绝对值及其几何意义
绝对值的几何意义公式(二)
![绝对值的几何意义公式(二)](https://img.taocdn.com/s3/m/891dae26a200a6c30c22590102020740be1ecde1.png)
绝对值的几何意义公式(二)绝对值的几何意义公式绝对值在数学中是一个重要的概念,它表示一个数与零之间的距离。
在几何意义上,绝对值可以表示为一条有向线段的长度。
本文将列举一些与绝对值相关的公式,并给出解释和示例。
绝对值的定义绝对值是一个数的非负值,表示该数离零的距离。
绝对值的定义如下:|x| = x,如果x ≥ 0 |x| = -x,如果x < 0绝对值的几何意义公式1. 绝对值的定义表示根据绝对值的定义,可以将绝对值表示为一条线段的长度。
公式: |x| = AB,其中A是原点,B是点x的坐标位置示例:考虑点A(0, 0)和点B(3, 0),则|3| = AB = 3。
2. 绝对值的线段平移绝对值函数|x - a|表示点x距离a的距离。
公式: |x - a| = PA,其中P是点a的坐标位置示例:考虑点P(2, 0),点Q(5, 0),则|Q - 2| = PQ = 3。
3. 绝对值的线段缩放绝对值函数|kx|表示点x与原点的距离缩放到原来的k倍。
公式: |kx| = k * |x|示例:对于点A(2, 0),如果k = 3,则|3x| = 6.4. 绝对值的线段合并绝对值函数|x - a| + |x - b|表示点x到a,b两点的距离之和。
公式: |x - a| + |x - b| = PA + PB示例:对于点A(2, 0)和点B(6, 0),则|5x - 16| + |3x - 8| = PA + PB。
5. 绝对值的线段交换绝对值函数|a - x| = |b - x|表示点x与a,b两点的距离相等。
公式: |a - x| = |b - x|示例:对于点A(2, 0)和点B(6, 0),则|2 - x| = |6 - x|。
总结绝对值的几何意义公式在解决各种几何问题中起到了重要的作用。
通过几何意义公式,我们可以更好地理解绝对值的概念,并将其运用于实际问题中。
这些公式包括绝对值的定义表示、线段平移、线段缩放、线段合并和线段交换。
绝对值的意义及应用
![绝对值的意义及应用](https://img.taocdn.com/s3/m/3e7a5a0d0722192e4536f69d.png)
绝对值的意义及应用绝对值是初中代数中的一个重要概念,应用较为广泛.在解与绝对值有关的问题时,首先必须弄清绝对值的意义和性质。
对于数x而言,它的绝对值表示为:|x|.一. 绝对值的实质:正实数与零的绝对值是其自身,负实数的绝对值是它的相反数,即也就是说,|x|表示数轴上坐标为x的点与原点的距离。
总之,任何实数的绝对值是一个非负数,即|x|≥0,请牢牢记住这一点。
二. 绝对值的几何意义:一个数的绝对值就是数轴上表示这个数的点到原点的距离。
例1. 有理数a、b、c在数轴上的位置如图所示,则式子|a|+|b|+|a+b|+|b-c|化简结果为( )A.2a+3b-c B.3b-c C.b+c D.c-b(第二届“希望杯”数学邀请赛初一试题)解:由图形可知a<0,c>b>0,且|c|>|b|>|a|,则a+b>0,b-c<0.所以原式=-a+b+a+b-b+c=b+c,故应选(C).三. 绝对值的性质:1. 有理数的绝对值是一个非负数,即|x|≥0,绝对值最小的数是零。
2. 任何有理数都有唯一的绝对值,并且任何一个有理数都不大于它的绝对值,即x≤|x|。
3. 已知一个数的绝对值,那么它所对应的是两个互为相反数的数。
4. 若两个数的绝对值相等,则这两个数不一定相等(显然如|6|=|-6|,但6≠-6),只有这两个数同号,且这两个数的绝对值相等时,这两个数才相等。
四. 含绝对值问题的有效处理方法1. 运用绝对值概念。
即根据题设条件或隐含条件,确定绝对值里代数式的正负,再利用绝对值定义去掉绝对值的符号进行运算。
例2. 已知:|x-2|+x-2=0,求:(1)x+2的最大值;(2)6-x的最小值。
解:∵|x-2|+x-2=0,∴|x-2|=-(x-2)根据绝对值的概念,一个数的绝对值等于它的相反数时,这个数为负数或零,∴x-2≤0,即x≤2,这表示x的最大值为2(1)当x=2时,x+2得最大值2+2=4;(2)当x=2时,6-x得最小值6-2=42. 用绝对值为零时的值分段讨论.即对于含绝对值代数式的字母没有条件限制或限制不确切的,就需先求零点,再分区间定性质,最后去掉绝对值符号。
(完整版)绝对值的意义及应用
![(完整版)绝对值的意义及应用](https://img.taocdn.com/s3/m/0c2b40d5b307e87101f6969e.png)
绝对值的意义及应用绝对值是初中代数中的一个重要概念,应用较为广泛.在解与绝对值有关的问题时,首先必须弄清绝对值的意义和性质。
对于数x而言,它的绝对值表示为:|x|.一. 绝对值的实质:正实数与零的绝对值是其自身,负实数的绝对值是它的相反数,即也就是说,|x|表示数轴上坐标为x的点与原点的距离。
总之,任何实数的绝对值是一个非负数,即|x|≥0,请牢牢记住这一点。
二. 绝对值的几何意义:一个数的绝对值就是数轴上表示这个数的点到原点的距离。
例1. 有理数a、b、c在数轴上的位置如图所示,则式子|a|+|b|+|a+b|+|b-c|化简结果为( )A.2a+3b-c B.3b-c C.b+c D.c-b(第二届“希望杯”数学邀请赛初一试题)解:由图形可知a<0,c>b>0,且|c|>|b|>|a|,则a+b>0,b-c<0.所以原式=-a+b+a+b-b+c=b+c,故应选(C).三. 绝对值的性质:1. 有理数的绝对值是一个非负数,即|x|≥0,绝对值最小的数是零。
2. 任何有理数都有唯一的绝对值,并且任何一个有理数都不大于它的绝对值,即x≤|x|。
3. 已知一个数的绝对值,那么它所对应的是两个互为相反数的数。
4. 若两个数的绝对值相等,则这两个数不一定相等(显然如|6|=|-6|,但6≠-6),只有这两个数同号,且这两个数的绝对值相等时,这两个数才相等。
四. 含绝对值问题的有效处理方法1. 运用绝对值概念。
即根据题设条件或隐含条件,确定绝对值里代数式的正负,再利用绝对值定义去掉绝对值的符号进行运算。
例2. 已知:|x-2|+x-2=0,求:(1)x+2的最大值;(2)6-x的最小值。
解:∵|x-2|+x-2=0,∴|x-2|=-(x-2)根据绝对值的概念,一个数的绝对值等于它的相反数时,这个数为负数或零,∴x-2≤0,即x≤2,这表示x的最大值为2(1)当x=2时,x+2得最大值2+2=4;(2)当x=2时,6-x得最小值6-2=42. 用绝对值为零时的值分段讨论.即对于含绝对值代数式的字母没有条件限制或限制不确切的,就需先求零点,再分区间定性质,最后去掉绝对值符号。
六年级数学绝对值知识点与经典例题含解析
![六年级数学绝对值知识点与经典例题含解析](https://img.taocdn.com/s3/m/601a590528ea81c759f5786a.png)
绝对值的性质及化简【绝对值的几何意义】一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.数a 的绝对值记作a . (距离具有非负性)【绝对值的代数意义】一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.注意:① 取绝对值也是一种运算,运算符号是“| |”,求一个数的绝对值,就是根据性质去掉绝对值符号.② 绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相 反数;0的绝对值是0.③ 绝对值具有非负性,取绝对值的结果总是正数或0.④ 任何一个有理数都是由两部分组成:符号和它的绝对值,如:5−符号是负 号,绝对值是5.【求字母a 的绝对值】 ①(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪−<⎩②(0)(0)a a a a a ≥⎧=⎨−<⎩ ③(0)(0)a a a a a >⎧=⎨−≤⎩ 利用绝对值比较两个负有理数的大小:两个负数,绝对值大的反而小.绝对值非负性:|a|≥0如果若干个非负数的和为0,那么这若干个非负数都必为0. 例如:若0a b c ++=,则0a =,0b =,0c =【绝对值的其它重要性质】(1)任何一个数的绝对值都不小于这个数,也不小于这个数的相反数, 即a a ≥,且a a ≥−;(2)若a b =,则a b =或a b =−;(3)ab a b =⋅;a ab b =(0)b ≠; (4)222||||a a a ==;(5)||a|-|b|| ≤ |a ±b| ≤ |a|+|b|a 的几何意义:在数轴上,表示这个数的点离开原点的距离.a b −的几何意义:在数轴上,表示数a .b 对应数轴上两点间的距离.【去绝对值符号】基本步骤,找零点,分区间,定正负,去符号。
