高分子化学第6章离子聚合全解
高分子化学6-离子聚合-阴离子聚合
![高分子化学6-离子聚合-阴离子聚合](https://img.taocdn.com/s3/m/14065e15fe4733687e21aa71.png)
二、阴离子聚合引发剂
对于吸电子取代基的烯类单体,按其反应能力, 可以排为四组:
CN A 组 CH2 C(CN)2 > CH2 C COOC2H5 > CH2 CHNO2 >>
B 组 CH2 CHCN > CH2 C(CH3)CN > CH2 CHCCH3 >>
CH3
O
C 组 CH2 CH
> CH2 C
Na + CH2 CH
CH2 CH
CH2 CH Na+
自由基末端偶合二聚后形成双阴离子:
2 CH2 CH
CH2 CH Na+
Na+
CH CH2 CH2 CH Na+
双向引发聚合
1.链引发(3)碱金属络合引发--电子间接转移引发
钠—萘体系:利用碱金属在某些溶剂中能够生成 有机络合物并降低其电子转移活化能的特点。
>>
COOCH3 D 组 CH2 CHCH CH2
COOCH3 > CH2 CH
CH3 > CH2 C
C6H5
C6H5
二、阴离子聚合引发剂
表 常见阴离子聚合单体和引发剂的反应活性
单体活性类别
单体
高活性A 次高活性B 中活性C 低活性D
硝基乙烯 偏二氰基乙烯
丙烯腈 甲基丙烯腈
丙烯酸甲酯 甲基丙烯酸甲酯
A
苯乙烯
非极性共轭烯烃
丁二烯
B
甲基丙烯酸甲酯 丙烯酸甲酯
丙烯腈
C 甲基丙烯腈
极性单体
活 性
甲基乙烯酮
硝基乙烯
高活性单体
亚甲基丙二酸二乙酯 D - 氰基丙烯酸乙酯
高分子化学 第6章 离子聚合
![高分子化学 第6章 离子聚合](https://img.taocdn.com/s3/m/9df78ae804a1b0717fd5dd37.png)
3. 其它能产生 阳离子的物质
碘、氧鎓离子、高氯酸盐、六氯化铅盐等 引发活性较低,只能引发活性较高的单体。 高能辐射也能产生阳离子引发聚合,
CH3
异丁烯:
异丁烯是唯一能进行阳离子聚合的α —烯烃,且它 只能进行阳离子聚合。根据这一特性,常用异丁烯 来鉴别引发机理。
更高级的α —烯烃:由于位阻效应,只能形成二聚体(Dimer) 。
烷基乙烯基醚: 诱导效应:烷氧基使双键电子云密度降低; 共轭效应:氧上未共用电子对与碳碳双键形成P~π共轭, 使双键电子云密度增加。
阳离子聚合机 理的特点
讨论:阳离子聚合有
无自动加速现象 单基终止 ,无? 自动加速现 快引发、快增长、易转移、难终止。 象 終止方式是单基終止。
在阳离子聚合中,真正的动力学链终止较难实 现,但与阴离子聚合相比,却不易生成活性聚合 物,主要原因是反应体系中水是引发剂,又是終 止剂。另外,阳离子聚合易链转移。 但现在也可以作到活性聚合。
烯烃双键对质子的亲和力,可以从单体和质子 加成的的热焓判断。
增长反应比其他副反应快,即生成的碳
阳离子有适当的稳定性。
如:α —烯烃 乙烯(ethylene): 无侧基,C=C电子云密度低,且不易极化,对质 子亲和力小,难以阳离子聚合。
丙烯(propylene)、丁烯(butylene):
烷基供电性弱,生成的二级碳阳离子较活泼,易 发生重排(rearrangement)等副反应,生成更稳 定的三级碳阳离子。
+ CH2 C (BF3OH)
高分子化学第6章配位聚合
![高分子化学第6章配位聚合](https://img.taocdn.com/s3/m/a0d1e4e78e9951e79a892731.png)
四. 茂金属引发剂 由过度金属锆(Zr)或钛(Ti)与两个环戊二烯基或环戊
二烯基取代基及两个氯原子(或甲基)形成的有机金属络合 物和助催化剂甲基铝氧烷组成的 ,称作茂金属催化剂。是环 戊二烯基过渡金属化合物类的简称。
链增长反应可表示如下
δ-
CH CH2
δ+ 过渡金属
Mt
δ-
δ+
CH CH2 Mt
空位
CH CH2 R
¦Ä¦环Ħ状Ä过 CH CH2 渡状态 R
δ-
δ+
CH CH2 CH CH2 Mt
R
R
2. 配位聚合的特点
单体首先在过渡金属上配位形成络合物 证据:乙烯和Pt、Pd生成络合物后仍可分离
制得了4-甲基-1-戊烯-VCl3的络合物
第六章 配位聚合
6.1 引言(Introduction) 6.2 配位聚合
6.3 聚合物的立构规整性(stereoregularity) 6.4 α-烯烃的配位阴离子聚合
6.1 引言(Introduction)
1. 低密度聚乙烯
二十世纪30年代
ICI 公司
乙烯+苯甲醛
高温(180-200℃)
压力(180-200MPa)
2. 引发剂的作用 1) 提供引发聚合的活性种; 2) 提供独特的配位能力(反离子同单体和增长链的配位促使单
体分子按一定的构型进入增长链)起着连续定向模板作用。 控制方式: a. 引发中心控制:反离子与取代基之间的相斥作用-全同结构 b. 增长链端控制:相邻单体取代基间的相斥作用-间同结构
第六章离子聚合
![第六章离子聚合](https://img.taocdn.com/s3/m/0e4c145d0740be1e650e9aa9.png)
第六章离子聚合一、名称解释1. 阳离子聚合:增长活性中心为带正电荷的阳离子的连锁聚合。
2. 活性聚合:当单体转化率达到100%时,聚合仍不终止,形成具有反应活性聚合物(活性聚合物)的聚合叫活性聚合。
3. 化学计量聚合:阴离子的活性聚合由于其聚合度可由单体和引发剂的浓度定量计算确定,因此也称为化学计量聚合。
4. 开环聚合:环状单体在引发剂作用下开环,形成线形聚合物的聚合反应。
5. Ziegler-Natta引发剂:Zigler-Natta引发剂是一大类引发体系的统称,通常有两个组份构成:主引发剂是Ⅳ~Ⅷ族过渡金属化合物。
