中考数学复习专题几何探究问题

合集下载

最新九年级数学中考复习:几何探究题--线段问题含答案

最新九年级数学中考复习:几何探究题--线段问题含答案
12.已知△ABC是等腰直角三角形,∠BAC=90,点D是BC的中点,作正方形DEFG使点A、C分别在DG和DE上,连接AE,BG.
(1)猜想线段AE和BG的关系,请直接写出你的结论;
(2)将正方形DEFG绕点D顺时针方向旋转一定角度后(旋转角大于0°,小于或等于360°),如图2,判断(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由.
问题探究:
(1)如图1,若 、 都是直角,把 绕点A逆时针旋转90°至 ,使AB与AD重合,则 ______度,线段BE、DF和EF之间的数量关系为______;
问题再探:
(2)如图2,若 、 都不是直角,但满足 ,线段BE、DF和EF之间的数量关系是否仍然成立,若成立,请写出证明过程;若不成立,请说明理由.
(1)如图1,求∠BDC的度数(用含α的式子表示).
(2)如图2,当α=60°时,过点D作BD的垂线与直线l交于点E,求证:AE=BD;
(3)如图3,当α=90°时,记直线l与CD的交点为F,连接 .将直线l绕点A旋转,当线段BF的长取得最大值时,直接写出tan∠FBC的值..
17.(1)发现问题:如图1,在等腰直角三角形ABC中,∠ACB=90°,点F为BC上一点,以BF为边作正方形BFED,点E在AB上,若AC=BC=2,BF= ,则 =;
②当点D到直线BC的距离等于2时,DG的长为;
③当以点A、C、D、B为顶点的四边形时矩形时,点P在线段DG上,且∠CPG与∠A互余,连接CP,则直线CP与AB所夹锐角的正切值为.
11.有公共顶点A的正方形ABCD与正方形AEGF按如图1所示放置,点E,F分别在边AB和AD上,DE,M是BF的中点
【观察猜想】
(2)如图2,点D在AC左侧且在点A上方,连接BE交CD于点M,F为BE上一点,连接DF,过点F作FG∥AC交BC延长线于点G,连接GM,EG,AD.若∠EDF+∠EBG=∠DEB,GM=BM.求证:AD=EF.

中考数学复习:专题9-8 中考数学基本几何模型探究

中考数学复习:专题9-8 中考数学基本几何模型探究

中考数学基本几何模型探究【专题综述】许多中考试题都是以教材的例题、习题为背景,经过命题专家巧妙构思编拟而成.中考试题的权威性和导向性是由命题专家独具匠心精心打造的,其思路和方法常具有类比迁移和拓广探索性.因此,教师在教学中若能引导学生提炼出基本几何模型,用基本几何模型解决问题,则能提高学习效率,提升创新创造能力.【方法解读】一、中考试题呈现和探源题目 如图1,正方形ABCD 的边长为3cm, ,P Q 分别从,B A 出发沿,BC AD 方向运动,P 点的运动速度是1cm/秒,Q 点的运动速度是2 cm/秒.连结AP 并过点Q 作QE AP ⊥,垂足为E . (1)求证:ABP QEA ;(2)当运动时间t 为何值时,ABP QEA ≅?(3)设QEA 的面积为y ,用运动时间t 表示QEA 的面积y .(不要求考虑t 的取值范围) (提示:解答(2)(3)时可不分先后)此题动静分明,梯度清晰,较好考察了学生全等、相似、函数的有关知识.仔细观察,不难看出此题由课本题变化而来.课本原题为:如图2,四边形ABCD 是正方形,点G 是边BC 的中点,,//DE AG BF DE ⊥交AG 于点F ,求证: AF BF EF -=.(人教版义务教育教科书八年级数学2013年10月第一版P62页第15题) 将此题的条件“//BF DE 交AG 于点F ”去掉,即可变为上述中考题. 二、探寻基本图形和基本模型由课本习题和中考题不难找出它们蕴含的基本图形和几何模型:如图3,在正方形ABCD 中,点,E F 分别在边,BC CD 上,,AE BF 交于点O .性质1 若AE BF ⊥,则AE BF = (或BE CF =). 性质2 若AE BF = (或BE CF =),则AE BF ⊥.性质3 若点O 是中心对称图形的对称中心,且AE BF ⊥,则,AE BF 把该图形的面积四等分. 若将线段,AE BF 分别平移到,GH EF 处(如图4),结论EF GH =仍成立.由于以上主要利用直角和互余的性质,不难猜想到若由正方形变为矩形,会有三角形相似和对应线段成比例.如图5,在矩形ABCD 中,点,E F 分别在,AB AD 上,且DE CF ⊥,则DE ADCF CD=. 若将线段,DE CF 分别平移到,NM HQ 处(如图6),结论MN ADQH CD=仍成立.由以上图形可提炼出如下模型:模型1 正方形+线段垂直(或线段相等)=线段相等(或线段垂直)模型2 中心对称图形+线段垂直(或面积四等分)=面积四等分(或线段垂直) 模型3 矩形+线段垂直(或线段成比例)=线段成比例(或线段垂直) 三、模型解题提升能力 1、用模型1解决问题例1 已知:如图7,在正方形ABCD 中,点E 在边CD 上,AQ BE ⊥于点,Q DP AQ ⊥于点P . (1)求证: AP BQ =;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ 的长.分析 由模型1易得AQ DP =,得本题证明思路是证全等形,进而得AP BQ =,由全等形可得AQ BQ PQ -=或PD AP PQ -=.例2 如图8,正方形ABCD 的面积为3cm 2, E 为BC 边上一点,30BAE ∠=︒,F 为AE 的中点,过点F 作直线分别与,AB DC 相交于点,M N ,若MN AE =,则AM 的长等于 cm.分析 由模型2可得MN AE ⊥,用勾股定理和30BAE ∠=︒,求得AE =2,则AF =1,所以3AM =2、用模型2解决问题 例3 问题探究(在图9中作出两条直线,使它们将圆的面积四等分.(2)如图10, M 是正方形ABCD 内一定点,在图9中作出两条直线(要求其中一条直线必须过点M ),使正方形ABCD 的面积四等分,并说明理由.问题解决(3)如图11,在四边形ABCD 中,//,AB CD AB CD BC +=,点P 是AD 的中点.如果,AB a CD b ==,且b a >,那么在边BC 上是否存在一点Q ,使PQ 所在的直线将四边形ABCD 的面积分成相等的两部分?若存在,求出PQ 的长;若不存在,说明理由.分析 (1)据模型2,只要作两条过圆心且互相垂直的直线即可,如图9所示.(2)据模型2,过点M 和正方形ABCD 对角线的交点O 作直线OM ,分别交,AD BC 于,P Q 两点,再过点O 作OM 的垂线,交,AB CD 于,E F 两点,则直线,OM EF 将正方形ABCD 的面积四等分,如图10所示.(3)如图11,延长BA 至点E ,使AE b =,延长CD 至F 点,使DF a =,连结EF .由//,BC CF BC BE CF a b ===+,易证四边形BCEF 是菱形,连结BF 交AD 于点M ,则MAB MDF ≅,得AM DM =,所以点M 与P 重合,点P 是菱形对角线的交点.在BC 上截取BQ CD b ==,则CQ AB a ==.设点P 到菱形一边的距离为d ,则1()2ABP QBP S S AB BQ ∆∆+=+1()2CQ CD d =+ CPQ CPD S S ∆∆=+.所以,当BQ b =时,直线PQ 将四边形ABCD 分成面积相等的两部分. 3、用模型3解题 例3 探究证明(1)某班数学课题学习小组对矩形内两条互相垂直的线段与矩形两邻边的数量关系进行探究,提出下列问题,请你给出证明.如图12,矩形ABCD 中,,EF GH EF ⊥分别交,AB CD 于点,,E F GH 分别交,AD BC 于点,G H .求证:EF ADGH AB=.结论应用(2)如图13,在满足(1)的条件下,又AM BN ⊥,点,M N 分别在边,BC CD 上,若1115EF GH =,则BNAM的值为 . 联系拓展(3)如图14,四边形ABCD 中,90,10,5,ABC AB AD BC CD AM DN ∠=︒====⊥,点,M N 分别在边,BC AB 上,求DNAM的值.分析 (1)由模型3,过点A 作//AP EF ,交CD 于P ,过点B 作//BQ GH ,交AD 于Q ,如图15,易证,,AP EF GH BQ PDA QAB ==∆∆,然后运用相似三角形的性质就可解决问题.(2)只需运用(1)中的结论,可得到EF AD BNGH AB AM==,就可解决问题.(3)过点D 作平行于AB 的直线,交过点A 平行于BC 的直线于点R ,交BC 的延长线于点S ,如图16,易证四边形ABSR 是矩形,由模型3可得DN ARAM AB=. 设,SC x DS y ==,则5,10AR BS x RD y ==+=-,在Rt CSD 中,根据勾股定理,可得2225x y+=. ①在Rt ARD中,根据勾股定理,可得22(5)(10)100x y++-=.②解①②就可求出x,即可得到AR,问题得以解决.【强化训练】1. (2017四川省广元市)如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为F,连结DF,下列四个结论:①△AEF∽△CAB;②tan∠CAD=2;③DF=DC;④CF=2AF,正确的是()A.①②③B.②③④C.①③④D.①②④2.(2017四川省泸州市)如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE 的值是()A.24B.14C.13D.233. (2017湖北省十堰市)如图,正方形ABCD中,BE=EF=FC,CG=2GD,BG分别交AE,AF于M,N.下列结论:①AF⊥BG;②BN=43NF;③38BMMG=;④12CGNF ANGDS S=.其中正确的结论的序号是.4. (2017四川省广安市)如图,四边形ABCD是正方形,E、F分别是了AB、AD上的一点,且BF⊥CE,垂足为G,求证:A F=BE.5. (2017浙江省宁波市)如图,四边形ABCD是边长为6的正方形,点E在边AB上,BE=4,过点E作EF∥BC,分别交BD,CD于G,F两点.若M,N分别是DG,CE的中点,则MN的长为()A.3B.23C.13D.46. (2017丽水)如图,在矩形ABCD中,点E是AD上的一个动点,连接BE,作点A关于BE的对称点F,且点F落在矩形ABCD的内部,连接AF,BF,EF,过点F作GF⊥AF交AD于点G,设ADn AE.(1)求证:A E=GE;(2)当点F落在AC上时,用含n的代数式表示ADAB的值;(3)若AD=4AB,且以点F,C,G为顶点的三角形是直角三角形,求n的值.7. (2017江苏省南通市)如图,在矩形ABCD中,E是AD上一点,PQ垂直平分BE,分别交AD、BE、BC于点P、O、Q,连接BP、EQ.(1)求证:四边形BPEQ是菱形;(2)若AB=6,F为AB的中点,OF+OB=9,求PQ的长.8. (2016内蒙古赤峰市)如图,正方形ABCD的面积为3cm2,E为BC边上一点,∠BAE=30°,F为AE 的中点,过点F作直线分别与AB,DC相交于点M,N.若MN=AE,则AM的长等于cm.9. (2016内蒙古包头市)如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=度.10. (2016广西贺州市)如图,AC是矩形ABCD的对角线,过AC的中点O作EF⊥AC,交BC于点E,交AD于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB=3,∠DCF=30°,求四边形AECF的面积.(结果保留根号)。

中考数学“动态几何探究”题型解析

中考数学“动态几何探究”题型解析

中考数学“动态几何探究”题型解析以三角形、四边形为背景的动态几何问题均以动态几何的形式来考查三角形、四边形的性质,判定,全等三角形、相似三角形的性质及判定,本节将对此类问题归类如下:一、在平面直角坐标系中探究【例题1】已知直线l 经过A(6,0)和B(0,12)两点,且与直线y = x 交于点C. (1)求直线l 的表达式;(2)若点P(x,0)在线段OA 上运动,过点P 作l 的平行线交直线y = x 于点D,①求△PCD 的面积S 与x 的函数关系式;②S 有最大值吗?若有,求出当S 最大时x 的值 .【解析】(1)设直线l 的表达式为y = kx + b , 用待定系数法求出k , b 的值即可;(2)①点C 是直线l 与y = x 的交点,从而可求得点C 的坐标 .根据三角形的面积公式及结合平行的性质,可求得S 与x 的函数关系式;②根据二次函数的性质,即可得到S 的最大值 .解:(1)设直线l 的表达式为y = kx + b ,由A(6,0)和B(0,12),得∴直线l 的表达式为y = -2x + 12 .(2)①∴点C 的坐标为(4,4),∴S△COP = 1/2 x ▪4 = 2x .∵PD∥直线l ,∴CD/OC = AP/OA .∵CD/OC = ( 1/2 h ×CD ) / ( 1/2 h ×OC ) = S / S△COP,∴S / S△COP = AP / OA , 即S / 2x = (6 - x)/ 6 ,∴△PCD 的面积S 与x 的函数关系式为S = -1/3 x^2 + 2x .②∵S = -1/3 (x - 3)^2 + 3 ,∴当S 最大时,x = 3 .【例题2】如图,在直角坐标系中,矩形OABC 的顶点A , C 均在坐标轴上,且OA = 4 ,OC = 3 , 动点M 从点A 出发,以每秒1 个单位长度的速度,沿AO 向终点O 移动;动点N 从点C 出发沿CB 向终点B 以同样的速度移动,当两个动点运动了x 秒(0 < x < 4)时,过点N 作NP⊥BC 交OB 于点P,连接MP .(1)直接写出点B 的坐标,并求出点P 的坐标(用含x 的式子表示);(2)当x 为何值时,△OMP 的面积最大?并求出最大值 .解:(1)在矩形OABC 中,OA = 4 , OC = 3 ,∴B 点的坐标为(4,3).如图,延长NP 交OA 于点G,则PG∥AB,OG = CN = x . ∵PG∥AB,∴△OPG∽△OBA .∴PG / BA = OG / OA , 即PG / 3 = x / 4 ,解得PG = 3/4 x .∴点P 的坐标为(x , 3/4 x).(2)设△OMP 的面积为S .在△OMP 中,OM = 4 - x , OM 边上的高为3/4 x,∴S 与x 之间的函数表达式为配方,得∴当x = 2 时,S 有最大值,最大值为3/2 .二、在几何图形中探究【例题3】如图,在矩形ABCD 中,AB = 3 米,BC = 4 米,动点P 以2 米/秒的速度从点A 出发,沿AC 向点C 移动,同时动点Q 以1 米/秒的速度从点C 出发,沿CB 向点B 移动,设P , Q 两点同时移动的时间为t 秒(0 < t < 2.5).(1)当t 为何值时,PQ∥AB;(2)设四边形ABQP 的面积为y , 当t 为何值时,y 的值最小?并求出这个最小值 .【解析】(1)首先由勾股定理求得AC = 5 米,然后根据AB∥PQ 可得到PC / AC = QC / BC , 从而得到关于t 的方程,从而可解得t 的值;(2)过点P 作PE⊥BC,由PE∥AB 可得到PC / AC = PE / AB ,从而可求得PE = 3 - 6/5 t , 然后根据y = S△ABC - S△PQC 列出t 与y 的函数关系式,最后利用配方法求得最小值即可 .解:(1)在Rt△ABC 中,由题意,得PC = AC - AP = 5 - 2t , QC = t .如图①,∵AB∥PQ , ∴△CPQ∽△CAB .∴PC / AC = QC / BC , 即(5 - 2t)/ 5 = t / 4 , 解得t = 20/13 .(2)如图②,过点P 作PE⊥BC 于点E .由(1)知,PC = 5 - 2t , QC = t ,∵PE∥AB,∴△CPE∽△CAB .∴PC / AC = PE / AB , 即(5 - 2t)/ 5 = PE / 3 . ∴PE = 3 - 6/5 t .∴当t = 5/4 时,y 的值最小,最小值为81/16 .【例题4】如图,在△ABC 中,∠C = 60°,BC = 4,AC = 2√3,点P 在BC 边上运动,PD∥AB,交AC 于D . 设BP 的长为x , △APD 的面积为y .(1)求AD 的长(用含x 的代数式表示);(2)求y 与x 之间的函数关系式,并回答当x 取何值时,y 的值最大?最大值是多少?(3)是否存在这样的点P,使得△ADP 的面积是△ABP 面积的2/3 ?若存在,请求出BP 的长;若不存在,请说明理由 .解:(1)∵PD∥AB,∴AD / AC = BP / BC .∵BC = 4 , AC = 2√3 , BP = x ,∴AD / 2√3 = x / 4 ,∴AD = √3/2 x .(2)过点P 作PE⊥AC 于E .∵sin∠ACB = PE / PC , ∠C = 60°,∴PE = PC ×sin60°= √3/2(4 - x ).∴y 与x 之间的函数关系式为∴当x = 2 时,y 的值最大,最大值是3/2 . (3)存在这样的点P .∵△ADP 与△ABP 等高不等底,∴S△ADP / S△ABP = DP / AB .∵△ADP 的面积是△ABP 面积的2/3 , ∴S△ADP / S△ABP = 2/3 ,∴DP / AB = 2/3 .∵PD∥AB,∴△CDP∽△CAB .∴DP / AB = CP / CB ,∴CP / CB = 2/3 .∴(4 - x)/ 4 = 2/3 ,∴x = 4/3 ,∴BP = 4/3 .。

2021年中考数学复习——几何探究型问题(有答案)

2021年中考数学复习——几何探究型问题(有答案)

2021年中考数学复习——几何探究型问题班级姓名1. (2020年湖南长沙中考)如图,点P在以MN为直径的半圆上运动(点P不与M、N重合),PQ⊥MN,NE平分∠MNP,交PM于点E,交PQ于点F。

(1)=+PMPEPQPF(2)若MNPMPN•=2,则=NQMQ2.(2020年湖南岳阳中考)如图,AB为半⊙O的直径,M,C是半圆上的三等分点,8AB=,BD与半⊙O相切于点B,点P为AM上一动点(不与点A,M重合),直线PC交BD于点D,BE OC⊥于点E,延长BE交PC于点F,则下列结论正确的是______________.(写出所有正确结论的序号)①PB PD=;②BC的长为43π;③45DBE∠=︒;④BCF PFB△∽△;⑤CF CP⋅为定值.3.(2020年湖南湘西中考)问题背景:如图1,在四边形ABCD中,90BAD∠=︒,90BCD∠=︒,BA BC=,120ABC∠=︒,60MBN∠=︒,MBN∠绕B点旋转,它的两边分别交AD、DC于E、F.探究图中线段AE,CF,EF之间的数量关系.小李同学探究此问题的方法是:延长FC到G,使CG AE=,连接BG,先证明BCG BAE△≌△,再证明BFC BFE△≌△,可得出结论,他的结论就是_______________;探究延伸1:如图2,在四边形ABCD中,90BAD∠=︒,90BCD∠=︒,BA BC=,2ABC MBN∠=∠,MBN∠绕B点旋转,它的两边分别交AD、DC于E、F.上述结论是否仍然成立?请直接写出结论(直接写出“成立”或者“不成立”),不要说明理由.探究延伸2:如图3,在四边形ABCD中,BA BC=,180BAD BCD∠+∠=︒,2ABC MBN∠=∠,MBN∠绕B点旋转,它的两边分别交AD、DC于E、F.上述结论是否仍然成立?并说明理由.实际应用:如图4,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30的A处舰艇乙在指挥中心南偏东70︒的B处,并且两舰艇到指挥中心的距离相等接到行动指令后,舰艇甲向正东方向以75海里/小时的速度前进,同时舰艇乙沿北偏东50︒的方向以100海里/小时的速度前进,1.2小时后,指挥中心观测到甲、乙两舰艇分别到达E、F处,且指挥中心观测两舰艇视线之间的夹角为70 ,试求此时两舰艇之间的距离.4.(2020年湖南常德中考)已知D是Rt△ABC斜边AB的中点,∠ACB=90°,∠ABC=30°,过点D作Rt△DEF使∠DEF=90°,∠DFE=30°,连接CE并延长CE到P,使EP=CE,连接BE,FP,BP,设BC与DE 交于M,PB与EF交于N.(1)如图1,当D,B,F共线时,求证:①EB=EP;②∠EFP=30°;(2)如图2,当D,B,F不共线时,连接BF,求证:∠BFD+∠EFP=30°.5.(2020年湖南湘潭中考)算筹是在珠算发明以前我国独创并且有效的计算工具,为我国古代数学的发展做出了很大的贡献.在算筹计数法中,以“纵式”和“横式”两种方式来表示数字如图:表示多位数时,个位用纵式,十位用横式,百位用纵式,千位用横式,以此类推,遇零则置空.示例如下:67286708,则表示的数是________.6. 2020年湖南怀化中考)定义:对角线互相垂直且相等的四边形叫做垂等四边形. (1)下面四边形是垂等四边形的是____________(填序号) ①平行四边形;②矩形;③菱形;④正方形(2)图形判定:如图1,在四边形ABCD 中,AD ∥BC ,AC BD ⊥,过点D 作BD 垂线交BC 的延长线于点E ,且45DBC ∠=︒,证明:四边形ABCD 是垂等四边形.(3)由菱形面积公式易知性质:垂等四边形的面积等于两条对角线乘积的一半.应用:在图2中,面积为24的垂等四边形ABCD 内接于⊙O 中,60BCD ∠=︒.求⊙O 的半径.7. (2020年湖南省衡阳市中考)如图1,平面直角坐标系xOy 中,等腰ABC ∆的底边BC 在x 轴上,8BC =,顶点A 在y 的正半轴上,2OA =,一动点E 从(3,0)出发,以每秒1个单位的速度沿CB 向左运动,到达OB 的中点停止.另一动点F 从点C 出发,以相同的速度沿CB 向左运动,到达点O 停止.已知点E 、F 同时出发,以EF 为边作正方形EFGH ,使正方形EFGH 和ABC ∆在BC 的同侧.设运动的时间为t 秒(0t ≥).(1)当点H 落在AC 边上时,求t 的值;(2)设正方形EFGH 与ABC ∆重叠面积为S ,请问是存在t 值,使得9136S =?若存在,求出t 值;若不存在,请说明理由;(3)如图2,取AC 的中点D ,连结OD ,当点E 、F 开始运动时,点M 从点O 出发,以每秒位的速度沿OD DC CD DO ---运动,到达点O 停止运动.请问在点E 的整个运动过程中,点M 可能在正方形EFGH 内(含边界)吗?如果可能,求出点M 在正方形EFGH 内(含边界)的时长;若不可能,请说明理由.8. (2020年湖南岳阳中考)如图1,在矩形ABCD 中,6,8AB BC ==,动点P ,Q 分别从C 点,A 点同时以每秒1个单位长度的速度出发,且分别在边,CA AB 上沿C A →,A B →的方向运动,当点Q 运动到点B 时,,P Q 两点同时停止运动,设点P 运动的时间为()t s ,连接PQ ,过点P 作PE PQ ⊥,PE 与边BC 相交于点E ,连接QE .(1)如图2,当5t s =时,延长EP 交边AD 于点F .求证:AF CE =;(2)在(1)的条件下,试探究线段,,AQ QE CE 三者之间的等量关系,并加以证明; (3)如图3,当94t s >时,延长EP 交边AD 于点F ,连接FQ ,若FQ 平分AFP ∠,求AF CE的值.9. (2020年湖南株洲中考)如图所示,BEF 的顶点E 在正方形ABCD 对角线AC 的延长线上,AE 与BF 交于点G ,连接AF 、CF ,满足ABF CBE △≌△.(1)求证:90EBF ∠=︒.(2)若正方形ABCD 的边长为1,2CE =,求tan AFC ∠的值.教师用:2021年中考数学——几何探究型问题1. (2020年湖南长沙中考)如图,点P 在以MN 为直径的半圆上运动(点P 不与M 、N 重合),PQ ⊥MN ,NE 平分∠MNP ,交PM 于点E ,交PQ 于点F 。