【绝对值不等式】(1)解绝对值不等式必须设法化去式中的绝对值符号,转化为一般代数式类型来解;(2)证明绝对值不等式主要有两种方法:A)去掉绝对值符号转化为一般的不等式证明:换元法、讨论法、平方法;B)利用不等式:|a|-|b|≦|a+b|≦|a|+|b|,用这个方法要对绝对值内的式子进行分拆组合、添项减项、使要证的式子与已知的式子联系起来。
绝对值 几何意义
![绝对值 几何意义](https://img.taocdn.com/s3/m/702d1d32b90d6c85ec3ac645.png)
绝对值几何意义:在数轴上,一个数与原点的距离叫做该数的绝对值(absolute value).如:指在数轴上表示的点与原点的距离,这个距离是5,所以的绝对值是5,又如指在数轴上表示1.5的点与原点的距离,这个距离是1.5,所以1.5的绝对值是1.5,代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0互为相反数的两个数的绝对值相等绝对值用“|a |”表示.读作“a的绝对值”.如:|-2|读作-2的绝对值。
正数的绝对值是它本身,负数的绝对值是它的相反数,,绝对值是非负数≥0。
特殊的零的绝对值既是他的本身又是他的相反数,写作|0|=0|3|=3 |-3|=3(相反数绝对值互为倒数)两个负数比较大小,绝对值大的反而小比如:若|2(x—1)—3+|2y—4)|=0,则x=___,y=____。
(|是绝对值)答案:2(X-1)-3=0X=5/22Y-4=0Y=2一对相反数的绝对值相等:例+2的绝对值等于—2的绝对值(因为在数轴上他们离原点的单位长度相等) 绝对值的几何意义和代数意义:几何定义:数轴上表示数a的点与原点的距离叫做数a的绝对值。
(在数轴上表示数a的点与原点的距离一定是非负数)代数定义:|a|={a>0 a=a{a<0 a=-a{a=o a=0关于绝对值的题目:已知|x|=3,|y|=1/2,且|x-y|=y-x,求y-x解:因为|x-y|>0 或=0,且|x-y|=y-x,所以x<0,x只能等于-3。
y=-1/2 或=1/2。
设y=1/2,则原式=1/2-(-3)= 3又1/2。
设y=-1/2,则原式=(-1/2)—(-3)=2又1/2。
答:y-x等于3又1/2或2又1/2。
|x-1|+|x-2|+|x-3|.....|x-5|的最小值为多少,可以用几何意义来做,要想最小就要取中间的也就是x-3=0即x=3原式=6,为最小值|x-1|+|x-2|+|x-3|+|x-4|则取2,3中间任意一点,得4公式|m-n|-|n-m|=0m/n可以是任何数2. 绝对值的有关性质无论是绝对值的代数意义还是几何意义,都揭示了绝对值的以下有关性质:(1)任何有理数的绝对值都是大于或等于0的数,这是绝对值的非负性。
绝对值几何意义及动点问题(一)
![绝对值几何意义及动点问题(一)](https://img.taocdn.com/s3/m/139d3426a200a6c30c22590102020740bf1ecd7e.png)
绝对值几何意义及动点问题(一)绝对值几何意义及动点问题在几何学中,绝对值是一个常见的概念,它表示一个数到零的距离。
在这篇文章中,我们将探讨绝对值的几何意义以及与动点相关的问题。
绝对值的几何意义绝对值可以用几何的方式来解释。
首先,我们可以将绝对值看作一个点到零点的距离。
例如,对于实数x,绝对值|x|表示点x到零点的距离。
如果x是负数,则绝对值表示x在数轴上的投影到零点的距离。
绝对值的性质绝对值具有以下性质: - |x| >= 0:绝对值永远大于等于零。
- |x| = 0 当且仅当 x = 0:只有当x等于零时,绝对值才等于零。
- |x * y| = |x| * |y|:绝对值的乘积等于各个数的绝对值的乘积。
绝对值的动点问题在几何学中,动点问题是一类常见的问题,它涉及到点在运动中的位置、轨迹等特性。
绝对值可以应用在动点问题中,通过求解动点到其他点的距离。
以下是一些与绝对值和动点相关的问题: 1. 给定一个动点A和两个固定点B、C,求动点A到点B和点C的距离之和的最小值。
2. 已知动点A在直线L上运动,点B为直线L上的固定点,求动点A到点B的距离的最大值。
3. 给定一个动点A和一个固定点B,在直线L 上构建一个点C,使得动点A到点B和点C的距离之和最小。
这些问题都可以通过绝对值的几何意义来解决。
我们可以使用点到点的距离公式,通过求解绝对值来得到问题的答案。
绝对值在几何学中具有重要的意义,它可以帮助我们解决许多与动点相关的问题。
通过理解绝对值的几何意义,我们可以更好地应用它来解决各种几何问题。
希望通过这篇文章,你对绝对值的几何意义及动点问题有更深入的理解。
绝对值的代数意义和几何意义
![绝对值的代数意义和几何意义](https://img.taocdn.com/s3/m/90f7ed6dbc64783e0912a21614791711cc7979cb.png)
绝对值的代数意义和几何意义绝对值是数学中一个重要的概念,它具有代数意义和几何意义。
在代数中,绝对值表示一个数与零之间的距离,而在几何中,绝对值表示一个点在数轴上的位置。
代数意义:在代数中,绝对值常用符号“,x,”表示,其中x表示任意实数。
绝对值的定义是:x,=x,当x>=0x,=-x,当x<0绝对值的代数意义是表示一个数与零之间的距离。
无论一个数是正数还是负数,它与零的距离都是一个非负数。
例如,对于数-5来说,它与零的距离为5,即,-5,=5、对于数8来说,它与零的距离也是8,即,8,=8、因此,绝对值可以将负数转化为正数,而保持正数不变。
绝对值在代数中有多种应用。
首先,绝对值可以用来定义两个实数的大小关系。
例如,对于实数a和b来说,如果,a,<,b,则a的绝对值小于b的绝对值,即a的绝对值离零更近。
其次,绝对值还可以用来确定一个数的符号。
如果一个数的绝对值是正数,则该数为正数;如果一个数的绝对值是负数,则该数为负数。
几何意义:在几何中,绝对值被用来表示一个点在数轴上的位置。
数轴是一个直线,可以将实数一一对应地映射到数轴上的点。
绝对值表示一个点到原点的距离,且方向无关。
通过绘制一个数轴,我们可以将绝对值的几何意义更加直观地理解。
假设有一个点A在数轴上,它与原点O之间的距离为,x,点A在数轴上的位置取决于该点到原点的距离。
如果x>=0,则点A在原点的右侧距离为x;如果x<0,则点A在原点的左侧距离为-x。
无论点A在哪一侧,它的距离始终是非负数。
除了数轴,绝对值的几何意义还可以应用到平面几何中。
在平面几何中,绝对值可以表示一个点到原点的距离,在二维坐标系中常用来计算两个点之间的距离。
例如,对于点P(x1,y1)和Q(x2,y2)来说,它们之间的距离可以表示为:d = sqrt((x2 - x1)^2 + (y2 - y1)^2)其中,sqrt表示平方根运算。
由于平方根运算的结果始终是非负数,因此绝对值用于确保距离始终是非负数。
绝对值的代数意义和几何意义
![绝对值的代数意义和几何意义](https://img.taocdn.com/s3/m/d95b8f02905f804d2b160b4e767f5acfa1c78395.png)
绝对值的代数意义和几何意义
绝对值是数学中使用最广泛的概念之一,在代数中,它被定义为数值或表达式的绝对值,容易被视为一种量度,它可以衡量一个数的大小,而不必考虑它的符号。
一、代数意义
1. 绝对值是数值和表达式的数学量度,衡量数值的大小,不受它的符号(正负)的影响。
