四边形,则ED綊B1B.因为B1B∥A1A,B1B=A1A(棱柱的性质),所以ED綊A1A,则四边形EDAA1为平行四边形,所以A1E∥AD,又A1E⊄平面ADC1,AD⊂平面ADC1,所以A1E∥平面ADC1.由A1E∥平面ADC1,EB∥平面ADC1,A1E⊂平面A1EB,EB⊂平面A1EB,且A1E∩EB=E,所以平面A1EB∥平面ADC1.规律方法 1.要证明两平面平行,只需在其中一个平面内找到两条相交直线平行于另一个平面.2.判定两个平面平行与判定线面平行一样,应遵循先找后作的原则,即先在一个面内找到两条与另一个平面平行的相交直线,若找不到再作辅助线.跟踪演练2如图,三棱锥PABC中,E,F,G分别是AB,AC,AP的中点.证明平面GFE∥平面PCB.证明因为E,F,G分别是AB,AC,AP的中点,所以EF∥BC,GF∥CP.因为EF,GF⊄平面PCB,BC,CP⊂平面PCB.所以EF∥平面PCB,GF∥平面PCB.又EF∩GF=F,所以平面GFE∥平面PCB.要点三线面平行、面面平行判定定理的综合应用例3已知底面是平行四边形的四棱锥PABCD,点E在PD上,且PE∶ED=2∶1.在棱PC 上是否存在一点F,使BF∥平面AEC?证明你的结论,并说出点F的位置.解如图,连接BD交AC于O点,连接OE,过B点作OE的平行线交PD于点G,过点G 作GF∥CE,交PC于点F,连接BF.∵BG∥OE,BG⊄平面AEC,OE⊂平面AEC,∴BG∥平面AEC.同理,GF∥平面AEC.又BG∩GF=G,∴平面BGF∥平面AEC,∴平面BGF与平面AEC无公共点,∴BF与平面AEC无公共点.∴BF∥平面AEC.∵BG∥OE,O是BD的中点,∴E是GD的中点.又∵PE∶ED=2∶1,∴G是PE的中点.而GF∥CE,∴F 为PC 的中点.因此,当点F 是PC 的中点时,BF ∥平面AEC .规律方法要证明面面平行,由面面平行的判定定理知需在某一平面内寻找两条相交且与另一平面平行的直线.要证明线面平行,又需根据线面平行的判定定理,在平面内找与已知直线平行的直线,即:线线平行――→线面平行的判定线面平行――→面面平行的判定面面平行跟踪演练3如图,S 是平行四边形ABCD 所在平面外一点,M ,N 分别是SA ,BD 上的点,且AM SM =DN NB .求证:MN ∥平面SBC .解连接AN 并延长交BC 于P ,连接SP ,因为AD ∥BC ,所以DN NB =ANNP,又因为AM SM =DN NB ,所以AM SM =ANNP ,所以MN ∥SP .又MN ⊄平面SBC ,SP ⊂平面SBC ,所以MN ∥平面SBC .1.过直线l 外两点,作与l 平行的平面,则这样的平面()A .不可能作出B .只能作出一个C .能作出无数个D .上述三种情况都存在答案D解析设直线外两点为A 、B ,若直线AB ∥l ,则过A 、B 可作无数个平面与l 平行;若直线AB 与l 异面,则只能作一个平面与l 平行;若直线AB 与l 相交,则过A 、B 没有平面与l 平行.2.能保证直线a与平面α平行的条件是()A.b⊂α,a∥bB.b⊂α,c∥α,a∥b,a∥cC.b⊂α,A、B∈a,C、D∈b,且AC=BDD.a⊄α,b⊂α,a∥b答案D解析A错误,若b⊂α,a∥b,则a∥α或a⊂α;B错误,若b⊂α,c∥α,a∥b,a∥c,则a∥α或a⊂α;C错误,若满足此条件,则a∥α或a⊂α或a与α相交;D正确.3.若直线l不平行于平面α,且l⊄α,则()A.α内的所有直线与l异面B.α内不存在与l平行的直线C.α内存在唯一的直线与l平行D.α内的直线与l都相交答案B解析直线l不平行于平面α,且l⊄α,所以l与α相交,故选B.4.在正方体EFGHE1F1G1H1中,下列四对截面彼此平行的一对是()A.平面E1FG1与平面EGH1B.平面FHG1与平面F1H1GC.平面F1H1H与平面FHE1D.平面E1HG1与平面EH1G答案A解析如图,∵EG∥E1G1,EG⊄平面E1FG1,E1G1⊂平面E1FG1,∴EG∥平面E1FG1,又G1F∥H1E,同理可证H 1E ∥平面E 1FG 1,又H 1E ∩EG =E ,∴平面E 1FG 1∥平面EGH 1.5.梯形ABCD 中,AB ∥CD ,AB ⊂平面α,CD ⊄平面α,则直线CD 与平面α的位置关系是________.答案CD ∥α解析因为AB ∥CD ,AB ⊂平面α,CD ⊄平面α,由线面平行的判定定理可得CD ∥α.1.直线与平面平行的关键是在已知平面内找一条直线和已知直线平行,即要证直线和平面平行,先证直线和直线平行,即由立体向平面转化,由高维向低维转化.2.证明面面平行的一般思路:线线平行⇒线面平行⇒面面平行.3.准确把握线面平行及面面平行两个判定定理,是对线面关系及面面关系作出正确推断的关键.一、基础达标1.已知三个平面α,β,γ,一条直线l ,要得到α∥β,必须满足下列条件中的()A .l ∥α,l ∥β,且l ∥γB .l ⊂γ,且l ∥α,l ∥βC .α∥γ,且β∥γD .l 与α,β所成的角相等答案C解析α∥γ⇒α与γβ∥γ⇒β与γα与β无公共点⇒α∥β.2.下列图形中能正确表示语句“平面α∩β=l ,a ⊂α,b ⊂β,a ∥β”的是()答案D解析A中不能正确表达b⊂β;B中不能正确表达a∥β;C中也不能正确表达a∥β;D正确.3.在正方体ABCDA1B1C1D1中,M是棱CD上的动点,则直线MC1与平面AA1B1B的位置关系是()A.相交B.平行C.异面D.相交或平行答案B解析如图,MC1⊂平面DD1C1C,而平面AA1B1B∥平面DD1C1C,故MC1∥平面AA1B1B.4.平面α内有不共线的三点到平面β的距离相等且不为零,则α与β的位置关系为() A.平行B.相交C.平行或相交D.可能重合答案C解析若三点分布于平面β的同侧,则α与β平行,若三点分布于平面β的两侧,则α与β相交.5.点E,F,G,H分别是空间四边形ABCD的边AB,BC,CD,DA的中点,则空间四面体的六条棱中与平面EFGH平行的条数是()A.0B.1C.2D.3答案C解析如图,由线面平行的判定定理可知,BD∥平面EFGH,AC∥平面EFGH.6.若夹在两个平面间的三条平行线段相等,那么这两个平面的位置关系为________.答案平行或相交解析三条平行线段共面时,两平面可能平行也可能相交,当三条平行线段不共面时,两平面一定平行.7.如图所示的几何体中,△ABC 是任意三角形,AE ∥CD ,且AE =AB =2a ,CD =a ,F 为BE 的中点,求证:DF ∥平面ABC .证明如图所示,取AB 的中点G ,连接FG ,CG ,∵F ,G 分别是BE ,AB 的中点,∴FG ∥AE ,FG =12AE .又∵AE =2a ,CD =a ,∴CD =12AE .又AE ∥CD ,∴CD ∥FG ,CD =FG ,∴四边形CDFG 为平行四边形,∴DF ∥CG .又CG ⊂平面ABC ,DF ⊄平面ABC ,∴DF ∥平面ABC .二、能力提升8.已知直线l ,m ,平面α,β,下列命题正确的是()A .l ∥β,l ⊂α⇒α∥βB .l ∥β,m ∥β,l ⊂α,m ⊂α⇒α∥βC .l ∥m ,l ⊂α,m ⊂β⇒α∥βD .l ∥β,m ∥β,l ⊂α,m ⊂α,l ∩m =M ⇒α∥β答案D解析如图所示,在长方体ABCDA 1B 1C 1D 1中,AB ∥CD ,则AB∥平面DC1,AB⊂平面AC,但是平面AC与平面DC1不平行,所以A错误;取BB1的中点E,CC1的中点F,则可证EF∥平面AC,B1C1∥平面AC.EF⊂平面BC1,B1C1⊂平面BC1,但是平面AC与平面BC1不平行,所以B 错误;可证AD∥B1C1,AD⊂平面AC,B1C1⊂平面BC1,又平面AC与平面BC1不平行,所以C错误;很明显D是面面平行的判定定理,所以D正确.9.三棱锥SABC中,G为△ABC的重心,E在棱SA上,且AE=2ES,则EG与平面SBC的关系为________.答案平行解析如图,延长AG交BC于F,则由G为△ABC的重心知AG∶GF=2,又AE∶ES=2,∴EG∥SF,又SF⊂平面SBC,EG⊄平面SBC,∴EG∥平面SBC.10.如图是正方体的平面展开图.在这个正方体中,①BM∥平面DE;②CN∥平面AF;③平面BDM∥平面AFN;④平面BDE∥平面NCF.以上四个命题中,正确命题的序号是________.答案①②③④解析以ABCD为下底面还原正方体,如图:则易判定四个命题都是正确的.11.如图,在三棱柱ABCA1B1C1中,D为BC的中点,连接AD,DC1,A1B,AC1,求证:A1B∥平面ADC1.证明连接A1C,设A1C∩AC1=O,再连接OD.由题意知,A1ACC1是平行四边形,所以O 是A1C的中点,又D是CB的中点,因此OD是△A1CB的中位线,即OD∥A1B.又A1B⊄平面ADC1,OD⊂平面ADC1,所以A1B∥平面ADC1.三、探究与创新12.如图在正方体ABCDA1B1C1D1中,E,F,M,N分别为棱AB,CC1,AA1,C1D1的中点.求证:平面CEM∥平面BFN.证明因为E,F,M,N分别为其所在各棱的中点,如图连接CD1,A1B,易知FN∥CD1.同理,ME∥A1B.易证四边形A1BCD1为平行四边形,所以ME∥NF.连接MD1,同理可得MD1∥BF.又BF,NF为平面BFN中两相交直线,ME,MD1为平面CEM中两相交直线,故平面CEM∥平面BFN.13.在如图所示的几何体中,四边形ABCD为平行四边形,∠ACB=90°,EF∥AB,FG∥BC,EG∥AC,AB=2EF,M是线段AD的中点,求证:GM∥平面ABFE.证明因为EF ∥AB ,FG ∥BC ,EG ∥AC ,∠ACB =90°,所以△ABC ∽△EFG ,∠EGF =90°,由于AB =2EF ,因此BC =2FG .如图,连接AF ,由于FG ∥BC ,FG =12BC ,在▱ABCD 中,M 是线段AD 的中点,则AM ∥BC ,且AM =12BC ,因此FG ∥AM 且FG =AM ,所以四边形AFGM 为平行四边形,因此GM ∥FA .又FA ⊂平面ABFE ,GM ⊄平面ABFE ,所以GM ∥平面ABFE .。