共引发剂是Ⅰ~Ⅲ族的金属有机化合物。
6. 配位聚合:单体与引发剂经过配位方式进行的聚合反应。
具体的说,采用具有配位(或络合)能力的引发剂、链增长(有时包括引发)都是单体先在活性种的空位上配位(络合)并活化,然手插入烷基—金属键中。
配位聚合又有络合引发聚合或插入聚合之称。
7. 定向聚合:任何聚合过程(包括自由基、阳离子、阴离子、配位聚合)或任何聚合方法(如本体、悬浮、乳液和溶液等),只要它是经形成有规立构聚合物为主,都是定向聚合。
定向聚合等同于立构规整聚合。
二、选择题1. 下列单体中哪一种最容易进行阳离子聚合反应---------------------------------------------( B )A.CH2=CH2B.CH2=CHOCH3C.CH2=CHCl D.CH2=CHNO22. 下列哪种物质不能作为阳离子聚合的引发剂------------------------------------------------(B )A.正碳离子盐B.有机碱金属C.质子酸D.Lewis酸3. 四氢呋喃可以进行下列哪种聚合---------------------------------------------------------( C )A.自由基聚合B.阴离子聚合C.阳离子聚合D.配位聚合4. 在无终止的阴离子聚合中,阴离子无终止的原因是(C )A 阴离子本身比较稳定B 阴离子无双基终止而是单基终止C 从活性链上脱出负氢离子困难D 活化能低,在低温下聚合5. 合成聚合物的几种方法中,能获得最窄相对分子质量分布的是( A )A 阴离子聚合B 阳离子聚合C 自由基聚合D自由基共聚合6. 能引发苯乙烯阴离子活性聚合,并且聚合度等于两倍的动力学链长的是(D)A. BuLiB. AIBNC. AlCl3+H2OD. 萘+钠7. 制备分子量分别较窄的聚苯乙烯,应该选择(B)A阳离子聚合B阴离子聚合反应C配位聚合反应D自由基聚合反应8. 按阴离子聚合反应活性最大的单体是(A)A α-氰基丙烯酸乙酯B 乙烯C 甲基丙烯酸甲酯D乙酸乙烯酯9. 高密度聚乙烯与低密度聚乙烯的合成方法不同,若要合成高密度聚乙烯所采用的引发剂是( B )A. BuLiB. TiCl4-AlR3C. BF3+H2OD. BPO10. Ziegler-Natta引发剂引发丙烯聚合时,为了控制聚丙烯的分子量,最有效的办法是(D)A 增加引发剂的用量B适当降低反应温度C适当增加反应压力D加入适量氢气11. 合成顺丁橡胶所用的引发剂为(D)A BPOB BuLiC Na + 萘D TiI+AlEt312. 鉴定聚丙烯等规度所用的试剂是(D)A 正庚烷B正己烷C 正辛烷D沸腾的正庚烷13. 能采用阳离子、阴离子与自由基聚合的单体是(B)A、MMAB、StC、异丁烯D、丙烯腈14. 在高分子合成中,容易制得有实用价值的嵌段共聚物的是(B)A配位阴离子聚合;B阴离子活性聚合;C自由基共聚合15 阳离子聚合最主要的链终止方式是(B)A向反离子转移;B向单体转移;C自发终止16能引发丙烯酸负离子聚合的引发剂是(A)A丁基锂B三氯化铝C过氧化氢17 取代苯乙烯进行阳离子聚合反应时,活性最大的单体是(A)A对甲氧基苯乙烯B对甲基苯乙烯C对氯苯乙烯D间氯苯乙烯18 在具有强溶剂化中进行阴离子聚合反应时,聚合速率随反离子的体积增大而(B)A增加B下降C不变D无规律变化19 用强碱引发己内酰胺进行阴离子聚合反应时存在诱导期,消除的方法是(C)A加入过量的引发剂B适当提高温度C加入少量乙酸酐D适当加压20 为了得到立构规整的1.4-聚丁二烯,1,3 –丁二烯可采用( D)聚合。
潘祖仁《高分子化学》课后习题及详解(离子聚合)【圣才出品】
![潘祖仁《高分子化学》课后习题及详解(离子聚合)【圣才出品】](https://img.taocdn.com/s3/m/5b1e9ddb5acfa1c7aa00ccf0.png)
第6章离子聚合(一)思考题1.试从单体结构来解释丙烯腈和异丁烯离子聚合行为的差异,选用何种引发剂?丙烯酸、烯丙醇、丙烯酰胺、氯乙烯能否进行离子聚合?为什么?答:(1)丙烯腈中氰基为吸电子基团,可以与双键形成π-π共轭,使双键上的电子云密度减弱,有利于阴离子的进攻,并使所形成的碳阴离子的电子云密度分散而稳定,因此丙烯腈能够进行阴离子聚合。
进行阴离子聚合时,可选用碱金属、碱金属化合物、碱金属烷基化合物、碱金属烷氧化合物等作为引发剂。
异丁烯中两个甲基为推电子基团,能使双键上的电子云密度增加,有利于阳离子的进攻,并使所形成的碳阳离子的电子云密度分散而稳定,因此异丁烯能够进行阳离子聚合。
进行阳离子聚合时,通常采用质子酸、Lewis酸及其相应的共引发剂进行引发。
(2)丙烯酸、烯丙醇、丙烯酰胺不能进行离子聚合,因为没有强烈的推电子基团和吸电子基团。
氯乙烯中氯原子的诱导效应为吸电性,而共轭效应却有供电性,两者相抵消后,电子效应微弱,因此氯乙烯不能离子聚合。
2.下列单体选用哪一引发剂才能聚合?指出聚合机理类型。
表6-1答:(1)苯乙烯三种机理均可,可以选用表6-1中任何一种引发剂。
(2)偏二腈乙烯,阴离子聚合,选用Na+萘或n-C4H9Li引发。
(3)异丁烯,阳离子聚合,选用SnC14+H2O或BF3+H2O。
(4)丁基乙烯基醚,阳离子聚合,选用SnC14+H2O或BF3+H2O。
(5)甲基丙烯酸甲酯,阴离子聚合和自由基聚合。
阴离子聚合,选用Na+萘或n-C4H9Li 引发,自由基聚合选用(C6H5CO)2O2作引发剂。
3.下列引发剂可以引发哪些单体聚合?选择一种单体,写出引发反应式。