中考数学几何专题复习

中考数学几何专题复习

专题 几何专题题型一考察概念基础知识点型例1如图1,等腰△ABC 的周长为21,底边BC = 5,AB 的垂直平分线是DE ,则△BEC 的周长为 ; 例2 如图2,菱形ABCD 中,60A ∠=°,E 、F 是AB 、AD 的中点,若2EF=,菱形边长是______.图1 图2 图3 例3 已知AB 是⊙O 的直径,PB 是⊙O 的切线,AB =3cm,PB =4cm,则BC = . 题型二折叠题型:折叠题要从中找到对就相等的关系,然后利用勾股定理即可求解; 沿DE 折叠,若48CDE ∠=°,则APD ∠等例4 D E ,分别为AC ,BC 边的中点,于 ;例5如图4.矩形纸片ABCD 的边长AB =4,AD =2.将矩形纸片沿 EF 折叠, 使点A 与点C 重合,折叠后在其一面着色图,则着色部分的面积为A . 8B .112C . 4D .52EDBC A P图4图5 图6题型三涉及计算题型:常见的有应用勾股定理求线段长度,求弧长,扇形面积及圆锥体积,侧面积,三角函数计算等;例6如图3,P 为⊙O 外一点,PA 切⊙O 于A,AB 是⊙O 的直径,PB 交⊙O 于C,PA =2cm,PC =1cm,则图中阴影部分的面积S 是A.2235cm π- B 2435cm π- C 24235cm π- D 2232cm π- 图3 题型四证明题型: 第二轮复习之几何一——三角形全等判定方法1:SAS例1如图,AC 是菱形ABCD 的对角线,点E 、F 分别在边AB 、AD 上,且 AE=AF; 求证:△ACE ≌△ACF例2 在正方形ABCD 中,AC 为对角线,E 为AC 上一点,连接EB 、ED . 1求证:△BEC ≌△DEC ;2延长BE 交AD 于F ,当∠BED =120°时,求∠EFD 的度数.BD GFF ADFEBCDCBA EFG判定方法2:AASASA例3 如图,ABCD 是正方形,点G 是BC 上的任意一点,DE AG ⊥于 E ,BF DE ∥,交 AG 于F ,求证:AFBF EF =+.例4如图,在□ABCD 中,分别延长BA,DC 到点E,使得AE=AB, CH=CD 连接EH,分别交AD,BC 于点F,G;求证:△AEF ≌△CHG.判定方法3:HL 专用于直角三角形例5在△ABC 中,AB=CB,∠ABC=90o,F 为AB 延长线上一点,点E在BC上, 且AE=CF. 1求证:Rt △AB E ≌Rt △CBF; 2若∠CAE=30o,求∠ACF 度数.对应练习1.如图,在平行四边形ABCD 中,E 为BC 中点,AE 的延长线与DC 的延长线相交于点F.1证明:∠DFA = ∠FAB; 2证明: △ABE≌△FCE.2.如图,点E 是正方形ABCD 内一点,CDE ∆是等边三角形,连接EB 、EA ,延长BE 交边AD 于点F . 1求证:BCE ADE ∆≅∆;5分2求AFB ∠的度数.5分3.如图,已知∠ACB =90°,AC =BC ,BE ⊥CE 于E ,AD ⊥CE 于D ,CE 与AB 相交于F .1求证:△CEB ≌△ADC ;2若AD =9cm,DE =6cm,求BE 及EF 的长.第二轮复习之几何二——三角形相似Ⅰ.三角形相似的判定例1如图,在平行四边形ABCD 中,过点A 作AE ⊥BC,垂足为E,连接DE,F 为线段DE 上一点,且∠AFE =∠B. 1求证:△ADF ∽△DEC2若AB =4,AD =33,AE =3,求AF 的长. 例2如图9,点P 是正方形ABCD 边AB 上一点不与点A .B重合,连接PD 并将线段PD 绕点P 顺时针方向旋转90°得到线段PE, PE 交边BC 于点F .连接BE 、DF;E B D A CF AF DEB CABCEFABCDF EF ED CBA 1求证:∠ADP=∠EPB ; 2求∠CBE 的度数; 3当APAB的值等于多少时.△PFD ∽△BFP 并说明理由.2.相似与圆结合,注意求证线段乘积,一般是转化证它所在的三角形相似;将乘积式转化为比例式→比例式边长定位到哪个三角形→找条件证明所在的三角形相似 例3 如图,在△ABC 中,AB=AC,以AB 为直径的⊙O 交AC 与E,交BC 与D .求证:1D 是BC 的中点;2△BEC∽△ADC; 3BC 2=2AB CE .3.相似与三角函数结合,①若题目给出三角函数值一般会将给出的三角函数值用等角进行转化,然后求线段的长度②求某个角的三角函数值,一般会先将这个角用等角转化,间接求三角函数值例4如图,点E 是矩形ABCD 中CD 边上一点,⊿BCE 沿BE 折叠为⊿BFE,点F 落在AD 上.1求证:⊿ABE∽⊿DFE ;2若sin∠DFE=31,求tan∠EBC 的值. 练习一、选择题1、如图1,将非等腰ABC △的纸片沿DE 折叠后,使点A 落在BC 边上的点F 处.若点D 为AB 边的中点,则下列结论:①BDF △是等腰三角形;②DFE CFE ∠=∠;③DE 是ABC △的中位线,成立的有 A .①②B .①③C .②③D .①②③图1 图22.如图,等边△ABC 中,BD=CE,AD 与BE 相交于点P,则∠APE 的度数是A .45° B.55° C.60° D.75° 3.如图3,在ABC △中,13AB AC ==,10BC =,点D 为BC 的中点,DE DE AB ⊥,垂足为点E ,则DE等于A .1013 B .1513 C .6013 D .7513MEDCBA图3 图4 图5GFE CBADAO BCXY4.如图4,⊿ABC 和⊿CDE 均为等腰直角三角形,点B,C,D 在一条直线上,点M 是AE 的中点,下列结论:①tan∠AEC=CDBC;②S ⊿ABC +S ⊿CDE ≧S ⊿ACE ;③BM⊥DM;④BM=DM.正确结论的个数是 A1个 B2个 C3个 D4个5.如图5,等边三角形ABC 中,D 、E 分别为AB 、BC 边上的两个动点,且总使AD=BE ,AE 与CD 交于点F ,AG ⊥CD 于点G,则FGAF= . 6.如图6,已知点A 、B 、C 、D 均在已知圆上,AD ∥BC ,AC 平分∠BCD ,∠ADC = 120°,四边形ABCD 的周长为10cm .图中阴影部分的面积为 A. 32B.3C. 23D. 43图6 图7对折,使点A 落在点1A 处;已知7.如图7,在直角坐标系中,将矩形OABC 沿OB3=OA ,1=AB ,则点1A 的坐标是 ; A 、23,23 B 、23,3 C 、23,23 D 、21,23 三、解答题1如图,矩形ABCD 中,点E 是BC 上一点,AE =AD,DF⊥AE 于F,连结DE.求证:DF =DC .2.如图,四边形ABCD 是矩形,△PBC 和△QCD 都是等边三角形,且点P 在矩形上方,点Q 在矩形内.求证:1∠PBA =∠PCQ =30°;2PA =PQ .3.如图9,已知点D 为等腰直角△ABC 内一点,∠CAD =∠CBD =15°,E 为AD 延长线上的一点,且CE =CA .1求证:DE 平分∠BDC ;2若点M 在DE 上,且DC=DM ,求证: ME=BD . 4.如图5AB 是⊙O 的直径,AC 是弦,CD 是⊙O 的切线,C 为切点,AD ⊥CD 于点D .求证:1∠AOC =2∠ACD ; 2AC 2=AB ·AD . 、5.把一张矩形ABCD 纸片按如图方式折叠,使点A 与点E 重合,点C 与点F 重合E 、F 两点均在BD 上,折痕分别为BH 、DG;1求证:△BHE ≌△DGF ;2若AB =6cm,BC =8cm,求线段FG 的长;6.如图8,在Rt △ABC 中,∠BAC=90°,AC=2AB,点D 是AC 的中点,将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A 、D 重合, 连结BE 、EC .试猜想线段BE 和EC 的数量及位置关系,并证明你的猜想.ABCDEAC B DPQABCDEF 第二轮复习之几何三——四边形例1 如图,分别以Rt△ABC 的直角边AC 及斜边AB 向外作等边△ACD、等 边△ABE;已知∠BAC=30o,EF⊥AB,垂足为F,连结DF;1试说明AC=EF ;2求证:四边形ADFE 是平行四边形;例2如图,AD ∥FE,点B 、C 在AD 上,∠1=∠2,BF =BC⑴求证:四边形BCEF 是菱形⑵若AB =BC =CD,求证:△ACF ≌△BDE例3如图,四边形ABCD 是边长为2的正方形,点G 是BC 延长线上一 点,连结AG,点E 、F 分别在AG 上,连接BE 、DF,∠1=∠2 ,∠3=∠4.1证明:△ABE≌△DAF; 2若∠AGB=30°,求EF 的长.例4如图,在等腰梯形ABCD 中,已知AD BC ∥,AB DC =,2AD =, 4BC =延长BC 到E ,使CE AD =.1证明:BAD DCE △≌△;2如果AC BD ⊥,求等腰梯形ABCD 的高DF 的值.对应练习1.如图,在菱形ABCD 中,∠A=60°,点P 、Q 分别在边AB 、BC 上,且AP=BQ . 1求证:△BDQ ≌△ADP ;2已知AD=3,AP=2,求cos ∠BPQ 的值结果保留根号.2、如图,E F ,是四边形ABCD 的对角线AC 上两点,AF CE DF BE DFBE ==,,∥. 求证:1AFD CEB △≌△.2四边形ABCD 是平行四边形.3. 如罔7,在一方形ABCD 中.E 为对角线AC 上一点,连接EB 、ED,1求证:△BEC ≌△DEC :2延长BE 交AD 于点F,若∠DEB=140°.求∠AFE 的度数.4.如图,在梯形ABCD 中,AD ∥BC ,延长CB 到点E ,使BE =AD ,连接DE 交AB 于点M .1求证:△AMD ≌△BM E ;2若N 是CD 的中点,且M N=5,BE =2,求BC 的长.第二轮复习之几何四——圆Ⅰ、证线段相等例1:如图,AB 是⊙O 的直径,C 是的中点,CE ⊥AB 于 E ,BD 交CE 于点F .1求证:CF=BF ;2若CD =6, AC =8,则⊙O 的半径为 ___ ,CE 的长是 ___ .ABDEFCDAB EC F ACBDEFO2、证角度相等例2如图,AB 是⊙O 的直径,C 为圆周上一点,30ABC ∠=︒,过点B 的切线与CO 的延长线交于点D .:求证:1CAB BOD ∠=∠;2ABC ∆≌ODB ∆. 3、证切线点拨:证明切线的方法——连半径,证垂直;根据:过半径的外端且垂直于半径的直线是圆的切线例3如图,四边形ABCD 内接于⊙O,BD 是⊙O 的直径, AE⊥CD 于点E,DA 平分∠BDE;1求证:AE 是⊙O 的切线;2若∠DBC=30°,DE=1cm,求BD 的长;例4如图,点A 、B 、C 、D 都在⊙O 上,OC⊥AB,∠ADC=30°. 1求∠BOC 的度数;2求证:四边形AOBC 是菱形. 对应练习1.如图,已知⊙O 的直径AB 与弦CD 互相垂直,垂足为点E . ⊙O 的切线BF 与弦AD的延长线相交于点F ,且AD =3,cos ∠BCD= . 1求证:CD ∥BF ; 2求⊙O 的半径; 3求弦CD 的长.2.如图,点D 是⊙O 的直径CA 延长线上一点,点B 在⊙O 上,且AB =AD =AO .1求证:BD 是⊙O 的切线.2若点E 是劣弧BC 上一点,AE 与BC 相交于点F,且△BEF 的面积为8,cos∠BFA=32,求△ACF 的面积.1.一副三角板,如图所示叠放在一起,则图中∠α的度数是A .75B .60C .65D .55图1 图22.如图2,在边长为4的等边三角形ABC 中,AD 是BC 边上的高,点E 、F 是AD 上的两点,则图中阴影部分的面积是A .43B .33C .23D .33.如图3,△ABC 中,∠C =90°,AC =3,∠B =30°,点P 是BC 边上的动点,则AP 长不可能是DCBOADOBCA E 例7图43DOEC O图 8OFE BCADCB A O P D图3 图4 A B C D74. 如图4,直角三角形纸片的两直角边长分别为6,8,现将ABC △如图那样折叠,使点A 与点B 重合,折痕为DE ,则tan CBE ∠的值是 A .247B .73C .724D .135.如图5,ABC △是等腰直角三角形,BC 是斜边,将ABP △绕点A 逆时针旋转后,能与ACP '△重合,如果3AP =,那么PP '的长等于 A .32B .23C .42 D .336. 图6,已知等边△ABC 中,点D,E 分别在边AB,BC 上,把△BDE 沿直线DE 翻折,使点B 落在点B ˊ处,DB ˊ,EB ˊ分别交边AC 于点F,G,若∠ADF=80o ,则∠EGC 的度数为 图5 图67.如图,已知:在平行四边形ABCD 中,AB=4cm,AD=7cm,∠ABC 的平分线交AD•于点E,交CD 的延长线于点F,则DF=______cm .8.如图,矩形ABCD 中,AB =2,BC =3,对角线AC 的垂直平分线分别交AD,BC 于点E 、F,连接CE,则CE 的长________.9.如图,BD 是⊙O 的直径,OA ⊥OB,M 是劣弧错误!上一点,过点M 作⊙O 的切线MP 交OA 的延长线于P 点,MD 与OA 交于点N; 1求证:PM=PN ; 2若BD=4,PA=32AO,过B 点作BC ∥MP 交⊙O 于C 点,求BC 的长. 10.如图,在△ABC 中,以AB 为直径的⊙O 交BC 于点P,PD ⊥AC 于点D,且PD 与⊙O 相切.1求证:AB =AC ;2若BC =6,AB =4,求CD 的值.11.一副直角三角板如图放置,点C 在FD 的延长线上,AB ∥CF,∠F=∠ACB=90°, ∠ E=45°,∠A=60°,AC=10,试求CD 的长.12.如图,四边形ABCD 是边长为a 的正方形,点G ,E 分别是边AB ,BC 的中点,∠AEF =90o,且EF 交正方形外角的平分线CF 于点F . 1证明:∠BAE =∠FEC ; 2证明:△AGE ≌△ECF ; 3求△AEF 的面积.13.如图,矩形ABCD 中,53AB AD ==,.点E 是CD 上的动点,以AE 为直径的O ⊙与AB 交于点F ,过点F 作FG BE ⊥于点G .1当E 是CD 的中点时:①tan EAB ∠的值为______________; ② 证明:FG 是O ⊙的68CEABD切线;2试探究:BE 能否与O ⊙相切 若能,求出此时DE 的长;若不能,请说明理由.几何之——解直角三角形1在△ABC 中,∠C=90°,sinA=45,则tanB =A .43B .34C .35D .452、在 ABC 中,若|sinA-22 |+23-cosB 2=0, ∠A.∠B 都是锐角,则∠C 的度数是A. 750B. 9003、如下左图,在△ABC 中,∠C=90°,AB=13,BC=5,则sinA 的值是A 、513B 、1213 C 、512D 、1354如上右图,在四边形ABCD 中,E 、F 分别是AB 、AD 的中点,若EF=2, BC=5,CD=3,则tanC 等于A 、34B 、43C 、35D 、455、如,在矩形ABCD 中,DE⊥AC 于E,设∠ADE=α,且53cos =α, AB = 4, 则AD 的长为 . A3 B316 C 320 D 516 6在锐角△ABC 中,∠BAC=60°,BD、CE 为高,F 为BC 的中点,连接DE 、DF 、EF,则结论:①DF=EF;②AD:AB=AE :AC ;③△DEF 是等边三角形;④BE+CD=BC;⑤当∠ABC=45°时,BE=√2DE 中,一定正确的有A 、2个B 、3个C 、4个D 、5个7.084sin 45(3)4-︒+-π+-=为528.某人沿着有一定坡度的坡面前进了10米,此时他与水平地面的垂直距离米,则这 个破面的坡度为 . 9.如图,已知直线1l∥2l ∥3l ∥4l ,相邻两条平行直线间的距离都是1,如果正方形ABCD 的四个顶点分别在四条直线上,则sin α= . 直角三角形常见模型1 张华同学在学校某建筑物的C 点处测得旗杆顶部A 点的仰角为30°,旗杆底部B 点的俯角为45°.若旗杆底部B 点到建筑物的水平距离BE=9米,旗杆台阶高1米,试求旗杆AB 的高度;2.海船以5海里/小时的速度向正东方向行驶,在A 处看见灯塔B 在海船的北偏东DE OCBG FAABC DαAABCDEADBE图6i =1:3C60°方向,2小时后船行驶到C 处,发现此时灯塔B 在海船的北偏西45方向,求此时灯塔B 到C 处的距离; 3某年入夏以来,松花江哈尔滨段水位不断下降,一条船在松花江某段自西向东沿直线航行,在A 处测得航标C 在北偏东60°方向上;前进100m 到达B 处,又测得航标C 在北偏东45°方向上如图,在以航标C 为圆心,120m 为半径的圆形区域内有浅滩,如果这条船继续前进,是否有被浅滩阻碍的危险4如图6,梯形ABCD 是拦水坝的横断面图,图中3:1=i 是指坡面的铅直高度DE 与水平宽度CE 的比,∠B=60°,AB=6,AD=4,求拦水坝的横断面ABCD 的面积.结果保留三位有效数字.参考数据:3≈,2≈3 1.73≈。