选修1-2推理与证明导学案加课后作业及答案

选修1-2推理与证明导学案加课后作业及答案

2.1.1合情推理(一)【学习要求】1.了解归纳推理的含义,能利用归纳推理进行简单的推理.2.了解归纳推理在数学发展中的作用.【学法指导】归纳是推理常用的思维方法,其结论不一定正确,但具有猜测和发现结论、探索和提供思路的作用,有利于创新意识的培养.【知识要点】1.推理:根据一个或几个已知事实(或假设)得出一个,这种思维方式就是推理.推理一般由两部分组成:和________.2.合情推理:前提为真时,结论的推理,叫做合情推理.3.归纳推理:根据一类事物的部分对象具有某种性质,推出这类事物的都具有这种性质的推理.4.归纳推理具有如下的特点:(1)归纳推理是从到的推理;(2)由归纳推理得到的结论正确;(3)归纳推理是一种具有创造性的推理.【问题探究】探究点一归纳推理的定义问题1在日常生活中我们常常遇到这样一些问题:看到天空乌云密布,燕子低飞,蚂蚁搬家等现象时,我们会得出一个判断——天要下雨了;张三今天没来上课,我们会推断——张三一定生病了;谚语说:“八月十五云遮月,来年正月十五雪打灯”等,像上面的思维方式就是推理,请问你认为什么是推理?问题2在等差数列{a n}中:a1=a1+0d,a2=a1+d=a1+1d,a3=a2+d=a1+2d,a4=a3+d=a1+3d,……观察可得什么结论?问题3设f(n)=n2+n+41,n∈N*,计算f(1),f(2),f(3),f(4),…,f(10)的值,同时作出归纳推理,并用n=40验证猜想的结论是否正确.探究点二归纳推理的应用例1已知数列{a n}的第1项a1=1,且a n+1=a n1+a n(n=1,2,3,…),试归纳出这个数列的通项公式.跟踪训练1已知数列{a n}满足a1=1,a n+1=2a n+1(n=1,2,3,…).(1)求a2,a3,a4,a5;(2)归纳猜想通项公式a n.例2在法国巴黎举行的第52届世兵赛期间,某商场橱窗里用同样的乒乓球堆成若干堆“正三棱锥”形的展品,其中第1堆只有一层,就一个球;第2,3,4,…堆最底层(第一层)分别按图所示方式固定摆放,从第二层开始,每层的小球自然垒放在下一层之上,第n堆第n层就放一个乒乓球,以f(n)表示第n堆的乒乓球总数,则f(3)=______;f(n)=______(答案用含n的代数式表示).跟踪训练2在平面内观察:凸四边形有2条对角线,凸五边形有5条对角线,凸六边形有9条对角线,…由此猜想凸n(n≥4且n∈N*)边形有几条对角线?例3观察下列等式,并从中归纳出一般法则.(1)1=12,1+3=22,1+3+5=32,1+3+5+7=42,1+3+5+7+9=52,……(2)1=12,2+3+4=32,3+4+5+6+7=524+5+6+7+8+9+10=72,5+6+7+8+9+10+11+12+13=92,……跟踪训练3在△ABC中,不等式1A+1B+1C≥9成立;在四边形ABCD中,不等式1A+1B+1C+1D≥16成立;在五边形ABCDE中,不等式1A+1B+1C+1D+1E≥253π成立.猜想在n边形A1A2…A n中有怎样的不等式成立_______.【当堂检测】1.已知2+23=223,3+38=338,4+415=4415,…,若6+ab=6ab(a、b均为实数).请推测a=______,b=________.2.将全体正整数排成一个三角形数阵:12 345 6789101112131415……………………按照以上排列的规律,第n 行(n ≥3)从左向右的第3个数为________. 3.已知正项数列{a n }满足S n =12(a n +1a n),求出a 1,a 2,a 3,a 4,并推测a n .【课堂小结】归纳推理的一般步骤(1)对有限的资料进行观察、分析、归纳、整理,发现某些相同的性质;(2)从已知的相同性质中推出一个明确表述的一般命题,提出带有规律性的结论,即猜想,注意:一般性的命题往往要用字母表示,这时需注明字母的取值范围.【课后作业】一、基础过关1.数列5,9,17,33,x ,…中的x 等于( )A .47B .65C .63D .1282.已知a 1=3,a 2=6且a n +2=a n +1-a n ,则a 33为( )A .3B .-3C .6D .-6 3.根据给出的数塔猜测123 456×9+7等于( )1×9+2=11 12×9+3=111 123×9+4=1 111 1 234×9+5=11 111 12 345×9+6=111 111A .1 111 110B .1 111 111C .1 111 112D .1 111 1134.我们把1,4,9,16,25,…这些数称做正方形数,这是因为这些数目的点子可以排成一个正方形(如图).试求第n 个正方形数是( )A .n (n -1)B .n (n +1)C .n 2D .(n +1)25.f (n )=1+12+13+…+1n (n ∈N *),计算得f (2)=32,f (4)>2,f (8)>52,f (16)>3,f (32)>72,推测当n ≥2时,有________.二、能力提升6.设x ∈R ,且x ≠0,若x +x -1=3,猜想x 2n +x -2n (n ∈R *)的个位数字是________. 7.如图,观察图形规律,在其右下角的空格处画上合适的图形,应为________.8.如图所示四个图形中,着色三角形的个数依次构成一个数列的前4项,则这个数列的一个通项公式为________.9.如图所示,图(a)是棱长为1的小正方体,图(b)、图(c)是由这样的小正方体摆放而成.按照这样的方法继续摆放,自上而下分别叫第1层,第2层,…,第n 层.第n 层的小正方体的个数记为S n .解答下列问题.(1)按照要求填表:(2)S 10=________.(3)S n =10.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上面画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10,…记为数列{a n },将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n },可以推测:(1)b 2 012是数列{a n }中的第______项; (2)b 2k -1=________.(用k 表示)11.已知数列{a n }的前n 项和为S n ,a 1=1且S n -1+1S n +2=0(n ≥2),计算S 1,S 2,S 3,S 4,并猜想S n 的表达式.12.一条直线将平面分成2个部分,两条直线最多将平面分成4个部分. (1)3条直线最多将平面分成多少部分?(2)设n 条直线最多将平面分成f (n )部分,归纳出f (n +1)与f (n )的关系; (3)求出f (n ).三、探究与拓展13.在一容器内装有浓度r %的溶液a 升,注入浓度为p %的溶液14a 升,搅匀后再倒出溶液14a 升,这叫一次操作,设第n 次操作后容器内溶液的浓度为b n ,计算b 1、b 2、b 3,并归纳出计算公式bn .2.1.1 合情推理(二)【学习要求】1.通过具体实例理解类比推理的意义. 2.会用类比推理对具体问题作出判断.【学法指导】类比推理是在两类不同的事物之间进行对比,找出若干相同或相似点之后,推测在其他方面也可以存在相同或相似之处的一种推理模式.归纳和类比是合情推理常用的思维方法,其结论不一定正确【知识要点】1.类比推理:根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有___________________________的推理,叫做类比推理(简称类比). 2.类比推理的一般步骤:(1)找出两类事物之间的 ;(2)用一类事物的性质去推测另一类事物的性质,得出一个 .【问题探究】探究点一 平面图形与立体图形间的类比阅读下面的推理,回答后面提出的问题:1.科学家对火星进行研究,发现火星与地球有许多类似的特征: (1)火星也是绕太阳运行、绕轴自转的行星; (2)有大气层,在一年中也有季节变更;(3)火星上大部分时间的温度适合地球上某些已知生物的生存,等等.科学家猜想:火星上也可能有生命存在.2.根据等式的性质猜想不等式的性质.等式的性质: 猜想不等式的性质: (1)a =b ⇒a +c =b +c; (1)a >b ⇒a +c >b +c ; (2)a =b ⇒ac =bc; (2)a >b ⇒ac >bc ; (3)a =b ⇒a 2=b 2等等. (3)a >b ⇒a 2>b 2等等. 问题1 这两个推理实例在思维方式上有什么共同特点? 问题2 猜想正确吗?问题3 类比圆的特征,填写下表中球的有关特征例1 如图所示,面积为S 的平面凸四边形的第i 条边的边长记为a i (i =1,2,3,4),此四边形内任一点P 到第i 条边的距离记为h i (i =1,2,3,4),若a 11=a 22=a 33=a 44=k ,则h 1+2h 2+3h 3+4h 4=2Sk,类比以上性质,体积为V 的三棱锥的第i 个面的面积记为S i (i =1,2,3,4),此三棱锥内任一点Q 到第i 个面的距离记为H i (i =1,2,3,4),若S 11=S 22=S 33=S 44=K ,则H 1+2H 2+3H 3+4H 4等于多少?跟踪训练1 在平面几何里,有勾股定理:“设△ABC 的两边AB 、AC 互相垂直,则AB 2+AC 2=BC 2”.拓展到空间(如图),类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出的结论是_________________________________________.探究点二 定义、定理或性质中的类比例2 在等差数列{a n }中,若a 10=0,证明等式a 1+a 2+…+a n =a 1+a 2+…+a 19-n (n <19,n ∈N +)成立,并类比上述性质相应在等比数列{b n }中,若b 9=1,则有等式________成立.跟踪训练2 设等差数列{a n }的前n 项和为S n ,则S 4,S 8-S 4,S 12-S 8,S 16-S 12成等差数列.类比以上结论有:设等比数列{b n }的前n 项积为T n ,则T 4,________,________,T 16T 12成等比数列.【当堂检测】1.下列说法正确的是 ( ) A .由合情推理得出的结论一定是正确的 B .合情推理必须有前提、有结论 C .合情推理不能猜想D .合情推理得出的结论不能判断正误2.在平面上,若两个正三角形的边长比为1∶2,则它们的面积比为1∶4.类似地,在空间中,若两个正四面体的棱长比为1∶2,则它们的体积比为________.3.若数列{c n }是等差数列,则当d n =c 1+c 2+…+c nn 时,数列{d n }也是等差数列,类比上述性质,若数列{a n }是各项均为正数的等比数列,则当b n =_________时,数列{b n }也是等比数列. 4.对命题“正三角形的内切圆切于三边中点”可类比猜想:正四面体的内切球切于四面各正三角形的________.【课堂小结】1.合情推理主要包括归纳推理和类比推理.数学研究中,在得到一个新结论前,合情推理能帮助猜测和发现结论,在证明一个数学结论之前,合情推理常常能为证明提供思路与方向. 2.合情推理的过程概括为:从具体问题出发―→观察、分析、比较、联想―→归纳、类比―→提出猜想【课后作业】一、基础过关 1.下列推理正确的是( )A .把a (b +c )与log a (x +y )类比,则有log a (x +y )=log a x +log a yB .把a (b +c )与sin (x +y )类比,则有sin(x +y )=sin x +sin yC .把a (b +c )与ax +y类比,则有ax +y=a x +a yD .把a (b +c )与a ·(b +c )类比,则有a ·(b +c )=a ·b +a ·c 2.下面几种推理是合情推理的是( )①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°; ③张军某次考试成绩是100分,由此推出全班同学的成绩都是100分;④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得凸多边形内角和是(n -2)·180°.A .①②B .①③C .①②④D .②④3.