a.KNH2b.AlCl3+HClc.SnCl4+C2H5Cld.CH3ONa答:a.KNH2是阴离子聚合引发剂,可以引发大多阴离子单体聚合,如引发苯乙烯进行聚合,反应式为b.AlCl3活性高,和微量的水作共引发剂即可,和HCl配合时,氯离子的亲和性过强,容易同阳离子共价终止,所以很少采用。
第六章离子聚合
![第六章离子聚合](https://img.taocdn.com/s3/m/c3975a50ee06eff9aef807bd.png)
20
实验证据 萘钠在THF中引发苯乙烯聚合,碳阴
离子增长链为红色,直到单体100%转 化,红色仍不消失
重新加入单体,仍可继续链增长 (放热),红色消退非常缓慢,几天~ 几周
21
Na +
[ THF
[2
] THF Na +2CH2 CH
] Na (绿色)
+ Na CH CH2 CH2 CH Na
(红色)
2 CO2
X
O A O C CH CH2
X
O
CH2 CH C O A
H+
X
O HO C CH CH2
X
CH2
36
O CH C OH X
(4)制备嵌段共聚物 利用活性聚合,先制得一种单体的活性链,
然后加入另一种单体,可得到希望链段长度的 嵌段共聚物。
工业上已经用这种方法合成了St-B、 St-B-St两嵌段和三嵌段共聚物,这种聚合物 在室温具有橡胶的弹性,在高温又具有塑料的 热塑性,称热塑弹性体。
26
(3) 链转移反应
负离子聚合链转移反应发生的比 较少,特别是在低温下进行,链转 移反应就更少了。
27
聚合速率 可简单地用增长速率来表示:
上式适用条件: (1) 无杂质的活性聚合;
M-——阴离子增长 活性中心的总浓度
(2) 且引发快于增长反应,即在开始聚合前,
引发剂已定量地离解成活性中心,则阴离
引发剂活性
高
K,Na
引发剂
萘-Na复合物 KNH2 ,RLi
较高 RMgX t-BuOLi
中 ROK RONa ROLi
低 吡啶 R3N H2O
单体 单体活性
苯乙烯
高分子化学导论第6章 阴离离子聚合与阳离子聚合
![高分子化学导论第6章 阴离离子聚合与阳离子聚合](https://img.taocdn.com/s3/m/558c9d82227916888486d7f4.png)
不同机理的聚合反应中分子量与转化率的关系
分
分
子
子
量
量
转化率/%
转化率/%
自由基聚合 逐步聚合
分 子 量
转化率/% 活性阴离子聚合
活性聚合物的分子量分布:
由萘钠-THF引发得的聚苯乙烯,接近 单分散性,这种聚苯乙烯可用作分子 量及其分布测定的标样。
6.5 阴离子聚合的分子设计
♣ 制备遥爪聚合物:指分子链两端都带 有活性官能团的聚合物,两个官能团遥 遥位居于分子链的两端,象两个爪子。
pKa=-logKa,Ka:电离平衡常数
pKa值:St 40-42 ; MMA 24
6.6 工业生产
理论上:对分子链结构有较强的控 制能力,可获得“活性聚合物”,可进 行分子设计,合成预定结构和性能的聚 合物;
工业生产中:可生产许多性能优良的 聚合物,如丁苯橡胶、异戊橡胶、SBS 热塑性橡胶等。
制备方法:聚合末期在活性链上加入如 CO2、环氧乙烷、二异氰酸酯等添加剂, 使末端带羧基、羟基、异氰酸根等基团 的聚合物,合成遥爪聚合物。
端羧基化反应 端羟基化反应
♣ 制备嵌段共聚物(Block copolymer)
先制成一种单体的“活的聚合物”,再 加另一单体共聚,制得任意链段长度的 嵌段共聚物。如合成SBS热塑性橡胶。
碱金属将最外层的一价电子直接转移给单体, 生成自由基-阴离子,自由基阴离子末端很 双阴离子 快偶合终止,生成双阴离子,两端阴离子同 时引发单体聚合。如丁钠橡胶的生产。
♣ b 电子间接转移引发
碱金属—芳烃复合引发剂 碱金属(如钠)将最外层的一个价电子转移给中间 体(如萘),使中间体变为自由基阴离子(如萘钠 络合物),再引发单体聚合,同样形成双阴离子。
高分子化学第四版6-离子聚合
![高分子化学第四版6-离子聚合](https://img.taocdn.com/s3/m/67e6eedebb4cf7ec4afed0f5.png)
6.2.6 活性阴离子聚合动力学
阴离子聚合的特征:聚合前引发剂全部转变成
活性中心,各活性中心活性相同,以相同的
速度同时引发单体增长,增长过程中无引发
反应和终止反应,活性中心数保持不变。 活性阴离子聚合是: 快引发、慢增长、无终止和无转移。
⑴. 聚合速率
测定t 时的 残留[M], 可求kp
⑵. 聚合度和聚合度分布
6.3.3 阳离子聚合机理
阳离子聚合机理:
快引发、快增长、易转移、难终止。
1. 链引发
其它络合物离子对: BF3 H 2O H BF3OH SnCl4 RCl R SnCl5
AlCl3 HCl H AlCl4
BF3 C2 H 5 2 O C2 H 5 BF3OC2 H 5
6.2.4 活性阴离子聚合的机理和应用 1. 活性阴离子聚合机理
2. 活性聚合的应用
①合成均一分子量的聚合物
②制备嵌段聚合物
在利用阴离子聚合,先制得一种单体的活的聚合物,然 后加入另一种单体聚合时,并非所有活的聚合物都可 以引发另一种单体聚合,反应能否进行,取决于 M1
和 M2 的相对碱性,即 M1 的给电子能力和 M 2的亲电
2. 链增长
阳离子聚合增长反应的特点:
⑴. 离子与分子间的反应,速度快,活化能低,几乎与引发同时完成;
⑵. 单体按头尾结构插入离子对,对构型有一定控制能力; ⑶. 增长过程中有时伴有分子内重排反应。
例如:3甲基1丁 烯的阳离子聚 合产物。
3. 链转移
离子聚合的增长活性中心带有相同的电荷,不能
4 9 4 9
C H Mn Li K C H Mn Li
潘祖仁《高分子化学》(第5版)课后习题详解(6-9章)【圣才出品】