即|x| = x,如果x>0;|x| = -x,当x<0时。
2. 绝对值函数y=|x|是一个凸函数,它的图象关于y轴对称,当x变化时,y曲线上各点的变化率一定为正。
3. 两个相等负数的绝对值相等,因此绝对值函数不满足函数的单值定理。
4. 当x ≠ 0时,|x|不能表示为0,因为如果这样的话,将会发生抵消,而它的本来
意义就是衡量数值大小。
二、几何意义
1. 在几何中,它表示一点到原点的距离,也表示函数的最大值或最小值。
2. 对于向量的绝对值,表示的是向量的模长或长度,它是一个实数。
3. 绝对值用来描述点(x,y)到原点(0,0)之间的距离,即|(x,y)|=根号[x2 +y2]。
4. 对于复平面中点(z),其绝对值|z| = 根号[(a+bi)2] = 根号[a2+b2]。
以上可以看出,绝对值在代数和几何中都有着各自独特而重要的意义,它们在理解数学概念中都具有十分重要的作用。
绝对值的性质及化简
![绝对值的性质及化简](https://img.taocdn.com/s3/m/56077f6b336c1eb91a375d98.png)
内容 基本要求略高要求较高要求绝对值 借助数轴理解绝对值的意义,会求实数的绝对值会利用绝对值的知识解决简单的化简问题绝对值的几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.数a 的绝对值记作a .绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.注意:①取绝对值也是一种运算,运算符号是“”,求一个数的绝对值,就是根据性质去掉绝对值符号.②绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.③绝对值具有非负性,取绝对值的结果总是正数或0.④任何一个有理数都是由两部分组成:符号和它的绝对值,如:5-符号是负号,绝对值是5. 求字母a 的绝对值:①(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩ ②(0)(0)a a a a a ≥⎧=⎨-<⎩ ③(0)(0)a a a a a >⎧=⎨-≤⎩利用绝对值比较两个负有理数的大小:两个负数,绝对值大的反而小.绝对值非负性:如果若干个非负数的和为0,那么这若干个非负数都必为0.例如:若0a b c ++=,则0a =,0b =,0c =绝对值的其它重要性质:(1)任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即a a ≥,且a a ≥-;(2)若a b =,则a b =或a b =-;(3)ab a b =⋅;a ab b=(0)b ≠; (4)222||||a a a ==;(5)a b a b a b -≤+≤+,对于a b a b +≤+,等号当且仅当a 、b 同号或a 、b 中至少有一个0时,等号成立;对于a b a b -≤+,等号当且仅当a 、b 异号或a 、b 中至少有一个0时,等号成立.绝对值几何意义当x a =时,0x a -=,此时a 是x a -的零点值.零点分段讨论的一般步骤:找零点、分区间、定符号、去绝对值符号.即先令各绝对值式子为零,求得若干个绝对值为零的点,在数轴上把这些点标出来,这些点把数轴分成若干部分,再在各部分内化简求值.a 的几何意义:在数轴上,表示这个数的点离开原点的距离.a b -的几何意义:在数轴上,表示数a 、b 对应数轴上两点间的距离.一、绝对值的概念例题精讲中考要求绝对值的性质及化简【例1】 m n -的几何意义是数轴上表示m 的点与表示n 的点之间的距离.x 的几何意义是数轴上表示 的点与 之间的距离;x0x -(>,=,<);【例2】 21-的几何意义是数轴上表示2的点与表示1的点之间的距离;则21-= ;【例3】 3x -的几何意义是数轴上表示 的点与表示 的点之间的距离,若31x -=,则x = .【例4】 2x +的几何意义是数轴上表示 的点与表示 的点之间的距离,若22x +=,则 x = .二、绝对值的性质【例5】 填空:若a b a b +=+,则a ,b 满足的关系 .【例6】 填空:若a b a b -=-,则a ,b 满足的关系 .【例7】 填空:已知a 、b 是有理数,1a ≤,2b ≤,且3a b -=,则a b += .【例8】 若ab ab <,则下列结论正确的是 ( )A. 00a b <<,B. 00a b ><,C. 00a b <>,D. 0ab <【例9】 下列各组判断中,正确的是 ( )A .若a b =,则一定有a b =B .若a b >,则一定有a b > C. 若a b >,则一定有a b > D .若a b =,则一定有()22a b =- 【例10】 如果2a >2b ,则 ( ) A .a b > B .a >b C .a b < D a <b 【例11】 (4级)若a b >且a b <,则下列说法正确的是( ) A .a 一定是正数 B .a 一定是负数 C .b 一定是正数 D .b一定是负数【例12】 下列式子中正确的是 ( )A .a a >-B .a a <-C .a a ≤-D .a a ≥-【例13】 对于1m -,下列结论正确的是 ( ) A .1||m m -≥ B .1||m m -≤ C .1||1m m --≥ D .1||1m m --≤【例14】 若220x x -+-=,求x 的取值范围.【例15】 已知2332x x -=-,求x 的取值范围【例16】 下列说法中正确的个数是( )①当一个数由小变大时,它的绝对值也由小变大; ②没有最大的非负数,也没有最小的非负数; ③不相等的两个数,它们的绝对值一定也不相等; ④只有负数的绝对值等于它的相反数. A .0 B .1 C .2D .3【例17】 绝对值等于5的整数有 个,绝对值小于5的整数有个【例18】 绝对值小于3.1的整数有哪些?它们的和为多少?【例19】 有理数a 与b 满足a b >,则下面哪个答案正确( )A .a b >B .a b =C .a b <D .无法确定【例20】 已知:52a b ==,,且a b <;则____________a b ==,. 【例21】 非零整数m n ,满足50m n +-=,所有这样的整数组()m n ,共有【例22】 已知123a b c ===,,,且a b c >>,那么a b c +-=【例23】 如右图所示,若a 的绝对值是b 的绝对值的3倍,则数轴的原点在点.(填“A ”“B ”“C ”或“D ”)【例24】 如果1a b -=,1b c +=,2a c +=,求2a b c ++的值.【例25】 已知a 、b 、c 、d 都是整数,且2a b b c c d d a +++++++=,则a d += .【例26】 已知a 、b 、c 、d 是有理数,9a b -≤,16c d -≤, 且25a b c d --+=,则b a d c ---= .【例27】 有理数a 、b 、c 、d 各自对应着数轴上X 、Y 、Z 、R 四个点,且(1)b d -比a b -,a c -、a d -、b c -、c d -都大; (2)d a a c d c -+-=-;(3)c 是a 、b 、c 、d 中第二大的数.则点X 、Y 、Z 、R 从左到右依次是【例28】 若a b c d ,,,为互不相等的有理数,且c 最小,a 最大,且a c b c b d a d ---+-=-.请按a b c d ,,,从小到大的顺序排列.【例29】 I f 3x ≤,1y ≤,4z ≤,and 29x y z -+=,then 246x y z = .【例30】 如果1,11,a a a x a =+-=-那么____x a x a +--=。
绝对值表达式的几何意义
![绝对值表达式的几何意义](https://img.taocdn.com/s3/m/f035641d842458fb770bf78a6529647d26283464.png)
从实际问题入手:
一个生产流水线上依次排着三个工作台A,B,C,三
个工人分别在工作台上工作,问只有一个检修工
具箱放在何处,才能使工作台上操纵机器的三个
工人每人取一次工具所走的路程之和最短?