在等差数列{a n }中,若a n <0,公差d >0,则有a 4·a 6>a 3·a 7,类比上述性质,在等比数列{b n }中,若b n >0,q >1,则下列有关b 4,b 5,b 7,b 8的不等关系正确的是( )A .b 4+b 8>b 5+b 7B .b 5+b 7>b 4+b 8C .b 4+b 7>b 5+b 8D .b 4+b 5>b 7+b 84.已知扇形的弧长为l ,半径为的r ,类比三角形的面积公式:S =底×高2,可推知扇形面积公式S 扇=________.5.类比平面直角坐标系中△ABC 的重心G (x ,y )的坐标公式⎩⎨⎧x =x 1+x 2+x33y =y 1+y 2+y33(其中A (x 1,y 1)、B (x 2,y 2)、C (x 3,y 3)),猜想以A (x 1,y 1,z 1)、B (x 2,y 2,z 2)、C (x 3,y 3,z 3)、D (x 4,y 4,z 3)为顶点的四面体A —BCD 的重心G (x ,y ,z )的公式为________.6.公差为d (d ≠0)的等差数列{a n }中,S n 是{a n }的前n 项和,则数列S 20-S 10,S 30-S 20,S 40-S 30也成等差数列,且公差为100d ,类比上述结论,相应地在公比为q (q ≠1)的等比数列{b n }中,若T n 是数列{b n }的前n 项积,则有_____________________________________. 二、能力提升7.把下面在平面内成立的结论类比地推广到空间,结论仍然正确的是________.(填序号) ①如果一条直线与两条平行线中的一条相交,则也与另一条相交; ②如果一条直线与两条平行线中的一条垂直,则也与另一条垂直; ③如果两条直线同时与第三条直线相交,则这两条直线相交或平行; ④如果两条直线同时与第三条直线垂直,则这两条直线平行.8.类比平面内正三角形的“三边相等,三内角相等”的性质,可推知正四面体的下列性质中,你认为比较恰当的是________.(填序号)①各棱长相等,同一顶点上的两条棱的夹角都相等;②各个面都是全等的正三角形,相邻两个面所成的二面角都相等; ③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等.9.已知抛物线y 2=2px (p >0),过定点(p,0)作两条互相垂直的直线l 1、l 2,若l 1与抛物线交于P 、Q 两点,l 2与抛物线交于M 、N 两点,l 1的斜率为k ,某同学已正确求得弦PQ 的中点坐标为(p k 2+p ,pk),请你写出弦MN 的中点坐标:________.10.现有一个关于平面图形的命题:如图,同一个平面内有两个边长都是a 的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为a 24.类比到空间,有两个棱长均为a 的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为________.11.如图(1),在平面内有面积关系S △P A ′B ′S △P AB=P A ′P A ·PB ′PB ,写出图(2)中类似的体积关系,并证明你的结论.12.如图所示,在△ABC 中,射影定理可表示为a =b ·cos C +c ·cos B ,其中a ,b ,c 分别为角A ,B ,C 的对边,类比上述定理,写出对空间四面体性质的猜想.三、探究与拓展13.已知在Rt △ABC 中,AB ⊥AC ,AD ⊥BC 于D ,有1AD 2=1AB 2+1AC 2成立.那么在四面体A -BCD 中,类比上述结论,你能得到怎样的猜想,并说明猜想是否正确及给出理由.2.1.2 演绎推理【学习要求】1.理解演绎推理的意义.2.掌握演绎推理的基本模式,并能运用它们进行一些简单推理. 3.了解合情推理和演绎推理之间的区别和联系.【学法指导】演绎推理是数学证明的主要工具,其一般模式是三段论.学习中要挖掘证明过程包含的推理思路,明确演绎推理的基本过程.【知识要点】1.演绎推理:由概念的定义或一些真命题,依照_____________得到 的过程,通常叫做演绎推理. 2.演绎推理的特征是:当前提为真时,结论 . 3.演绎推理经常使用三段论推理,三段论一般可表示: ________________;所以,S 是P .【问题探究】探究点一 演绎推理与三段论问题1 分析下面几个推理,找出它们的共同点.(1)所有的金属都能导电,铀是金属,所以铀能够导电;(2)一切奇数都不能被2整除,(2100+1)是奇数,所以(2100+1)不能被2整除; (3)三角函数都是周期函数,正切函数是三角函数,因此正切函数是周期函数;(4)两条直线平行,同旁内角互补.如果∠A 与∠B 是两条平行直线的同旁内角,那么∠A +∠B =180°. 问题2 演绎推理有什么特点?问题3 演绎推理的结论一定正确吗? 问题4 演绎推理一般是怎样的模式? 例1 将下列演绎推理写成三段论的形式.(1)平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分; (2)等腰三角形的两底角相等,∠A ,∠B 是等腰三角形的底角,则∠A =∠B ; (3)通项公式为a n =2n +3的数列{a n }为等差数列. 跟踪训练1 把下列推断写成三段论的形式:(1)因为△ABC 三边的长依次为3,4,5,所以△ABC 是直角三角形; (2)函数y =2x +5的图象是一条直线; (3)y =sin x (x ∈R)是周期函数. 探究点二 三段论的错误探究例2 指出下列推理中的错误,并分析产生错误的原因: (1)整数是自然数, 大前提 -3是整数, 小前提 -3是自然数. 结论 (2)常函数的导函数为0, 大前提 函数f (x )的导函数为0, 小前提 f (x )为常函数. 结论 (3)无限不循环小数是无理数, 大前提 13(0.333 33…)是无限不循环小数, 小前提 13是无理数.结论跟踪训练2 指出下列推理中的错误,并分析产生错误的原因: (1)因为中国的大学分布在中国各地, 大前提 北京大学是中国的大学, 小前提 所以北京大学分布在中国各地. 结论 (2)因为所有边长都相等的凸多边形是正多边形, 大前提而菱形是所有边长都相等的凸多边形, 小前提 所以菱形是正多边形. 结论 探究点三 三段论的应用例3 如图,在锐角三角形ABC 中,AD ⊥BC ,BE ⊥AC ,D ,E 是垂足,求证:AB 的中点M 到点D ,E 的距离相等.跟踪训练3 已知:在空间四边形ABCD 中,点E ,F 分别是AB ,AD 的中点,如图所示, 求证:EF ∥平面BCD .【当堂检测】1.下面几种推理过程是演绎推理的是 ( )A .两条直线平行,同旁内角互补,如果∠A 与∠B 是两条平行直线的同旁内角,则∠A +∠B =180° B .某校高三1班有55人,2班有54人,3班有52人,由此得高三所有班人数超过50人C .由平面三角形的性质,推测空间四边形的性质D .在数列{a n }中,a 1=1,a n =12⎝⎛⎭⎫a n -1+1a n -1(n ≥2),由此归纳出{a n }的通项公式2.“因为对数函数y =log a x 是增函数(大前提),又x y 31log =是对数函数(小前提),所以y =x y 31log =是增函数(结论).”下列说法正确的是 ( )A .大前提错误导致结论错误B .小前提错误导致结论错误C .推理形式错误导致结论错误D .大前提和小前提都错误导致结论错误3.推理:“①矩形是平行四边形,②三角形不是平行四边形,③所以三角形不是矩形.”中 的小前提是 ( ) A .① B .② C .③ D .①②4.把“函数y =x 2+x +1的图象是一条抛物线”恢复成三段论,则大前提:____________; 小前提:____________; 结论:____________.【课堂小结】1.演绎推理是从一般性原理出发,推出某个特殊情况的推理方法;只要前提和推理形式正确,通过演绎推理得到的结论一定正确.2.在数学中,证明命题的正确性都要使用演绎推理,推理的一般模式是三段论,证题过程中常省略三段论的大前提.【课后作业】一、基础过关 1. 下列表述正确的是( )①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理; ③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理; ⑤类比推理是由特殊到特殊的推理.A .①②③B .②③④C .②④⑤D .①③⑤ 2. 下列说法不正确的是( )A .演绎推理是由一般到特殊的推理B .赋值法是演绎推理C .三段论推理的一个前提是肯定判断,结论为否定判断,则另一前提是否定判断D .归纳推理的结论都不可靠3. 正弦函数是奇函数,f (x )=sin(x 2+1)是正弦函数,因此f (x )=sin (x 2+1)是奇函数.以上推理 ( )A .结论正确B .大前提不正确C .小前提不正确D .全不正确4.“∵四边形ABCD 是矩形,∴四边形ABCD 的对角线相等.”以上推理的大前提是( )A .正方形都是对角线相等的四边形B .矩形都是对角线相等的四边形C .等腰梯形都是对角线相等的四边形D .矩形都是对边平行且相等的四边形 5. 给出演绎推理的“三段论”:直线平行于平面,则平行于平面内所有的直线;(大前提) 已知直线b ∥平面α,直线a ⊂平面α;(小前提) 则直线b ∥直线a .(结论) 那么这个推理是( )A .大前提错误B .小前提错误C .推理形式错误D .非以上错误 6. 下列几种推理过程是演绎推理的是( )A .5和22可以比较大小B .由平面三角形的性质,推测空间四面体的性质C .东升高中高二年级有15个班,1班有51人,2班有53人,3班有52人,由此推测各班都超过50人D .预测股票走势图 二、能力提升7.三段论:“①小宏在2013年的高考中考入了重点本科院校;②小宏在2013年的高考中只要正常发挥就能考入重点本科院校;③小宏在2013年的高考中正常发挥”中,“小前提”是__________(填序号). 8.在求函数y =log 2x -2的定义域时,第一步推理中大前提是当a 有意义时,a ≥0;小前提是log 2x -2有意义;结论是__________________.9.由“(a 2+a +1)x >3,得x >3a 2+a +1”的推理过程中,其大前提是______________.10.对于平面上的点集Ω,如果连接Ω中任意两点的线段必定包含于Ω,则称Ω为平面上的凸集,给出平面上4个点集的图形如图(阴影区域及其边界):其中为凸集的是________(写出所有凸集相应图形的序号). 11.用演绎推理证明函数f (x )=|sin x |是周期函数.12.设a >0,f (x )=e x a +ae x 是R 上的偶函数,求a 的值.三、探究与拓展13.S 为△ABC 所在平面外一点,SA ⊥平面ABC ,平面SAB ⊥平面SBC .求证:AB ⊥BC .2.2.1 综合法与分析法(一)【学习要求】1.了解直接证明的两种基本方法——综合法和分析法.2.理解综合法和分析法的思考过程、特点,会用综合法和分析法证明数学问题.【学法指导】综合法和分析法是直接证明中最基本的两种证明方法,要结合实例了解两种证法的思考过程、特点.【知识要点】1. 和 是直接证明中最基本的两种证明方法,也是解决数学问题时常用的思维方式. 2.综合法是从 出发,经过 ,最后达到待证结论.3.分析法是从 出发,一步一步寻求结论成立的______,最后达到题设的已知条件,或已被证明的事实.【问题探究】 探究点一 综合法问题1 证明下面的问题,总结证明方法有什么特点? 已知a ,b >0,求证:a (b 2+c 2)+b (c 2+a 2)≥4abc .问题2 综合法又叫由因导果法,其推理过程是合情推理还是演绎推理?例1 在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,且A ,B ,C 成等差数列,a ,b ,c 成等比数列,求证:△ABC 为等边三角形. 跟踪训练1 在△ABC 中,AC AB =cos B cos C,证明:B =C . 探究点二 分析法问题1 回顾一下:均值不等式a +b2≥ab (a >0,b >0)是怎样证明的?问题2 证明过程有何特点?问题3 综合法和分析法的区别是什么? 例2 求证:3+7<2 5.跟踪训练2 求证:a -a -1<a -2-a -3(a ≥3). 探究点三 综合法和分析法的综合应用问题 在实际证题中,怎样选用综合法和分析法?例3 已知α,β≠k π+π2(k ∈Z),且sin θ+cos θ=2sin α, ①sin θ·cos θ=sin 2β.