2023年九年级数学中考专题:几何探究压轴题

2023年九年级数学中考专题:几何探究压轴题

2023年九年级数学中考专题:几何探究压轴题一、解答题1.如图,在ABC 中,4AC =,3BC =,90ACB ∠=︒,D 是边AC 上一动点(不与点A 、C 重合),CE BD ⊥,垂足为E ,交边AB 于点F .(1)当点D 是边AC 中点时,求DE ,EC 的值;(2)设CD x =,AF y =,求y 关于x 的函数关系式,并写出定义域;(3)当EFD △与EFB △相似时,求线段CD 的长.2.【温故知新】黄金分割是一种最能引起美感的分割比例,具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值.我们知道:如图1,点C 把线段AB 分成两部分,如果BC AC AC AB=,那么称点C 为线段AB 的黄金分割点.(1)【问题发现】如图1,点C 为线段AB 的黄金分割点,且AC BC >,若2AB =,请直接写出CB 的值是__________.(2)【问题探究】如图2,在Rt ABC △中,90C ∠=︒,2AC =,1BC =,在BA 上截取BD BC =,再在AC 上截取AE AD =,则AE AC的值为__________. (3)【问题解决】如图3,用边长为6的正方形纸片进行如下操作:对折正方形ABDE 得折痕MN ,连接EN ,将AE 折叠到EN 上,点A 对应点H ,得折痕CE ,试说明:C 是AB 的黄金分割点.3.定义:若连接三角形一个顶点和对边上一点的线段能把该三角形分成一个等腰三角形和一个直角三角形,我们称这条线段为该三角形的智慧线,这个三角形叫做智慧三角形.(1)如图1,在智慧三角形ABC 中,AD BC ⊥,AD 为该三角形的智慧线,1CD =,则BD 长为_____,B ∠的度数为_____.(2)如图2,ABC 为等腰直角三角形,90BAC ∠︒=,2AB =,F 是斜边BC 延长线上一点,连接AF ,以AF为直角边作等腰直角三角形AFE (点A ,F ,E 按顺时针排列),90EAF ∠=︒, CF =AE 交BC 于点D ,连接EC ,EB .当2BDE BCE ∠=∠时,求线段ED 的长;(3)如图3,ABC 中,5AB AC ==,BC =BCD △是智慧三角形,且AC 为智慧线,求BCD △的面积.4.【问题提出】如图1,在等边三角形ABC 内部有一点P ,3PA=,4PB =,5PC =,求APB ∠的度数.(1)【尝试解决】将APC △绕点A 逆时针旋转60︒,得到AP B '△,连接PP ',则APP '为等边三角形. ∵3P P PA '==,4PB =,5P B PC '==,∴222=P P PB P B ''+∴BPP '为三角形∴APB ∠的度数为.(2)【类比探究】如图2,在等边三角形ABC 外部有一点P ,若∠BP A =30°,求证222PA PB PC +=.(3)【联想拓展】如图3,在ABC 中,90BAC ∠︒=,AB AC =.点P 在直线BC 上方且45APB ∠︒=,PC BC ==求PA 的长.5.已知正方形 ABCD 和正方形 CEFG ,连接 AF 交 BC 于点 O ,点 P 是 AF 的中点,过点 P 作 PH DG ⊥ 于 H ,2CD =,1CG =.(1)如图1,点 D ,C ,G 在同一直线上,点 E 在 BC 边上,求 PH 的长;(2)把正方形 CEFG 绕着点C 逆时针旋转 ()0180αα<<.①如图2,当点E 落在AF 上时,求CO 的长;②如图3,当DG =PH 的长.6.在ABC ∆中,点E 为AC 边上一动点,以CE 为边在CE 上方作等边CEN .(1)如图1,EN 与AB 交于点P ,连接PC ,若tan A =,1AE =,5CN =,求PC 的长: (2)如图2.当N 与B 重合时,在BC 上取一点D ,过点D 作DF AC ∥,连接BF ,EF ,过C 作CH EF ⊥交EF 于点H ,若30FBC DFE ︒∠-∠=,求证:CH BF +=;(3)如图3,若BC AB ⊥,且4AB BC ==,过点B 作BQ AC ∥,I 为射线.BQ 上一动点,取AC 中点M ,连接MI ,过点B 作BK MI ⊥交M 于点K ,连接NK ,直接写出NK 的最小值.7.问题情境:如图1,在Rt △ABC 和Rt △BEF 中,∠ACB =∠EFB =90°,AC =3,BC =4,且M ,N 分别为AE ,CF 的中点.(1)猜想证明:如图2,将Rt △BEF 绕点B 按逆时针方向旋转90°,其他条件不变.试判断54AM CN =是否成立?若成立,请写出证明过程;若不成立,请说明理由.(2)解决问题:如图3,将图2中的Rt △BEF 沿BF 所在直线折叠得到Rt BE F ',连接AE ',CF ,并分别取它们的中点P ,H ,连接CP ,FP ,PH .①试判断CP 与FP 之间的数量关系,并说明理由.②若AB =2BE ',BC =2BF ,请直接写出PH 的长.8.【方法尝试】(1)如图1,矩形ABFC 是矩形ADGE 以点A 为旋转中心,按逆时针方向旋转90︒所得的图形,CB ED 、分别是它们的对角线.则CB 与ED 数量关系________,位置关系________.【类比迁移】(2)如图2,在Rt ABC 和Rt ADE △中,90,9,6,3,2BAC DAE AC AB AE AD ∠=∠=︒====.将DAE 绕点A 在平面内逆时针旋转,设旋转角BAE ∠为()0360αα︒<︒,连接,CE BD .请判断线段CE 和BD 的数量关系和位置关系,并说明理由;【拓展延伸】(3)如图3,在Rt ABC 中,90,6ACB AB ∠=︒=,过点A 作AP BC ∥,在射线AP 上取一点D ,连结CD,使得3tan4ACD∠=,请求写出线段BD的最大值.9.如图①,在正方形ABCD中,点N、M分别在边BC、CD上,连接AM、AN、MN.∠MAN=45°,将△AMD 绕点A顺时针旋转90°,点D与点B重合,得到△ABE.易证:△ANM≌△ANE,从而得DM+BN=MN.【实践探究】(1)在图①条件下,若CN=6,CM=8,则正方形ABCD的边长是______.(2)如图②,点M、N分别在边CD、AB上,且BN=DM.点E、F分别在BM、DN上,∠EAF=45°,连接EF,猜想三条线段EF、BE、DF之间满足的数量关系,并说明理由.(3)【拓展应用】如图③,在矩形ABCD中,AB=6,AD=8,点M、N分别在边DC、BC上,连接AM,AN,已知∠MAN=45°,BN=2,求DM的长.10.小圆同学对图形旋转前后的线段之间、角之间的关系进行了拓展探究.(1)猜测探究:在△ABC中,AB=AC,M是平面内任意一点,将线段AM绕点A按顺时针方向旋转与∠BAC 相等的角度,得到线段AN,连接NB.①如图1,若M是线段BC上的任意一点,请直接写出∠NAB与∠MAC的数量关系是,NB与MC的数量关系是;②如图2,点E是AB延长线上点,若M是∠CBE内部射线BD上任意一点,连接MC,(1)中结论是否仍然成立?若成立,请给予证明,若不成立,请说明理由.(2)拓展应用:如图3,在△A 1B 1C 1中,A 1B 1=8,∠A 1B 1C 1=60°,∠B 1A 1C 1=75°,P 是B 1C 1上的任意点,连接A 1P ,将A 1P 绕点A 1按顺时针方向旋转75°,得到线段A 1Q ,连接B 1Q .求线段B 1Q 长度的最小值. 11.如图,在Rt ABC △中,90BAC ∠=︒,AB AC =,D 为AC 边上一点,连接BD ,作AP BD ⊥于点P ,过点C 作CE AC ⊥交AP 延长线于点E .(1)如图1,求证:AD CE =;(2)如图2,以AD ,BD 为邻边作ADBF ,连接EF 交BC 于点G ,连接AG ,①求证:AG EF ⊥;②若点D 为AC 中点,EF 、AB 交于点H ,求BH AB的值. 12.如图1,在ABC 中,90ACB ∠=︒,D 为AC 边上的一点,过点D 作DE AB ⊥,垂足为E ,连接BD ,P 为BD 中点,连接PC ,PE .(1)求证:PC PE =;(2)将图1中ADE 绕着点A 顺时针旋转如图2的位置,其他条件不变,(1)中的结论是否成立?若成立,请证明:若不成立,请说明理由;(3)若10AB =,6AD =,30BAC DAE ∠=∠=︒,在平面内,将Rt ADE △绕点A 旋转一周,当A ,C ,E 三点共线时,请直接写出PCE 的面积.13.如图1,在直角坐标系中,点()2,0A ,点()0,2C ,点D ,点E 分别为OA ,OC 的中点,ODE 绕原点O 顺时针旋转α角(090α︒<<︒)得11OD E ,射线1CD ,1AE 相交于点F .(1)求证:11OCD OAE △≌△;(2)如图2,在ODE 旋转过程中,当点1D 恰好落在线段CE 上时,求AF 的长;(3)如图3,在旋转α角从090α︒≤≤︒逐渐增大ODE 旋转过程中,求点F 的运动路线长.14.已知ABC 为等边三角形,边长为4,点D 、E 分别是BC 、AC 边上一点,连接AD 、BE .AE CD =.(1)如图1,若2AE =,求BE 的长度;(2)如图2,点F 为AD 延长线上一点,连接BF 、CF ,AD 、BE 相交于点G ,连接CG ,已知60,∠=︒=EBF CE CG ,求证:2+=BF GE CF ;(3)如图3,点P 是ABC 内部一动点,顺次连接PA PB PC 、、++的最小值.15.【问题提出】(1)如图1,在ABC 中,90C ∠=︒,BD 平分ABC ∠交AC 于点D ,设CD 的长为m ,点D 到边AB 的距离为n ,则m _______n ;(填“>”“<”或“=”)【问题探究】(2)如图2,在梯形ABCD 中,90A ∠=︒,AD BC ∥,(201AB =,BD 为对角线,且45BDC ∠=︒,求BCD △面积的最小值;【问题解决】(3)某景点有一个形状为菱形ABCD 的草坪,如图3,AB ==60B ∠︒,现欲将该草坪扩建为BEF △,使得点E 、F 分别在BA 、BC 的延长线上,且边EF 经过点D ,为了节省成本,要求扩建后的草坪面积(BEF △的面积)尽可能小,问BEF △的面积是否存在最小值?若存在,求出其最小值;若不存在,请说明理由.16.综合与实践:数学课外小组研究了两个问题,请你帮助解答.问题一:如图1,在矩形ABCD 中,6AB =,8AD =,E ,F 分别为AB ,AD 边的中点,四边形AEGF 为矩形,连接CG .问题二:数学小组对图形的旋转进行了拓展研究,如图4,在平行四边形ABCD 中,=60B ∠︒,6AB =,8AD =,E ,F 分别为AB ,AD 边的中点,四边形AEGF 为平行四边形,连接CG .数学小组发现DF 与CG 仍然存在着特定的数量关系.(1)请直接写出CG 的长是______.如图2,当矩形AEGF 绕点A 旋转(如顺时针旋转)至点G 落在边AB 上时,DF =______,CG =______,DF 与CG 之间的数量关系是______.(2)当矩形AEGF 绕点A 旋转至如图3的位置时,(1)中DF 与CG 之间的数量关系是否还成立?并说明理由.(3)如图5,当平行四边形ABCD 绕点A 旋转(如顺时针旋转),其它条件不变时,数学小组发现DF 与CG 仍然存在着这一特定的数量关系.请你直接写出这个特定的数量关系是______.17.如图,在四边形ABCD 中,AD ∥BC ,∠ABC =90°,AD =CD ,O 是对角线AC 的中点,连接BO 并延长交边AD 或边CD 于点E .(1)如图1,当点E 在AD 上时,连接CE ,求证:四边形ABCE 是矩形.(2)如图2,当点E 在CD 上时,当AC =4,BC =3时,求DAC S △与OBC S的比值.(3)若DE =2,OE =3,直接写出CD 的长.18.已知在正方形ABCD 中,E 是BC 边上一动点,作点B 关于AE 的对称点F ,BF 交AE 于点G ,连结DF .(1)如图1,求DFB ∠的度数;(2)如图2,过点D 作DM BF ⊥交BF 的延长线于点M ,连结,CM CF .若DF CM =,试探究四边形DFCM 的形状,并说明理由;(3)如图3,连结BD ,在AG 上截取=GT GB ,点P ,Q 分别是,AD BD 上的动点.若正方形ABCD 的面积为32,直接写出PTQ 周长的最小值.。

中考数学二轮复习专题二解答重难点题型突破题型五几何图形探究题试题(含答案)230

中考数学二轮复习专题二解答重难点题型突破题型五几何图形探究题试题(含答案)230

题型五 几何图形探究题类型一 几何图形静态探究1.(2017·成都)问题背景:如图①,等腰△ABC 中,AB =AC ,∠BAC =120°,作AD⊥BC 于点D ,则D 为BC 的中点,∠BAD =12∠BAC =60°,于是BC AB =2BD AB =3; 迁移应用:如图②,△ABC 和△ADE 都是等腰三角形,∠BAC =∠DAE=120°,D ,E ,C 三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD ,BD ,CD 之间的等量关系式;拓展延伸:如图③,在菱形ABCD 中,∠ABC =120°,在∠ABC 内作射线BM ,作点C 关于BM 的对称点E ,连接AE 并延长交BM 于点F ,连接CE ,CF.①证明△CEF 是等边三角形;②若AE =5,CE =2,求BF 的长.2.(2017·许昌模拟)在正方形ABCD 中,对角线AC 、BD 交于点O ,动点P 在线段BC 上(不含点B),∠BPE =12∠ACB,PE 交BO 于点E ,过点B 作BF⊥PE,垂足为F ,交AC 于点G.(1)当点P 与点C 重合时(如图①),求证:△BOG≌△POE;(2)通过观察、测量、猜想:BF PE=__________,并结合图②证明你的猜想;(3)把正方形ABCD 改为菱形,其他条件不变(如图③),若∠ACB=α,求BF PE的值.(用含α的式子表示)3.(2014·河南)(1)问题发现如图①,△ACB 和△DCE 均为等边三角形,点A ,D ,E 在同一直线上,连接BE.填空:①∠AEB 的度数为__________;②线段AD ,BE 之间的数量关系为__________.(2) 拓展探究如图②,△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE=90°,点A ,D ,E 在同一直线上,CM 为△DCE 中DE 边上的高,连接BE ,请判断∠AEB 的度数及线段CM ,AE ,BE 之间的数量关系,并说明理由.(3)解决问题如图③,在正方形ABCD 中,CD =2,若点P 满足PD =1,且∠BPD =90°,请直接写出点A 到BP 的距离.4.(2017·长春改编)【再现】如图①,在△ABC 中,点D ,E 分别是AB ,AC 的中点,可以得到:DE∥BC,且DE =12BC.(不需要证明) 【探究】如图②,在四边形ABCD 中,点E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点,判断四边形EFGH 的形状,并加以证明;【应用】(1)在【探究】的条件下,四边形ABCD 中,满足什么条件时,四边形EFGH 是菱形?你添加的条件是:__________.(只添加一个条件)(2)如图③,在四边形ABCD 中,点E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点,对角线AC ,BD 相交于点O.若AO =OC ,四边形ABCD 面积为5,求阴影部分图形的面积.5.(2016·新乡模拟)问题背景:已知在△ABC 中,AB 边上的动点D 由A 向B 运动(与A ,B 不重合),同时,点E 由点C 沿BC 的延长线方向运动(E 不与C 重合),连接DE 交AC 于点F ,点H 是线段AF 上一点,求AC HF的值. (1)初步尝试如图①,若△ABC 是等边三角形,DH ⊥AC ,且D ,E 的运动速度相等,小王同学发现可以过点D 做DG∥BC,交AC 于点G ,先证GH =AH.再证GF =CF ,从而求得AC HF的值为__________; (2)类比探究如图②,若在△ABC 中,∠ABC =90°,∠ADH =∠BAC=30°,且点D ,E 的运动速度之比是3∶1,求AC HF的值; (3)延伸拓展如图③,若在△ABC 中,AB =AC ,∠ADH =∠BAC=36°,记BC AC=m ,且点D ,E 的运动速度相等,试用含m 的代数式表示AC HF的值(直接写出结果,不必写解答过程) .类型二 几何图形动态探究1.(2015·河南)如图①,在Rt △ABC 中,∠B =90°,BC =2AB =8,点D 、E 分别是边BC 、AC 的中点,连接DE ,将△EDC 绕点C 按顺时针方向旋转,记旋转角为α.(1)问题发现①当α=0°时,AE BD =__________;②当α=180°时,AE BD=__________;(2)拓展探究试判断:当0°≤α<360°时,AE BD的大小有无变化?请仅就图②的情形给出证明.(3)问题解决当△EDC 旋转至A ,D ,E 三点共线时,直接写出线段BD 的长.2.已知,点O 是等边△ABC 内的任一点,连接OA ,OB ,OC.(1)如图①,已知∠AOB=150°,∠BOC =120°,将△BOC 绕点C 按顺时针方向旋转60°得△ADC.①∠DAO 的度数是__________;②用等式表示线段OA ,OB ,OC 之间的数量关系,并证明;(2)设∠AOB=α,∠BOC=β.①当α,β满足什么关系时,OA+OB+OC有最小值?请在图②中画出符合条件的图形,并说明理由;②若等边△ABC的边长为1,直接写出OA+OB+OC的最小值.3.(2013· 河南)如图①,将两个完全相同的三角形纸片和重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现如图②,固定△ABC,使△DCE绕点C旋转.当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是__________;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是__________;(2) 猜想论证当△DEC绕点C旋转到图③所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想;(3) 拓展探究已知∠ABC=60°,点D是其角平分线上一点,BD=CD=4,DE∥AB交BC于点E(如图④),若在射线BA上存在点F,使S△DCF=S△BF的长.BDC,请直接写出相应的4.(2017·郑州模拟)【问题情境】数学课上,李老师提出了如下问题:在△ABC中,∠ABC=∠ACB =α,点D是AB边上任意一点,将射线DC绕点D逆时针旋转α与过点A且平行于BC边的直线交于点E.请判断线段BD与AE之间的数量关系.小颖在小组合作交流中,发表自己的意见:“我们不妨从特殊情况下获得解决问题的思路,然后类比到一般情况.”小颖的想法获得了其他成员一致的赞成.【问题解决】(1)如图①,当α=60°时,判断BD与AE之间的数量关系;解法如下:过D点作AC的平行线交BC于F,构造全等三角形,通过推理使问题得到解决,请你直接写出线段BD与AE之间的数量关系:__________.【类比探究】(2)如图②,当α=45°时,请判断线段BD与AE之间的数量关系,并进行证明;(3)如图③,当α为任意锐角时,请直接写出线段BD与AE之间的数量关系:__________.