![潘祖仁《高分子化学》(第5版)课后习题详解(6-9章)【圣才出品】](https://img.taocdn.com/s3/m/43c79ce002768e9950e7385b.png)
第6章离子聚合(一)思考题1.试从单体结构来解释丙烯腈和异丁烯离子聚合行为的差异,选用何种引发剂?丙烯酸、烯丙醇、丙烯酰胺、氯乙烯能否进行离子聚合?为什么?答:(1)丙烯腈中氰基为吸电子基团,可以与双键形成π-π共轭,使双键上的电子云密度减弱,有利于阴离子的进攻,并使所形成的碳阴离子的电子云密度分散而稳定,因此丙烯腈能够进行阴离子聚合。
进行阴离子聚合时,可选用碱金属、碱金属化合物、碱金属烷基化合物、碱金属烷氧化合物等作为引发剂。
异丁烯中两个甲基为推电子基团,能使双键上的电子云密度增加,有利于阳离子的进攻,并使所形成的碳阳离子的电子云密度分散而稳定,因此异丁烯能够进行阳离子聚合。
进行阳离子聚合时,通常采用质子酸、Lewis酸及其相应的共引发剂进行引发。
(2)丙烯酸、烯丙醇、丙烯酰胺不能进行离子聚合,因为没有强烈的推电子基团和吸电子基团。
氯乙烯中氯原子的诱导效应为吸电性,而共轭效应却有供电性,两者相抵消后,电子效应微弱,因此氯乙烯不能离子聚合。
2.下列单体选用哪一引发剂才能聚合?指出聚合机理类型。
表6-1答:(1)苯乙烯三种机理均可,可以选用表6-1中任何一种引发剂。
(2)偏二腈乙烯,阴离子聚合,选用Na+萘或n-C4H9Li引发。
(3)异丁烯,阳离子聚合,选用SnC14+H2O或BF3+H2O。
(4)丁基乙烯基醚,阳离子聚合,选用SnC14+H2O或BF3+H2O。
(5)甲基丙烯酸甲酯,阴离子聚合和自由基聚合。
阴离子聚合,选用Na+萘或n-C4H9Li 引发,自由基聚合选用(C6H5CO)2O2作引发剂。
3.下列引发剂可以引发哪些单体聚合?选择一种单体,写出引发反应式。
a.KNH2b.AlCl3+HClc.SnCl4+C2H5Cld.CH3ONa答:a.KNH2是阴离子聚合引发剂,可以引发大多阴离子单体聚合,如引发苯乙烯进行聚合,反应式为b.AlCl3活性高,和微量的水作共引发剂即可,和HCl配合时,氯离子的亲和性过强,容易同阳离子共价终止,所以很少采用。
高分子化学第六章+离子聚合
![高分子化学第六章+离子聚合](https://img.taocdn.com/s3/m/7690b33b580216fc700afd16.png)
R3N
+ CH2 CH X
R3N
电荷分离的两性离子
CH2 CH X
R3N
CH2 CH CH2 CH n X X
只能引发非常 活泼的单体
不同引发剂对单体的引发情况见表5-6
3)活性阴离子聚合
A、聚合机理
活性阴离子聚合只有引发和增长两步基元反应。
引发过程与溶剂性质有关:������
在极性溶剂中,活性中心以自由离子状态存在 (但反离子始终伴在近旁);������ 在非极性溶剂中,则以离子对形式存在。
带有1,1-二烷基、烷氧基等推电子基的单体才能进 行阳离子聚合
具有腈基、羰基等强吸电子基的单体才能进行阴离 子聚合
羰基化合物、杂环化合物,大多属离子聚合
聚合机理和动力学研究不如自由基聚合成熟
聚合条件苛刻,微量杂质有极大影响,聚合重现性差
原因 聚合速率快,需低温聚合,给研究工作造成困难
反应介质的性质对反应也有极大的影响,影响因素 复杂
[M-]:阴离子增长活性种的总浓度
测得t时[M],即可求得kp。
在聚合全过程中 保持不变,且等 于引发剂浓度。 即[M-]=[C]
在适当溶剂中,阴离子聚合的kp 与自由基聚合相近,但阴离子聚
合无终止,阴离子浓度比自由基
浓度高得多,故聚合速率总比自 由基聚合快得多。
阴离子的聚合速率比自由基聚合大104~107倍
阴离子聚合无终止的原因:
离子聚合无双基终止 反离子为金属离子,不能加成终止 从活性链上脱除氢负离子H-进行链转移 困难,所需能量较高(主要原因)
虽无终止,但微量杂质如水、氧等都易使碳阴离子 终止。阴离子聚合须在高真空或惰性气氛下,试剂和玻 璃器皿非常洁净的条件下进行。
高分子化学讲义/共聚反应-第六章
![高分子化学讲义/共聚反应-第六章](https://img.taocdn.com/s3/m/cfe03b9570fe910ef12d2af90242a8956becaaf1.png)
第六章链式共聚反应本章要点:1)共聚反应和共聚物的类型:按不同重复结构单元在聚合物连中的排列情况,共聚物可分为无规共聚物、交替共聚物、嵌段共聚物和接枝共聚物,共聚反应也相应地进行分类。
2)共聚组成方程和共聚曲线:描述共聚物组成与单体浓度、转化率之间的关系,共聚组成方程的微分式给出了某个时刻生成的共聚物的组成与该时刻单体组成的定量关系,共聚组成方程的积分式给出了在某个时期形成共聚物的平均组成与起始的单体组成和单体总转化率之间的关系。
共聚曲线则是共聚组成方程微分式的图形化。
3)竞聚率和共聚类型:竞聚率为自增长反应速率常数和交叉增长速率常数的比值,反映了单体共聚能力的强弱;依据共聚单体对竞聚率的乘积,共聚可分为理想共聚、无规共聚、交替共聚、非理想共聚和“嵌段”共聚等类型,它们的共聚曲线具有不同的特征。
4)共聚物的序列分布:是共聚物组成不均一性的必然体现,描述了不同长度的同种结构单元的序列在共聚物中所占的比例,包括序列的数量分布和质量分布。
5)自由基共聚:通过自由基共聚竞聚率的研究可以确定结构对单体和自由基活性的影响,这些结构因素主要包括极性效应和共轭效应,其中共轭效应的作用更为显著;由Q-e方程可建立起结构因素和竞聚率之间的半定量关系,可用于竞聚率的估算和共聚类型的推断。
自由基聚合的竞聚率基本不受反应条件的影响。
6)离子共聚:离子共聚基本属于理想共聚,共聚单体的竞聚率受引发剂类型、温度、溶剂和其它聚合条件影响。