A
B
∣
∣
C
∣
放在点B的位置上,他们所走的路程之和最短。
如果有五工作台呢? 点c的位置;
A
B
∣
∣
有七个工作台呢?
C
D
E
∣
∣
∣
点D的位置;
∣
∣
∣
∣
∣
∣
∣
A
B
C
D
E
F
G
探究二
当x=
时, ∣x-1∣+ ∣x-2∣有最小值,
最小值是多少?
思维点拨:
1、∣x-1∣表示的意义是什么?
2、∣x-2∣表示的意义是什么?
3、∣x-1∣ + ∣x-2∣表示的意义又是什么?
问题解决
解:设A:1,B:2,M:x
则AM=∣x-1∣,BM= ∣x-2∣
C. a c
D. a c
2.已知 a 在数轴上的位置如下图所示,化简
式子 a 1 的值为 -1 . a 1
a
-1 0
3.已知 a b a b 2b ,在数轴上给出
关于 a、b的四种情况如图所示,则成立的是
①、③ (写出所有正确的序号)
a0 b
①
b0
a
②
0a b
③
0b a
④
1.数轴上一动点A向左移动两个单位长度到达
-2012∣有最小值,最小值是多少?
当1006≤x≤1007时,原式有最小值. 它的最小值
绝对值及其几何意义
![绝对值及其几何意义](https://img.taocdn.com/s3/m/84498b79fab069dc502201af.png)
绝对值及其几何意义绝对值的代数意义:一个正数的绝对值是它本身,零的绝对值是零,负数的绝对值是它的相反数。
如:|5|=5;|-5|=5;|0|=0绝对值的几何意义:可以借助数轴来加以认识,一个数的绝对值在数轴上表示这个数的点到___________的距离。
如|a|表示数轴上表示数a的点到________的距离,推而广之:∣x-a∣的几何意义是数轴上表示数x的点到表示数______的点之间的距离,∣x-a∣+∣x-b∣的几何意义是数轴上表示数x的点到表示数_______ 两点的距离之和。
对于一些比较复杂的绝对值问题,如果用常规的方法做会比较繁琐,而运用绝对值的几何意义解题,往往能取得事半功倍的效果。
例1:已知,∣x-4∣=3,求x的值。
解法一(代数法,分类讨论)(“零点分段法”):解法二(几何法):由绝对值的几何意义可知,∣x-4∣=3表示数x的点到_________的距离为_____,结合数轴不难发现这样的点共有______个,分别是____和____,故x=_______.例2:求∣x-1∣+∣x+2∣的最小值。
解法一(代数法)(“零点分段法”):解法二(几何法):由绝对值的几何意义可知,分析:本题若采用“零点分段法”讨论亦能解决,但若运用绝对值的几何意义解题,会显得更加简洁。
解:根据绝对值的几何意义可知,∣x-1∣表示数轴上点x到_______的距离,∣x+2∣表示数轴上点x到_________的距离。
实际上此题是要在数轴上找一点x,使该点到两点的距离之和最短,由数轴可知,x应在数轴上__________________________________的点,且最短距离为______________,即∣x-1∣+∣x+2∣的最小值为_______。
推广:①:∣x-a∣+∣x-b∣的最小值为___________。
②∣∣x-a∣-∣x-b∣∣的几何意义是数轴上一点x到a、b两点之间距离之差的绝对值,它有一个最_______(大或小)值________。
绝对值及其几何意义
![绝对值及其几何意义](https://img.taocdn.com/s3/m/0cb7cd7b05087632311212b0.png)
绝对值及其几何意义文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]绝对值及其几何意义绝对值的代数意义:一个正数的绝对值是它本身,零的绝对值是零,负数的绝对值是它的相反数。
如:|5|=5;|-5|=5;|0|=0绝对值的几何意义:可以借助数轴来加以认识,一个数的绝对值在数轴上表示这个数的点到___________的距离。
如|a|表示数轴上表示数a的点到________的距离,推而广之:∣x-a∣的几何意义是数轴上表示数x的点到表示数______的点之间的距离,∣x-a∣+∣x-b∣的几何意义是数轴上表示数x的点到表示数_______ 两点的距离之和。
对于一些比较复杂的绝对值问题,如果用常规的方法做会比较繁琐,而运用绝对值的几何意义解题,往往能取得事半功倍的效果。
例1:已知,∣x-4∣=3,求x的值。
解法一(代数法,分类讨论)(“零点分段法”):解法二(几何法):由绝对值的几何意义可知,∣x-4∣=3表示数x的点到_________的距离为_____,结合数轴不难发现这样的点共有______个,分别是____和____,故x=_______.例2:求∣x-1∣+∣x+2∣的最小值。
解法一(代数法)(“零点分段法”):解法二(几何法):由绝对值的几何意义可知,分析:本题若采用“零点分段法”讨论亦能解决,但若运用绝对值的几何意义解题,会显得更加简洁。
解:根据绝对值的几何意义可知,∣x-1∣表示数轴上点x到_______的距离,∣x+2∣表示数轴上点x到_________的距离。
实际上此题是要在数轴上找一点x,使该点到两点的距离之和最短,由数轴可知,x应在数轴上__________________________________的点,且最短距离为______________,即∣x-1∣+∣x+2∣的最小值为_______。
推广:①:∣x-a∣+∣x-b∣的最小值为___________。
绝对值的几何意义公式(一)
![绝对值的几何意义公式(一)](https://img.taocdn.com/s3/m/a21005d65ff7ba0d4a7302768e9951e79b8969ec.png)
绝对值的几何意义公式(一)
绝对值的几何意义公式
1. 基本公式
•绝对值的定义:对于任意实数x,其绝对值记作| x | ,表示x 与原点之间的距离。
•绝对值的几何意义:绝对值表示一个数到原点的距离。
2. 几何意义公式
数轴上的绝对值公式
•公式1:对于任意实数x,有| x |=x或者|x |=- x 。
–解释:若x≥0,则x与原点之间的距离为x本身;若x<0,则x与原点之间的距离为-x,即与x绝对值相等。
平面直角坐标系中的绝对值公式
•公式2:对于平面直角坐标系中的两点A(a, b)与B(c, d),有| AB |=√(c-a)^2+ (d-b)^2。
–解释:两点A(a, b)和B(c, d)之间的距离就是线段AB的长度,而绝对值| AB |表示线段AB的长度。
三维空间中的绝对值公式
•公式3:对于三维空间中的两点A(x1, y1, z1)与B(x2, y2, z2),有| AB |=√(x2-x1)^2+ (y2-y1)^2+ (z2-z1)^2。
–举例:设点A(1, 2, 3)和点B(4, 5, 6),计算| AB |的值。
–解答:根据公式3,计算得到| AB |=√(4-1)^2+ (5-
2)^2+ (6-3)^2=√27≈。
3. 结论
•绝对值的几何意义公式包括数轴上的绝对值公式、平面直角坐标系中的绝对值公式和三维空间中的绝对值公式。
这些公式用于计
算点之间的距离,并在几何学中具有重要的应用价值。
绝对值几何意义及动点问题