(用含α的式子表示,其中0°<α<90°)5.(2017·烟台)【操作发现】(1)如图①,△ABC为等边三角形,现将三角板中的60°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于30°),旋转后三角板的一直角边与AB交于点D,在三角板斜边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=30°,连接AF,EF.①求∠EAF的度数;②DE与EF相等吗?请说明理由;【类比探究】(2)如图②,△ABC为等腰直角三角形,∠ACB=90°,先将三角板的90°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于45°),旋转后三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=45°,连接AF,EF,请直接写出探究结果:①求∠EAF的度数;②线段AE,ED,DB之间的数量关系.题型五 第22题几何图形探究题类型一 几何图形静态探究1.迁移应用:①证明:∵∠BAC =∠DAE =120°,∴∠DAB =∠CAE ,在△DAB 和△EAC 中,⎩⎪⎨⎪⎧DA =EA ∠DAB =∠EAC AB =AC,∴△DAB ≌△EAC;,图②)②解:结论:CD =3AD +BD.理由:如解图①,作AH ⊥CD 于H.∵△DAB ≌△EAC ,∴BD =CE , 在Rt △ADH 中,DH =AD·cos 30°=32AD , ∵AD =AE ,AH ⊥DE ,∴DH =HE ,∵CD =DE +EC =2DH +BD =3AD +BD ;拓展延伸:①证明:如解图②,作BH ⊥AE 于H ,连接BE.∵四边形ABCD 是菱形,∠ABC =120°,∴△ABD ,△BDC 是等边三角形,∴BA =BD =BC ,∵E 、C 关于BM 对称,∴BC =BE =BD =BA ,FE =FC ,∴A 、D 、E 、C 四点共圆, ∴∠ADC =∠AEC =120°,∴∠FEC =60°,∴△EFC 是等边三角形,②解:∵AE =5,EC =EF =2,∴AH =HE =2.5,FH =4.5,在Rt △BHF 中,∵∠BFH =30°,∴HF BF =cos 30°,∴BF =4.532=3 3. 2.(1)证明:∵四边形ABCD 是正方形,P 与C 重合,∴OB =OP ,∠BOC =∠BOG =90°,∵PF ⊥BG ,∠PFB =90°,∴∠GBO =90°-∠BGO ,∠EPO =90°-∠BGO ,∴∠GBO =∠EPO ,在△BOG 和△POE 中,⎩⎪⎨⎪⎧∠GBO =∠EPO OB =OP ∠BOG =∠POE,∴△BOG ≌△POE(ASA );(2)解:猜想BF PE =12. 证明:如解图①,过P 作PM ∥AC 交BG 于M ,交BO 于N , ∴∠PNE =∠BOC =90°,∠BPN =∠OCB.∵∠OBC =∠OCB =45°,∴∠NBP =∠NPB ,∴NB =NP.∵∠MBN =90°-∠BMN ,∠NPE =90°-∠BMN ,∴∠MBN =∠NPE ,在△BMN 和△PEN 中,⎩⎪⎨⎪⎧∠MBN =∠NPE NB =NP ∠MNB =∠PNE,∴△BMN ≌△PEN(ASA ),∴BM =PE.∵∠BPE =12∠ACB ,∠BPN =∠ACB ,∴∠BPF =∠MPF. ∵PF ⊥BM ,∴∠BFP =∠MFP =90°.在△BPF 和△MPF 中,⎩⎪⎨⎪⎧∠BPF =∠MPE PF =PF∠PFB =∠PFM,∴△BPF ≌△MPF(ASA ). ∴BF =MF. 即BF =12BM.∴BF =12PE.即BF PE =12;(3)解:如解图②,过P 作PM ∥AC 交BG 于点M ,交BO 于点N , ∴∠BPN =∠ACB =α,∠PNE =∠BOC =90°. 由(2)同理可得BF =12BM ,∠MBN =∠EPN ,∴△BMN ∽△PEN ,∴BM PE =BN PN. 在Rt △BNP 中,tan α=BNPN ,∴BM PE =tan α,即2BF PE =tan α,∴BF PE =tan α2. 3.解:(1)∵△ACB 和△DCE 均为等边三角形,∴CA =CB ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACD =∠BCE. 在△ACD 和△BCE 中, ⎩⎪⎨⎪⎧AC =BC ∠ACD =∠BCE CD =CE, ∴△ACD ≌△BCE(SAS ).∴∠ADC =∠BEC. ∵△DCE 为等边三角形,∴∠CDE =∠CED =60°.∵点A ,D ,E 在同一直线上,∴∠ADC =120°,∴∠BEC =120°,∴∠AEB =∠BEC -∠CED =60°;②∴AD =BE ;(2)∠AEB =90°,AE =BE +2CM.理由:∵△ACB 和△DCE 均为等腰直角三角形,∴CA =CB ,CD =CE ,∠ACB =∠DCE =90°.∴∠ACD =∠BCE. 在△ACD 和△BCE 中, ⎩⎪⎨⎪⎧CA =CB ∠ACD =∠BCE CD =CE, ∴△ACD ≌△BCE(SAS ).∴AD =BE ,∠ADC =∠BEC. ∵△DCE 为等腰直角三角形,∴∠CDE =∠CED =45°. ∵点A ,D ,E 在同一直线上,∴∠ADC =135°,∴∠BEC =135°,∴∠AEB =∠BEC -∠CED =90°.∵CD =CE ,CM ⊥DE ,∴DM =ME. ∵∠DCE =90°,∴DM =ME =CM , ∴AE =AD +DE =BE +2CM ;(3)点A 到BP 的距离为3-12或3+12.理由如下:∵PD =1,∴点P 在以点D 为圆心,1为半径的圆上. ∵∠BPD =90°,∴点P 在以BD 为直径的圆上.∴点P 是这两圆的交点.①当点P 在如解图①所示位置时, 连接PD 、PB 、PA ,作AH ⊥BP ,垂足为H , 过点A 作AE ⊥AP ,交BP 于点E ,∵四边形ABCD 是正方形,∴∠ADB =45°.AB=AD =DC =BC =2,∠BAD =90°.∴BD =2. ∵DP =1,∴BP = 3.∵∠BPD =∠BAD =90°,∴A 、P 、D 、B 在以BD 为直径的圆上, ∴∠APB =∠ADB =45°.∴△PAE 是等腰直角三角形. 又∵△BAD 是等腰直角三角形,点B 、E 、P 共线,AH ⊥BP , ∴由(2)中的结论可得:BP =2AH +PD. ∴3=2AH +1.∴AH =3-12;②当点P 在如解图②所示位置时, 连接PD 、PB 、PA ,作AH ⊥BP ,垂足为H , 过点A 作AE ⊥AP ,交PB 的延长线于点E ,同理可得:BP =2AH -PD.∴3=2AH -1.∴AH =3+12.综上所述:点A 到BP 的距离为3-12或3+12.4.解:【探究】平行四边形. 理由:如解图①,连接AC ,∵E 是AB 的中点,F 是BC 的中点,∴EF ∥AC ,EF =12AC ,同理HG ∥AC ,HG =12AC ,综上可得:EF ∥HG ,EF =HG ,故四边形EFGH 是平行四边形. 【应用】(1)添加AC =BD ,理由:连接AC ,BD ,同(1)知,EF =12AC ,同【探究】的方法得,FG =12BD ,∵AC =BD ,∴EF =FG ,∵四边形EFGH 是平行四边形,∴▱EFGH 是菱形;(2)如解图②,由【探究】得,四边形EFGH 是平行四边形, ∵F ,G 是BC ,CD 的中点,∴FG ∥BD ,FG =12BD ,∴△CFG ∽△CBD ,∴S △CFG S △BCD =14,∴S △BCD =4S△CFG,同理:S △ABD =4S △AEH ,∵四边形ABCD 面积为5,∴S △BCD +S △ABD =5,∴S △CFG +S △AEH =54,同理:S △DHG +S △BEF =54,∴S 四边形EFGH =S 四边形ABCD -(S △CFG +S △AEH +S △DHG +S △BEF )=5-52=52,设AC 与FG ,EH 相交于M ,N ,EF 与BD 相交于P ,∵FG ∥BD ,FG =12BD ,∴CM =OM =12OC ,同理:AN =ON =12OA ,∵OA =OC ,∴OM =ON ,易知,四边形ENOP ,FMOP 是平行四边形,S ▱EPON =S ▱FMOP , ∴S 阴影=12S 四边形EFGH =54.5.解:(1)∵△ABC 是等边三角形,∴△AGD 是等边三角形,∴AD =GD ,由题意知:CE =AD ,∴CE =GD , ∵DG ∥BC ,∴∠GDF =∠CEF ,在△GDF 与△CEF 中,⎩⎪⎨⎪⎧∠GDF =∠CEF ∠GFD =∠EFC ,GD =CE∴△GDF ≌△CEF(AAS ),∴CF =GF , ∵DH ⊥AG ,∴AH =GH ,∴AC =AG +CG =2GH +2GF =2(GH +GF)=2HF , ∴ACHF=2; (2)如解图①,过点D 作DG ∥BC 交AC 于点G , 则∠ADG =∠ABC =90°.∵∠BAC =∠ADH =30°,∴AH =DH ,∠GHD =∠BAC +∠ADH =60°,∠HDG =∠ADG -∠ADH =60°,∴△DGH 为等边三角形. ∴GD =GH =DH =AH ,AD =GD·tan 60°=3GD. 由题意可知,AD =3CE.∴GD =CE. ∵DG ∥BC ,∴∠GDF =∠CEF.在△GDF 与△CEF 中,⎩⎪⎨⎪⎧∠GDF =∠CEF ∠GFD =∠EFC CE =GD ,∴△GDF ≌△CEF(AAS ),∴GF =CF.GH +GF =AH +CF ,即HF =AH +CF ,∴HF =12AC ,即ACHF =2;(3)AC HF =m +1m.理由如下: 如解图②,过点D 作DG ∥BC 交AC 于点G , 易得AD =AG ,AD =EC ,∠AGD =∠ACB. 在△ABC 中,∵∠BAC =∠ADH =36°,AB =AC ,∴AH =DH ,∠ACB =∠B =72°,∠GHD =∠HAD +∠ADH =72°. ∴∠AGD =∠GHD =72°,∵∠GHD =∠B =∠HGD =∠ACB ,∴△ABC ∽△DGH.∴GH DH =BCAC =m ,∴GH =mDH =mAH.由△ADG ∽△ABC 可得DG AD =BC AB =BCAC =m.∵DG ∥BC ,∴FG FC =GDEC=m.∴FG =mFC.∴GH +FG =m(AH +FC)=m(AC -HF),即HF =m(AC -HF).∴ACHF =m +1m.类型二 几何图形动态探究 1.解:(1)①当α=0°时, ∵Rt △ABC 中,∠B =90°,∴AC =AB 2+BC 2=(8÷2)2+82=45,∵点D 、E 分别是边BC 、AC 的中点,∴AE =45÷2=25,BD =8÷2=4,∴AE BD =254=52.②如解图①,当α=180°时,可得AB ∥DE , ∵AC AE =BC BD ,∴AE BD =AC BC =458=52;(2)当0°≤α<360°时,AEBD 的大小没有变化,∵∠ECD =∠ACB ,∴∠ECA =∠DCB , 又∵EC DC =AC BC =52,∴△ECA ∽△DCB ,∴AE BD =EC DC =52;(3)①当D 在AE 上时,如解图②,∵AC =45,CD =4,CD ⊥AD , ∴AD =AC 2-CD 2=(45)2-42=80-16=8, ∵AD =BC ,AB =DC ,∠B =90°, ∴四边形ABCD 是矩形,∴BD =AC =45;②当D 在AE 延长线上时,如解图③,连接BD ,过点D 作AC 的垂线交AC 于点Q ,过点B 作AC 的垂线交AC 于点P ,∵AC =45,CD =4,CD ⊥AD ,∴AD =AC 2-CD 2=(45)2-42=80-16=8,∵原图中点D 、E 分别是边BC 、AC 的中点,∴DE =12AB =12×(8÷2)=12×4=2,∴AE =AD -DE =8-2=6,由(2)可得AE BD =52,∴BD =652=1255.综上所述,BD 的长为45或1255.2.解:(1)①∵∠AOB =150°,∠BOC =120°,∴∠AOC =90°, 由旋转的性质可知,∠OCD =60°,∠ADC =∠BOC =120°, ∴∠DAO =360°-60°-90°-120°=90°; ②线段OA ,OB ,OC 之间的数量关系是OA 2+OB 2=OC 2.如解图①,连接OD.∵△BOC 绕点C 按顺时针方向旋转60°得△ADC ,∴△ADC ≌△BOC ,∠OCD =60°. ∴CD =OC ,∴△OCD 是等边三角形,∴OC =OD =CD ,∠COD =∠CDO =60°,∵∠AOB =150°,∠BOC =120°,∴∠AOC =90°, ∴∠AOD =30°,∠ADO =60°.∴∠DAO =90°. 在Rt △ADO 中,∠DAO =90°,∴OA 2+AD 2=OD 2, ∴OA 2+OB 2=OC 2;(2)①当α=β=120°时,OA +OB +OC 有最小值.作图如解图②,将△AOC 绕点C 按顺时针方向旋转60°得△A′O′C,连接OO′. ∴△A ′O ′C ≌△AOC ,∠OCO ′=∠ACA′=60°.∴O′C=OC ,O ′A ′=OA ,A ′C =AC ,∠A ′O ′C =∠AOC.∴△OCO′是等边三角形.∴OC =O′C=OO′,∠COO ′=∠CO′O=60°. ∵∠AOB =∠BOC =120°,∴∠AOC =∠A′O′C=120°. ∴∠BOO ′=∠OO′A′=180°.∴B ,O ,O ′,A ′四点共线. ∴OA +OB +OC =O′A′+OB +OO′=BA′时值最小;②当等边△ABC 的边长为1时,OA +OB +OC 的最小值为A′B=3.3.解:(1)①∵△DEC 绕点C 旋转使点D 恰好落在AB 边上,∴AC =CD ,∵∠BAC =90°-∠B =90°-30°=60°, ∴△ACD 是等边三角形,∴∠ACD =60°, 又∵∠CDE =∠BAC =60°,∴∠ACD =∠CDE , ∴DE ∥AC ;②∵∠B =30°,∠C =90°,∴CD =AC =12AB ,∴BD =AD =AC ,根据等边三角形的性质,△ACD 的边AC 、AD 上的高相等, ∴△BDC 的面积和△AEC 的面积相等(等底等高的三角形的面积相等),即S 1=S 2;(2)∵△DEC 是由△ABC 绕点C 旋转得到,∴BC =CE ,AC =CD , ∵∠ACN +∠BCN =90°,∠DCM +∠BCN =180°-90°=90°, ∴∠ACN =∠DCM ,∵在△ACN 和△DCM 中,⎩⎪⎨⎪⎧∠ACN =∠DCM ∠CMD =∠N =90°AC =DC ,∴△ACN ≌△DCM(AAS ),∴AN =DM ,∴△BDC 的面积和△AEC 的面积相等(等底等高的三角形的面积相等),即S 1=S 2;(3)如解图,过点D 作DF 1∥BE ,易求四边形BEDF 1是菱形, ∴BE =DF 1,且BE 、DF 1上的高相等,此时S △DCF 1=S △BDE ; 过点D 作DF 2⊥BD ,∵∠ABC =60°,F 1D ∥BE ,∴∠F 2F 1D =∠ABC =60°, ∵BF 1=DF 1,∠F 1BD =12∠ABC =30°,∠F 2DB =90°,∴∠F 1DF 2=∠ABC =60°,∴△DF 1F 2是等边三角形,∴DF 1=DF 2,∵BD =CD ,∠ABC =60°,点D 是角平分线上一点, ∴∠DBC =∠DCB =12×60°=30°,∴∠CDF 1=180°-∠BCD =180°-30°=150°, ∠CDF 2=360°-150°-60°=150°,∴∠CDF 1=∠CDF 2,∵在△CDF 1和△CDF 2中,⎩⎪⎨⎪⎧DF 1=DF 2∠CDF 1=∠CDF 2CD =CD ,∴△CDF 1≌△CDF 2(SAS ),∴点F 2也是所求的点,∵∠ABC =60°,点D 是角平分线上一点,DE ∥AB ,∴∠DBC =∠BDE =∠ABD =12×60°=30°, 又∵BD =4,∴BE =ED =12×4÷cos 30°=2÷32=433, ∴BF 1=433,BF 2=BF 1+F 1F 2=433+433=833, 故BF 的长为433或833. 4.解:(1)当α=60°时,△ABC 、△DCE 是等边三角形, ∴EC =DC ,AC =BC ,∠ACB =∠DCE =60°,∴∠ACB -∠ACD =∠DCE -∠ACD ,即∠BCD =∠ACE ,在△BDC 和△AEC 中,⎩⎪⎨⎪⎧EC =DC ∠BCD =∠ACE AC =BC,∴△BDC ≌△AEC(SAS ),∴BD =AE ;(2)BD =2AE ;理由如下:如解图①,过点D 作DF ∥AC ,交BC 于F. ∵DF ∥AC ,∴∠ACB =∠DFB.∵∠ABC =∠ACB =α,α=45°,∴∠ABC =∠ACB =∠DFB =45°.∴△DFB 是等腰直角三角形∴BD =DF =22BF. ∵AE ∥BC ,∴∠ABC +∠BAE =180°.∵∠DFB +∠DFC =180°,∴∠BAE =∠DFC.∵∠ABC +∠BCD =∠ADC ,∠ABC =∠CDE =α,∴∠ADE =∠BCD.∴△ADE ∽△FCD.∴AE FD =AD FC. ∵DF ∥AC ,∴BD BF =AD CF .∴AE BD =BD BF =22.∴BD =2AE. (3)补全图形如解图②,∵AE ∥BC ,∠EAC =∠ACB =α,∴∠EAC =∠EDC =α,∴A 、D 、C 、E 四点共圆,∴∠ADE =∠ACE ,∵∠ADE +∠EDC =∠ADC =∠ABC +∠BCD ,∠ABC =∠EDC =α, ∴∠ADE =∠BCD ,∴∠ACE =∠BCD ,∵∠ABC =∠EAC =α,∴△BDC ∽△AEC ,∴BD AE =BC AC, 又∵BC AC=2cos α,∴BD =2cosα·AE.5.解:(1)①∵△ABC 是等边三角形,∴AC =BC ,∠BAC =∠B =60°,∵∠DCF =60°,∴∠ACF =∠BCD ,在△ACF 和△BCD 中,⎩⎪⎨⎪⎧AC =BC ∠ACF =∠BCD CF =CD,∴△ACF ≌△BCD(SAS ),∴∠CAF =∠B =60°,∴∠EAF =∠BAC +∠CAF =120°; ②相等;理由如下:∵∠DCF =60°,∠DCE =30°,∴∠FCE =60°-30°=30°,∴∠DCE =∠FCE ,在△DCE 和△FCE 中,⎩⎪⎨⎪⎧CD =CF ∠DCE =∠FCE CE =CE,∴△DCE ≌△FCE(SAS ),∴DE =EF ;(2)①∵△ABC 是等腰直角三角形,∠ACB =90°,∴AC =BC ,∠BAC =∠B =45°,∵∠DCF =90°,∴∠ACF =∠BCD ,在△ACF 和△BCD 中,⎩⎪⎨⎪⎧AC =BC∠ACF =∠BCD CF =CD,∴△ACF ≌△BCD(SAS ),∴∠CAF =∠B =45°,AF =BD , ∴∠EAF =∠BAC +∠CAF =90°;②AE 2+DB 2=DE 2;理由如下:∵∠DCF =90°,∠DCE =45°,∴∠FCE =90°-45°=45°,∴∠DCE =∠FCE ,在△DCE 和△FCE 中,⎩⎪⎨⎪⎧CD =CF∠DCE =∠FCE CE =CE,∴△DCE ≌△FCE(SAS ),∴DE =EF ,在Rt △AEF 中,AE 2+AF 2=EF 2,又∵AF =DB ,∴AE 2+DB 2=DE 2.。