本章难点:1)理想共聚模型:活性中心等活性假定、稳态假定、无解聚和聚合物具有很高分子量是理想共聚模型的基本点;活性中心等活性指的是活性中心只与增长链末端单元相关,与增长链的聚合物和其它结构单元无关。
2)共聚组成方程的成立条件和使用范围:共聚组成方程适用于活性中心等活性和无解聚的共聚。
共聚组成方程的微分形式是瞬时状态方程,描述某个时刻共聚物组成与单体组成的关系。
对于某阶段生成的共聚物组成,如果单体浓度变化不显著,则可以共聚组成方程的微分形式进行简化处理,否则需用共聚组成方程的积分式进行处理。
高分子化学_第六章_离子聚合比较
![高分子化学_第六章_离子聚合比较](https://img.taocdn.com/s3/m/dd63220d02768e9951e738e9.png)
6.4 离子聚合的影响因素
将活性种区分成离子对P-C+ 和自由离子 P- 两种,离解平衡为:
M Na K
k+ +M
离子对增长
M M Na K
k M + Na + M
自由离子增长
M M + Na
总聚合速率是离子对 P-C+ 和自由离子 P- 聚合速率之和:
R p k [P C ][M] k [P ][M]
H —负值
X n n[M ] [C ]
温度对聚合度无影响
温度对增长速率的影响不明显,对聚合度无影响。
6.4 离子聚合的影响因素
4、丁基锂的配位能力和定向作用
反离子和溶剂—配位定向能力
聚二烯烃的微结构
1,4-和1,2-(或3,4)连接 顺式和反式、全同或间同构型
影响因素:
碱金属的电负性和原子半径; 溶剂的极性; 单体;
2、溶剂的影响
活性中心与反离子的结合形式:
AB
共价键
AB
紧对
AB
松对
A +B
自由离子
共价键—一般无引发活性 紧密离子对—利于定向配位,聚合速率较低; 疏松离子对—无定向能力,聚合速率较高;
活性次序:自由离子 > 疏松离子对 > 紧密离子对
聚合速率——平衡状态的离子对和自由离子共同作用的结果
6.4 离子聚合的影响因素
k Xn
=
Ap Atr,M
e-(Ep - (Etr,6m-)2/3R)T
E
Xn
=
Ep
-
Et
E Xn = Ep - Etr,M
Etr(Et) >Ep 总活化能 EXn=-12.5~-29 kJ/mol <0
高分子化学-阴离子聚合
![高分子化学-阴离子聚合](https://img.taocdn.com/s3/m/cdc87803b52acfc789ebc916.png)
丁基锂的定向作用 一般认为其机理可能为:
单体与sp3构型的Li+配位,形成六元环过渡态, 将异戊二烯的构象“锁定”为顺式构象:
非极性溶剂,增长链端主要是顺式; 极性溶剂,增长链端主要是反式。
丁基锂的定向作用
非极性溶剂中,对于异戊二烯, 2C上的甲基阻碍了链端 上2C-3C单键的旋转,同时单体以S-顺式为主;对于丁 二烯, 2C-3C单键可自由旋转,单体以S-反式为主。 极性溶剂中,链端配位结合较弱,甚至极性分子代替了 单体的配位,致使链端2C-3C键可自由旋转,反式1,4和 顺式1,4聚合随机进行,甚至发生1,2和3,4聚合。
阴离子聚合速率总比自由基聚合快很多:104~107倍
尽管:从kp值比较,两者相近 但是:因阴离子聚合无终止,活性中心浓度高 [M-] 10-3 ~ 10-2 mol / L [M•] 10-9 ~ 10-7 mol / L [M-] > [M•] 104 ~ 107 倍
聚合度 在下列条件下: 引发剂全部瞬时转变成活性中心(瞬时离解) 搅拌良好,单体分布均匀,所有链增长同时开始 无链转移和链终止反应 解聚可忽略
Xw Xn 1 1 1 2 Xn ( X n 1) Xn
阴离子活性聚合得到的产物的分子量分布很窄,接近单分散。 St在THF中聚合,分子量分布指数= 1. 06 ~ 1. 12,可用作分子 量及其分布测定的标准样品。 仍存在一定分散性,原因:
传质:反应过程中很难使引发剂分子与单体完全混合均匀, 即每个活性中心与单体混合的机会总是有些差别。
溶剂和反离子对聚丁二烯微观结构的影响
溶剂和反离子对聚丁二烯微观结构的影响
σ-烯丙基:多1,4-加成,非极性溶剂。 π-烯丙基:多1,2-加成,极性溶剂。
离子聚合(高分子材料化学课件)
![离子聚合(高分子材料化学课件)](https://img.taocdn.com/s3/m/83ecb619a4e9856a561252d380eb6294dc882243.png)
聚合。分子量线性增加,分布窄(PDI 接近于1)
X
n
[M ] [M ] /
n
n[M ] [C]
n一个引发剂生成的大分子数(单阴离子为1;双阴离子2 )
Na +
- Na + 苯乙烯
H2C CH - Na + ?+
H2C CH - Na + 2
Na + - HC CH2 CH2 CH - Na +
引发聚合
t-ROLi b
ROK
ROLi
c
强碱
丙烯酸甲酯
B 甲基丙烯酸甲酯
丙烯腈
C 甲基丙烯腈 甲基乙烯酮
CH2=CH-COOCH3 CH2=C(CH3)COOCH3 CH2=CH-CN CH2=C(CH3)CN CH2=CHCOCH3
单 体 活 性 增 加
吡啶
NR3 弱碱
ROR
d
硝基乙烯
CH2=CH-NO2
活性聚合和星形聚合物
An + SiCl4
An An Si An
An
用端羟基聚苯乙烯合成星形高分子 活性聚合物与多官能化合物反应形成星形高分子
活性阴离子聚合小结
阴离子聚合无终止时的聚合为活性阴离子聚合 活性聚合可以实现化学计量聚合,可得近似单分散聚合物 活性阴离子聚合可合成嵌段共聚物,合成热塑性丁苯橡胶SBS,或通过
二步法
活性聚合和合成SBS
活性聚合和合成SBS
Styrene 苯乙烯
Butadiene 丁二烯