![绝对值几何意义及动点问题](https://img.taocdn.com/s3/m/5dbe70aadbef5ef7ba0d4a7302768e9951e76ed7.png)
绝对值几何意义及动点问题
在数学中,绝对值有一个几何意义。
绝对值表示一个数距离原点的距离,既可以是正数,也可以是零。
在数轴上,绝对值表示一个点到原点的距离。
如果一个数的绝对值为3,则表示它在数轴上距离原点为3的位置。
绝对值也可以用来解决动点问题。
在动点问题中,通常涉及到一个或多个变化的变量,而我们需要找到满足特定条件的变量的取值。
利用绝对值可以将这些条件转化为等式或不等式,从而解决问题。
例如,假设有一个点P(x,y),我们希望找到离原点(0,0)的距离为5的点。
可以将这个条件表达为|x|+|y|=5。
这个等式代表了所有满足条件的点的集合。
我们可以将这个等式进一步简化为两个不等式|x|≤5和|y|≤5,来确定满足条件的点的位置。
另一个例子是求两个点之间的距离。
假设有两个点A(x1,y1)和B(x2,y2),我们希望找到它们之间的距离。
可以使用绝对值表达式来表示:d=√((x2-x1)²+(y2-y1)²)。
这个公式将两个点的坐标差的平方和开方,得到它们之间的距离。
综上所述,绝对值在几何中具有重要的意义,并且可以应用于解决动点问题。
(完整版)绝对值知识点
![(完整版)绝对值知识点](https://img.taocdn.com/s3/m/f3f59e3430126edb6f1aff00bed5b9f3f80f7255.png)
绝对值(一)【预习引领】两辆汽车从同一处O 出发 ,分别向东、西方行驶10km,抵达 A 、B 两处.( 1)它们的行驶路线同样吗?( 2)它们行驶行程的远近同样吗?答 : ( 1)不同样; (2) 同样 .【重点梳理】知识点一 :绝对值的意义1. 绝对值的几何意义:一般地,数轴上表示数 a 的点与原点的距离叫做数 a 的绝对值,记作 a ,读作: a 的绝对值 .例 1利用数轴求以下各数的绝对值.( 1) 2, 1, 3.5;5( 2)0; (3)5 , 3.2, 21.3答:(1)2 =2; 1 = 1; 3.5 =3.5;5 5(2)0 =0;(3)5 =5;3.2 =3.2;21 =21. 3 32. 绝对值的代数意义:一个正数的绝对值是它自己;一个负数的绝对值是它的相反数; 0 的绝对值是 0.例 2直接写出以下各数的绝对值 .6, 8, 3.9, 5,10,0,26 , 8, 3.9, 5 10,2答 :6 =6,8 =8,3.9 =3.9,5 =5; 10 =10; 0 =0;226 =6, 8 =8, 3.9 =3.9,5 = 5 ; 10 =10; 0 =0;2 2小结: ( 1)对任一个有理数,绝对值只好为正数或 0,不行能为负数,即a0 .( 2)两个互为相反数的绝对值,绝对值相等的两个数.( 3)绝对值为正数的有理数有类,它们 ;绝对值为 0 的有理数是.答 :(2) 相等 , 相等或互为相反数 .(3) 两,正数与负数; 0;例 3判断以下说法哪些是正确的:( 1)符号相反的数互为相反数;( 2)符号相反且绝对值相等的两个数互为相反数; ( 3)一个数的绝对值越大,表示它的点在数轴上越靠右; ( 4)不相等的两个数,其绝对值也不相等;( 5)绝对值最小的有理数是 0. 答案:( 2)( 5)知识点二:绝对值的求法a,a 0a0, a 0 a,a 0例 4 求以下各数的绝对值:6 1, 1 3 ,3,2.2 2 5答案: 611; 13 3 1 ;3 3; 2 =2;= 6 2 2 25 52例5 填空:( 1)绝对值小于 4 的正整数有 .( 2)绝对值大于 2 而小于 5 的全部整数是( 3)假如一个数的绝对值是13,那么这个数是..( 4)若xx ,则x 为数 .答案:( 1) 3,2, 1;( 2)± 3,± 4;( 3)± 13;( 4)负数与 0; 例 6 计算以下各式:⑴ 52⑵ 0.77 234答:( 1)原式 =5- 2=3;( 2)原式 =0.77 ÷ 2 3=0.28 ;4☆例 8 ⑴若 a b 0 ,则 a,b .⑵若 x 73 y 12 0,则 x, y.答案:( 1) 0,0;( 2) 7,4;【讲堂演练】1.5 1的绝对值是 , 0 的绝对值是,绝对值为 2 的数是.2 1.5 1, 0,± 2;2.2, 10 = ,1.5 =2 =,2.5=., 10, 2,- 2.5;3. ⑴一个数的绝对值和相反数都是它自己,这个数是;⑵绝对值小于 3.2 的整数有;⑶ 21的相反数是,绝对值是;3⑷ 使 x 5 建立的 x 的值是. 3.( 1) 0;( 2) 3, 2, 1, 0,- 1,- 2,- 3;( 3) 4. 在数轴上到数 3 所表示的点距离为 5 的点所表示的数是. 4.8 或- 2;5. 绝对值相等的两个数在数轴上对应的两点之间的距离为 6,则这两个数为.5.3 与- 3;6. 若 m0 ,则 m m = ; 若 m 0 ,则 m m =;若 m0 ,则 m m =.6. 2m , 0, 0;37. ( 2011 北京市, 1, 4 的绝对值是 ( )分)4A .4 B .4C .3 D .333 447.D8.( 2011 浙江丽水, 4,3 分)有四包真空小包装火腿,每包以标准克数(450 克 )为基数,超出的克数记作正数,不足的克数记作负数,以下数据是记录结果,此中表示实质克数 最靠近标准克数的是()A .+ 2B .- 3C .+ 3D .+48.Aa 1 ,则 a ()9. 若aA .是正数或负数;B .是正数;C .是有理数;D .是正整数 .9. B10. 计算以下各题 :⑴21 6;⑵2008 2008 .10.( 1)原式 =21+6=27;( 2)原式 =2008-2008=0;☆11.若x7 3 y 120 ,求x、 y 的值.11.由题意可知, x- 7=0,3y- 12=0,解得: x=7; y=4;12. 某摩托车配件厂生产一批圆形的橡胶垫,从中抽取 6 件进行比较,比标准直径长的毫米记作正数,比标准直径短的毫米记作负数,检查记录以下表:123456+0.4-+0.10--0.20.20.3(1)找出哪个些部件的质量相对好一些,用绝对值的知识加以解说.(2)若规定与标准直径相差不超出0.2mm 为合格品,则 6 件产品中有几件是不合格品?12.( 1)第 4 个;绝对值越小,说明此配件与标准配件越靠近;(2)第 1 个与第 5 个不合格,所以共有 2 件是不合格的产品;1.(2011浙江省舟山,1,3分)-【课后清点】6 的绝对值是()A .- 6B . 6 C.1D.-1 661. B2.一个有理数的相反数与自己的绝对值的和()A .可能是负数;C.必为非负数;B.必是正数;D.必为 0.2. C3.式子 3 等于()A .3B. 3 C.3 D .33. C4. 某运动员在东西走向的公路上练习跑步,跑步状况记录以下:(向东为正,单位:米)1000,- 1200, 1100,- 800, 1400,则该运动员跑步的总行程为()A .1500 米B. 5500 米C . 4500 米D . 3700 米4. B5.绝对值等于自己的数是()A .正数B .负数C .非负数D .非正数5. C6.以下结论中,正确的选项是 ()A . a 必定是正数B .a 和 a 必定不相等 C . a 和 a 互为相反数D .a 和 a 必定相等 6. C7.