九年级中考数学复习专题十 几何动态探究题

九年级中考数学复习专题十  几何动态探究题

专题十几何动态探究题1. 如图,在菱形ABCD中,∠ABC=120°,点E,F分别是边AB,BC上的动点,在运动过程中,始终保持AE=BF,若AB=2,则EF的取值范围为________.第1题图2.如图,在三角形纸片ABC中,点D是BC边上一点,连接AD,把△ABD沿着AD翻折,得到△AED,DE与AC交于点G,连接BE交AD于点F,若DG=GE,AF=3,BF=2,△ADG的面积为2,则点F到BC的距离为________.第2题图3. 如图,在Rt△ABC中,AB=AC=4 cm,∠BAC=90°,O为边BC上一点,OA=OB=OC,点M、N分别在边AB、AC上运动,且始终保持AN=BM.在运动过程中,四边形AMON的面积为________cm2.第3题图4. 如图,在正方形ABCD中,AB=4,O是BC边的中点,点E是正方形内一动点,OE=2,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AE、CF.则线段OF长的最小值为________.第4题图5. 如图,在△ABC中,AB>AC,∠B=45°,AC=5,BC=42,则AB的长为________;若E是AB边上一点,将△BEC沿EC所在直线翻折得到△DEC,DC交AB于点F,当DE∥AC时,tan∠BCD的值为________.第5题图6.如图,在Rt△ABC中,∠ACB=90°,AC=BC=4 cm,将△ABC绕点A顺时针旋转30°得到△AB′C′,直线BB′、CC′交于点D,则CD的长为________cm.第6题图7. 如图,四边形ABCD是正方形,且AB=2,将正方形ABCD绕点A顺时针旋转后得到正方形AEFG,在旋转过程中,当点A、G、C三点共线时,则点F到BC的距离为________.第7题图8.如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一个动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是________.第8题图9. 如图,在边长为4的正方形ABCD中,将△ABD沿射线BD平移,得到△EGF,连接EC,GC.则EC+GC的最小值为________.第9题图10. 如图,在菱形ABCD 中,tan A =43,M ,N 分别在边AD ,BC 上,将四边形AMNB 沿MN 翻折,使AB 的对应线段EF 经过顶点D ,当EF ⊥AD 时,BN CN的值为________.第10题图11.如图,在△ABC 中,已知AD 是BC 边上的中线,∠ADC =60°,BC =3AD.将△ABD 沿直线AD 翻折,点B 落在平面上的点B ′处,连接AB ′交BC 于点E ,那么CE ∶BE 的值为________.第11题图12.如图,在平行四边形ABCD 中,AB =2,∠ABC =45°,点E 为射线AD 上一动点,连接BE ,将BE 绕点B 逆时针旋转60°得到BF ,连接AF ,则AF 的最小值是________.第12题图13. 如图,在矩形ABCD 中,AB =3,BC =4,点M 为AD 的中点,点N 为AB 上一点,连接MN ,CN ,将△AMN 沿直线MN 折叠后,点A 恰好落在CN 上的点P 处,则CN 的长为________.第13题图14. 如图,在▱ABCD 中,AB =3,BC =5,AC ⊥AB ,△ACD 沿AC 的方向以每秒1个单位的速度平移得到△EFG (点E 在线段AC 上,运动到点C 停止运动,且不与点A 重合),同时,点H 从点C 出发以相同的速度沿CB 方向移动,当△EFG 停止平移时,点H 也停止移动,连接EH ,GH ,当EH ⊥GH 时,AE BH的值为________.第14题图15.如图,在正方形ABCD中,E是线段CD上一点,连接AE,将△ADE沿AE翻折至△AEF,连接BF并延长BF交AE延长线于点P,当PF=22BF时,DECD=________.第15题图16. 如图,在边长为6的菱形ABCD中,AC为其对角线,∠ABC=60°,点M、N分别是边BC、CD上的动点,且MB=NC.连接AM、AN、MN,MN交AC于点P,则点P到直线CD的距离的最大值为________.第16题图17. 如图,在边长为6的等边△ABC中,点D在边AC上,AD=1,线段PQ在边AB上运动,PQ=1,则四边形PCDQ面积的最大值为________;四边形PCDQ周长的最小值为________.第17题图18.如图,在矩形ABCD中,AB=9,BC=12,F是边AD上一点,连接BF,将△ABF沿BF折叠使点A落在G点,连接AG并延长交CD于点E,连接GD.若△DEG是以DG为腰的等腰三角形,则AF的长为________.第18题图19. 如图,Rt△ABC中,∠ACB=90°,AC=BC=8,F为AC中点,D是线段AB上一动点,连接CD,将线段CD绕点C沿逆时针方向旋转90°得到线段CE,连接EF,则点D在运动过程中,EF的最大值为________,最小值为________.第19题图20. 如图①,把一张正方形纸片对折得到长方形ABCD,再沿∠ADC的平分线DE折叠,如图②,点C落在点C′处,最后按图③所示方式折叠,使点A落在DE的中点A′处,折痕是FG.若原正方形....纸片的边长为6 cm,则FG=________ cm.第20题图21. 如图,在△ABC中,AC=BC=4,∠ACB=120°,CD⊥AB,点P是直线CD上一点,连接P A,将线段P A绕点P逆时针旋转120°得到P A′,点M、N分别是线段AC、P A′的中点,连接MN,则线段MN的最小值为________.第21题图22. 如图,在矩形ABCD中,AB=6,BC=8,点E是AB边上一点,且AE=4,点F是BC边上的任意一点,把△BEF沿EF翻折,点B的对应点为点G,连接AG、CG,则四边形AGCD面积的最小值为________,此时BF的长为________.第22题图专题十几何动态探究题1. 3≤EF≤2【解析】如解图,连接BD,过点D作DH⊥AB,垂足为点H,∵四边形ABCD为菱形,∠ABC=120°,∴∠A=∠DBA=∠C=60°,AB=BD=BC,∵AE=BF,∴BE=CF,∴△DBE≌△DCF(SAS).∴DE=DF,∠BDE=∠CDF,∵∠EDF=∠EDB+∠BDF=∠CDF+∠BDF=60°,∴△DEF 是等边三角形,∴EF=DE,当点E与点H重合时,DE的值最小,此时DE=AD·sin A=3,当点E与点A (或点B )重合时,DE 的长最大,此时DE =2,∴EF 的取值范围为3≤EF ≤2. 第1题解图 2. 255 【解析】∵DG =GE ,∴S △ADG =S △AEG =2,∴S △ADE =4,由翻折的性质得△ADB ≌△ADE ,BE ⊥AD ,∴S △ABD =S △ADE =4,∠BFD =90°,∴12(AF +DF )·BF =4,即12(3+DF )×2=4,∴DF =1,∴DB =BF 2+DF 2=22+12=5,设点F 到BD 的距离为h ,则有12BD ·h =12BF ·DF ,即12×5·h =12×2×1,∴h =255.3. 4 【解析】∵AC =AB ,∠BAC =90°,∴∠B =∠C =45°,∵OA =OB =OC ,∴∠BAO =∠CAO =45°,∠AOB =∠AOC =90°,∴∠B =∠BAO =∠CAO ,在△AON 和△BOM 中,⎩⎪⎨⎪⎧OA =OB ∠CAO =∠B AN =BM,∴△AON ≌△BOM (SAS),∴S △AON =S △BOM ,∴S △AON +S △AOM =S △BOM +S △AOM ,即S 四边形AMON =S △AOB ,∴S 四边形AMON =12S △ABC =12×12×4×4=4 cm 2.4. 210-2 【解析】如解图,连接DO ,将线段DO 绕点D 逆时针旋转90°得到DM ,连接FM ,OM ,∵ ∠EDF = ∠ODM =90°,∴ ∠EDO =∠FDM ,在△EDO 与△FDM 中,⎩⎪⎨⎪⎧DE =DF ∠EDO =∠FDM DO =DM,∴ △EDO ≌△FDM (SAS) ,∴ FM =OE =2,∵在正方形ABCD 中,AB =4,O 是BC 边的中点,∴ OC =2,∴OD =42+22=2 5 ,∴OM =2OD =210,∵OF ≥OM -MF ,∴OF ≥210-2 ,∴线段OF 长的最小值为210-2.第4题解图5. 7;34 【解析】如解图,过点A 作AM ⊥BC 于点M .在Rt △ABM 中,∵∠AMB =90°,∠B =45°,∴BM =AM ,AB =2AM ,设AM =BM =x ,在Rt △AMC 中,∵AC 2=AM 2+CM 2,∴52=x 2+(42-x )2,解得x=722或22(舍),∴AB =2x =7.过点F 作FN ⊥BC 于点N .∵DE ∥AC ,∴∠ACF =∠D =∠B ,∵∠CAF =∠CAB ,∴△ACF ∽△ABC ,∴AC AB =AF AC ,∴AC 2=AF ·AB ,∴AF =257,∴BF =AB -AF =7-257=247,∴BN =FN =1227,∴CN =BC -BN =42-1227=1627,∴tan ∠BCD =FN CN =12271627=34.第5题解图6. 2 6 cm 【解析】如解图,过点C 作CE ⊥BD 交DB 的延长线于点E ,由旋转的性质得∠B ′AB =∠C ′AC=30°,AB ′=AB ,AC ′=AC ,∴∠B ′BA =∠C ′CA =12×(180°-30°)=75°,∵∠ACB =90°,AC =BC =4cm ,∴∠ABC =∠BAC =45°,∠DCB =90°-∠C ′CA =15°,∴∠CDE =180°-∠B ′BA -∠ABC -∠DCB =180°-75°-45°-15°=45°,∴∠DCE =∠CDE =45°,DE =CE ,∴∠BCE =∠DCE -∠DCB =45°-15°=30°,在Rt △BCE 中,BC =4 cm ,∠BCE =30°,∴BE =12BC =2 cm ,∴CE =BC 2-BE 2=42-22=2 3 cm ,∴CD =CE cos45°=2322=2 6 cm.第6题解图7. 2-2或2+2 【解析】由旋转的性质可知AG =FG =AB =2,AF =2AG =2.分两种情况讨论:①如解图①,当点G 在线段AC 上时,连接AC ,BF ,可知点B 在线段AF 上,即点F 到BC 的距离为BF 的长,∴BF =AF -AB =2-2;②如解图②,当点G 在CA 的延长线上时,连接AC ,AF ,此时点F 在BA 的延长线上,即点F 到BC 的距离为BF 的长,∴BF =AB +AF =2+ 2.综上所述,点F 到BC 的距离为2-2或2+ 2.图①图②第7题解图8. 7-1 【解析】如解图①,以点M 为圆心,AM 长为半径作圆,过点M 作MH ⊥CD 交CD 的延长线于点H ,连接MC ,∵菱形ABCD 的边长为2,∠DAB =60°,M 是AD 的中点,∴MA =MA ′=MD =12AD =1,∴点A ′在⊙M 上运动,由解图①得,只有当A ′运动到与点M 、C 三点共线时,A ′C 的长度最小,∵CH ∥AB ,∴∠MDH =∠DAB =60°,在Rt △MDH 中,DH =MD ·cos ∠MDH =12,MH =MD ·sin ∠MDH =32,在Rt △MHC 中,HC =DH +DC =12+2=52,由勾股定理得MC =HC 2+MH 2=7,此时A ′C =MC -MA ′=7-1,即A ′C 长度的最小值为7-1.第8题解图①【一题多解】如解图②,连接MC ,过点M 作MH ⊥CD 交CD 的延长线于点H ,由题意可知,MA =MA ′=12AD ,在△ MA ′C 中,由三角形三边关系可知,一定存在MA ′+A ′C ≥MC ,∴当点M 、A ′、C 三点共线时,A ′C 的长度最小,此时A ′C =MC -MA ′,其余解法同上.第8题解图②9. 45 【解析】如解图,连接AE 并延长,作点D 关于AE 的对称点H ,连接EH ,ED ,过点H 作HM ⊥CD ,与CD 的延长线交于点M ,则DE =EH ,∵△ABD 沿射线BD 平移得△EGF ,∴AE ∥BD ,AB =EG ,AB ∥EG ,∵AB ∥CD ,AB =CD =4,∴EG ∥CD ,EG =CD =4,∴四边形CDEG 是平行四边形,∴CG =DE =EH ,∴当点C ,E ,H 三点共线时,EC +GC 取得最小值,最小值为CH 的长.∵AE ∥BD ,AB ∥CD ,∴四边形ABDM 为平行四边形,∴DM =AB =4,∠DAM =45°,∴∠ADH =45°,∴∠MDH =45°,∴DM =HM =4,∴CH =CM 2+HM 2=(4+4)2+42=45,∴EC +GC 的最小值为4 5.第9题解图10. 27 【解析】如解图,延长NF 与DC 交于点H .由折叠的性质得∠E =∠A ,∠EFN =∠B ,EM =AM ,EF =AB .∵EF ⊥AD ,∴∠MDE =90°.在Rt △MDE 中,tan E =DM DE =tan A =43,设DM =4k ,则DE =3k ,EM=5k .∴AM =5k ,AD =9k .∵四边形ABCD 是菱形,∴AB =CD =BC =AD =9k ,∠C =∠A ,AB ∥CD ,AD ∥BC .∴∠A +∠ADC =180°,∠A +∠B =180°.∵∠ADF =90°,∴∠A +∠FDH =90°.∵∠DFH +∠EFN =180°,∠A +∠B =180°,∠EFN =∠B ,∴∠A =∠DFH .∴∠DFH +∠FDH =90°.∴∠DHF =90°.∵EF =AB =9k ,DE =3k ,∴DF =6k .在Rt △DHF 中,tan ∠DFH =tan A =43,易得sin ∠DFH =45,∴DH =DF ·sin ∠DFH =245k .∴HC =9k -245k =215k .在Rt △CHN 中,tan C = tan A =43,易得cos C =35.∴NC =HC cos C =7k .∴BN =9k -7k =2k .∴BN CN =2k 7k =27.第10题解图11. 37 【解析】如解图,过点A 作AF ⊥BC 于点F ,过点B ′作B ′G ⊥BC 于点G ,∵∠ADC =60°,∴∠ADB =120°,由折叠的性质得,∠ADB ′=120°,∠CDB ′=60°,B ′D =BD ,∵BC =3AD ,AD 是BC 边上的中线,∴设AD =m ,则BC =3m ,BD =B ′D =32m ,在Rt △ADF 中,DF =AD ·cos60°=12m ,AF =AD ·sin60°=32m ,∴BF =BD +DF =2m ,CF =BC -BF =m ,在Rt △B ′DG 中,DG =B ′D ·cos60°=34m ,B ′G =B ′D ·sin60°=334m ,∴FG =DG -DF =14m ,∵AF ⊥BC ,B ′G ⊥BC ,∴AF ∥B ′G ,∴△AFE ∽△B ′GE ∴FE GE =AF B ′G =32m334m=23,∵FE +GE =FG =14m ,∴FE =110m ,∴BE =BF +FE =2110m ,CE =CF -FE =910m ,∴CE BE =910m 2110m =37.第11题解图12. 6+22 【解析】如解图,以AB 为边向下作等边△ABK ,连接EK ,在EK 上取一点T ,连接AT ,使得TA =TK .由旋转的性质得BE =BF ,∠EBF =60°,∵△ABK 为等边三角形,∴BK =BA ,∠EBF =∠ABK =60°,∴∠ABF =∠KBE ,∴△ABF ≌△KBE (SAS),∴AF =EK ,根据垂线段最短可知,当KE ⊥AD 时,KE 的值最小,即AF 最小.∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠BAD =180°-∠ABC =135°,∵∠BAK =60°,∴∠EAK =75°,∵∠AEK =90°,∴∠AKE =15°,∵TA =TK ,∴∠TAK =∠AKT =15°,∴∠ATE =∠TAK +∠AKT =30°,设AE =a ,则AT =TK =2a ,ET =3a ,在Rt △AEK 中,AE 2+EK 2=AK 2,∴a 2+(2a +3a )2=22,∴a =6-22,∴EK =2a +3a =6+22,∴AF 的最小值为6+22.第12题解图13. 133 【解析】如解图,连接CM ,在矩形ABCD 中,AB =3,BC =4,∴AD =BC =4,CD =AB =3,∠D =90°,由折叠的性质得,AM =PM ,∠MPN =∠A =90°,∠AMN =∠PMN ,∴∠CPM =90°,∵点M 为AD 的中点,∴AM =DM =12AD =2,∴PM =AM =DM =2,在Rt △CPM 与Rt △CDM 中,⎩⎪⎨⎪⎧PM =DM CM =CM,∴Rt △CPM ≌Rt △CDM (HL),∴CP =CD =3,∠CMP =∠CMD ,∴∠NMC =∠NMP +∠CMP =12(∠AMP +∠DMP )=90°,∴CM =DM 2+CD 2=22+32=13,∵∠CPM =∠CMN =90°,∠MCP =∠NCM ,∴△CMP ∽△CNM ,∴CM CN =CP CM ,即13CN =313,∴CN =133.第13题解图14. 37 【解析】如解图,过点E 作EM ⊥BC 的于点M ,过点G 作GN ⊥BC 交BC 的延长线于点N ,∴四边形EMNG 是矩形,∴EG =MN =5,EM =GN ,∵∠BAC =∠EMH =90°,∠ACB =∠MCE ,∴△ABC ∽△MEC ,∴AB ME =BC EC =AC MC ,∵AB =3,BC =5,在Rt △ABC 中,由勾股定理得AC =4,设运动时间为t (0<t ≤4),则AE =CH =t ,CE =4-t ,∴3ME =54-t =4MC ,∴EM =12-3t 5,CM =16-4t 5,∴HN =5-MH =5-(CM -CH )=5-(16-4t 5-t )=9+9t 5.∵EH ⊥GH ,∴∠EHG =90°,∴∠EHM +∠GHN =90°,又∵EM ⊥BC ,∴∠EHM +∠MEH =90°,∴∠GHN =∠MEH ,又∵∠EMH =∠HNG =90°,∴△EMH ∽△HNG ,∴EM HN =MH NG ,即12-3t 59+9t 5=16-4t5-t 12-3t 5,整理得2t 2-3t =0,解得t =32或t =0(舍去),即AE =32,BH =5-CH =5-32=72,∴AE BH =3272=37.第14题解图15. 2-1 【解析】如解图,过点A 作AM ⊥BP 于点M ,过点E 作EN ⊥BP 于点N .∵四边形ABCD 是正方形,∴AD =AB ,∠BAD =90°,由翻折的性质得AD =AF ,∠DAE =∠EAF ,∴AB =AF ,∵AM ⊥BF ,∴BM =FM ,∠BAM =∠FAM ,∴∠PAM =∠PAF +∠FAM =12∠BAD =45°,∵∠AMP =90°,∴∠P =∠PAM=45°,∴AM =MP ,设BF =2a ,则BM =MF =a ,PF =22BF =2a ,∴AM =PM =FM +PF =a +2a ,∵∠AMF =∠AFE =∠ENF =90°,∴∠AFM +∠EFN =90°,∠EFN +∠FEN =90°,∴∠AFM =∠FEN ,∴△AMF ∽△FNE ,∴AM FM =FN EN =a +2aa =1+2,设EN =PN =x ,则FN =(1+2)x ,∴(1+2)x +x =2a ,∴x =(2-1)a ,∴EN =(2-1)a ,∴EF AF =EN FM =(2-1)a a=2-1,∵CD =AD =AF ,DE =EF ,∴DE CD =EFAF =2-1.第15题解图16. 334 【解析】如解图,过点P 作PE ⊥CD 于点E .∵∠ABC =60°,AB =BC ,∴△ABC 为等边三角形,∠ACB =∠ACD =60°,在△ABM 和△ACN 中,⎩⎪⎨⎪⎧AB =AC ∠ABM =∠ACN ,BM =CN∴△ABM ≌△ACN (SAS),∴AM =AN ,∠BAM =∠CAN ,∴∠MAN =∠BAM +∠MAC =60°,∴△AMN 为等边三角形,∵∠B =∠ACB =∠AMP =60°,∴∠BAM +∠BMA =∠BMA +∠CMP =180°-60°=120°,∴∠BAM =∠CMP ,∠BMA =∠CPM ,∴△BAM ∽△CMP ,∴BA BM =CM CP ,设BA 长为a ,BM 长为x ,则CM =a -x ,∴a x =a -xCP ,∴a ·CP =x (a -x )=-x 2+ax =-(x -a 2)+a 24,∴CP =-1a (x -a 2)+a 4,∴当x =a 2时,CP 最长,即当AM ⊥BC 时,△AMN 边长最小,此时CP 最长,满足条件,∵AB =AC ,AM ⊥BC ,∴BM =MC =3,∠CMP =30°,∠CPM =90°,∴PC =12MC =32,在Rt △PCE 中,∵∠ACD =60°,∴PE =PC ·sin60°=334.第16题解图17. 3134;6+39 【解析】设AQ =x ,则S 四边形PCDQ =S △ABC -S △ADQ -S △BCP =34×62-12·x ·32×1-12×(6-x -1)×32×6=332+534x ,∵x 的最大值为6-1=5,∴当x =5时,S 四边形PCDQ 最大,最大值为332+534×5=3134;如解图,作点D 关于AB 的对称点D ′,连接D ′Q ,以D ′Q 、PQ 为边作平行四边形PQD ′M ,则DQ =D ′Q =MP ,∴C 四边形PCDQ =PM +PC +PQ +DC ,DD ′=2AD ·sin60°=3,D ′M =PQ =1,过点C 作CH ⊥AB ,交AB 于点H ,交D ′M 的延长线于点N ,则∠N =90°,CH =BC ·sin60°=33,NH =12DD ′=32,∴MN =AH -D ′M -AD ·cos60°=AC ·cos60°-1-12=3-1-12=32,CN =NH +CH =32+33=732,当点M ,P ,C 在同一直线上时,MP +CP 的最小值等于CM 的长,即DQ +CP 的最小值等于CM 的长,此时,Rt △MNC 中,CM =MN 2+CN 2=(32)2+(732)2=39,又∵PQ =1,CD =6-1=5,∴四边形PCDQ 周长的最小值为CM +PQ +CD =6+39.第17题解图18. 27-952或92 【解析】分两种情况讨论,如解图①,当GD =GE 时,过点G 作GM ⊥AD 于点M ,GN ⊥CD 于点N .设AF =x .∵四边形ABCD 是矩形,∴AD =BC =12,∠BAF =∠ADE =90°,由翻折的性质得AF =FG ,BF ⊥AG ,∴∠DAE +∠BAE =90°,∠ABF +∠BAE =90°,∴∠ABF =∠DAE ,∴△BAF ∽△ADE ,∴AB DA =AF DE ,即912=x DE ,∴DE =43x ,∵GM ⊥AD ,GN ⊥CD ,∴∠GMD =∠GND =∠MDN =90°,∴四边形GMDN 是矩形,∴GM =DN =EN =23x ,∵GD =GE ,∴∠GDE =∠GED ,∵∠GDA +∠GDE =90°,∠GAD +∠GED =90°,∴∠GDA =∠GAD ,∴GA =GD =GE ,∵GM ⊥AD ,∴AM =MD =6,在Rt △FGM 中,由勾股定理得x 2=(6-x )2+(23x )2,解得x =27-952或27+952(舍),∴AF =27-952;如解图②,当DG =DE 时,由翻折的性质得,BA =BG ,∴∠BAG =∠BGA ,∵DG =DE ,∴∠DGE =∠DEG ,∵AB ∥CD ,∴∠BAE =∠DEG ,∴∠AGB =∠DGE ,∴B ,G ,D 三点共线,∵BD =AB 2+AD 2=92+122=15,BG =BA =9,∴DG =DE =6,由①知,△BAF ∽△ADE ,∴AF DE =AB DA ,即AF 6=912,∴AF =92.综上所述,AF 的值为27-952或92.图①图②第18题解图19. 45;22 【解析】如解图,取BC 的中点G ,连接DG ,由旋转的性质得DC =EC ,∠DCE =90°,∵∠ACB =90°,AC =BC =8,F 为AC 中点,∴CG =CF ,∠DCG +∠ACD =∠ECF +∠ACD =90°,∴∠DCG =∠ECF ,∴△DCG ≌△ECF (SAS),∴DG =EF .分两种情况讨论:如解图①,当GD ⊥AB 时,DG 最短,此时△BDG 是等腰直角三角形,∴DG =BG ·sin45°=4×22=22,∴EF 的最小值为22;当点D 与点B 重合时,DG =BG =4;如解图②,当点D 与点A 重合时,DG =CG 2+AC 2=42+82=45>4,∴EF 的最大值为45,最小值为2 2.图①图②第19题解图20. 10 【解析】如解图,过点A ′作A ′H ⊥AD 于点H ,延长FA ′与BE 的延长线交于点J ,过点F 作FI ⊥BE 于点I ,∵A ′是DE 的中点,∴A ′H 是△DC ′E 的中位线,∴A ′H =12C ′E =12×3=32 cm ,由折叠性质知∠A ′DH =45°,∴DH =A ′H =32 cm ,设AF =x cm ,则FH =6-x -32=(92-x ) cm ,由折叠的性质得A ′F =AF=x cm ,在Rt △A ′HF 中,由勾股定理得A ′F 2-FH 2=A ′H 2,即x 2-(92-x )2=(32)2,解得x =52,∴A ′F =AF =52 cm ,FH =92-52=2 cm ,∴EI =FC ′=FH +DH -C ′D =2+32-3=12 cm ,∵A ′是DE 的中点,易证△A ′DF ≌△A ′EJ ,∴EJ =DF =2+32=72 cm ,A ′F =A ′J =52 cm ,∴FJ =5 cm ,由折叠的性质得∠AFG =∠JFG ,∵AD ∥BJ ,∴∠JGF =∠AFG =∠JFG ,∴JG =JF =5 cm ,∴GI =JG -JE -EI =5-72-12=1 cm ,在Rt △FGI 中,FI =3 cm ,∴FG =32+12=10 cm.第20题解图21. 5217 【解析】如解图,点P 在直线CD 上运动时,当MN 垂直于点N 的运动轨迹(直线)时,MN 最短,当点P 和C 重合时,N 1 是CB 的中点,当PA ′和直线CD 重合时,N 2 是PA ′的中点,∵AC =CB =4,∠ACB =120°,CD ⊥AB ,∴CD =2,AD =23,∴AB =2AD =43,∵M 、N 1分别是AC 、BC 中点,∴MN 1∥AB ,MN 1=12AB =23,DE =1,∵PA ′是PA 绕点P 逆时针旋转120°得到的,当PA ′和直线CD 重合时,PA ′=PA ,∠APA ′=120°,∴∠APD =60°,∴AP =AD sin60°=2332=4,DP =AP ·cos60°=4×12=2,∵N 2是PA ′的中点,∴PN 2=2,EN 2=2+2+1=5,∵MN 1∥AB ,CD ⊥AB ,MN 1⊥CD ,在△MEN 2和△N 1EN 2中,⎩⎪⎨⎪⎧ME =N 1E ∠MEN 2=∠N 1EN 2EN 2=EN 2,∴△MEN 2≌△N 1EN 2(SAS),∴N 2M =N 2N 1,在Rt △MN 2E 中,N 2M =ME 2+EN 22=(3)2+52=27,∴S △MN 1N 2=12MN 1·EN 2=12×23×5=53,又∵S △MN 1N 2=12N 1N 2·MN ,∴12×27×MN =53,∴MN =5217.第21题解图22. 30;6 【解析】如解图①,连接AC ,分别过点E ,G 作AC 的垂线,垂足为M ,N ,易证△AEM ∽△ACB ,∴AE AC =EM CB ,∵AB =6,BC =8,∴AC =AB 2+BC 2=10,∴410=EM 8,∴EM =165.∵△BEF 沿EF 翻折后点B 的对应点为点G ,∴GE =BE =2,∴点G 在以点E 为圆心,2为半径的⊙E (在矩形ABCD 内的部分)上.连接EN ,则EG +GN ≥EN ≥EM ,∴GN ≥EM -EG =165-2=65.∵S 四边形AGCD =S △ACD +S △AGC =12AD ·CD +12AC ·GN =24+5GN ,如解图②,当点G 在EM 上,即点N 与点M 重合,此时GN 取得最小值65,S 四边形AGCD 取得最小值为24+5GN =24+5×65=30;如解图②,过点F 作FH ⊥AC 于点H ,∵EM ⊥FG ,EM ⊥AC ,∴四边形FGMH 是矩形,∴FH =GM =65,∵∠FCH =∠ACB ,∠CHF =∠CBA =90°,∴△CHF ∽△CBA ,∴CF CA =FH AB ,即CF 10=656,∴CF =2,∴BF =BC -CF =8-2=6.图①图②第22题解图。

专题09 几何探究题(原卷版)(1)-2021年中考数学专项训练(河南专用)

专题09 几何探究题(原卷版)(1)-2021年中考数学专项训练(河南专用)

专题09 几何探究题1.(2020牡丹江)如图,四边形ABCD是正方形,点E在直线BC上,连接AE.将△ABE沿AE所在直线折叠,点B地对应点是点B′,连接AB′并延长交直线DC于点F.(1)当点F与点C重合时如图(1),易证:DF+BE=AF(不需证明)。

(2)当点F在DC地延长线上时如图(2),当点F在CD地延长线上时如图(3),线段DF,BE,AF有怎样地数量关系?请直接写出你地猜想,并选择一种情况给予证明.2.(2020•金华)如图,在△ABC中,AB=42,∠B=45°,∠C=60°.(1)求BC边上地高线长.(2)点E为线段AB地中点,点F在边AC上,连结EF,沿EF将△AEF折叠得到△PEF.①如图2,当点P落在BC上时,求∠AEP地度数.②如图3,连结AP,当PF⊥AC时,求AP地长.3.(2020重庆)如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D是BC边上一动点,连接AD,把AD绕点A 逆时针旋转90°,得到AE,连接CE,DE.点F是DE地中点,连接CF.AD。

(1)求证:CF=22(2)如图2所示,在点D运动地过程中,当BD=2CD时,分别延长CF,BA,相交于点G,猜想AG与BC存在地数量关系,并证明你猜想地结论。

(3)在点D运动地过程中,在线段AD上存在一点P,使PA+PB+PC地值最小.当PA+PB+PC地值得到最小值时,AP 地长为m,请直接用含m地式子表示CE地长.4.(2020牡丹江)如图,四边形ABCD是正方形,点E在直线BC上,连接AE.将△ABE沿AE所在直线折叠,点B地对应点是点B′,连接AB′并延长交直线DC于点F.(1)当点F与点C重合时如图(1),易证:DF+BE=AF(不需证明)。

(2)当点F在DC地延长线上时如图(2),当点F在CD地延长线上时如图(3),线段DF,BE,AF有怎样地数量关系?请直接写出你地猜想,并选择一种情况给予证明.5.(2020枣庄)在△ABC中,∠ACB=90°,CD是中线,AC=BC,一个以点D为顶点地45°角绕点D旋转,使角地两边分别与AC,BC地延长线相交,交点分别为点E,F,DF与AC交于点M,DE与BC交于点N.(1)如图1,若CE=CF,求证:DE=DF。

中考数学专题复习几何探究练习(三)

中考数学专题复习几何探究练习(三)