SBS粒子
SBS改性沥青制成的防水卷材
SBS 热塑性丁苯橡胶
活性聚合和特定端基聚合物
阴离子聚合
CH2 CH Mt + X
第6章 高分子化学— 开环聚合(全)
![第6章 高分子化学— 开环聚合(全)](https://img.taocdn.com/s3/m/a3839ce8e009581b6bd9ebc2.png)
起始剂浓度
环氧化合物开环聚合过程中,由于起始剂的酸性、引发 环氧化合物开环聚合过程中,由于起始剂的酸性、 剂的活性不同,引发、增长、交换反应的相对速率不同; 剂的活性不同,引发、增长、交换反应的相对速率不同;使 聚合物的分子量、分子量分布各不相同,情况十分复杂。 聚合物的分子量、分子量分布各不相同,情况十分复杂。
14
(3)向单体链转移 )
环氧丙烷阴离子聚合,存在着向单体链转移, 环氧丙烷阴离子聚合,存在着向单体链转移,结果使聚合物分子 量降低。 量降低。
转移反应首先 夺取与环相连 的甲基上的H, 的甲基上的 , 生成单阴离子: 生成单阴离子:
单阴离子
单阴离子迅速 开环, 开环,生成烯 丙基醚阴离子: 丙基醚阴离子:
9
1——自由基聚合 2——阴离子聚合 3——逐步聚合
聚合物分子量和转化率之间的关系 是区别链式和逐步聚合的主要标志。 。
开环聚合反应的聚合上限温度较低,聚合过 程中常有 聚合-解聚 平衡,使过程复杂化。 以工业上几种重要的开环聚合为例进行说明
[ 环氧乙烷、环氧丙烷、三聚甲醛、3,3‘-二(氯亚甲基)环丁醚、已内酰胺 ] 环醚、内酰胺、 环醚、内酰胺、环缩醛
2
如:直链烷烃中CH2的燃烧热=659.0 kJ/mol。 环丙烷中CH2的燃烧热=697.6 kJ/mol。 则:环丙烷中每一个亚甲基的张力=697.6-659.0=38.6 kJ/mol。 所以,环丙烷的张力能=38.6×3=115.8 kJ/mol 。
高分子化学第六章
![高分子化学第六章](https://img.taocdn.com/s3/m/ad53623383c4bb4cf7ecd1fb.png)
+
B
H2C
C
CH 3
CH 3
δ
离子对的存在形式多种多样
δ+
离子对的存在形式决定聚合速率和聚合物的立体结构 影响离子对存在形式的因素 (溶剂、反离子、温度)
例如:苯、二氧六环(DOX)、四氢呋喃(THF)、DMF
b. 异构化聚合: 定义:原子或原子团重排的聚合过程,称异构化聚合 反应:
C
+
正常加成
(5)小结--阳离子聚合特征 快引发、快增长、难终止、易转移 活性中心以多种状态共存 低温聚合 (-100°C)
5、典型工业化品种
(1)聚异丁烯 (PIB)
H2C C
C H3
C H3
Al C l 3 H2O
C H3
CH2 C
-100°C
n
C H3
粘合剂 (<5万):半固体,嵌缝材料,密封材料 橡胶 (5-100万):蜡或聚合物的添加剂,但不易硫化 (2)丁基橡胶 (IIR)
Na
+
[
e
]
-.
Na +
complex (greenish blue color)
Alkali metal
Aromatic compound
initiator
Initiation:
[
electron transfer
]
-
.
Na +
+
H2C CH
. CH
2
CH - Na +
+
radical couple dimerize
+ CH3CH2CH2CH2 Li
+
高分子第6章 开环聚合(全)
![高分子第6章 开环聚合(全)](https://img.taocdn.com/s3/m/beffc9e9f8c75fbfc77db2ee.png)
6.2.3 环 酰 胺
[ 以已内酰胺为例进行说明 ]
已内酰胺可以用碱、酸、水引发开环聚合, 但属于不同的聚合机理:
1)水引发已内酰胺,属逐步聚合机理,产物为工业上大规模生产 的合成纤维——尼龙-6 。(第7章讲述)
2)以Na、NaOH等引发阴离子聚合,属于阴离子链锁机理。已实现 工业化生产,用于制造铸型尼龙。
内酰胺阴离子i稳定碱金属金属衍生物活泼的胺阴离子ii很快夺取单体上的质子生成n酰胺化的二聚体iii由于无共轭稳定作离子ii较活泼ii与单体发生质子交换生成iii胺阴离子iin酰胺化的二聚体iii活性种内酰胺阴离子胺阴离子活泼内酰胺阴离子in酰化的二聚体iii是聚合必需的引发活性种产物很快又与单体进行质子交换再生出n酰胺化的环酰胺活性种和内酰胺阴离子i继续增长
(2)增长: 增长反应是通过氧阳离子,转化为碳阳离子而增长的。
+
相当于单体 不断插入
氧阳离子
碳阳离子
19
(3)聚甲醛的热降解和稳定化
1)聚甲醛的热降解:
小于Tc
单体
接近或大于Tc
聚 合物
甲醛单体的聚合上限温度为Tc =126 0C;聚甲醛加热到100 0C以上 时,就会在链端发生裂断,逐步脱下甲醛分子,即发生解聚反应:
4
4)聚合自由焓G
G= H — TS
- T S > 0
(始态) 环单体
线型聚合物(末态)
G
过程无序性减少
S < 0,所以 - TS > 0。
G < 0 开环聚合才能进行,要求聚合热 ( - H)足够大,即H足够负。
根据上述分析,不同大小环的热力学稳定性次序为: 3,4 < 8 ~11 < < 5,7 < 12以上,6。 实际上较少遇到9元以上的环,所以环烷烃在热力学上容易开环 程度为:
高分子化学 第六章_阳离子聚合
![高分子化学 第六章_阳离子聚合](https://img.taocdn.com/s3/m/e4f739999b89680203d825e9.png)
阳离子聚合反应机理复杂,动力学方程建立较难: ①体系总伴有共引发剂,使引发反应复杂化; ②微量杂质对聚合速率影响很大; ③聚合速率极快,数据重复性差; ④真正的终止反应不存在,稳态假定难以建立; ⑤离子对和少量自由基离子并存,两者的影响难以分离。 ⑥聚合体系多为非均相