②求证:1-tan 2α1+tan 2α=1-tan 2β+tan 2β.跟踪训练3 若tan(α+β)=2tan α,求证:3sin β=sin(2α+β).【当堂检测】1.下列表述:①综合法是由因导果法; ②综合法是顺推法; ③分析法是执果索因法; ④分析法是间接证明法; ⑤分析法是逆推法. 其中正确的语句有 ( )A .2个B .3个C .4个D .5个2.欲证2-3<6-7成立,只需证( )A .(2-3)2<(6-7)2B .(2-6)2<(3-7)2C .(2+7)2<(3+6)2D .(2-3-6)2<(-7)2 3.求证:1log 519+2log 319+3log 219<2.4.已知1-tan α2+tan α=1,求证:cos α-sin α=3(cos α+sin α).【课堂小结】1.综合法证题是从条件出发,由因导果;分析法是从结论出发,执果索因. 2.分析法证题时,一定要恰当地运用“要证”、“只需证”、“即证”等词语. 3.在解题时,往往把综合法和分析法结合起来使用.【课后作业】一、基础过关1. 已知a ,b ,c ∈R ,那么下列命题中正确的是( )A .若a >b ,则ac 2>bc 2B .若a c >bc ,则a >bC .若a 3>b 3且ab <0,则1a >1bD .若a 2>b 2且ab >0,则1a <1b2. A 、B 为△ABC 的内角,A >B 是sin A >sin B 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3. 已知直线l ,m ,平面α,β,且l ⊥α,m ⊂β,给出下列四个命题:①若α∥β,则l ⊥m ;②若l ⊥m ,则α∥β;③若α⊥β,则l ⊥m ;④若l ∥m ,则α⊥β. 其中正确命题的个数是( )A .1B .2C .3D .44. 设a ,b 都是正实数,且a ≠b ,a +b =2,则必有( )A .1≤ab ≤a 2+b 22B .ab <1<a 2+b 22C .ab <a 2+b 22<1D .a 2+b 22<ab <15. 已知a ,b 为非零实数,则使不等式:a b +ba≤-2成立的一个充分不必要条件是( )A .ab >0B .ab <0C .a >0,b <0D .a >0,b >0二、能力提升6. 设0<x <1,则a =2x ,b =1+x ,c =11-x中最大的一个是( )A .aB .bC .cD .不能确定7. 已知a 、b 、c ∈R ,且a +b +c =0,abc >0,则1a +1b +1c的值( )A .一定是正数B .一定是负数C .可能是0D .正、负不能确定8.设a =2,b =7-3,c =6-2,则a ,b ,c 的大小关系为________. 9.已知p =a +1a -2(a >2),q =2-a 2+4a -2(a >2),则p 、q 的大小关系为________.10.如果a a +b b >a b +b a ,求实数a ,b 的取值范围.11.设a ≥b >0,求证:3a 3+2b 3≥3a 2b +2ab 212.已知a >0,1b -1a >1,求证:1+a >11-b.三、探究与拓展13.已知a 、b 、c 是不全相等的正数,且0<x <1.求证:log x a +b 2+log x b +c 2+log x a +c2<log x a +log x b +log x c .2.2.1 综合法与分析法(二)【学习要求】加深对综合法、分析法的理解,应用两种方法证明数学问题.【学法指导】通过本节课的学习,比较两种证明方法的优点,进而灵活选择证明方法,规范证明步骤,养成言之有理、论之有据的好习惯,提高思维能力.【双基检测】1.分析法是从要证明的结论出发,逐步寻求使结论成立的 ( ) A .充分条件 B .必要条件 C .充要条件 D .等价条件2.用P 表示已知,Q 表示要证的结论,则综合法的推理形式为 ( ) A .P ⇒Q 1→Q 1⇒Q 2→Q 2⇒Q 3→…→Q n ⇒Q B .P ⇐Q 1→Q 1⇐Q 2→Q 2⇐Q 3→…→Q n ⇐Q C .Q ⇒Q 1→Q 1⇒Q 2→Q 2⇒Q 3→…→Q n ⇒P D .Q ⇐Q 1→Q 1⇐Q 2→Q 2⇐Q 3→…→Q n ⇐P 3.已知p :ab >0;q :b a +ab≥2,则( )A .p 是q 的充分而不必要条件B .p 是q 的必要而不充分条件C .p 是q 的充要条件D .p 是q 的既不充分也不必要条件 4.要证:a 2+b 2-1-a 2b 2≤0,只要证明( ) A .2ab -1-a 2b 2≤0 B .a 2+b 2-1-a 4+b 42≤0C .a +b 22-1-a 2b 2≤0 D .(a 2-1)(b 2-1)≥05.给出下列命题:①a <b <0⇒b a <1;②a <b <0⇒a -2<b -2;③a >b ,c >d ,abcd ≠0⇒a c >b d ;④a ·b ≠0⇒|a +b ||a |+|b |<1;⑤a >b >0,c >d >0⇒a d >bc.其中,真命题的序号是________. 【问题探究】题型一 选择恰当的方法证明不等式例1 设a ,b ,c 为任意三角形三边长,I =a +b +c ,S =ab +bc +ca ,试证:3S ≤I 2<4S . 跟踪训练1 (1)已知:a ,b ,c 都是正实数,且ab +bc +ca =1.求证:a +b +c ≥ 3. (2)已知a 、b 、c 为互不相等的正数且abc =1,求证:a +b +c <1a +1b +1c .题型二 选择恰当的方法证明等式例2 已知△ABC 的三个内角A ,B ,C 成等差数列,对应的三边为a ,b ,c ,求证:1a +b +1b +c =3a +b +c .跟踪训练2 设实数a ,b ,c 成等比数列,非零实数x ,y 分别为a 与b ,b 与c 的等差中项,试证:a x +cy =2.题型三 选择恰当的方法证明空间图形的位置关系例3 如图,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,P A =AB =BC ,E是PC 的中点.求证:(1)CD ⊥AE ;(2)PD ⊥平面ABE .跟踪训练3 如图,正方形ABCD 和四边形ACEF 所在的平面互相垂直,EF ∥AC ,AB =2,CE =EF =1.求证:(1)AF ∥平面BDE ; (2)CF ⊥平面BDE .【课堂小结】1.综合法的特点是:从已知看可知,逐步推出未知.2.分析法的特点是:从未知看需知,逐步靠拢已知. 3.分析法和综合法各有优缺点.分析法思考起来比较自然,容易寻找到解题的思路和方法,缺点是思路逆行,叙述较繁;综合法从条件推出结论,较简捷地解决问题,但不便于思考.实际证题时常常两法兼用,先用分析法探索证明途径,然后再用综合法叙述出来.【课后作业】一、基础过关1. 已知a ≥0,b ≥0,且a +b =2,则( )A .a ≤12B .ab ≥12C .a 2+b 2≥2D .a 2+b 2≤3 2. 已知a 、b 、c 、d ∈{正实数},且a b <cd,则( )A .a b <a +c b +d <c dB .a +c b +d <a b <c dC .a b <c d <a +c b +dD .以上均可能3. 下面四个不等式:①a 2+b 2+c 2≥ab +bc +ac ; ②a (1-a )≤14; ③b a +ab ≥2; ④(a 2+b 2)(c 2+d 2)≥(ac +bd )2.其中恒成立的有( )A .1个B .2个C .3个D .4个4. 若实数a ,b 满足0<a <b ,且a +b =1,则下列四个数中最大的是( )A .12B .2abC .a 2+b 2D .a5.设a =3-2,b =6-5,c =7-6,则a 、b 、c 的大小顺序是________.6. 如图所示,SA ⊥平面ABC ,AB ⊥BC ,过A 作SB 的垂线,垂足为E ,过E 作SC 的垂线,垂足为F . 求证:AF ⊥SC .证明:要证AF ⊥SC ,只需证SC ⊥平面AEF ,只需证AE ⊥SC (因为______),只需证______,只需证AE ⊥BC (因为________),只需证BC ⊥平面SAB ,只需 证BC ⊥SA (因为________).由SA ⊥平面ABC 可知,上式成立. 二、能力提升7. 命题甲:(14)x 、2-x 、2x -4成等比数列;命题乙:lg x 、lg(x +2)、lg(2x +1)成等差数列,则甲是乙的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8. 若a >b >1,P =lg a ·lg b ,Q =12(lg a +lg b ),R =lg(a +b 2),则( )A .R <P <QB .P <Q <RC .Q <P <RD .P <R <Q9. 已知α、β为实数,给出下列三个论断:①αβ>0;②|α+β|>5;③|α|>22,|β|>2 2.以其中的两个论断为条件,另一个论断为结论,你认为正确的命题是________. 10.如果a ,b 都是正数,且a ≠b ,求证:a b +ba>a+b .11.已知a >0,求证: a 2+1a 2-2≥a +1a-2.12.已知a 、b 、c ∈R ,且a +b +c =1,求证:(1a -1)(1b -1)·(1c -1)≥8.13.已知函数f (x )=x 2+2x +a ln x (x >0),对任意两个不相等的正数x 1、x 2,证明:当a ≤0时,f (x 1)+f (x 2)2>f (x 1+x 22).三、探究与拓展14.已知a ,b ,c ,d ∈R ,求证:ac +bd ≤(a 2+b 2)(c 2+d 2).(你能用几种方法证明?)2.2.2 反证法【学习要求】1.了解反证法是间接证明的一种基本方法.2.理解反证法的思考过程,会用反证法证明数学问题.【学法指导】反证法需要逆向思维,难点是由假设推出矛盾,在学习中可通过动手证明体会反证法的内涵,归纳反证法的证题过程.【知识要点】1.定义一般地,由证明p ⇒q 转向证明:綈q ⇒r ⇒…⇒t ,t 与 矛盾,或与 矛盾.从而判定 为假,推出 为真的方法,叫做反证法. 2.反证法常见的矛盾类型反证法的关键是在正确的推理下得出矛盾.这个矛盾可以是与 矛盾或与___________________________矛盾,或与 矛盾等. 【问题探究】探究点一 反证法的概念问题1 王戎小时候,爱和小朋友在路上玩耍.一天,他们发现路边的一棵树上结满了李子,小朋友一哄而上,去摘李子,独有王戎没动,等到小朋友们摘了李子一尝,原来是苦的!他们都问王戎:“你怎么知道李子是苦的呢?”王戎说:“假如李子不苦的话,早被路人摘光了,而这树上却结满了李子,所以李子一定是苦的.” 这就是著名的“道旁苦李”的故事.王戎的论述,运用了什么方法? 问题2 上述方法的含义是什么?问题3 反证法证明的关键是经过推理论证,得出矛盾.反证法引出的矛盾有几种情况?问题4 反证法主要适用于什么情形?探究点二 用反证法证明定理、性质等一些事实结论例1 已知直线a ,b 和平面α,如果a ⊄α,b ⊂α,且a ∥b ,求证:a ∥α.跟踪训练1 已知:a ∥b ,a ∩平面α=A,如图.求证:直线b 与平面α必相交.探究点三 用反证法证明否定性命题例2 求证:2不是有理数.跟踪训练2 已知三个正数a ,b ,c 成等比数列,但不成等差数列,求证:a ,b ,c 不成等差数列. 探究点四 用反证法证明“至多”、“至少”“唯一”型命题例3 若函数f (x )在区间[a ,b ]上是增函数,那么方程f (x )=0在区间[a ,b ]上至多有一个实根.跟踪训练3 若a ,b ,c 均为实数,且a =x 2-2y +π2,b =y 2-2z +π3,c =z 2-2x +π6.求证:a 、b 、c 中至少有一个大于0.【当堂检测】1.证明“在△ABC 中至多有一个直角或钝角”,第一步应假设 ( ) A .三角形中至少有一个直角或钝角 B .三角形中至少有两个直角或钝角 C .三角形中没有直角或钝角D .三角形中三个角都是直角或钝角2.用反证法证明“三角形中至少有一个内角不小于60°”,应先假设这个三角形中 ( ) A .有一个内角小于60° B .每一个内角都小于60° C .有一个内角大于60° D .每一个内角都大于60° 3.“a <b ”的反面应是 ( ) A .a ≠b B .a >b C .a =b D .a =b 或a >b4.用反证法证明“在同一平面内,若a ⊥c ,b ⊥c ,则a ∥b ”时,应假设 ( ) A .a 不垂直于c。