代数式 x3 3的最小值是()A . 0B . 2C.3D . 57. C8.以下结论中,正确的选项是()A . a 0B .若 ab ,则 a bC. aa D .若 a 、b 互为相反数,则1b8. B9. 若 a a ,则 a 为 数; 若 a a ,则 a 为 数 .9.非负数;非正数;10. 当 a4 时, a4 =.10. 4- a ;11. ( 2011 湖南常德, 1, 3 分) 2 ______. 11. 212. 若 x5 3 ,则 x = ; 若m4 ,则 m =;12. 8 或 2;4 或- 4;13.若 a 1 ,则 a 1 =, 2a 1 = ;若 a1 ,则 a 1 = ,a 1 = .13. a - 1, 2a - 1; 1- a , a - 1; 14. 若 a1b 10 ,则 a b = .14. 0; 15. 计算:⑴2293⑵3 174815.( 1)原式 = 229=24;( 2)原式 =3 17= 2 ;34 8 516. 已知 x 30 , y4 ,求 x 3 y .16. x 3 y =30- 3× 4=18;17. 已知 a2 b3 c4 0 ,求 a2b 3c 的值 .17.由题意可得, a=2, b=3, c=4,则 a 2b 3c =2+2× 3+3× 4=20;18. 正式的足球竞赛, 对所用足球的质量有严格规定,下边是 6 个足球的检测结果 . (用正数 记超出规定质量的克数,用负数记不足规定质量的克数)-25, +10,- 20, +30, +15,- 40请指出哪个足球的质量好一些,并用绝对值的知识说明原由 .18.第二个。
专题05 绝对值及其几何意义(解析版)
![专题05 绝对值及其几何意义(解析版)](https://img.taocdn.com/s3/m/9c2e9d3d76eeaeaad0f330c4.png)
第5讲 绝对值及其几何意义知识点 1(1)非负性:任何一个数 a 的绝对值都是非负数,即:|a|≥0,绝对值的最小值为 0(非负数的性质:几个非负数的和为 0,则这几个非负数均为 0)(2)去绝对值号:|a|= 特别提醒:|a|≠±a,|a|≠a1.如果x ,y 表示有理数,且x ,y 满足条件|x |=5,|y |=2,|x ﹣y |=y ﹣x ,那么x +2y = ﹣1或﹣9 .【解答】解:∵|x |=5,|y |=2,∴x =±5,y =±2.又∵|x ﹣y |=y ﹣x ,∴x ﹣y <0,即 x <y .∴x =﹣5,y =±2.当x =﹣5,y =2时,x +2y =﹣1;当x =﹣5,y =﹣2时,x +2y =﹣9.故答案为:﹣1或﹣9.2.已知|x |=3,|y |=2,且|x ﹣y |=y ﹣x ,则x ﹣y = ﹣1或﹣5 .【解答】解:∵|x |=3,|y |=2,∴x =±3,y =±2,∵|x ﹣y |=y ﹣x ≥0,∴y =2,x =﹣3或y =﹣2,y =﹣3,绝对值的性质∴当x=﹣3,y=2时,x﹣y=﹣3﹣2=﹣5;当x=﹣3,y=﹣2时,x﹣y=﹣3﹣(﹣2)=﹣1,即x﹣y的值为﹣1或﹣5.故答案为﹣1或﹣5.3.已知|x﹣y|=y﹣x,|x|=2,|y|=3,则x+y=5或1.【解答】解:∵|x﹣y|=y﹣x,∴x﹣y≤0.∴x≤y.又∵|x|=2,|y|=3,∴x=±2,y=±3.当x=2,则y=3,此时x+y=5.当x=﹣2,则y=3,此时x+y=1.综上:x+y=5或1.故答案为:5或1.4.已知|n|=6,m=|﹣4|,且|m+n|=m+n,则m﹣n的值是﹣2.【解答】解:∵|n|=6,m=|﹣4|,∴n=±6,m=4,∵|m+n|=m+n,∴m+n≥0,∴n=6,m=4,∴m﹣n=4﹣6=﹣2.故答案为:2.5.如果x、y都是不为0的有理数,则代数式的最小值是﹣3.【解答】解:①当x,y中有二正,﹣+=1﹣1+1=1;②当x,y中有一负一正,﹣+=1+1﹣1=1或﹣+=﹣1﹣1﹣1=﹣3;③当x,y中有二负,﹣+=﹣1+1+1=1.故代数式﹣+的最小值是﹣3.故答案为:﹣3.6.若|5﹣a﹣b|=2a+2b,则3a+3b+1=6.【解答】解:①当5﹣a﹣b>0,则原式可化为:5﹣a﹣b=2a+26,解得3α+36=5,所以3a+3b+1=5+1=6;②当5﹣a﹣b<0,则原式可化为:﹣(5﹣a﹣b)=2a+2b,解得a+b=﹣5,若α+b=﹣5,则5﹣a﹣b=0,与假设不符,所以不存在这种情况;③当5﹣a﹣b=0,则原式可化为:0=2a+2b,解得α+b=0,若a+b=0,则5﹣a﹣b=5,与假设不符,所以不存在这种情况;综上所述,3a+36+1=6故答案为:67.已知有理数a,b满足ab<0,4a+b﹣3=|b﹣a|,则a+b的值为.【解答】解:∵有理数a,b满足ab<0,∴a,b异号当a>0,b<0,∴b﹣a<0,∵4a+b﹣3=|b﹣a|,∴4a+b﹣3=a﹣b,∴3a+2b=3,∴a+b==,当a<0,b>0,b﹣a>0,∵4a+b﹣3=|b﹣a|,∴4a+b﹣3=b﹣a,∴a=>0(这种情况不存在),综上所述,a+b的值为,故答案为:.二.解答题(共10小题)8.已知|a|+a=0,|ab|=ab,|c|﹣c=0,化简|b|﹣|a+b|﹣|c﹣b|+|a﹣c|.【解答】解:∵|a|+a=0,|ab|=ab,|c|﹣c=0,∴a≤0,b≤0,c≥0,∴a+b≤0,c﹣b≥0,a﹣c≤0,∴原式=﹣b+a+b﹣c+b﹣a+c=b.9.有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c<0,b﹣a>0,c﹣a>0.(2)化简:|b﹣c|+|b﹣a|﹣|c﹣a|.【解答】解:(1)观察数轴可知:a<0<b<c,∴b﹣c<0,b﹣a>0,c﹣a>0.故答案为:<;>;>.(2)∵b﹣c<0,b﹣a>0,c﹣a>0,∴|b﹣c|+|b﹣a|﹣|c﹣a|=c﹣b+b﹣a﹣c+a=0.10.a、b、c在数轴上的位置如图,则:(1)用“>、<、=”填空:a<0,b<0,c>0.(2)用“>、<、=”填空:﹣a>0,a﹣b<0,c﹣a>0.(3)化简:|﹣a|﹣|a﹣b|+|c﹣a|.【解答】解:从数轴可知:a<b<0<c,|a|>|c|>|b|,(1)a<0,b<0,c>0,故答案为:<,<,>;(2)﹣a>0,a﹣b<0,c﹣a>0,故答案为:>,<,>;(3)|a|﹣|a﹣b|+|c﹣a|=﹣a+a﹣b+c﹣a=c﹣b﹣a.11.①有理数a、b、c在数轴上的对应点如图,化简代数式:|a﹣b|+|a+b|﹣|c﹣a|+|b﹣c|;②已知|a+1|+(b﹣2)2=0,求(a+b)2016+a2017.【解答】解:①由题意,可得a<b<0<c,∴a﹣b<0,a+b<0,c﹣a>0,b﹣c<0,∴|a﹣b|+|a+b|﹣|c﹣a|+|b﹣c|=﹣(a﹣b)﹣(a+b)﹣(c﹣a)﹣(b﹣c)=﹣a+b﹣a﹣b﹣c+a﹣b+c=﹣a﹣b.②解:∵|a+1|+(b﹣2)2=0,∴a+1=0,b﹣2=0,∴a+1=0,b﹣2=0,∴a=﹣1,b=2,∴(a+b)2016+a2017=(﹣1+2)2016+(﹣1)2017=1﹣1=0.12.