因此只能在特定条件下做动力学研究。 引发剂—SnCl4(低活性) 自终止方式—向反离子转移
第十八讲 阳离子聚合
(第六章 离子聚合)
复 习:
1、阴离子聚合的单体和引发剂; 单体—吸电子共轭单体 引发剂—亲核试剂
2、阴离子聚合的机理与特征 快引发、慢增长、无终止、无转移
3、阴离子聚合动力学 ——活性阴离子聚合
6.3 阳离子聚合
阳离子聚合反应的通式:
A B
M
AM
B
M
HM (CR)
质子或碳正离子
特点:
引发剂往往与共引发剂配合使用,引发体系离解度很 低,很难达到活性聚合的要求; 引发活化能低(Ei=8.4~ 21 kJ/mol),引发速率快;
(自由基聚合 Ed=105~150 kJ/mol )
6.3 阳离子聚合
2、链增长
HM (CR) + n M kp HMnM (CR)
古马隆
杂环化合物:环醚、醛类、环缩醛、三元环酰胺
基本原则: 由于离子聚合的工艺要求较高,故能用自由基聚合的,尽
可能不采用离子聚合。
6.3 阳离子聚合
二、阳离子聚合的引发体系和引发作用
引发剂—亲电试剂
引发方式有两种: 阳离子引发—质子酸、Lewis酸 —引发剂生成阳离子,引发单体生成碳阳离子
电荷转移引发—乙烯基咔唑和四腈基乙烯(TCE) —引发剂和单体先形成电荷转移络合物而后引发
高分子化学进展6活性阴离子聚合课件
![高分子化学进展6活性阴离子聚合课件](https://img.taocdn.com/s3/m/312d8e5c640e52ea551810a6f524ccbff121cafe.png)
高分子化学进展6 活性阴离子聚合课件高分子化学进展6 - 活性阴离子聚合一、引言活性阴离子聚合(Living Anionic Polymerization,LAP)是一种重要的聚合方法,可以精确控制聚合反应的分子量、分子量分布和聚合物的化学结构。
这种方法在合成高性能高分子材料、生物可降解材料和特种功能材料等领域具有广泛的应用前景。
本课件将介绍活性阴离子聚合的基本原理、研究进展和重要应用。
二、活性阴离子聚合的基本原理1.阴离子聚合反应的特点阴离子聚合反应是一种由阴离子引发的高分子化合物的聚合反应。
这种反应具有以下特点:(1)聚合反应具有活性中心,可以持续进行;(2)可以通过控制反应条件,实现分子量和分子量分布的精确调控;(3)可以通过改变单体种类,合成不同化学结构和性能的高分子材料。
2.活性阴离子聚合的机理活性阴离子聚合的机理包括引发、增长和终止三个阶段。
引发阶段是阴离子与单体分子相互作用生成活性中心的过程;增长阶段是活性中心不断与单体分子结合生成高分子链的过程;终止阶段是高分子链之间相互作用形成大分子终止的过程。
通过控制各个阶段的反应条件,可以实现对聚合反应的精确调控。
三、活性阴离子聚合的研究进展1.新型引发剂的开发引发剂是活性阴离子聚合的关键因素之一。
近年来,研究者开发了多种新型引发剂,包括有机碱、路易斯碱和混合碱等。
这些新型引发剂可以降低聚合反应的温度和压力,提高聚合反应的速率和产物的分子量。
2.聚合反应条件的优化优化聚合反应条件可以提高聚合反应的速率和产物的分子量。
研究者通过控制反应温度、压力、浓度和溶剂等条件,实现了对聚合反应的精确调控。
此外,研究者还发现某些功能化试剂可以促进阴离子聚合反应的进行。
例如,某些金属卡宾络合物可以作为催化体系的一部分,促进阴离子聚合反应的进行。
这些发现为活性阴离子聚合的发展提供了新的思路。
3.聚合物结构和性能的调控通过改变单体种类和聚合条件,可以实现对聚合物结构和性能的精确调控。
高分子化学阳离子聚合.pptx
![高分子化学阳离子聚合.pptx](https://img.taocdn.com/s3/m/a2fb24e0970590c69ec3d5bbfd0a79563d1ed465.png)
向单体链转移为主:
Xn
Rp Rtr .M
kp k tr .M
1 CM
向溶剂或链转移转移为主: X n
Rp Rtr .S
1 CS
[M ] [S]
1 Xn
k
kt p[M
]
CM
Cs
[S] [M ]
第25页/共34页
苯乙烯阳离子聚合[H2SO4-(CH2Cl)2]和自由基聚合动力学参数
参数
阳离子
自由基聚合
[C*] mol/l
10-3
10-8
Kp l/mol.S ktr,m l/mol.S
kt
Kp/kt
7.6
1.2×10-1
自发终止 4.9×10-2(S-1)
102
10 107(l/mol.S) Kp/kt 1/2 10-2
第26页/共34页
五. 影响阳离子聚合的因素
1、 反应介质(溶剂)的影响
A B A B A B A B 共价键 离子对 离子对 自由离子
H-[-CH2C(CH3)2-]n-CH2C(CH3)=CH2 + (CH3)3C+BF3OH+ H-[-CH2C(CH3)2-]n-CH=C(CH3)2
阳离子:C m=10-2-10-4 自由基 C m=10-4-10-5 低温有利于控制链转移
(或从单体到增长中心负氢离子转移)
H-[-CH2C(CH3)2-]n-CH2C+(CH3)2(BF3OH)-+ CH2=C(CH3)2
羰基化合物: HCHO
第4页/共34页
二 、阳离子聚合的引发体系
1. 质子酸:
H2SO4, H3PO4, HClO4, Cl3CCOOH
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
增长反应比其他副反应快,即生成的碳
阳离子有适当的稳定性。
如:α —烯烃 乙烯(ethylene): 无侧基,C=C电子云密度低,且不易极化,对质 子亲和力小,难以阳离子聚合。