2013-2014学年高二数学1-2导学案:2.2.2间接证明

2013-2014学年高二数学1-2导学案:2.2.2间接证明
课题:2.2.2间接证明姓名:
一:学习目标
1.结合已学过的数学实例,了解反证法是间接证明的一种基本方法。
2.了解反证法的思维特点和格式。
二:课前预习
1.用反证法证明: 被4除余1,应假设

2.设实数 、b、c成等比数列,非零实数 分别为 与b,b与c的等差中项,则
三:课堂研讨
例1:求证:正弦函数没有比 小的正周期
(3)都小于2(4)至少有一个不小于2
3.设 是异面直线,在 上任取两点A1,A2,在b上任取两点B1,B2
试证:A1B1与A2B2也是异面直线
课外作业——间接证明姓名:
1.用反证法证明:1, ,3不可能是一个等差数列中的三项
2.设 、b都是整数,且 能被3整除
求证: 和b都能被3整除
例2:证明: 不是有理数
备注
例3:已知 、b、c成等差数列且公差 ,求证: 不可能成等差数列
例4:已知方程 ,
,若其中至少有一个方程有实根,试求实数 的取值范围。
四:学后反思
课堂检测——2.2.2间接证明姓名:
1.命题“△ABC中,若 ,则 ”的结论的否定是
2.设ห้องสมุดไป่ตู้大于0,则3个数: 的值
(1)都大于2(2)至少有一个不大于2