已知数a,b,c在数轴上的位置如图所示(1)化简|a+b|﹣|a﹣b|+|a+c|(2)若|b﹣a﹣2|+(a﹣1)2=0.|c+l|=b,求a,b,c的值.【解答】解:(1)观察数轴,可知:c<0<a<b,且|c|>|a|,∴a+b>0,a﹣b<0,a+c<0,∴原式=a+b+(a﹣b)﹣(a+c)=a﹣c.(2)∵|b﹣a﹣2|+(a﹣1)2=0,|c+l|=b,∴,解得:.知识点2几何意义:|a-b|表示数a 数b 在数轴上对应的点之间的距离即:|a+b|=|a-(-b)|13.如图,数轴上A、B两点分别对应有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|,利用数形结合思想回答下列问题:(1)数轴上表示2和10两点之间的距离是8;(2)数轴上一个点到表示2的点的距离为5.2,这个点表示的数为7.2或﹣3.2;(3)若x表示一个数,数轴上表示x和﹣5的两点之间的距离是|x+5|;(用含x的式子表示)(4)若x表示一个数,|x+1|+|x﹣2|的最小值是3,相应的x的取值范围﹣1≤x≤2.【解答】解:(1)数轴上表示2和10两点之间的距离是10﹣2=8,故答案为:8;(2)数轴上一个点到表示2的点的距离为5.2,这个点表示的数为:2+5.2=7.2或2﹣5.2=﹣3.2,故答案为:7.2或﹣3.2;(3)数轴上表示x和﹣5的两点之间的距离是:|x﹣(﹣5)|=|x+5|,故答案为:|x+5|;(4)当x>2时,|x+1|+|x﹣2|=x+1+x﹣2=2x﹣1>3,绝对值的几何意义当﹣1≤x≤2时,|x+1|+|x﹣2|=x+1+2﹣x=3,当x<﹣1时,|x+1|+|x﹣2|=﹣x﹣1+2﹣x=﹣2x+1>3,由上可得,|x+1|+|x﹣2|的最小值是3,故答案为:3,﹣1≤x≤2.14.点A、B在数轴上分别表示有理数a,b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数形结合思想回答下列问题:(1)数轴上表示2和10两点之间的距离是8,数轴上表示2与﹣10的两点之间的距离是12.(2)数轴上表示x和﹣2的两点之间的距离表示为|x+2|.(3)若x表示一个有理数,且|x﹣1|+|x+2|=5,则x=2或﹣3.(4)若x表示一个有理数,求|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|+…+|x﹣2014|+|x﹣2015|的最小值.(只需写当x取何值时,代入求出此代数式的最小值.)【解答】解:(1)∵|10﹣2|=8,|2﹣(﹣10)|=12,故答案为:8,12;(2)数轴上表示x和﹣2的两点之间的距离表示为:|x﹣(﹣2)|=|x+2|,故答案为:|x+2|;(3)当x>1时,|x﹣1|+|x+2|=x﹣1+x+2=5,得x=2,当﹣2≤x≤1时,|x﹣1|+|x+2|=1﹣x+x+2=3≠5,当x<﹣2时,|x﹣1|+|x+2|=1﹣x﹣x﹣2=5,得x=﹣3,故答案为:2或﹣3;(4)当x=1008时,|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|+…+|x﹣2014|+|x﹣2015|取得最小值,∴|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|+…+|x﹣2014|+|x﹣2015|=2×(1007+1006+…+1)+0=2××1007+0=1015056,即|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|+…+|x﹣2014|+|x﹣2015|的最小值是1015056.15.已知数轴上三点A,O,B表示的数分别为﹣3,0,1,点P为数轴上任意一点,其表示的数为x.(1)如果点P到点A,点B的距离相等,那么x=﹣1;(2)当x=﹣4或2时,点P到点A,点B的距离之和是6;(3)若点P到点A,点B的距离之和最小,则x的取值范围是﹣3≤x≤1;(4)在数轴上,点M,N表示的数分别为x1,x2,我们把x1,x2之差的绝对值叫做点M,N之间的距离,即MN=|x1﹣x2|.若点P以每秒3个单位长度的速度从点O沿着数轴的负方向运动时,点E以每秒1个单位长度的速度从点A沿着数轴的负方向运动、点F以每秒4个单位长度的速度从点B沿着数轴的负方向运动,且三个点同时出发,那么运动或2秒时,点P到点E,点F的距离相等.【解答】解:(1)由题意得,|x﹣(﹣3)|=|x﹣1|,解得x=﹣1;(2)∵AB=|1﹣(﹣3)|=4,点P到点A,点B的距离之和是6,∴点P在点A的左边时,﹣3﹣x+1﹣x=6,解得x=﹣4,点P在点B的右边时,x﹣1+x﹣(﹣3)=6,解得x=2,综上所述,x=﹣4或2;(3)由两点之间线段最短可知,点P在AB之间时点P到点A,点B的距离之和最小,所以x的取值范围是﹣3≤x≤1;(4)设运动时间为t,点P表示的数为﹣3t,点E表示的数为﹣3﹣t,点F表示的数为1﹣4t,∵点P到点E,点F的距离相等,∴|﹣3t﹣(﹣3﹣t)|=|﹣3t﹣(1﹣4t)|,∴﹣2t+3=t﹣1或﹣2t+3=1﹣t,解得t=或t=2.故答案为:(1)﹣1;(2)﹣4或2;(3)﹣3≤x≤1;(4)或2.16.已知数轴上三点A,O,B对应的数分别为﹣3,0,1,点P为数轴上任意一点,其表示的数为x.(1)如果点P到点A,点B的距离相等,那么x=﹣1;(2)当x=﹣4或2时,点P到点A、点B的距离之和是6;(3)若点P到点A,点B的距离之和最小,则x的取值范围是﹣3≤x≤1;(4)在数轴上,点M,N表示的数分别为x1,x2,我们把x1,x2之差的绝对值叫做点M,N之间的距离,即MN=|x1﹣x2|.若点P以每秒3个单位长度的速度从点O向左运动时,点E以每秒1个单位长度的速度从点A向左运动、点F以每秒4个单位长度的速度从点B也向左运动,且三个点同时出发,那么运动或2秒时,点P到点E,点F的距离相等.【解答】解:(1)由题意得,|x﹣(﹣3)|=|x﹣1|,解得x=﹣1;(2)∵AB=|1﹣(﹣3)|=4,点P到点A,点B的距离之和是6,∴点P在点A的左边时,﹣3﹣x+1﹣x=6,解得x=﹣4,点P在点B的右边时,x﹣1+x﹣(﹣3)=6,解得x=2,综上所述,x=﹣4或2;(3)由两点之间线段最短可知,点P在AB之间时点P到点A,点B的距离之和最小,所以x的取值范围是﹣3≤x≤1;(4)设运动时间为t,点P表示的数为﹣3t,点E表示的数为﹣3﹣t,点F表示的数为1﹣4t,∵点P到点E,点F的距离相等,∴|﹣3t﹣(﹣3﹣t)|=|﹣3t﹣(1﹣4t)|,∴﹣2t+3=t﹣1或﹣2t+3=1﹣t,解得t=或t=2.故答案为:(1)﹣1;(2)﹣4或2;(3)﹣3≤x≤1;(4)或2.17.(1)阅读下面材料:点A,B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|.当A,B两点中有一点在原点时,不妨设点A在原点,如图(1),|AB|=|OB|=|b|=|a﹣b|;当A,B两点都不在原点时,①如图(2),点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图(3),点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;③如图(4),点A,B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|;综上,数轴上A,B两点之间的距离|AB|=|a﹣b|.