中考数学专题复习几何探究练习(三)学校:___________姓名:___________班级:___________考生__________评卷人得分一、解答题1.【感知】如图①,点C是AB中点,CD⊥AB,P是CD上任意一点,由三角形全等的判定方法“SAS”易证△P AC≌△PBC,得到线段垂直平分线的一条性质“线段垂直平分线上的点到线段两端的距离相等”【探究】如图①,在平面直角坐标系中,直线y=-13x+1分别交x轴、y轴于点A和点B,点C是AB中点,CD⊥AB交OA于点D,连结BD,求BD的长【应用】如图①(1)将线段AB绕点A顺时针旋转90°得到线段AB′,请在图①网格中画出线段AB;(2)若存在一点P,使得P A=PB′,且∠APB′≠90°,当点P的横、纵坐标均为整数时,则AP长度的最小值为______.2.如图,在正方形ABCD中,点E是边BC上任意一点(点E不与点B、C重合),连结DE,点C关于DE的对称点为C1,连结AC1并延长交DE的延长线于点M,F是AC1的中点,连结DF.【猜想】如图①,①FDM的大小为度.【探究】如图①,过点A作AM1①DF交MD的延长线于点M1,连结BM.求证:△ABM①①ADM1.【拓展】如图①,连结AC,若正方形ABCD的边长为2,则△ACC1面积的最大值为.3.问题呈现:下图是小明复习全等三角形时遇到的一个问题并引发的思考,请帮助小明完成以下学习任务.请根据小明的思路,结合图①,写出完整的证明过程.结论应用:(1)如图①,在四边形ABCD中,AB AD BC=+,DAB∠的平分线和ABC∠的平分线交于CD边上点P.求证:PC PD=;(2)在(1)的条件下,如图①,若10AB=,1tan2PAB∠=.当PBC有一个内角是45︒时,PAD△的面积是.4.【教材呈现】如图是华师版八年级下册数学教材第117页的部分内容.结合图①,补全证明过程.【应用】如图①,直线EF分别交矩形ABCD的边AD、BC于点E、F,将矩形ABCD 沿EF翻折,使点C的对称点与点A重合,点D的对称点为D′,若AB=3,BC=4,则四边形ABFE的周长为.【拓展】如图①,直线EF分别交▱ABCD的边AD、BC于点E、F,将▱ABCD沿EF翻折,使点C的对称点与点A重合,点D的对称点为D′,若AB=22,BC=4,①C=45°,则EF的长为.5.在等腰直角三角形纸片ABC中,点D是斜边AB的中点,10,AB=点E为BC上一点,将纸片沿DE折叠,点B的对应点为点B'.()1如图①,连接,CD则CD的长为;()2如图①,'B E与AC交于点,//F DB BC'.①求证:四边形'BDB E为菱形;①连接',B C则'B FC的形状为;()3如图①,则CEF∆的周长为;6.【教材呈现】数学课上,赵老师用无刻度的直尺和圆规按照华师版教材八年级上册87页完成角平分线的作法,方法如下:【问题1】赵老师用尺规作角平分线时,用到的三角形全等的判定方法是.【问题2】小明发现只利用直角三角板也可以作①AOB的角平分线,方法如下:步骤:①利用三角板上的刻度,在OA、OB上分别截取OM、ON,使OM=ON.①分别过点M、N作OM、ON的垂线,交于点P.①作射线OP,则OP为①AOB的平分线.(1)请写出小明作法的完整证明过程.(2)当tan①AOB=43时,量得MN=4cm,直接写出MON△的面积.7.教材呈现:如图是华师版九年级上册数学教材第77页的部分内容.定理证明:请根据教材内容,结合图①,写出证明过程.定理应用:在矩形ABCD中,AB=2AD,AC为矩形ABCD的对角线,点E在边AB上,且AE=3BE.(1)如图①,点F在边CB上,连结EF.若13BFCF,则EF与AC的关系为.(2)如图①,将线段AE绕点A旋转一定的角度α(0°<α<360°),得到线段AE',连结CE′,点H为CE'的中点,连结BH.设BH的长度为m,若AB=4,则m的取值范围为.8.在等腰直角三角形纸片ABC中,点D是斜边AB的中点,AB=10,点E为BC上一点,将纸片沿DE折叠,点B的对应点为点B'.(1)如图①,连接CD,则CD的长为;(2)如图①,B'E与AC交于点F,DB'①BC.①求证:四边形BDB'E为菱形;①连接B'C,则①B'FC的形状为;(3)如图①,则①CEF的周长为.9.如图,在ABC中,中线BD,CE相交于点O,F,G分别是OB,OC的中点.(1)求证:四边形DEFG是平行四边形;(2)当四边形DEFG的形状为矩形时,ABC为______三角形;(3)连接OA,当OA BC时,四边形DEFG的形状为______.10.如图1,正方形ABCD的边长为8cm,点F从点B出发,沿射线AB方向以1cm/秒的速度移动,点E从点D出发,向点A以1cm/秒的速度移动(不与点A重合).设点E,F同时出发移动t秒.(1)基础探究:如图1,在点E、F移动过程中,连接CE、CF、EF,判断CE与CF的数量与位置关系,并说明理由.(2)应用拓展:如图2,点G、H分别在边AD、BC上,且217cmGH=,连接EF,当EF与GH交于点P,且45GPE∠=︒,若点P为EF的中点,则CF的长度为________,AP的长度为________.参考答案:1.探究:BD 的长为53;应用:(1)见解析;(2)5.【解析】 【分析】探究:根据直线解析式,求出点A 、B 坐标,得到BO 、AO 的长,设BD 的长为a ,根据勾股定理列方程可求出BD ;应用:(1)根据旋转的性质作图即可;(2)根据题意可知P 点坐标在AB’线段垂直平分线上,如图所示,点P’是垂直平分线上最近的格点,但是此时'’90AP B ∠=︒,不符合题意,根据网格特点可知垂直平分线上下一个格点位置,由网格特点和勾股定理可得符合题意的AP=5. 【详解】 解:探究: 由题意得:当x 0=时,y 1=;当y 0=时,x 3=;()A 3,0∴,()B 0,1. AO 3∴=,BO 1=.设BD 的长为a .①点C 是AB 中点,CD AB ⊥交OA 于点D ,DA DB a ∴==,OD 3a =-.在Rt BOD 中,BOD 90∠=︒,222BD BO DO ∴=+,()22213a a +-=,5a 3∴=,5BD 3=. BD ∴的长为53.应用:(1)如图,线段'AB 即为所求.(2)根据题意可知P点坐标在AB’线段垂直平分线上,如图所示,点P’是垂直平分线上最近的格点,但是此时'’90AP B∠=︒,不符合题意,根据网格特点可知垂直平分线上下一个格点位置,由网格特点和勾股定理可得符合题意的AP=5.【点睛】本题主要考查了线段垂直平分线的性质,熟知线段垂直平分线上的点到线段两端点的距离相等是解题关键.2.(1)45°;(2)证明见解析;(3)22﹣2.【解析】【分析】(1)证明①CDE=①C1DE和①ADF=①C1DF,可得①FDM=12①ADC=45°;(2)先判断出①DAM1=①BAM,由(1)可知:①FDM=45°,进而判断出①AMD=45°,得出AM=AM1,即可得出结论;(3)先作高线C1G,确定①ACC1的面积中底边AC为定值2,根据高的大小确定面积的大小,当C1在BD上时,C1G最大,其①AC1C的面积最大,并求此时的面积.【详解】(1)由对称得:CD=C1D,①CDE=①C1DE,在正方形ABCD中,AD=CD,①ADC=90°,①AD=C1D,①F是AC1的中点,①DF①AC1,①ADF=①C1DF,①①FDM=①FDC1+①EDC1=12①ADC=45°;故答案为:45;(2)①DF①AC1,①①DFM=90°,①①MAM'=90°,在正方形ABCD中,DA=BA,①BAD=90°,①①DAM1=①BAM,由(1)可知:①FDM=45°①①DFM=90°①①AMD=45°,①①M1=45°,①AM=AM1,在:△ABM和△ADM1中,①11BA DABAM DAMAH AM=⎧⎪∠=∠⎨⎪=⎩,①①ABM①①ADM1(SAS);(3)如图,过C1作C1G①AC于G,则1AC CS=12AC•C1G,在Rt△ABC中,AB=BC=2,①AC=2222+=22,即AC为定值,当C1G最大值,△AC1C的面积最大,连接BD交AC于O,当C1在BD上时,C1G最大,此时G与O重合,①CD=C1D=2,OD=12AC=2,①C1G=C1D﹣OD=2﹣2,①1AC CS=12AC•C1G=12×22(2﹣2)=22﹣2,故答案为:22﹣2.此题是四边形综合题,主要考查了正方形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质等知识,解题的关键是①AMD=45°.3.问题呈现:见解析;结论应用:(1)见解析;(2)403或8 【解析】【分析】问题呈现:由“SAS ”可证△MOP ≌△NOP ,可得PM =PN ;结论应用:(1)在AB 上截取AE =AD ,连接PE ,由“SAS ”可证△ADP ≌△AEP ,△BPC ≌△BPE ,可得PD =PE =PC ;(2)延长AP ,BC 交于点H ,由“ASA ”可证△ADP ≌△HCP ,可得CP =DP ,AD =CH ,S △ADP =S △CPH ,分三种情况讨论,由角平分线的性质和锐角三角函数可求解.【详解】问题呈现:证明:①OC 平分AOB ∠,①AOC BOC ∠=∠.在POM 和PON △中,OP OP POM PON OM ON =⎧⎪∠=∠⎨⎪=⎩.①POM PON △≌△.结论应用:在AB 上截取AE AD =,①AP 平分DAB ∠,①DAP BAP ∠=∠,①AP AP =,①ADP AEP △≌△.①PE PD=.①AB AD BC=+,①BE BC=,①BP平分ABC∠,①ABP CBP ∠=∠.①BP BP=.①PBE PBC△≌△.①PE PC=.①PC PD=.(2)由(1)可证∠D=∠AEP,∠PCB=∠PEB,∵∠AEP+∠PEB=180°,∴∠PCB+∠D=180°,∴AD∥BC,∵AB=10,tan∠P AB=PBPA=12,∴P A=2PB,∵P A2+PB2=AB2,∴PB=25,P A=45,如图③,延长AP,BC交于点H,∵AD∥BC,∴∠DAP=∠H,∴∠H=∠BAP,∴AB=BH=10,又∵PB平分∠ABC,∴BP⊥AP,AP=PH=45,∵∠DAP=∠H,AP=PH,∠DP A=∠CPH,∴△ADP≌△HCP(ASA),∴CP=DP,AD=CH,S△ADP=S△CPH,若∠PBC=45°时,则∠PBC=∠H=45°,∴PB=PH(不合题意舍去),若∠BPC=45°时,则∠HPC=∠BPC=45°,如图④,过点C作CN⊥BP于N,CM⊥PH于M,∴CM=CN,∵S△PBH=12×BP×PH=12×BP×CN+12×PH×CM,∴CM=CN=453,∴S△PCH=12×45×453=403=S△ADP;若∠PCB=45°时,如图⑤,过点P作PF⊥BC于F,∵∠P AB=∠H,∴tan H=tan∠P AB=12,∴12 PFFH,∴FH=2PF,∵PF2+FH2=PH2=80,∴PF=4,FH=8,∵PF⊥BC,∠BCP=45°,∴∠PCB=∠FPC=45°,∴CF=PF=4,∴CH=4,∴S△ADP=S△CPH=12×4×4=8,故答案为:8或403.【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,角平分线的性质,勾股定理,锐角三角函数等知识,添加恰当辅助线构造全等三角形是本题的关键.4.【教材呈现】证明见解析;【应用】434;【拓展】2103;【解析】【分析】教材呈现:由“ASA”可证①AOE①①COF,可得OE=OF,由对角线互相平分的四边形是平行四边形可证四边形AFCE是平行四边形,即可证平行四边形AFCE是菱形;应用:过点F作FH①AD于H,由折叠的性质可得AF=CF,①AFE=①EFC,由勾股定理可求BF的长,EF的长,拓展:过点A作AN①BC,交CB的延长线于N,过点F作FM①AD于M,由等腰直角三角形的性质可求AN=BN=2,由勾股定理可求AE=AF=103,再利用勾股定理可求EF的长.【详解】解:【教材呈现】①四边形ABCD是矩形,①AE①CF,①①EAO=①FCO,①EF垂直平分AC,①AO=CO,①AOE=①COF=90°,①①AOE①①COF(ASA)①OE=OF,又①AO=CO,①四边形AFCE是平行四边形,①EF①AC,①平行四边形AFCE是菱形;【应用】如图,过点F作FH①AD于H,①将矩形ABCD沿EF翻折,使点C的对称点与点A重合,①AF=CF,①AFE=①EFC,①AF2=BF2+AB2,①(4﹣BF)2=BF2+9,①BF=78,①AF=CF=258,①AD①BC,①①AEF=①EFC=①AFE,①AE=AF=258,①①B=①BAD=①AHF=90°,①四边形ABFH是矩形,①AB=FH=3,AH=BF=78,①EH=94,①EF=22EH FH+=81916+=154,①四边形ABFE的周长=AB+BF+AE+EF=3+78+258+154=434,故答案为:434.【拓展】如图,过点A作AN①BC,交CB的延长线于N,过点F作FM①AD于M,①四边形ABCD是平行四边形,①C=45°,①①ABC=135°,①①ABN=45°,①AN①BC,①①ABN=①BAN=45°,①AN=BN=22AB=2,①将▱ABCD沿EF翻折,使点C的对称点与点A重合,①AF=CF,①AFE=①EFC,①AD①BC,①①AEF=①EFC=①AFE,①AE=AF,①AF2=AN2+NF2,①AF2=4+(6﹣AF)2,①AF=103,①AE=AF=103,①AN①MF,AD①BC,①四边形ANFM是平行四边形,①AN①BC,①四边形ANFM是矩形,①AN =MF =2,①AM =22AF MF -=10049-=83, ①ME =AE ﹣AM =23,①EF =22MF ME +=449+=2103, 故答案为:2103. 【点睛】本题是四边形综合题,考查了平行四边形的性质,菱形的性质,折叠的性质,全等三角形的判定和性质,勾股定理等知识,添加恰当辅助线构造直角三角形是本题的关键. 5.(1)5;(2)①见解析;①等腰三角形;(3)52【解析】【分析】(1)利用直角三角形斜边上的中线等于斜边的一半即可求解;(2)①由翻折可知','45DB DB B B =∠=∠=︒,进而证得'//,B E AB 则有∴四边形'BDB E 为平行四边形,由',BD B D =即可得证;①连接CD,易证得','45DB DC DB E DCA =∠=∠=︒进而证得''FB C FCB ∠=∠,则有'FB FC =,即可得出结论;(3)由'FB FC =和'B E BE =得CEF ∆的周长=''CE FC EF CE B F EF CE B E CE BE BC ++=++=+=+=,由等腰直角三角形的性质可求得BC ,即可求得CEF ∆的周长.【详解】解:(1)①①ABC 是等腰直角三角形,D 为斜边AB 的中点,AB=10,①152CD AB ==, 故答案为:5;()2①证明:由翻折可知','45DB DB B B =∠=∠=︒'DB ①BC''45,B EC B ∴∠=∠=︒①'45,B EC B ∠=∠=︒①'EB ①BD∴四边形'BDB E 为平行四边形.又',BD B D =∴四边形'BDB E 为菱形;②如图2,连接CD ,则有CD=BD=AD,由翻折可知','45DB DB DB E B =∠=∠=︒①','45DB DC DB E DCA A =∠=∠=∠=︒,①''DB C DCB ∠=∠①DB E CB F DCA FCB ∠+∠=∠+∠'''①''CB F FCB ∠=∠①'FB FC =,①'B FC 的形状为等腰三角形;故答案为:等腰三角形;(3)如图3,由(2)知'FB FC =,'B E BE =,①CEF ∆的周长=''CE FC EF CE B F EF CE B E CE BE BC ++=++=+=+=,①①ABC 是等腰直角三角形,AB=10,①222100BC AB ==,解得:52BC =,①CEF ∆的周长为52,故答案为:52.【点睛】本题考查等腰直角三角形的性质、直角三角形斜边中线性质、折叠性质、菱形的判定与性质、等腰三角形的判定,解得的关键是认真审题,从图形中分析相关联信息,借助辅助线,利用基本图形的性质进行推理、计算.6.【问题1】SSS ;【问题2】(1)见解析;(2)8.【解析】【分析】问题1:根据SSS证明三角形全等即可.问题2:(1)根据HL证明三角形全等即可解决问题.(2)作MH①OB于H,连接MN.想办法求出ON,MH即可解决问题.【详解】解:问题1:由作图可知:OE=OD,EC=DC,OC=OC,①EOC DOC≌△△(SSS),故答案为SSS.问题2:(1)证明:由作图可知:OM=ON,①①ONP=①OMP=90°,OP=OP,①Rt ONP≌Rt OMP△(HL),①①PON=①POM,即OP平分①AOB.(2)解:作MH①OB于H,连接MN.①tan①AOB=4,3MHOH=①可以假设MH=4k,OH=3k,则OM=ON=5k,①HN=2k,在Rt MNH△中,①222,MN HN MH=+①()()222442,k k=+①255k=(负根已经舍弃),①ON=5k=25,MH=4k=855,①1185258.225MNO S ON MH ==⨯⨯= 【点睛】本题考查的是角平分线的作图与作图原理,三角形全等的判定与性质,锐角三角函数的应用,勾股定理的应用,掌握以上知识是解题的关键.7.定理证明:见解析;定理应用:(1)EF ∥AC ,EF =14AC ;(2)5﹣32≤BH ≤5+32 【解析】【分析】定理证明:延长DE 到F ,使FE =DE ,连接CF ,易证①ADE ①①CFE ,再根据全等三角形的性质,进一步可得出CF ①AB ,从而可证明四边形BCFD 是平行四边形,最后根据平行四边形的性质即可得证;定理应用:(1)取AB ,BC 的中点M ,N ,连接MN .再根据题目中的线段关系,可得出AM =BM ,CN =BN ,ME =EB ,FN =FB ,根据三角形的中位线定理即可得出答案; (2)如图①中,延长CB 到T ,连接AT ,TE ′.根据题意得出BH =12TE ′,再根据矩形的性质可求得AT 的值,结合题意求得AE 的值,最后根据三角形三边关系即可得出答案.【详解】 解:定理证明:如图①中,延长DE 到F ,使FE =DE ,连接CF ,在△ADE 和△CFE 中,AE EC AED CEF DE EF =⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△CFE (SAS ),∴∠A =∠ECF ,AD =CF ,∴CF ∥AB ,又∵AD =BD ,∴CF=BD,∴四边形BCFD是平行四边形,∴DF∥BC,DF=BC,∴DE∥BC,DE=12BC.定理应用:(1)如图①中,取AB,BC的中点M,N,连接MN.∵AE=3BE,BF:CF=1:3,∴AM=BM,CN=BN,ME=EB,FN=FB,∴MN∥AC,MN=12AC,EF∥MN,EF=12MN,∴EF∥AC,EF=14AC.故答案为:EF∥AC,EF=14AC.(2)如图①中,延长CB到T,连接AT,TE′.∵CH=HE′,CB=BT,∴BH=12TE′,∵四边形ABCD是矩形,∴∠ABC=∠ABT=90°,∵AB=4,BC=AD=BT=2,∴AT=22224225AB BT+=+=,∵AE=3BE,AB=4,∴AE=AE′=3,∴25﹣3≤TE′≤25+3,∴5﹣32≤BH≤5+32.故答案为:5﹣32≤BH≤5+32.【点睛】本题考查了矩形的性质、三角形三边关系、平行四边形的判定及性质、三角形中位线性质、旋转的性质、全等三角形的判定及性质,综合性比较强,添加合适的辅助线,是解题的关键.8.(1)5;(2)①见解析;①等腰三角形;(3)52.【解析】【分析】(1)由直角三角形斜边上的中线性质即可得出答案;(2)①由折叠的性质得B'D=BD,B'E=BE,①B'DE=①BDE,证出B'D=BE,得四边形BDB'E是平行四边形,进而得出结论;①证出CD=B'D,得①DCB'=①DB'C,证出DB'①AC,则①ACB'=90°-①DB'C,证出CD①B'E,则①EB'C=90°-①DCB',得①ACB'=①EB'C,即可得出结论;(3)连接B'C,由等腰直角三角形的性质得BC=22AB=52,①B=45°,CD=12AB=BD,①ACD=12①ACB=45°,证出CF=B'F,进而得出答案.【详解】(1)解:①①ABC是等腰直角三角形,点D是斜边AB的中点,AB=10,①CD=12AB=5,故答案为:5;(2)①证明:由折叠的性质得:B'D=BD,B'E=BE,①B'DE=①BDE,①DB'①BC,①①B'DE=①BED,①①BDE=①BED,①BD=BE,①B'D=BE,①四边形BDB'E是平行四边形,又①B'D=BD,①四边形BDB'E为菱形;①解:①①ABC是等腰直角三角形,点D是斜边AB的中点,AB=BD,①CD=12由折叠的性质得:B'D=BD,①CD=B'D,①①DCB'=①DB'C,①①ACB=90°,①AC①BC,①DB'①BC,①DB'①AC,①①ACB'=90°﹣①DB'C,由①得:四边形BDB'E为菱形,①AB①B'E,①CD①AB,①CD①B'E,①①EB'C=90°﹣①DCB',①①ACB'=①EB'C,①FB'=FC,即①B'FC为等腰三角形;故答案为:等腰三角形;(3)解:连接B'C,如图①所示:①①ABC 是等腰直角三角形,点D 是斜边AB 的中点,AB =10,①BC =22AB =52,①B =45°,CD =12AB =BD ,①ACD =12①ACB =45°, 由折叠的性质得:B 'D =BD ,①B '=①B =45°,①CD =B 'D ,①①DCB '=①DB 'C ,①①FCB '=①FB 'C ,①CF =B 'F ,①①CEF 的周长=EF +CF +CE =EF +B 'F +CE =B 'E +CE =BE +CE =BC =52;故答案为:52.【点睛】 本题是四边形综合题目,考查了菱形的判定与性质、平行四边形的判定与性质、等腰直角三角形的性质、折叠的性质、等腰三角形的判定与性质、直角三角形斜边上的中线性质等知识;本题综合性强,熟练掌握菱形的判定与性质和等腰三角形的判定与性质是解题的关键.9.(1)见解析;(2)等腰;(3)菱形.【解析】【分析】(1)由中线BD ,CE 相交于点O ,可得DE 是ABC 的中位线,可得//DE BC ,12DE BC =,由F 、G 分别是OB ,OC 的中点,可得FG 是OBC 的中位线,可得//FG BC ,12FG BC =,可推出//DE FG ,DE FG =即可; (2)由四边形DEFG 的形状为矩形,可得FD=EG ,OE=OF=OG=OD ,EF①ED ,①EOF=①DOG ,由F 、G 分别是OB ,OC 的中点,可得BO=CO ,,由中线CE ,E 为中点,F 是OB 的中点,可得EF①OA ,可推出OA①ED ,由等腰三角形性质可得OA 平分①EOD ,可证△AOB①①AOC (SAS ),可得AB=AC 即可;(3)连接OA ,由(1)知四边EFGD 为平行四边形,由中位线性质可得AO=2EF ,2BC FG =,由OA BC =,可得EF=FG 即可.【详解】证明:(1)①中线BD ,CE 相交于点O ,①E 、D 分别为AB 、AC 中点,①DE 是ABC 的中位线,①//DE BC ,12DE BC =, 又①F 、G 分别是OB ,OC 的中点,①FG 是OBC 的中位线,①//FG BC ,12FG BC =, ①//DE FG ,DE FG =,①四边形DEFG 是平行四边形;(2)连接OA ,如图①四边形DEFG 的形状为矩形,①FD=EG ,OE=OF=OG=OD ,EF①ED ,①EOF=①DOG , ①F 、G 分别是OB ,OC 的中点,①BO=CO ,①中线CE ,E 为中点,F 是OB 的中点,①EF①OA ,①OA①ED ,①OA 平分①EOD ,①①EOA=①DOA ,①①BOA=①EOF+①EOA=①DOG+①DOA=①COA ,①AO=AO ,①①AOB①①AOC (SAS ),①AB=AC ,①①ABC 为等腰三角形,故答案为:等腰;(3)当OA BC =时,四边形DEFG 的形状为菱形.由(1)知四边EFGD 为平行四边形,①中线CE ,E 为中点,F 是OB 的中点,①EF 为①ABO 的中位线,①AO=2EF ,又①F 、G 分别是OB ,OC 的中点,①FG 是OBC 的中位线,①2BC FG =,①OA BC =,①2EF=2FG ,①EF=FG ,①四边形DEFG 是菱形,故答案为:菱形.【点睛】本题考查平行四边形的判定与性质,等腰三角形的判定,菱形的判定,掌握平行四边形的判定方法与性质,等腰三角形的判定,菱形的判定定理,细心观察图形,利用数形结合从图形中分析线段之间和角之间关系是解题关键.10.(1)CE CF =,CE CF ⊥,理由见解析;(2)217,34;【解析】【分析】 (1)根据正方形的性质和运动的距离可证明()EDC FBC SAS ≌△△,可得CE CF =,再利用角之间的关系可证CE CF ⊥;(2)连接EC ,证明四边形GECH 是平行四边形,即可求出CF ,再利用直角三角形斜边上的中线等于斜边的一半即可求出AP .(1)解:①四边形ABCD为正方形,①CD CB=,90EDC ABC BCD∠=∠=∠=︒,①90FBC EDC∠=∠=︒,①ED FB t==,在EDC△和FBC中,90CD CBFBC EDCED FB=⎧⎪∠=∠=︒⎨⎪=⎩①()EDC FBC SAS≌△△,①CE CF=,ECD BCF=∠∠,①90ECD BCE∠+∠=︒,①90BCF BCE∠+∠=︒,即:90ECF∠=︒,①CE CF=,CE CF⊥,(2)解:连接CE,如图①CE CF=,CE CF⊥,①45CEF∠=︒,①45GPE∠=︒,①CEF GPE∠=∠,①CE GH∥,①GE CH∥,①四边形GECH是平行四边形,①217CE GH==,①CE CF =,①217CF =,①2234EF CF ==,①P 是EF 的中点,AFE △是直角三角形,①1342AP EF ==. 【点睛】本题考查正方形的性质,全等三角形的判定以及性质,平行四边形的判定及性质,直角三角形斜边上的中线等于斜边的一半.(1)的关键是证明()EDC FBC SAS ≌△△,(2)的关键是证明四边形GECH 是平行四边形.。