2024秋季新教材人教版七年级上册数学1.2.2 数轴 导学案

2024秋季新教材人教版七年级上册数学1.2.2 数轴 导学案

第一章有理数1.2 有理数1.2.2 数轴教学目标:1. 识记数轴的三要素并会画数轴.2. 能将已知数在数轴上表示出来,能说出数轴上的已知点所表示的数,会用数轴比较有理数的大小.3. 会用数形结合的思想理解在特定的条件下数与形是可以相互转化的.重点:数轴的概念,在数轴上表示数.难点:正确的画出数轴,有理数和数轴上的点的对应关系.一、知识链接1.回忆正负数的意义并回答以下问题:在一条东西向的马路旁,有一个汽车站牌,汽车站牌东 3 m 和7.5 m 处分别有一棵柳树和一根交通标志杆,汽车站牌西侧3 m 和 4.8 m 处分别有一棵槐树和一根电线杆,试画图表示这一情境.一、要点探究知识点1:数轴的画法及概念合作探究探究一怎样用数简明地表示这些树、标志杆、电线杆与汽车站牌的相对位置关系(方向、距离)?合作探究你能联想到生活中的哪些用直线上的点表示数的工具,请举例说明.它们有什么共同特点?像这样,规定了原点、正方向和单位长度的直线叫作数轴.数轴的画法:1.在直线上任取一点表示数0,这个点叫做原点.2.通常规定直线上从原点向右(或上) 为正方向,从原点向左(或下) 为负方向.3.选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示1,2,3,···;从原点向左,用类似方法依次表示-1,-2,-3,···.4.原点将数轴(原点除外)分成两部分,其中正方向一侧的部分叫作数轴的正半轴;另一侧的部分叫作数轴的负半轴.1.(松北区校级月考改编)关于数轴的图示,画法正确的是()总结:原点、正方向、单位长度一个也不能少.归纳总结:画数轴注意事项:(1)原点、单位长度和正方向三要素缺一不可;(2)直线是水平的;(3)正方向用箭头表示,一般取从左到右;取单位长度应结合实际需要,但要做到刻度均匀.合作探究探究二为了进一步研究马路情境图(数轴),仿照A 点信息填写表格.数轴上的点表示数:一般地,设 a 是一个正数,则数轴上表示数 a 的点在数轴的___半轴上,与原点的距离是___个单位长度;表示数 -a 的点在数轴的___半轴上,与原点的距离是___个单位长度.数轴上与原点的距离是 a 个单位长度的点,简称为数轴上与原点的距离是 a 的点.例1 画出数轴,并在数轴上表示下列各数: 3,-4,4,0.5,0, −52 ,-1.例2 根据下面给出的数轴,解答下列问题:(1) 请你根据图中 A 、B 两点的位置,分别写出它们所表示的有理数,以及 A 、B 两点距离几个单位长度?(2) 从点 A 出发,沿着数轴正方向移动 2 个单位长度达点 C ,在数轴上请画出点 C ,并写出它所表示的数.1. 画出数轴,并用数轴上的点表示下列各数 ( )1.在数轴上,原点及原点右边的点表示的数是( )A. 正数B. 负数C. 非正数D. 非负数2.在数轴上表示-3 的点与表示4 的点之间的距离是( )A. 7B. -7C. 1D. -13. 画出数轴并表示下列有理数:能力提升:4.在数轴上,一只蚂蚁从原点出发,它先向右爬了4 个单位长度到达点A,再向右爬了2 个单位长度到达点B,然后又向左爬了10 个单位长度到达点C.(1) 将A,B,C 三点所表示的数在下图中的数轴上表示出来;(2) 根据点C 在数轴上的位置,点C 可以看作是蚂蚁从原点出发,向哪个方向爬了几个单位长度所到达的点?(3) 如果移动点A,B,C 中的两个点,使得三个点重合,你有几种移动方法?请分别求出移动的长度之和.拓展:数轴上有两个固定点A、B,有一动点C,请问点C在什么位置时,动点C到两定点距离之和最小?参考答案自主学习一、新课导入合作探究一、要点探究知识点1:数轴的画法及概念合作探究知识要点:数轴上的点表示数:正a负a【典例精析】解:如下图所示.总结:原点左边的数是负数←→原点右边的数是正数解:(1) 点A 表示3;点B 表示-1.5;点A、点B 距离 4.5 个单位长度.(2)如上图所示,C 点表示5.1. 解:如下图所示:2.C二、课堂小结当堂检测1.D2.A3.解:如下图所示:4.(1)解:如图所示.(2)可以看作蚂蚁从原点向左平移4 个单位长度达到.(3)。

高二数学人教A版选修1-1第三章3.3.2函数的极值与导数导学案(含答案)

高二数学人教A版选修1-1第三章3.3.2函数的极值与导数导学案(含答案)