(2)回答下列问题:①数轴上表示2和5的两点之间的距离是3,数轴上表示﹣2和﹣5的两点之间的距离是3,数轴上表示1和﹣3的两点之间的距离是4;②数轴上表示x和﹣1的两点A和B之间的距离是|x+1|,如果|AB|=2,那么x为1或﹣3;③当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是﹣1≤x≤2.④当x=3或﹣2时,|x+1|+|x﹣2|=5.【解答】解:①|2﹣5|=3,|﹣2﹣(﹣5)|=3,|1﹣(﹣3)|=4;②|x﹣(﹣1)|=|x+1|,如果AB=2,则x+1=±2,解得x=1或﹣3;③若|x+1|+|x﹣2|取最小值,那么表示x的点在﹣1和2之间的线段上,所以﹣1≤x≤2.④若x+1>0,x﹣2>0,则(x+1)+(x﹣2)=5,解得x=3,若x+1<0,x﹣2<0,则﹣(x+1)﹣(x﹣2)=5,解得x=﹣2,若x+1和x﹣2异号,则等式不成立,所以当x=3或﹣2时,|x+1|+|x﹣2|=5.故答案为:3,3,4;|x+1|,1或﹣3;﹣1≤x≤2;3或﹣2.。
绝对值的几何意义
![绝对值的几何意义](https://img.taocdn.com/s3/m/b172233bcd7931b765ce0508763231126edb7764.png)
绝对值的几何意义绝对值是指一个数在数轴上所对应点到原点的距离叫做这个数的绝对值,绝对值用“ | |”来表示。
|b-a|或|a-b|表示数轴上表示a的点和表示b的点的距离。
下面是店铺给大家整理的绝对值的几何意义,希望对大家有所帮助!绝对值的几何意义绝对值的几何意义是表示数轴上一点到另外一点的距离,|x|表示的才是数轴上x到原点的距离.比如|a+b|就是a、b之和的绝对值.也就是a+b的结果,如果是负数的话,就不要绝对值后到原点的距离.而|a|+|b|就是他们的绝对值相加,他们的值一定会大于等于0的.例:|X+3|=5,那在数轴上就是到-3的距离为5,那就是2或-8。
绝对值的应用举例正数的绝对值是它本身。
负数的'绝对值是它的相反数。
0的绝对值还是0。
特殊的零的绝对值既是他的本身又是他的相反数,写作|0|=0。
任何有理数的绝对值都是非负数,也就是说任何有理数的绝对值都≥0。
任何纯虚数的绝对值是就是虚部的绝对值(如:|2i|=2;|-ei|=e)。
0的绝对值还是0。
|3|=3 =|-3|当a≥0时,|a|=a当a<0时,|a|=-a这是|a|=a吧存在|a-b|=|b-a|两个负数比较大小,绝对值大的反而小比如:若 |2(x—1)—3|+|2(y—4)|=0,则x=___,y=____。
(| | 是绝对值)。
答案:2(X-1)-3=0 ,且2Y-8=0解得X=5/2 ,且Y=4 。
一对相反数的绝对值相等:例+2的绝对值等于-2的绝对值(因为在数轴上他们离原点的单位长度相等)绝对值的有关性质无论是绝对值的代数意义还是几何意义,都揭示了绝对值的以下有关性质:(1)任何有理数的绝对值都是大于或等于0的数,这是绝对值的非负性。
(2)绝对值等于0的数只有一个,就是0。
(3)绝对值等于同一个正数的数有两种,这两个数互为相反数或相等。
(4)互为相反数的两个数的绝对值相等。
(5)正数的绝对值是它本身。
(6)负数的绝对值是它的相反数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝对值及其几何意义
绝对值是初中代数乃至高中代数的重要内容,它伴随着我们学习代数知识的全过程。
我们知道:一个正数的绝对值是它本身,零的绝对值是零,负数的绝对值是它的相反数。
这是绝对值的代数意义。
绝对值的几何意义可以借助数轴来加以认识,一个数的绝对值就是数轴上表示这个数的点到原点的距离,如|a|表示数轴上表示数a的点到原点的距离,推而广之:∣x-a∣的几何意义是数轴上表示数x的点到表示数a的点之间的距离,∣x-a∣+∣x-b∣的几何意义是数轴上表示数x的点到表示数a、b 两点的距离之和。
对于一些比较复杂的绝对值问题,如果用常规的方法做会比较繁琐,而运用绝对值的几何意义解题,往往能取得事半功倍的效果。
下面通过几个例题谈谈绝对值的几何意义的妙用。
例1:已知,∣x-4∣=3,求x的值。
解:由绝对值的几何意义可知,∣x-4∣=3表示x到4的距离为3,结合数轴不难发现到4这个点的距离为3的点共有二个,分别是1和7,故x=1或7.
例2:求∣x-1∣+∣x+2∣的最小值。
分析:本题若采用“零点分段法”讨论亦能解决,但若运用绝对值的几何意义解题,会显得更加简洁。
解:根据绝对值的几何意义可知,∣x-1∣表示数轴上点x到1的距离,
∣x+2∣=∣x-(-2)∣表示数轴上点x到-2的距离。
实际上此题是要在数轴上找一点x,使该点到两点的距离之和最短,由数轴可知,x应在数轴上1到-2(含-2及1)当中的任一点,且最短距离为3,即∣x-1∣+∣x+2∣的最小值为3。
此题实际上也说明了这么一个结论:∣x-a∣+∣x-b∣的最小值为∣a-b∣。
通过分析我们亦不难理解,∣∣x-a∣-∣x-b∣∣的几何意义是数轴上一点x到a、b两点之间距离之差的绝对值,它有一个最大值∣a-b∣,即-3≤∣x-a∣-∣x-b∣≤3。
我们再看下面的一个问题:
例3:对于任意实数,若不等式∣∣x+1∣-∣x-2∣∣<k恒成立,则实数k的取值范围是什么?
解:由∣∣x+1∣-∣x-2∣∣的几何意义可知,它表示数轴上一点x到-1和2两点距离之差的绝对值,它有一个最大值为3即∣∣x+1∣-∣x-2∣∣≤3,而∣∣x+1∣-∣x-2∣∣恒小
于k,所以k<3
例4:如果∣x-3∣+∣x+1∣=4,则x的取值范围是什么?
分析:本题就是在数轴上存在一个点x,它到3和-1的距离之和为4,由数轴可知符合条件的x应在3和-1(包括3和-1)之间,此时该点到3和-1的距离之和为4,即∣x-3∣+∣x+1∣=4,所以,-1≤x≤3。
此题若采用“零点分段法”将会有较长的计算过程,比较繁琐。
绝对值的几何意义的运用是一个高超的技巧,这种简捷、巧妙的方法应引起我们的重视。
绝对值的性质:
(1)绝对值的非负性,可以用下式表示:|a|≥0,这是绝对值非常重要的性质;
(2)|a|={a,a>0 0,a=0
−a,a<0
(代数意义)
(3)若|a|=a,则a≥0;若|a|=-a,则a≤0;
(4)任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即|a|≥a,且|a|≥-a;
(5)若|a|=|b|,则a=b或a=-b;(几何意义)
(6)|a∙b|=|a|∙|b|
(7)|a
b |=|a|
|b|
(b≠0)
(8)|a|2=|a2|=a2
(9)||a|−|b||≤|a+b|≤||a|+|b||
左边的等号当且仅当ab≤0时取到,右边的等号当且仅当ab≥0时取到(10)||a|−|b||≤|a−b|≤||a|+|b||
左边的等号当且仅当ab≥0时取到,右边的等号当且仅当ab≤0时取到。