丙烯(propylene)、丁烯(butylene):
烷基供电性弱,生成的二级碳阳离子较活泼,易 发生重排(rearrangement)等副反应,生成更稳 定的三级碳阳离子。
* CH2
CH3 + CH2 C CH CH2
-100℃
CHCl3溶剂
AlCl3 +H2O引发
CH3 C CH CH2 m
反应通式:
A B +M
特点:
AM B
M
Mn
: 阳离子活性中心,通常为碳阳离子 (carbocation)或氧鎓离子。
A
: 紧靠中心离子的引发剂碎片,称反离 子(counterion)或抗衡离子。
通过离子聚合可获得“活性聚合物”(living
polymer),可以有目的的分子设计,合成具有 预想结构和性能的聚合物;
工业生产中,利用离子聚合生产了许多性能
优良的聚合物,如丁基橡胶、异戊橡胶、SBS 塑性橡胶等。
6.2 阳离子聚合( Cationic polymerization)
阳离子聚合发展史
B
一. 阳离子聚合的单体
烯类单体
羰基化合物
含氧杂环的单体
供电基团使C=C电子云密 度增加,有利于阳离子活性 种的进攻;
离子聚合
A
δ
_
CH2=CH Y
供电基团又使阳离子增长 种电子云分散,能量降低而 稳定。
ACH2
C Y
含供电基团的单体能否聚合成高聚物,还要求: 质子(proton)对C=C有较强亲和力;
酸根离子的亲核性不能过强,以免与活性中心 结合成共价键,使链终止。
如氢卤酸:在非极性溶剂中,其酸根离子亲核性很强,只能得到齐聚物。 在强极性有机溶剂中,酸根离子被溶剂化,可得较高分子量的聚合物。
2. Lewis酸 -电子 受体,亲电试剂
广义上把能和非共用电子对 配位的分子和离子称做酸。
AlCl3、BF3、SnCl4、ZnCl2、TiBr4金属卤化物等。 共引发剂——质子或碳阳离子的供给体。
共轭效应占主导,因此能进行阳离子聚合。
但当烷基换成芳基后,由于氧上的未共有电子对也能与芳环形成共轭,分散了 双键上的电子云密度,从而使其进行阳离子聚合的活性大大降低。
苯乙烯、α -甲基苯乙烯、丁二烯、异戊二烯等共轭单体:
基本原则: π 电子活动性强,易诱导极化,能进行阳离子聚合。 由于离子聚合的工艺要求较高,故能用 但它们活性不及异丁烯和烷基乙烯基醚,无工业价值。 自由基聚合的,尽可能不采用离子聚合。
第6章
离子聚合
6.1 引言(introduction)
连锁聚合
(Chain polymerization)
自由基聚合 离子聚合
离子聚合活性中心——离子(ion)或离子对(ionpair)
离子聚合
根据活性中心 的电荷性质
阳离子聚合 阴离子聚合
反应机理及动力学与自由基聚合相比不成熟
离子聚合的特点 单体选择性高; 聚合条件苛刻; 聚合速率快,需在低温下进行;
CH3
异丁烯:
异丁烯是唯一能进行阳离子聚合的α —烯烃,且它 只能进行阳离子聚合。根据这一特性,常用异丁烯 来鉴别引发机理。
更高级的α —烯烃:由于位阻效应,只能形成二氧基使双键电子云密度降低; 共轭效应:氧上未共用电子对与碳碳双键形成P~π共轭, 使双键电子云密度增加。
二. 阳离子聚合引发体系及引发作用
引发方式:
由引发剂生成阳离子,再与单体加成,生 成碳阳离子实现引发;
通过电荷转移引发。 常用的引发剂: 质子酸(protonic acid)
Lewis酸
电荷转移络合物引发 其它
1. 质子酸
HClO4、H2SO4、H3PO4、HCl 引发机理:在水溶液中离解成H+,使烯烃质子 化引发聚合。 质子酸作为引发剂的条件: 有足够强度产生H+ ;
丙烯、丁烯只能得到低分子的油状物。
CH3
异丁烯(isobutylene): 同一碳原子上两个烷基,C=C电 子云密度增加很多,易受质子进攻, 生成三级碳阳离子。 CH2=C CH3 CH3 聚合物链中—CH2 —受到四个甲基 —CH2—C+
保护,减少了副反应,因此产物稳
定,可得高分子量的线性聚合物。
∴阳离子聚合的单体有三类:
①取代基有足够供电性的烯类单体:
②含有有孤对电子的杂原子的不饱和化 合物与环状化合物,如:
O
N
,CH2O 等
③共轭烯烃
CH3 CH 2=C CH=CH2
电子的活动性强,易诱导极 化,既能阳离子聚合,又能阴 离子聚合。但聚合活性远不如 前两类。
结论: a.烯类单体阳离子聚合活性与取代基 的供电子能力有关。 b.低温有利于C+的稳定
对阳离子聚合的认识还不很深入,原因: ①阳离子活性很高,极易发生各种副反应, 很难获得高分子量的聚合物 ②碳阳离子易发生和碱性物质的结合、转移、 异构化等副反应——构成了阳离子聚合的 特点 ③引发过程十分复杂,至今未能完全确定
目前唯一采用阳离子聚合并大规模工业化的 产品——丁基橡胶
CH3 CH2 C CH3 97% r1 =2.5 3% r2=0.4 CH2 CH3 C CH3 98.5% 1.5% n
引发体系多为非均相;
反应介质对聚合有很大影响。
离子型聚合所使用的溶剂可以影响催化剂和单体的聚合活性; 自由基聚合所使用的溶剂可以引起自由基向溶剂分子的转移,从而 影响分子量。
一些重要的聚合物,如丁基橡胶、异戊橡胶、聚 甲醛、聚氯醚等只能通过离子聚合得到。
离子聚合的应用:
理论上,有较强的控制大分子链结构的能力,
1839年,Devile首次用SnCl4引发苯乙烯聚合 1873年,俄国人首次发现用BF3引发异丁烯聚合 1934年,Whitmore用强酸催化烯烃反应制齐聚物 --提出阳离子聚合的概念 1937-1944年,Thomas合成了丁基橡胶 1942年,BASF公司首先建立6000t/a的PIB生产线 1944年,美国Exxon公司建立第一个丁基橡胶生产 厂 20世纪80年代后期,Kennedy等人提出活性聚合