内 容 标 准学 科素 养 1.了解函数极值的概念,会从几何方面直观理解函数的极值与导数的关系,并会灵活应用. 2.掌握函数极值的判定及求法. 3.掌握函数在某一点取得极值的条件.利用直观想象 提升逻辑推理 及数学运算[基础认识]知识点一 极值点与极值的概念 预习教材P 93-95,思考并完成以下问题 (1)观察函数f (x )=13x 3-2x 的图象.f ′(-2)的值是多少?在x =-2左、右两侧的f ′(x )有什么变化? f ′(2)的值是多少,在x =2左、右两侧的f ′(x )又有什么变化?提示:f ′(-2)=0,在x =-2的左侧f ′(x )>0,在x =-2的右侧f ′(x )<0;f ′(2)=0,在x =2的左侧f ′(x )<0,在x =2的右侧f ′(x )>0.(2)如图,函数f (x )在a ,b 点的函数值与它附近的函数值有什么关系?y =f (x )在a ,b 点的导数值是多少?在a ,b 附近,y =f (x )的导数的符号是什么?提示:可以发现,函数y =f (x )在点x =a 的函数值f (a )比它在点x =a 附近其他点的函数值都小,f ′(a )=0;而且在点x =a 附近的左侧f ′(x )<0,右侧f ′(x )>0.类似地,函数y =f (x )在点x =b 的函数值f (b )比它在点x =b 附近其他点的函数值都大,f ′(b )=0;而且在点x =b 附近的左侧f ′(x )>0,右侧f ′(x )<0.知识梳理 极值点与极值的概念(1)极小值点与极小值如图,函数y =f (x )在点x =a 的函数值f (a )比它在点x =a 附近其他点的函数值都小,f ′(a )=0;而且在点x =a 附近的左侧f ′(x )<0,右侧f ′(x )>0,则把点a 叫做函数y =f (x )的极小值点,f (a )叫做函数y =f (x )的极小值.(2)极大值点与极大值如(1)中图,函数y =f (x )在点x =b 的函数值f (b )比它在点x =b 附近其他点的函数值都大,f ′(b )=0;而且在点x =b 的左侧f ′(x )>0,右侧f ′(x )<0,则把点b 叫做函数y =f (x )的极大值点,f (b )叫做函数y =f (x )的极大值.极大值点、极小值点统称为极值点,极大值和极小值统称为极值.知识点二 求函数y =f (x )的极值的方法 知识梳理 解方程f ′(x )=0,当f ′(x 0)=0时:(1)如果在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是________. (2)如果在x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是________. 提示:(1)极大值 (2)极小值[自我检测]1.函数f (x )的定义域为R ,导函数f ′(x )的图象如图所示,则函数f (x )( )A .无极大值点,有四个极小值点B .有三个极大值点,两个极小值点C .有两个极大值点,两个极小值点D .有四个极大值点,无极小值点 答案:C2.已知函数f (x )=x +1x ,则f (x )( )A .有极大值2,极小值-2B .有极大值-2,极小值2C .无极大值,但有极小值-2D .有极大值2,无极小值 答案:B探究一极值与极值点的判断与求解[教材P98习题3.3A组4题]如图是导函数y=f′(x)的图象,在标记的点中,在哪一点处:(1)导函数y=f′(x)有极大值?(2)导函数y=f′(x)有极小值?(3)函数y=f(x)有极大值?(4)函数y=f(x)有极小值?解析:(1)点x2处f′(x)有极大值.(2)点x1、x4处f′(x)有极小值.(3)点x3处f(x)有极大值.(4)点x5处f(x)有极小值.[例1](1)已知函数y=f(x),其导函数y=f′(x)的图象如图所示,则y=f(x)()A.在(-∞,0)上为减函数B.在x=0处取极小值C.在(4,+∞)上为减函数D.在x=2处取极大值[解析]由导函数的图象可知:当x∈(-∞,0)∪(2,4)时,f′(x)>0,当x∈(0,2)∪(4,+∞)时,f′(x)<0,因此f(x)在(-∞,0),(2,4)上为增函数,在(0,2),(4,+∞)上为减函数,所以在x=0处取得极大值,在x =2处取得极小值,在x=4处取得极大值,故选C.[答案] C(2)求下列函数的极值:①f(x)=2x3+3x2-12x+1;②f(x)=x2-2ln x.[解析]①函数f(x)=2x3+3x2-12x+1的定义域为R,f′(x)=6x2+6x-12=6(x+2)(x-1),解方程6(x+2)(x-1)=0,得x1=-2,x2=1.当x变化时,f′(x)与f(x)的变化情况如下表:x (-∞,-2)-2 (-2,1) 1 (1,+∞)f ′(x ) +0 - 0 + f (x )极大值21极小值-6所以当x 当x =1时,f (x )取极小值-6.②函数f (x )=x 2-2ln x 的定义域为(0,+∞), f ′(x )=2x -2x =2(x +1)(x -1)x ,解方程2(x +1)(x -1)x =0,得x 1=1,x 2=-1(舍去).当x 变化时,f ′(x )与f (x )的变化情况如下表:x (0,1) 1 (1,+∞)f ′(x ) -0 + f (x )极小值1因此当x =1时,f (方法技巧 1.通过导函数值的正负确定函数单调性,然后进一步明确导函数图象与x 轴交点的横坐标是极大值点还是极小值点.2.求可导函数f (x )的极值的步骤 (1)确定函数的定义域,求导数f ′(x ). (2)求f (x )的拐点,即求方程f ′(x )=0的根.(3)利用f ′(x )与f (x )随x 的变化情况表,根据极值点左右两侧单调性的变化情况求极值.特别提醒:在判断f ′(x )的符号时,借助图象也可判断f ′(x )各因式的符号,还可用特殊值法判断. 跟踪探究 1.如图为y =f (x )的导函数的图象,则下列判断正确的是( )①f (x )在(-3,-1)上为增函数;②x =-1是f (x )的极小值点;③f (x )在(2,4)上为减函数,在(-1,2)上为增函数;④x =2是f (x )的极小值点.A .①②③B .②③C .③④D .①③④解析:由f ′(x )的图象知,-3<x <-1时,f ′(x )<0;f ′(-1)=0; -1<x <2时,f ′(x )>0;f ′(2)=0;2<x <4时,f ′(x )<0故f (x )在(-3,-1)和(2,4)上是减函数,在(-1,2)上是增函数,f (-1)是极小值,f (2)是极大值,所以②③正确,故选B.答案:B2.判断下列函数有无极值,如果有极值,请求出极值;如果没有极值,请说明理由. (1)y =13x 3+4;(2)y =e xx (x >0).解析:(1)f ′(x )=x 2. 令f ′(x )=0,解得x =0.当x 变化时,f ′(x ),f (x )的变化情况如下表:x (-∞,0)0 (0,+∞)f ′(x ) + 0 + f (x )单调递增无极值单调递增(2)y ′=e x ·x -e x x 2=e x (x -1)x 2,令y ′=0,得x =1.当x 变化时,f ′(x ),f (x )的变化情况如下表:x (0,1) 1 (1,+∞)f ′(x ) - 0 + f (x )单调递减极小值单调递增探究二 利用函数极值确定参数的值[教材P 110复习参考题A 组7题]已知函数f (x )=x (x -c )2在x =2处有极大值,求c 的值.解析:∵f (x )=x 3-2cx 2+c 2x , ∴f ′(x )=3x 2-4cx +c 2.∴f ′(2)=0,即3×4-8c +c 2=0,得c =2,或c =6. 但c =2时,f (2)是极小值,不合题意,舍去,所以c =6.[例2] (1)已知函数f (x )=x 3+3ax 2+bx +a 2在x =-1处有极值0,则a =________,b =________. (2)若函数f (x )=13x 3-x 2+ax -1有极值点,则a 的取值范围为________.[解析] (1)∵f ′(x )=3x 2+6ax +b ,且函数f (x )在x =-1处有极值0,∴⎩⎪⎨⎪⎧f ′(-1)=0,f (-1)=0, 即⎩⎪⎨⎪⎧3-6a +b =0,-1+3a -b +a 2=0,解得⎩⎪⎨⎪⎧ a =1,b =3或⎩⎪⎨⎪⎧a =2,b =9.当a =1,b =3时,f ′(x )=3x 2+6x +3=3(x +1)2≥0,此时函数f (x )在R 上为增函数,无极值,故舍去.当a =2,b =9时,f ′(x )=3x 2+12x +9=3(x +1)(x +3). 当x ∈(-∞,-3)时,f ′(x )>0, 此时f (x )为增函数;当x ∈(-3,-1)时,f ′(x )<0, 此时f (x )为减函数;当x ∈(-1,+∞)时,f ′(x )>0, 此时f (x )为增函数.故f (x )在x =-1处取得极小值, ∴a =2,b =9.(2)∵f ′(x )=x 2-2x +a ,由题意得方程x 2-2x +a =0有两个不同的实数根, ∴Δ=4-4a >0,解得a <1. [答案] (1)2 9 (2)(-∞,1)方法技巧 已知函数极值的情况,逆向应用确定函数的解析式时,应注意以下两点: (1)根据极值点处导数为0和极值两个条件列方程组,利用待定系数法求解.(2)因为导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证根的合理性.跟踪探究 3.已知函数f (x )=ax 3+bx 2+cx (a ≠0)在x =±1处取得极值,且f (1)=-1. (1)求常数a ,b ,c 的值;(2)判断x =±1是函数的极大值点还是极小值点,试说明理由,并求出极值. 解析:(1)f ′(x )=3ax 2+2bx +c , ∵x =±1是函数f (x )的极值点,∴x =±1是方程f ′(x )=3ax 2+2bx +c =0的两根, 由根与系数的关系,得⎩⎨⎧-2b3a=0, ①c3a =-1, ②又f (1)=-1,∴a +b +c =-1.③ 由①②③解得a =12,b =0,c =-32.(2)由(1)知f (x )=12x 3-32x ,∴f ′(x )=32x 2-32=32(x -1)(x +1),当x <-1或x >1时,f ′(x )>0, 当-1<x <1时,f ′(x )<0,∴函数f (x )在(-∞,-1)和(1,+∞)上是增函数, 在(-1,1)上是减函数,∴当x =-1时,函数取得极大值f (-1)=1, 当x =1时,函数取得极小值f (1)=-1. 探究三 函数极值的综合应用[例3] 已知函数f (x )=x 3-3ax -1(a ≠0).若函数f (x )在x =-1处取得极值,直线y =m 与y =f (x )的图象有三个不同的交点,求m 的取值范围.[解析] 因为f (x )在x =-1处取得极值且f ′(x )=3x 2-3a , 所以f ′(-1)=3×(-1)2-3a =0, 所以a =1,所以f (x )=x 3-3x -1,f ′(x )=3x 2-3, 由f ′(x )=0,解得x 1=-1,x 2=1. 当x <-1时,f ′(x )>0; 当-1<x <1时,f ′(x )<0; 当x >1时,f ′(x )>0.所以f (x )的单调增区间为(-∞,-1),(1,+∞);单调减区间为(-1,1), f (x )在x =-1处取得极大值f (-1)=1, 在x =1处取得极小值f (1)=-3. 作出f (x )的大致图象如图所示.因为直线y =m 与函数y =f (x )的图象有三个不同的交点,结合f (x )的图象可知,m 的取值范围是(-3,1). 方法技巧 利用导数可以判断函数的单调性,研究函数的极值情况,并能在此基础上画出函数的大致图象,从直观上判断函数图象与x 轴的交点或两个函数图象的交点的个数,从而为研究方程根的个数问题提供了方便.延伸探究 若本例“三个不同的交点”改为“两个不同的交点”,结果如何?改为“一个交点”呢? 解析:由本例解析可知当m =-3或m =1时,直线y =m 与y =f (x )的图象有两个不同的交点;当m <-3或m >1时,直线y =m 与y =f (x )的图象只有一个交点.跟踪探究 4.已知函数f (x )=x 3-6x 2+9x +3,若函数y =f (x )的图象与y =13f ′(x )+5x +m 的图象有三个不同的交点,求实数m 的取值范围.解析:由f (x )=x 3-6x 2+9x +3, 可得f ′(x )=3x 2-12x +9,∴13f ′(x )+5x +m =13(3x 2-12x +9)+5x +m =x 2+x +3+m ,则由题意可得x 3-6x 2+9x +3=x 2+x +3+m 有三个不相等的实根,即g (x )=x 3-7x 2+8x -m 的图象与x 轴有三个不同的交点.∵g ′(x )=3x 2-14x +8 =(3x -2)(x -4),∴令g ′(x )=0,得x =23或x =4.当x 变化时,g (x ),g ′(x )的变化情况如下表:则函数g (x )的极大值为g ⎝⎛⎭⎫23=6827-m ,极小值为g (4)=-16-m . ∵由y =f (x )的图象与y =13f ′(x )+5x +m 的图象有三个不同交点,得⎩⎪⎨⎪⎧g ⎝⎛⎭⎫23=6827-m >0,g (4)=-16-m <0, 解得-16<m <6827.即m 的取值范围为⎝⎛⎭⎫-16,6827.[课后小结](1)在极值的定义中,取得极值的点称为极值点,极值点指的是自变量的值,极值指的是函数值. (2)函数的极值是函数的局部性质.可导函数f (x )在点x =x 0处取得极值的充要条件是f ′(x 0)=0且在x =x 0两侧f ′(x )符号相反.(3)利用函数的极值可以确定参数的值,解决一些方程的解和图象的交点问题.[素养培优]1.误把导函数的零点当作函数的极值点求函数f (x )=x 4-x 3的极值,并说明是极小值还是极大值.易错分析 本题易错将导数为零的点都认为是极值点,其实不然,导数为零仅是零点是极值点的必要不充分条件,错解中还有一个误区就是认为极大值一定大于极小值.事实上,极值仅描述函数在该点附近的局部特征,极大值未必一定大于极小值.考查逻辑推理及数学运算.自我纠正 f ′(x )=4x 3-3x 2,令f ′(x )=0, 即4x 3-3x 2=0时,得x 1=0,x 2=34.当x 变化时,f (x ),f ′(x )的变化情况如下表:由上表可知函数f (x )在区间(-∞,0)上是减函数,在区间⎝⎛⎭⎫0,34上还是减函数,所以x =0不是函数的极值点,而函数f (x )在区间⎝⎛⎭⎫0,34上是减函数,在区间⎝⎛⎭⎫34,+∞上是增函数,所以函数f (x )在x =34处取得极小值,极小值为-27256.2.误把切点当作函数的极值点已知函数f (x )=ax 4+bx 2+c 的图象经过点(0,1),且在x =1处的切线方程是y =x -2,求f (x )的解析式. 易错分析 本题错在将切点当做极值点,得到f ′(1)=0的错误结论.其实,虽然切点和极值点都与导数有关,但它们却是两个完全不同的概念,不能混为一谈.考查逻辑推理及数学运算的学科素养.自我纠正 f ′(1)表示函数f (x )的图象在点(1,-1)处的切线斜率,应有f ′(1)=1,再联立f (0)=1,f (1)=-1便可得到正确答案:a =52,b =-92,c =1,因此f (x )=52x 4-92x 2+1.。

人教版小学一年级下册数学导学案全册

人教版小学一年级下册数学导学案全册

第一单元认识图形(二)第一课时:认识平面图形教学目标:1.通过拼、摆、画各种图形,使学生直观感受各种图形的特征。

2.培养学生初步的观察能力、动手操作能力和用数学交流的能力。

3.能辨认各种图形,并能把这些图形分类。

教学重点:初步认识长方形、正方形、圆形和三角形的实物与图形。

教学难点:初步认识长方形、正方形、圆形和三角形的实物与图形。

教学准备:图形卡纸、实物、学具等。

教学过程:一、复习,探究新知:1.小朋友们还记得这些图形朋友吗?(长方体正方体球圆柱)2.你能把这些图形平平的面画下来吗?学生在纸上画一画3.你们画下的图形有什么特点?学生小组讨论并且小组小结最后派代表全班交流不同点:共同点:长方形对边相等 4个角都是直直的平面的正方形4边相等4个角都是直直的不断开的圆没有角即封闭的)三角形有三条边三个角二、巩固发展:1.说一说,你身边哪些物体的面是你学过的图形?2.用圆、正方形、长方形、三角形画一画自己喜欢的图形?小组内评一评,各小组展示作品。