2022年中考数学专题复习:倍长中线法几何探究问题

2022年中考数学专题复习:倍长中线法几何探究问题

2022年中考数学专题复习:倍长中线法几何问题1.已知:多项式x2+4x+5可以写成(x﹣1)2+a(x﹣1)+b的形式.(1)求a,b的值;(2)△ABC的两边BC,AC的长分别是a,b,求第三边AB上的中线CD的取值范围.2.如图,O为四边形ABCD内一点,E为AB的中点,OA=OD,OB=OC,∠AOB+∠COD=180 .(1)若∠BOE=∠BAO,AB=OB的长;(2)用等式表示线段OE和CD之间的关系,并证明.3.某数学兴趣小组在一次活动中进行了探究试验活动,请你来加入.【探究与发现】如图1,延长∠ABC的边BC到D,使DC=BC,过D作DE∠AB交AC延长线于点E,求证:∠ABC∠∠EDC.【理解与应用】如图2,已知在∠ABC中,点E在边BC上且∠CAE=∠B,点E是CD的中点,若AD 平分∠BAE.(1)求证:AC=BD;(2)若BD=3,AD=5,AE=x,求x的取值范围.4.如图1,在ABC 中,CM 是AB 边的中线,BCN BCM ∠=∠交AB 延长线于点N ,2CM CN =.(1)求证AC BN =;(2)如图2,NP 平分ANC ∠交CM 于点P ,交BC 于点O ,若120AMC ∠=︒,CP kAC =,求CPCM的值.5.(1)如图1,△ABC 中,AD 为中线,求证:AB +AC >2AD ;(2)如图2,△ABC中,D为BC的中点,DE∠DF交AB、AC于E、F.求证:BE+CF>EF.6.(1)方法学习:数学兴趣小组活动时,张老师提出了如下问题:如图1,在△ABC 中,AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法(如图2),∠延长AD到M,使得DM=AD;∠连接BM,通过三角形全等把AB、AC、2AD转化在△ABM中;∠利用三角形的三边关系可得AM的取值范围为AB﹣BM<AM<AB+BM,从而得到AD的取值范围是;方法总结:上述方法我们称为“倍长中线法”.“倍长中线法”多用于构造全等三角形和证明边之间的关系.(2)请你写出图2中AC与BM的数量关系和位置关系,并加以证明.(3)深入思考:如图3,AD是△ABC的中线,AB=AE,AC=AF,∠BAE=∠CAF=90°,请直接利用(2)的结论,试判断线段AD与EF的数量关系,并加以证明.7.如图,点P是∠MON内部一点,过点P分别作P A∠ON交OM于点A,PB∠OM交ON于点B(P A≥PB),在线段OB上取一点C,连接AC,将∠AOC沿直线AC翻折,得到∠ADC,延长AD交PB于点E,延长CD交PB于点F.(1)如图1,当四边形AOBP是正方形时,求证:DF=PF;(2)如图2,当C为OB中点时,试探究线段AE,AO,BE之间满足的数量关系,并说明理由;(3)如图3,在(2)的条件下,连接CE,∠ACE的平分线CH交AE于点H,设OA=a,BE=b,若∠CAO=∠CEB,求∠CDH的面积(用含a,b的代数式表示).8.(1)基础应用:如图1,在△ABC中,AB=5,AC=7,AD是BC边上的中线,延长AD到点E使DE=AD,连接CE,把AB,AC,2AD利用旋转全等的方式集中在△ACE中,利用三角形三边关系可得AD的取值范围是;(2)推广应用:应用旋转全等的方式解决问题如图2,在△ABC中,AD是BC边上的中线,点E,F分别在AB,AC上,且DE∠DF,求证:BE+CF>EF;(3)综合应用:如图3,在四边形ABCD中,AB=AD,∠B+∠ADC=180°且∠EAF=1∠BAD,试问线段EF、BE、FD具有怎样的数量关系,并证明.29.(1)阅读理解:如图1,在∠ABC中,若AB=5,AC=8,求BC边上的中线AD的取值范围.小聪同学是这样思考的:延长AD至E,使DE=AD,连接BE.利用全等将边AC转化到BE,在∠BAE中利用三角形三边关系即可求出中线AD的取值范围.在这个过程中小聪同学证三角形全等用到的判定方法是_________,中线AD的取值范围是_________;(2)问题解决:如图2,在∠ABC中,点D是BC的中点,点M在AB边上,点N在AC边上,若DM∠DN.求证:BM+CN>MN;(3)问题拓展:如图3,在∠ABC中,点D是BC的中点,分别以AB,AC为直角边向∠ABC外作Rt∠ABM和Rt∠ACN,其中∠BAM=∠NAC=90°,AB=AM,AC=AN,连接MN,探索AD与MN的关系,并说明理由.10.如图,在等边∠ABC中,点D,E分别是AC,AB上的动点,且AE=CD,BD交CE于点P.(1)如图1,求证:∠BPC=120°;(2)点M是边BC的中点,连接P A,PM,延长BP到点F,使PF=PC,连接CF,∠如图2,若点A,P,M三点共线,则AP与PM的数量关系是.∠如图3,若点A,P,M三点不共线,问∠中的结论还成立吗?若成立,请给出证明,若不成立,说明理由.11.阅读下面的题目及分析过程,并按要求进行证明.已知:如图,点E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB =CD .分析:证明两条线段相等,常用的方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等,因此,要证AB =CD ,必须添加适当的辅助线,构造全等三角形或等腰三角形.(1)现给出如下两种添加辅助线的方法,请任意选出其中一种,对原题进行证明. ∠如图1,延长DE 到点F ,使EF =DE ,连接BF ;∠如图2,分别过点B 、C 作BF ∠DE ,CG ∠DE ,垂足分别为点F ,G . (2)请你在图3中添加不同于上述的辅助线,并对原题进行证明.12.(1)方法呈现:如图∠:在ABC 中,若6AB =,4AC =,点D 为BC 边的中点,求BC 边上的中线AD 的取值范围.解决此问题可以用如下方法:延长AD 到点E 使DE AD =,再连接BE ,可证ACD EBD △≌△,从而把AB 、AC ,2AD 集中在ABE △中,利用三角形三边的关系即可判断中线AD 的取值范围是_______________,这种解决问题的方法我们称为倍长中线法;(2)探究应用:如图∠,在ABC 中,点D 是BC 的中点,DE DF ⊥于点D ,DE 交AB 于点E ,DF 交AC 于点F ,连接EF ,判断BE CF +与EF 的大小关系并证明; (3)问题拓展:如图∠,在四边形ABCD 中,//AB CD ,AF 与DC 的延长线交于点F 、点E 是BC 的中点,若AE 是BAF ∠的角平分线.试探究线段AB ,AF ,CF 之间的数量关系,并加以证明.13.在等腰Rt∠ABC中∠ABC=90°,BA=BC,在等腰Rt∠CDE中∠CDE=90°,DE=DC,连接AD,点F是线段AD的中点.(1)如图1,连接BF,当点D和点E分别在BC边和AC边上时,若AB=3,CE=2BF的长.ED.(2)如图2,连接BE、BD、EF,当∠DBE=45°时,求证:EF=1214.(1)如图1.在Rt△ACB中,∠ACB=90°,AC=8,BC=6,点D、E分别在边CA,CB上且CD=3,CE=4,连接AE,BD,F为AE的中点,连接CF交BD于点G,则线段CG所在直线与线段BD所在直线的位置关系是.(提示:延长CF 到点M,使FM=CF,连接AM)(2)将△DCE绕点C逆时针旋转至图2所示位置时,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将△DCE绕点C逆时针在平面内旋转,在旋转过程中,当B,D,E三点在同一条直线上时,CF的长为.⊥,交AC于点E,交AB于15.已知:在矩形ABCD中,连接AC,过点D作DF AC点F.(1)如图1,若tan ACD∠=∠求证:AF BF=;∠连接BE,求证:CD=.∠的值.(2)如图2,若2AF AB BF=⋅,求cos FDC16.【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,ABC 中,若8AB =,6AC =,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD 到点E ,使DE AD =,请根据小明的方法思考: (1)由已知和作图能得到ADC ∠EDB △的理由是______. (2)求得AD 的取值范围是______. 【感悟】解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中. 【问题解决】(3)如图2,在ABC 中,点D 是BC 的中点,点M 在AB 边上,点N 在AC 边上,若DM DN ⊥,求证:BM CN MN +>.17.在ABC ∆与CDE ∆中,90ACB CDE ∠=∠=︒,AC BC ==2CD ED ==,连接,AE BE ,点F 为AE 的中点,连接DF ,CDE ∆绕着点C 旋转.(1)如图1,当点D 落在AC 的延长线上时,DF 与BE 的数量关系是:__________; (2)如图2,当CDE ∆旋转到点D 落在BC 的延长线上时,DF 与BE 是否仍有具有(1)中的数量关系,如果具有,请给予证明;如果没有,请说明理由;(3)旋转过程中,若当105BCD ∠=︒时,直接写出2DF 的值.18.某数学兴趣小组在一次活动中进行了探究试验活动,请你来加入.【探究与发现】(1)如图1,AD 是ABC 的中线,延长AD 至点E ,使ED AD =,连接BE ,证明:ACD EBD △≌△.【理解与应用】(2)如图2,EP 是DEF 的中线,若5EF =,3DE =,设EP x =,则x 的取值范围是________.(3)如图3,AD 是ABC 的中线,E 、F 分别在AB 、AC 上,且DE DF ⊥,求证:BE CF EF +>.19.已知,在Rt ABC △中,90BAC ∠=︒,点D 为边AB 的中点,AE CD ⊥分别交CD ,BC 于点F ,E .(1)如图1,∠若AB AC =,请直接写出EAC BCD ∠-∠=______; ∠连接DE ,若2AE DE =,求证:DEB AEC ∠=∠;(2)如图2,连接FB ,若FB AC =,试探究线段CF 和DF 之间的数量关系,并说明理由.。

2020年九年级数学中考几何探究型问题:线段最值问题——“费马点”问题(含答案)

2020年九年级数学中考几何探究型问题:线段最值问题——“费马点”问题(含答案)

几何探究型问题(针对第25题)线段最值问题“费马点”问题【问题背景】“费马点”——就是到三角形三个顶点的距离之和最小的点.“费马点”问题在中考考查时主要隐藏在求PA+PB+PC的最小值问题,通常将某三角形绕点旋转一定的角度,从而将三条线段转化在同一条直线上,利用两点之间线段最短解决问题.【模型分析】对于一个各角不超过120°的三角形,“费马点”是对各边的张角都是120°的点,对于有一个角超过120°的三角形,费马点就是这个内角的顶点.费马点P使它到△ABC三个顶点的距离之和PA+PB+PC最小,这就是所谓的“费马”问题.如图,将△APC绕点A逆时针旋转60°到△AP′C′,则可以构造出等边三角形APP′,从而得到AP=PP′,CP=C′P′,所以将PA+PB+PC的值转化为PP′+PB+P′C′的值,则线段BC′的长即为所求的最小值.例题1.如图,已知点P为等边三角形ABC外接圆的劣弧BC上任意一点,求证:PB+PC=PA.证明:如答图,在P A上截取PM=PC,连接CM.∵△ABC 是等边三角形,∴∠ABC =∠ACB =60°,BC =AC .∵∠ABC =∠APC ,∴∠MPC =60°,∴△MPC 是等边三角形,∴∠MCP =60°,MC =PC ,∴∠ACM =∠BCP .在△BPC 和△AMC 中,⎩⎪⎨⎪⎧ BC =AC ,∠BCP =∠ACM ,PC =MC ,∴△BPC ≌△AMC (SAS),∴BP =AM ,∴PB +PC =AM +PM =P A .2.已知三个村庄A ,B ,C 构成了如图所示的△ABC(其中∠A ,∠B ,∠C 均小于120°),现选取一点P 作为打水井,使水井P 到三个村庄A ,B ,C 所铺设的输水管总长度最小.求输水管总长度的最小值.解:如答图,以BC 为边在△ABC 的外部作等边三角形BCD ,连接AD .∴AD 的长就是△ABC 的费马距离.易得∠ABD =90°,∴AD =AB 2+BD 2=5(km).答:输水管总长度的最小值为5 km.练习(2019·陕师大附中六模)问题提出(1)如图1,在△ABC 中,BC =2,将△ABC 绕点B 顺时针旋转60°得到△A ′BC ′,则CC ′=______.【解答】由旋转的性质可知∠CBC ′=60°,BC ′=BC ,则∠△BCC ′是等边三角形,故CC ′=BC =2.问题探究(2)如图2,在△ABC中,AB=BC=3,∠ABC=30°,点P为△ABC内一点,连接PA,PB,PC,求PA+PB+PC的最小值,并说明理由.解题思路将△ABP绕点B逆时针旋转60°得到△EBF,连接PF,EC.易证PA+PB+PC=EF+PF+PC;由PC+PF+EF≥EC,推出当点P,F在直线EC上时,PA+PB+PC的值最小,即为EC的长,求出EC的长即可解决问题.【解答】如答图1,将△ABP绕点B逆时针旋转60°得到△EBF,连接PF,EC.由旋转的性质可知△PBF是等边三角形,∴PB=PF.∵P A=EF,∴P A+PB+PC=EF+PF+PC.∵PC+PF+EF≥EC,∴当点P,F在直线EC上时,P A+PB+PC的值最小,易得BC=BE=BA=3,∠CBE=90°,∴EC=2BC=32,∴P A+PB+PC的最小值为3 2.问题解决(3)如图3,在四边形ABCD中,AD∥BC,AB=6,AD=4,∠ABC=∠BCD=60°.在四边形ABCD内部有一点P,满足∠APD=120°,连接BP,CP,点Q为△BPC内的任意一点,是否存在一点P和一点Q,使得PQ+BQ+CQ有最小值?若存在,请求出这个最小值;若不存在,请说明理由.解题思路将△PBQ绕点B逆时针旋转60°得到△EBG,则PQ=EG,△BQG是等边三角形,易知PQ+BQ+CQ=EG+GQ+QC≥EC,推出当EC取得最小值时,PQ +BQ +CQ 的值最小.延长BA 交CD 的延长线于点S ,作△ADS 的外接圆⊙O ,将线段BO ,BP 绕点B 逆时针旋转60°得到线段BO ′,BE ,连接EO ′,OB ,OP .易证△BEO ′≌△BPO(SAS),推出EO ′=OP =433,故点E 在以点O ′为圆心,433为半径的圆上,则当点E 在线段CO ′上时,EC 的值最小,最小值为CO ′-EO ′的长.【解答】如答图2,将△PBQ 绕点B 逆时针旋转60°得到△EBG ,连接GQ ,EC ,则PQ =EG ,△BQG 是等边三角形,∴BQ =QG ,∴PQ +BQ +CQ =EG +GQ +QC ≥EC ,∴当EC 取得最小值时,PQ +BQ +CQ 的值最小.如答图3,延长BA 交CD 的延长线于点S ,作△ADS 的外接圆⊙O ,连接OB .将线段BO ,BP 绕点B 逆时针旋转60°得到线段BO ′,BE ,连接EO ′,OP.易证△BEO ′≌△BPO (SAS),∴EO ′=PO .∵∠APD +∠ASD =180°,∴A ,P ,D ,S 四点共圆,∴OP =433,∴EO ′=433, ∴点E 在以点O ′为圆心,433为半径的圆上, ∴当点E 在线段CO ′上时,EC 的值最小,最小值为CO ′-EO ′的长,连接OO ′,延长OO ′到点R ,使得O ′R =OO ′,连接BR ,则∠OBR =90°,作RH ⊥CB 交CB 的延长线于点H ,O ′T ⊥CH 于点T ,OM ⊥BC 于点M .易知在Rt △OBM 中,BM =5,OM =1133, ∴OB =OM 2+BM 2=1433, ∴BR =3OB =14.易知△BHR ∽△OMB ,∴RH BM =BR OB,∴RH =5 3.∵HR ∥O ′T ∥OM ,OO ′=RO ′,∴TM =TH ,∴O ′T =RH +OM 2=1333,∴BT =O ′B 2-O ′T 2=3, ∴CO ′=CT 2+O ′T 2=2633, ∴CE =CO ′-EO ′=2633-433=2233, ∴PQ +BQ +CQ 的最小值为2233.类型三 “阿氏圆”问题【问题背景】“PA +k ·PB ”型的最值问题是近几年中考考查的热点,更是一个难点.当k 的值为1时,即可转化为“PA +PB ”之和最短问题,就可用我们常见的“将军饮马”问题模型来处理,即可以转化为轴对称问题来处理.当k 取任意不为1的正数时,此类问题的处理通常以动点P 的运动轨迹不同来分类,一般分为两类研究,即点P 在直线上运动和点P 在圆上运动.其中点P 在圆周上运动的类型称之为“阿氏圆”问题.【模型分析】如图1,⊙O 的半径为r ,点A ,B 都在⊙O 外,P 为⊙O 上一动点,已知r =k ·OB ,连接PA ,PB ,则当PA +k ·PB 的值最小时,点P 的位置如何确定?如图2,在线段OB 上截取OC ,使OC =k ·r ,则可证明△BPO 与△PCO 相似,即k ·PB =PC .故求PA +k ·PB 的最小值可以转化为PA +PC 的最小值,其中A ,C 为定点,P 为动点,当点P ,A ,C 共线时,PA +PC 的值最小,如图3.“阿氏圆”模型解题策略:第一步:连接动点与圆心O(一般将含有k 的线段两端点分别与圆心O 相连),即连接OB ,OP ;第二步:计算线段OP 与OB 及OP 与OA 的线段比,找到线段比为k 的情况,如例子中的OP OB =k ; 第三步:在OB 上取点C ,使得OC OP =OP OB ;第四步:连接AC ,与⊙O 的交点即为点P .例题如图,在Rt △ABC 中,∠ACB =90°,CB =4,CA =6,⊙C 的半径为2,P 为圆上一动点,连接AP ,BP ,求AP +12BP 的最小值. 解:如答图,连接CP ,在CB 上取点D ,使CD =1,连接AD ,PD .∵CD CP =CP BC =12,∠PCD =∠BCD , ∴△PCD ∽△BCP ,∴PD BP =12, ∴PD =12BP ,∴AP +12BP =AP +PD , ∴要使AP +12BP 最小,则AP +PD 最小, 当点A ,P ,D 在同一条直线时,AP +PD 最小,即AP +12BP 的最小值为AD 的长. 在Rt △ACD 中,∵CD =1,AC =6,∴AD =AC 2+CD 2=37,∴AP +12BP 的最小值为37. 练习问题提出(1)如图1,已知线段AB 和BC ,AB =2,BC =5,则线段AC 的最小值为______.解题思路当点A 在线段BC 上时,线段AC 有最小值.【解答】∵当点A 在线段BC 上时,线段AC 有最小值,∴线段AC 的最小值为5-2=3.问题探究(2)如图2,已知在扇形COD 中,∠COD =90°,DO =CO =6,A 是OC的中点,延长OC 到点F ,使CF =OC ,P 是CD ︵上的动点,点B 是OD 上的一点,BD =1.①求证:△OAP ∽△OPF .解题思路由题意可得OA OP =OP OF =12,由相似三角形的判定可得△OAP ∽△OPF . 【解答】∵A 是OC 的中点,DO =CO =6=OP ,∴OA OP =12. ∵CF =OC ,∴OF =2OC =2OP ,∴OP OF =12, ∴OA OP =OP OF,且∠AOP =∠POF ,∴△OAP ∽△OPF .②求BP +2AP 的最小值.解题思路由相似三角形的性质可得PF =2AP ,可得BP +2AP =BP +PF ,即当F ,P ,B 三点共线时,BP +2AP 有最小值,最小值为BF 的长,由勾股定理即可求解.【解答】∵△OAP ∽△OPF ,∴AP PF =OP OF =12, ∴PF =2AP .∵BP +2AP =BP +PF ,∴当F ,P ,B 三点共线时,BP +2AP 有最小值,最小值为BF 的长.∵DO =CO =6,BD =1,∴BO =5,OF =12,∴BF =OB 2+OF 2=13.问题解决(3)如图3,有一个形状为四边形ABCD 的人工湖,BC =9千米,CD =4千米,∠BCD =150°,现计划在湖中选取一处建造一座假山P ,且BP =3千米,为方便游客观光,从C ,D 分别建小桥PD ,PC .已知建桥PD 每千米的造价是3万元,建桥PC 每千米的造价是1万元,建桥PD 和PC 的总造价是否存在最小值?若存在,请确定点P 的位置,并求出总造价的最小值,若不存在,请说明理由.(桥的宽度忽略不计)解题思路以点B 为圆心,3为半径作圆交AB 于点E ,交BC 于点F ,点P 为EF ︵上一点,连接BP ,PC ,PD ,在BC 上截取BM =1,连接MD ,PM ,过点D 作DG ⊥CB ,可证△BPM ∽△BCP ,可得PC =3PM ,当点P 在线段MD 上时,建桥PD 和PC 的总造价有最小值,由勾股定理可求MD 的值,即可求出建桥PD 和PC 的总造价的最小值.【解答】存在.如答图,以点B 为圆心,3为半径作圆交AB 于点E ,交BC 于点F ,P 为EF ︵上一点,连接BP ,PC ,PD ,在BC 上截取BM =1,连接MD ,PM ,过点D 作DG ⊥BC 交BC 的延长线于点G .∵BM BP =13=BP BC,且∠PBM =∠CBP , ∴△BPM ∽△BCP ,∴PM CP =BM BP =13,∴PC =3PM . ∵建桥PD 和PC 的总造价为3PD +PC =3PD +3PM =3(PD +PM ),∴当点P 在线段MD 上时,建桥PD 和PC 的总造价有最小值.∵∠BCD =150°,∴∠DCG =30°.∵DG ⊥BC ,∴DG =12DC =23(千米),CG =3DG =6(千米), ∴MG =BC +CG -BM =9+6-1=14(千米),∴MD =DG 2+MG 2=413(千米),∴建桥PD 和PC 的总造价的最小值为3×413=1213万元.作业5.(2019·交大附中三模)问题提出(1)如图1,点M ,N 是直线l 外两点,在直线l 上找一点K ,使得MK +NK 最小. 问题探究(2)如图2,在等边三角形ABC 内有一点P ,且P A =3,PB =4,PC =5,求∠APB 的度数.问题解决(3)如图3,矩形ABCD是某公园的平面图,AB=30 3 米,BC=60米,现需要在对角线BD上修一凉亭E,使得到公园出口A,B,C的距离之和最小.问:是否存在这样的点E?若存在,请画出点E的位置,并求出EA+EB+EC的最小值;若不存在,请说明理由.解:(1)如答图1,连接MN,与直线l交于点K,点K即为所求.(2)如答图2,把△APB绕点A逆时针旋转60°得到△AP′C,连接PP′.由旋转的性质,得P′A=P A=3,P′C=PB=4,∠P AP′=60°,∠AP′C=∠APB,∴△APP′是等边三角形,∴PP′=P A=3,∠AP′P=60°.∵PP′2+P′C2=32+42=25,PC2=52=25,∴PP′2+P′C2=PC2,∴△PP′C为直角三角形,且∠PP′C=90°,∴∠AP′C=∠AP′P+∠PP′C=60°+90°=150°,∴∠APB=∠AP′C=150°.(3)存在.如答图3,把△ABE绕点B逆时针旋转60°得到△A′BE′,连接EE′.答图由旋转的性质,得A′B=AB=30 3 米,BE′=BE,A′E′=AE,∠E′BE=60°,∠A′BA=60°,∴△E′BE是等边三角形,∴BE=EE′,∴EA +EB +EC =A ′E ′+EE ′+EC .根据两点之间线段最短,可知当EA +EB +EC =A ′C 时最短,连接A ′C ,与BD 的交点E 2即为所求,此时EA +EB +EC 最短,最短距离为A ′C 的长度.过点A ′作A ′G ⊥CB 交CB 的延长线于点G . ∵∠A ′BG =90°-∠A ′BA =90°-60°=30°, A ′G =12A ′B =12AB =12×303=153(米),∴GB =3A ′G =3×153=45(米), ∴GC =GB +BC =45+60=105(米).在Rt △A ′GC 中,A ′C =A ′G 2+GC 2=(153)2+1052=3013(米), 因此EA +EB +EC 的最小值为3013 米. 6.问题提出(1)如图1,已知△OAB 中,OB =3,将△OAB 绕点O 逆时针旋转90°得△OA ′B ′,连接BB ′,则BB ′=问题探究(2)如图2,已知△ABC 是边长为43的等边三角形,以BC 为边向外作等边三角形BCD ,P 为△ABC 内一点,将线段CP 绕点C 逆时针旋转60°,点P 的对应点为点Q .①求证:△DCQ ≌△BCP . ②求P A +PB +PC 的最小值. 问题解决(3)如图3,某货运场为一个矩形场地ABCD ,其中AB =500米,AD =800米,顶点A ,D 为两个出口,现在想在货运广场内建一个货物堆放平台P ,在BC 边上(含B ,C 两点)开一个货物入口M ,并修建三条专用车道P A ,PD ,PM .若修建每米专用车道的费用为10 000元,当M ,P 建在何处时,修建专用车道的费用最少?最少费用为多少?(结果保留根号)解:(1)由旋转的性质,得∠BOB ′=90°,OB =OB ′=3, 根据勾股定理,得BB ′=3 2. (2)①证明:∵△BDC 是等边三角形, ∴CD =CB ,∠DCB =60°.由旋转的性质,得∠PCQ =60°,PC =QC , ∴∠DCQ =∠BCP .在△DCQ 和△BCP 中,⎩⎪⎨⎪⎧CD =CB ,∠DCQ =∠BCP ,CQ =CP ,∴△DCQ ≌△BCP (SAS). ②如答图1,连接AD ,PQ . ∵PC =CQ ,∠PCQ =60°,∴△CPQ 是等边三角形,∴PQ =PC , 由①知DQ =PB ,∴P A +PB +PC =P A +QD +PQ ,由两点之间线段最短,得P A +QD +PQ ≥AD , ∴P A +PB +PC ≥AD ,∴当点A ,P ,Q ,D 在同一条直线上时,P A +PB +PC 取得最小值,即为AD 的长,过点D 作DE ⊥AC ,交AC 的延长线于点E . ∵△ABC 是边长为43的等边三角形, ∴CB =AC =43,∠BCA =60°, ∴CD =CB =43,∠DCE =60°, ∴DE =6,∠DAE =∠ADC =30°, ∴AD =12,即P A +PB +PC 的最小值为12.答图(3)如答图2,将△ADP 绕点A 逆时针旋转60°,得△AD ′P ′.由(2)知,当点M ,P ,P ′,D ′在同一条直线上时,P A +PM +PD 最小,最小值为D ′M 的长.∵M 在BC 上,∴当D ′M ⊥BC 时,D ′M 取得最小值. 设D ′M 交AD 于点E ,连接DD ′,AM ,DM . 易知△ADD ′是等边三角形,∴EM =AB =500米, ∴BM =400米,PM =EM -PE =(500-40033)米,∴D ′E =32AD =4003(米),∴D ′M =(4003+500)米, ∴最少费用为10 000×(4003+500)= 1 000 000(43+5)元.∴当M 建在BC 的中点(BM =400米)处,点P 在过M 且垂直于BC 的直线上,且在M上方(500-40033)米处时,修建专用车道的费用最少,最少费用为1 000 000(43+5)元.类型三 “阿氏圆”问题7.(2018·西工大附中三模) 问题提出(1)如图1,在△ABC 中,AB =AC ,BD 是AC 边的中线,请用尺规作图作出AB 边的中线CE ,并证明BD =CE ;问题探究(2)如图2,已知点P 是边长为6的正方形ABCD 内部一动点,P A =3,求PC +12PD 的最小值;问题解决(3)如图3,在矩形ABCD 中,AB =18,BC =25,点M 是矩形内部一动点,MA =15,当MC +35MD 最小时,画出点M 的位置,并求出MC +35MD 的最小值.解:(1)如答图1,线段EC 即为所求.证明:∵AB =AC ,AE =EB ,AD =CD ,∴AE =AD , 在△BAD 和△CAE 中,⎩⎪⎨⎪⎧AB =AC ,∠A =∠A ,AD =AE ,答图1∴△BAD ≌△CAE (SAS),∴BD =CE . (2)如答图2,在AD 上截取AE ,使得AE =32.∵P A 2=9,AE ·AD =32×6=9,∴P A 2=AE ·AD ,∴P A AD =AEP A.∵∠P AE =∠DAP ,∴△P AE ∽△DAP , ∴PE DP =P A DA =12,∴PE =12PD , ∴PC +12PD =PC +PE .∵PC +PE ≥EC ,∴PC +12PD 的最小值即为EC 的长,在Rt △CDE 中,∵∠CDE =90°,CD =6,DE =92,∴EC =62+(92)2=152,∴PC +12PD 的最小值为152.答图(3)如答图3,在AD 上截取AE ,使得AE =9. ∵MA 2=225,AE ·AD =9×25=225,∴MA 2=AE ·AD ,∴MA AD =AEMA.∵∠MAE =∠DAM ,∴△MAE ∽△DAM , ∴EM MD =MA DA =1525=35,∴ME =35MD , ∴MC +35MD =MC +ME .∵MC +ME ≥EC ,∴MC +35MD 的最小值即为EC 的长.如答图3,以点A 为圆心,AM 长为半径画弧,交EC 于点M ′,点M ′即为所求. 在Rt △CDE 中,∵∠CDE =90°,CD =18,DE =16, ∴EC =162+182=2145, ∴MC +35MD 的最小值为2145.8.(1)如图1,已知正方形ABCD 的边长为4,⊙B 的半径为2,P 是⊙B 上的一个动点,求PD +12PC 的最小值和PD -12PC 的最大值;(2)如图2,已知正方形ABCD 的边长为9,⊙B 的半径为6,P 是⊙B 上的一个动点,那么PD +23PC 的最小值为,PD -23PC 的最大值为(3)如图3,已知菱形ABCD 的边长为4,∠B =60°,⊙B 的半径为2,P 是⊙B 上的一个动点,那么PD +12PC 的最小值为,PD -12PC 的最大值为解:(1)如答图1,在BC 上取一点G ,使得BG =1,连接PB ,PG ,DG .∵PB BG =CBPB=2,∠PBG =∠CBP , ∴△PBG ∽△CBP , ∴PG CP =BG BP =12,∴PG =12PC , ∴PD +12PC =PD +PG .∵PD +PG ≥DG ,∴当D ,P ,G 三点共线时,PD +12PC 的值最小,最小值为DG =42+32=5.∵PD -12PC =PD -PG ≤DG ,∴如答图2,当点P 在DG 的延长线上时,PD -12PC 的值最大,最大值为5.答图(2)106,106.【解法提示】如答图3,在BC 上取一点G ,使BG =4,连接PG ,PB ,DG . ∵PB BG =64=32,CB PB =96=32,∴PB BG =CB BP. ∵∠PBG =∠CBP ,∴△PBG ∽△CBP , ∴PG CP =BG BP =23, ∴PG =23PC ,∴PD +23PC =DP +PG .∵DP +PG ≥DG ,∴当D ,P ,G 三点共线时,PD +23PC 的值最小,最小值为DG =52+92=106.∵PD -23PC =PD -PG ≤DG ,∴当点P 在DG 的延长线上时,PD -12PC 的值最大,最大值为106.答图(3)37,37.【解法提示】如答图4,在BC 上取一点G ,使得BG =1,连接PB ,PG ,DG ,作DF ⊥BC 交BC 的延长线于点F .∵PB BG =21=2,BC PB =42=2,∴PB BG =CB BP. ∵∠PBG =∠CBP ,∴△PBG ∽△CBP , ∴PG CP =BG BP =12, ∴PG =12PC ,∴PD +12PC =DP +PG .∵DP +PG ≥DG ,∴当D ,P ,G 三点共线时,PD +12PC 的值最小,最小值为DG 的长.在Rt △CDF 中,∵∠DCF =60°,CD =4, ∴DF =CD ·sin60°=23,CF =2,∴在Rt △GDF 中,DG =(23)2+52=37. ∴PD +12PC 的最小值为37.∵PD -12PC =PD -PG ≤DG ,∴当点P 在DG 的延长线上时,PD -12PC 的值最大,最大值为37.。