3.练习一第1题请小朋友涂一涂圆、正方形、长方形、三角形知道各涂什么颜色吗?小组讨论合作,反馈汇报哪些涂成黄色,哪些涂成蓝色,哪些涂成紫色,哪些涂成红色?4.用圆、正方形、长方形、三角形拼一拼图形。

同桌合作比一比哪一桌拼的最好?全班交流展示。

5.第2题:数一数有几个圆、正方形、长方形、三角形?独立完成,说说你是怎么数的?有什么好方法?小结方法。

三、提高练习:取长方形纸一张,对折再对折取正方形纸一张,对折再对折取正方形纸一张,对角折再对角折观察结果四、总结:今天你们学到了什么?长方形、正方形、三角形、圆个有什么特点?你有什么想问的?课后小记:第二课时:拼一拼教学目标:1.通过观察、操作,使学生体会所学平面图形的特征,并能用自己的语言描述长方形、正方形的边的特征。

2.通过观察、操作,使学生初步感知所学图形之间的关系。

3.通过学生大量拼摆图形,发现图形可由简单到复杂的变化及联系,感受图形美。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章推理与证明
§2数学证明
基础自主预习
1.演绎推理:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理,简言之,演绎推理是由一般到特殊的推理.
2.“三段论”是演绎推理的一般模式,包括:
①大前提------一般性道理;
②小前提------研究对象的特殊情况;
③结论------由大前提和小前提作出的判断
3.“三段论”可以表示为:
①大前提:M是P②小前提:S是M③结论:S是P
用集合说明:即若集合M的所有元素都具有性质P,S是M的一个子集,那么S中所有元素都具有性质P.
4.在数学中,证明一个命题,就是根据命题的条件和已知的定义、公理、定理,利用演绎推理的法则将命题推导出来
练习:一切无理数都不能写成分数的形式,2是无理数,所以2不能写成分数的形式,其演绎推理的“三段论”形式为:__________________________________________.
【答案】
大前提:一切无理数都不能写成分数的形式
小前提:2是无理数
结论:所以2不能写成分数的形式
1.下列说法正确的个数有( )
①演绎推理是由一般到特殊的推理;②三段论推理的常用规则有假言推理、三段论推理、关系推理、归纳推理;③演绎推理得到的结论的正误与大前提、小前提有关. A.0个 B.1个 C.2个 D.3个 【答案】C
【解析】由演绎推理的相关概念知①③正确.
2.有这样一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数” 结论显然是错误的,是因为 A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误
【答案】C
【解析】大前提与小前提都是正确的,但整数就是那些不是真分数的有理数,故不能推出结论来.
3. 设,,(,0),a b c ∈-∞则111
,,a b c b c a
+++(
) A.都不大于2- B.都不小于2-
C.至少有一个不大于2-
D.至少有一个不小于2-
【答案】D
【解析】因为61
11-≤+++++
a
c c b b a 所以111
,,a b c b c a
+++中至少有一个不大于2-.
4.已知b a ,是不相等的正数,b a y b a x +=+=,2
,则y x ,的大小关系是_________
【答案】x y <
【解析】2
2
22()2a b y a b x +==+=
>=
5.已知ABC ∆中,
45,30=∠=∠B A ,求证b a <.
证明:B A B A ∠<∠∴=∠=∠,45,30
b a <∴
此问题的证明过程中蕴含的“三段论”中的大前提是. 【答案】b a B A <⇒∠<∠.
【解析】三角形中”大边对大角,小边对小角”的一个结论.
智能提升作业
1.有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b ⊆/平面α,直线a ≠
⊂平面α,直线b ∥平面α,则直线b ∥直线a ”的结论显然是错误的,这
是因为
A.大前提错误
B.小前提错误
C.推理形式错误
D.非以上错误 【答案】A
【解析】大前提为“直线平行于平面,则平行于平面内所有直线”,而此结论是不成立的,应是平行于平面内无数条直线才对. 2.函数]2
,0[)44sin(3)(π
π
在+
=x x f 内( ) A .只有最大值 B .只有最小值
C .只有最大值或只有最小值
D .既有最大值又有最小值 【答案】C
【解析】正弦函数在闭区间内有最值,]2
,0[)44sin(3)(π
π
在+
=x x f 内的最小值与最大值分别是0与
2
2
3. 3.在ABC ∆中,F E ,分别为AC AB ,的中点,则有BC EF //,此问题的大前提为( ) A.三角形中的中位线平行于第三边 B. 三角形的中位线等于第三边的一半
C.EF 为中位线
D. BC EF // 【答案】A 【解析】此问题的大前提便是三角形中位线的性质结论,即三角形中的中位线平行于第三边. B 选项中的结论在这没用到,C 选项中EF 为中位线即转述F E ,分别为AC AB ,的中点,此为该题的小前提,而D 选项BC EF //是结论,故B 、C 、D 错,A 正确. 4. 函数x
y 1=
在点4=x 处的导数是 ( )
A .
81 B .81- C .161 D .16
1
- 【答案】D 【解析】函数x
y 1=
的导函数是3121x
y -
=',当4=x 时,161
-='y . 5.设b a b a b a +=+∈则,62,,2
2R 的最小值是( )
A .22-
B .3
3
5- C .-3 D .27-
【答案】C 【解析】令)(sin 3,cos 6R b a ∈==ααα,
则))(sin(3sin 3cos 6R b a ∈++=+=
+ϕαϕααα,于是其最小值为3-.
6. 在ABC ∆中,CD BC AC ,>是AB 边上的高,求证:BCD ACD ∠>∠.
证明:在ABC ∆中,BC AC BC AC >>, , ①
BD AD >∴ ② 于是BCD ACD ∠>∠ ③ 则在上面证明的过程中错误的序号是( )
A.①
B.②
C.③
D. ①③ 【答案】C
【解析】①②都正确,而对于③中的结论BCD ACD ∠>∠,只有在同一三角形中才有大边对大角的结论成立.
7.)1,2(),2,1(-== 012)2(1=⨯+-⨯=⋅∴ ⊥
大前提:________________________; 小前提:________________________; 结论:________________________.
【答案】⊥⇒=⋅0; 012)2(1=⨯+-⨯=⋅; ⊥.
【解析】结合题目已知的证明过程,答案易知.
8.已知:空间四边形ABCD 中,E ,F 分别为BC ,CD 的中点,则直线EF 与平面ABD 的关系是_______________________. 【答案】//EF 面ABD
【解析】连接BD ,因为F E ,分别为CD BC ,的中点,所以 EF ∥BD.又因为⊄EF 面ABD ,
⊂BD 面ABD ,故//EF 面ABD .
9.△ABC 三边长,,a b c 的倒数成等差数列,求证:角B 0
90<.
【证明】222cos 2a c b B ac +-=≥222ac b ac -=212b ac -=211()b b
b a
c a c -=-
++ ,,a b c 为△ABC 三边,a c ∴+b >,1b
a c
∴-
+0>cos B ∴0> ∴B 090<. 10. 若数列{}n a 的前n 项和为2
)
(1n n a a n s +=
,求证:数列{}n a 为等差数列。

【证明】由2
1
2))(1(2)(1111111--=
--⇒+--+=
⇒-=---n n a a a a a a n a a n a s s a n n n n n n n n 因此2
1
2312)()(1211113141213121--⋅
⋅⋅-=--⋅⋅--⋅--⋅
-=--n n a a a a a a a a a a a a a a a a a a n n n
故数列{}n a 为等差数列
教学参考
本节主要学习了推理的另外一种形式,演绎推理.为今后证明问题明确了思路,在学会
了演绎推理的“三段论”证明方法中更清晰的体会严谨的证题思路,所以要使学生准确掌握,以利于能熟练证明问题. 一、教学内容分析
使学生在学习了合情推理的两种方式后,又学到了一种能确定真假的推理方式,因为“三段论”中的大、小前提及推理形式都正确的前提下,得到的结论也一定是正确的,若大、小前提及推理形式有一者出错,则结论就是错误的.掌握好演绎推理的形式能帮助学生提高证题的正确性.
二、教学重点难点
教学重点:了解演绎推理的含义,能利用“三段论”进行简单的推理 教学难点:熟练运用“三段论”进行简单的推理 三、教学建议
演绎推理是我们平时证明问题时的常用方法,只是我们常把大前提省略,忽略了“三段论”的基本形式,为此,学生在证明问题时需注重形式与严密的推理相结合.
1.“三段论”的形式化:
演绎推理的“三段论”模式:大前提是指已知的一般原理,小前提是所研究的特殊情况,结论便是根据一般原理,对特殊情况做出的判断,演绎推理虽入口浅,但寓意深.学生对演绎推理并不陌生,数学证明主要通过演绎推理来进行,但要推出正确的结论,还需推理过程的严谨性.
2.推理的严谨性:
为了让学生充分掌握演绎推理的方式,以区别于前面学习的合情推理,必须给学生的 学习活动提供足够大的空间,有利于学生主动参与,充分利用学生已有的生活经验和数学活动经验,提供适当的知识生长点,利用典型案例,唤起学生的经验,为学生的建构活动提供了素材,将一些简单的问题用“三段论”形式来阐述,突出数学本质,适度形式化, 结构上注重整体贯通,突出数学文化价值,提高学生素养.
针对以上两点的教学,一定要严格实施,使学生在推理证明问题上又迈向了一个新的台阶.
1
21121))(1(a a a a a a n a a n n n -=-⇒--+=⇒-。

相关文档
最新文档