中考数学专题复习_几何探究题

中考数学专题复习_几何探究题

专题复习几何探究问题一、结论探究【例1】如图①,已知△ABC是等腰直角三角形,∠BAC=900,点D是BC中点,作正方形DEFG,使点A、C分别在DG和DE上,连接AE、BG(1)试猜想线段BG和AE的数量关系,请直接写出你得到的结论(2)将正方形DEFG绕点D逆时针旋转一定角度后(旋转角大于00,小于或等于3600),如图②,通过观察和测量等方法判断(1)中的结论是否仍然成立如果成立,请予以证明;如果不成立,请说明理由。

(3)若BC=DE=2,在(2)的旋转过程中,当AE为最大值时,求AF的值。

'变式练习:已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)直接写出线段EG与CG的数量关系;(2)将图1中△BEF绕B点逆时针旋转45º,如图2所示,取DF中点G,连接EG,CG.你在(1)中得到的结论是否发生变化写出你的猜想并加以证明.(3)将图1中△BEF绕B点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的结论是否仍然成立(不要求证明)| A D]G图1FA[EG图2、AE图3DFEC BAB'C'二、条件探究【例2】已知两个全等的直角三角形纸片ABC 、DEF ,如图(1)放置,点B 、D 重合,点F 在BC 上,AB 与EF 交于点G ,∠C=∠EFB=900,∠E=∠ABC=300,AB=DE=4 (1)求证:△EGB 是等腰三角形(2)若纸片DEF 不动,问△ABC 绕点F 旋转最小 度时,四边形ACDE 成为以ED 为底的梯形(如图(2)),求此梯形的高。

,【例3】如图,Rt △AB C 是由Rt △ABC 绕点A 顺时针旋转得到的,连结CC 交斜边于点E ,CC 的延长线交BB 于点F . |(1)证明:△ACE ∽△FBE ;(2)设∠ABC =α,∠CAC =β,试探索α、β满足什么关系时,△ACE 与△FBE 是全等三角形,并说明理由.;E图1A:CD图2三、类比探究 【例4】(1)操作发现:如图,矩形ABCD 中,E 是AD 的中点,将△ABE 沿BE 折叠后得到△GBE ,且点G 在举行ABCD 内部.小明将BG 延长交DC 于点F ,认为GF =DF ,你同意吗说明理由. (2)问题解决:保持(1)中的条件不变,若DC =2DF ,求ABAD的值; /(3)类比探求:保持(1)中条件不变,若DC =nDF ,求ABAD的值.【例5】如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称为这个平面图形的一条面积等分线.如,平行四边形的一条对线所在的直线就是平行四边形的一条面积等分线.(1)三角形的中线、高线、角平分线分别所在的直线一定是三角形的面积等分线的有________;((2)如图1,梯形ABCD 中,AB ∥DC ,如果延长DC 到E ,使CE =AB ,连接AE ,那么有S 梯形ABCD=S △ABE .请你给出这个结论成立的理由,并过点A 作出梯形ABCD 的面积等分线(不写作法,保留作图痕迹);(3)如图,四边形ABCD 中,AB 与CD 不平行,S △ADC >S △ABC ,过点A 能否作出四边形ABCD 的面积等分线若能,请画出面积等分线,并给出证明;若不能,说明理由.AB。

中考数学重难点题型:12道几何探究题解析

中考数学重难点题型:12道几何探究题解析

中考数学重难点题型---12道几何探究题解析考点1 三角形几何探究1.如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“准互余三角形”.(1)若△ABC 是“准互余三角形”,∠C >90°,∠A =60°,则∠B =15°;(2)如图1,在Rt △ABC 中,∠ACB =90°,AC =4,BC =5.若AD 是∠BAC 的平分线,不难证明△ABD 是“准互余三角形”.试问在边BC 上是否存在点E(异于点D),使得△ABE 也是“准互余三角形”?若存在,请求出BE 的长;若不存在,请说明理由.(3)如图2,在四边形ABCD 中,AB =7,CD =12,BD ⊥CD ,∠ABD =2∠BCD ,且△ABC 是“准互余三角形”,求对角线AC 的长.解:(1)∵△ABC 是“准互余三角形”,∠C >90°,∠A =60°,∴2∠B +∠A =90°,解得∠B =15°. (2)如答图1,在Rt △ABC 中,∵∠B +∠BAC =90°,∠BAC =2∠BAD ,∴∠B +2∠BAD =90°, ∴△ABD 是“准互余三角形”. ∵△ABE 也是“准互余三角形”, ∴只有2∠B +∠BAE =90°.∵∠B +∠BAE +∠EAC =90°,∴∠CAE =∠B. ∵∠C =∠C =90°,∴△CAE ∽△CBA ,∴CA 2=CE·CB, ∴CE =165,∴BE =5-165=95.(3)如答图2,将△BCD沿BC翻折得到△BCF,∴CF=CD=12,∠BCF=∠BCD,∠CBF=∠CBD.∵∠ABD=2∠BCD,∠BCD+∠CBD=90°,∴∠ABD+∠DBC+∠CBF=180°,∴点A,B,F共线,∴∠A+∠ACF=90°,∴2∠ACB+∠CAB≠90°,∴只有2∠BAC+∠ACB=90°,∴∠FCB=∠FAC.∵∠F=∠F,∴△FCB∽△FAC,∴CF2=FB·FA,设FB=x,则有x(x+7)=122,∴x=9或x=-16(舍去),∴AF=7+9=16,在Rt△ACF中,AC=AF2+CF2=162+122=20.2.将一副三角尺按图1摆放,等腰直角三角尺的直角边DF恰好垂直平分AB,与AC相交于点G,BC=2 3 cm.(1)求GC的长;(2)如图2,将△DEF绕点D顺时针旋转,使直角边DF经过点C,另一直角边DE与AC相交于点H,分别过H,C作AB的垂线,垂足分别为M,N,通过观察,猜想MD与ND的数量关系,并验证你的猜想.(3)在(2)的条件下,将△DEF沿DB方向平移得到△D′E′F′,当D′E′恰好经过(1)中的点G时,请直接写出DD′的长度.解:(1)在Rt△ABC中,∵BC=23,∠B=60°,∴AC=BC·tan60°=6,AB=2BC=43,在Rt△ADG中,AG=ADcos30°=4,∴CG=AC-AG=6-4=2.(2)结论:DM+DN=2 3.理由:∵HM⊥AB,CN⊥AB,∴∠AMH=∠DMH=∠CNB=∠CND=90°.∵∠A+∠B=90°,∠B+∠BCN=90°,∴∠A=∠BCN,∴△AHM∽△CBN,∴AMCN=HMBN①,同理可证:△DHM∽△CDN,∴DNMH=CNDM②由①②可得AM·BN=DN·DM,∴DMAM=BNDN,∴DM+AMAM=BN+DNDN,∴ADAM=BDDN.∵AD=BD,∴AM=DN,∴DM+DN=AM+DM=AD=2 3.第2题答图(3)如答图,作GK∥DE交AB于K.在△AGK中,AG=GK=4,∠A=∠GKD=30°,作GH⊥AB于H.则AH=AG·cos30°=23,可得AK=2AH=43,此时K与B重合.∴DD′=DB=2 3.考点2四边形几何探究3.我们定义:有一组邻角相等且对角线相等的凸四边形叫做邻对等四边形.概念理解(1)我们所学过的特殊四边形中的邻对等四边形是矩形或正方形; 性质探究(2)如图1,在邻对等四边形ABCD 中,∠ABC =∠DCB ,AC =DB ,AB>CD ,求证:∠BAC 与∠CDB 互补;拓展应用(3)如图2,在四边形ABCD 中,∠BCD =2∠B ,AC =BC =5,AB =6,CD =4.在BC 的延长线上是否存在一点E ,使得四边形ABED 为邻对等四边形?如果存在,求出DE 的长;如果不存在,说明理由.(1)解:矩形或正方形.(2)证明:如答图1,延长CD 至E ,使CE =BA ,连接BE.在△ABC 和△ECB 中,⎩⎨⎧AB =EC ,∠ABC =∠ECB ,BC =CB ,∴△ABC ≌△ECB(SAS), ∴BE =CA ,∠BAC =∠E.∵AC =DB ,∴BD =BE ,∴∠BDE =∠E ,∴∠CDB +∠BDE =∠CDB +∠E =∠BAC +∠CDB =180°,即∠BAC 与∠CDB 互补.(3)解:存在这样一点E ,使得四边形ABED 为邻对等四边形,如答图2,在BC 的延长线上取一点E ,使得CE =CD =4,连接DE ,AE ,BD ,则四边形ABED 为邻对等四边形.理由如下:∵CE =CD ,∴∠CDE =∠CED. ∵∠BCD =2∠ABC ,∴∠ABC =∠DEB ,∴∠ACE =∠BCD.在△ACE 和△BCD 中,⎩⎨⎧AC =BC ,∠ACE =∠BCD ,CE =CD ,∴△ACE ≌△BCD(SAS),∴BD =AE ,四边形ABED 为邻对等四边形. ∵∠CBA =∠CAB =∠CDE =∠CED , ∴△ABC ∽△DEC , ∴AB BC =65=DE CE =DE 4,∴DE =245.4.将矩形ABCD 绕点A 顺时针旋转α(0°<α<360°),得到矩形AEFG.(1)如图,当点E 在BD 上时.求证:FD =CD ;(2)当α为何值时,GC =GB ?画出图形,并说明理由.解:(1)由旋转可得,AE =AB ,∠AEF =∠ABC =∠DAB =90°,EF =BC =AD ,∴∠AEB =∠ABE. ∵∠ABE +∠EDA =90°=∠AEB +∠DEF , ∴∠EDA =∠DEF.∵DE =ED ,∴△AED ≌△FDE(SAS), ∴DF =AE ,∵AE =AB =CD ,∴CD =DF.(2)当GB =GC 时,点G 在BC 的垂直平分线上,分两种情况讨论: ①当点G 在AD 右侧时,如答图1,取BC 的中点H ,连接GH 交AD 于M , ∵GC =GB ,∴GH ⊥BC ,∴四边形ABHM 是矩形, ∴AM =BH =12AD =12AG ,∴GM 垂直平分AD ,∴GD =GA =DA , ∴△ADG 是等边三角形,∴∠DAG =60°, ∴旋转角α=60°;②当点G 在AD 左侧时,如答图2,同理可得△ADG 是等边三角形,∴∠DAG =60°, ∴旋转角α=360°-60°=300°. 综上,α为60°或300°时,GC =GB.5.如图1,边长为4的正方形ABCD 中,点E 在AB 边上(不与点A ,B 重合),点F 在BC 边上(不与点B ,C 重合).第一次操作:将线段EF 绕点F 顺时针旋转,当点E 落在正方形上时,记为点G ; 第二次操作:将线段FG 绕点G 顺时针旋转,当点F 落在正方形上时,记为点H ; 依此操作下去…(1)图2中的△EFD 是经过两次操作后得到的,其形状为等边三角形,求此时线段EF 的长; (2)若经过三次操作可得到四边形EFGH.①请判断四边形EFGH 的形状为正方形,此时AE 与BF 的数量关系是AE =BF ;②以①中的结论为前提,设AE 的长为x ,四边形EFGH 的面积为y ,求y 与x 的函数关系式及面积y 的取值范围.解:(1)如题图2,由旋转性质可知EF =DF =DE ,则△DEF 为等边三角形. 在Rt △ADE 和Rt △CDF 中,⎩⎨⎧AD =CD ,DE =DF ,∴Rt △ADE ≌Rt △CDF(HL).∴AE =CF. 设AE =CF =x ,则BE =BF =4-x ∴△BEF 为等腰直角三角形.∴DE =DF =EF =2(4-x).在Rt △ADE 中,由勾股定理得AE 2+AD 2=DE 2,即x 2+42=[2(4-x)]2, 解得x 1=8-43,x 2=8+43(舍去). ∴EF =2(4-x)=46-4 2.△DEF 的形状为等边三角形,EF 的长为46-4 2.第5题答图(2)①四边形EFGH 的形状为正方形,此时AE =BF.理由如下:依题意画出图形,如答图所示,连接EG ,FH ,作HN ⊥BC 于N ,GM ⊥AB 于M. 由旋转性质可知,EF =FG =GH =HE , ∴四边形EFGH 是菱形, 由△EGM ≌△FHN ,可知EG =FH ,∴四边形EFGH 的形状为正方形,∴∠HEF =90°. ∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3. ∵∠3+∠4=90°,∠2+∠3=90°,∴∠2=∠4.在△AEH 和△BFE 中,⎩⎨⎧∠1=∠3,EH =EF ,∠2=∠4,∴△AEH ≌△BFE(ASA),∴AE =BF.②利用①中结论,易证△AEH ,△BFE ,△CGF ,△DHG 均为全等三角形, ∴BF =CG =DH =AE =x ,AH =BE =CF =DG =4-x.∴y =S 正方形ABCD -4S △AEH =4×4-4×12·x·(4-x)=2x 2-8x +16,∴y =2x 2-8x +16(0<x <4).∵y =2x 2-8x +16=2(x -2)2+8,∴当x =2时,y 取得最小值8;当x =0或4时,y =16.∴y的取值范围为8≤y<16.6.提出问题如图,已知在矩形ABCD中,AB=2,BC=3,点P是线段AD边上的一动点(不与端点A,D重合),连接PC,过点P作PE⊥PC交AB于点E,在点P的运动过程中,图中各角和线段之间是否存在某种关系和规律?特殊求解当点E为AB的中点,且AP>AE时,求证:PE=PC.深入探究当点P在AD上运动时,对应的点E也随之在AB上运动,求整个运动过程中BE的取值范围.解:特殊求解∵PE⊥PC,∴∠APE+∠DPC=90°.∵∠D=90°,∴∠DPC+∠DCP=90°.∴∠APE=∠DCP.∵∠A=∠D=90°,∴△APE∽△DCP,∴APDC=AEDP.设AP=x,则有DP=3-x.而AE=BE=1,∴x(3-x)=2×1,解得x1=2,x2=1.∵AP>AE,∴AP=2,AE=PD=1,∴△APE≌△DCP,∴PE=PC.深入探究设AP=x,AE=y,由AP·DP=AE·DC,可得x(3-x)=2y.∴y=12x(3-x)=-12x2+32x=-12(x-32)2+98.∴在0<x<3范围内,当x =32时,y 最大=98.∵当AE =y 取得最大值时,BE 取得最小值为2-98=78,∴BE 的取值范围为78≤BE<2.7.已知Rt △OAB ,∠OAB =90°,∠ABO =30°,斜边OB =4,将Rt △OAB 绕点O 顺时针旋转60°,如图1,连接BC.(1)填空:∠OBC =60°;(2)如图1,连接AC ,作OP ⊥AC ,垂足为P ,求OP 的长度;(3)如图2,点M ,N 同时从点O 出发,在△OCB 边上运动,M 沿O→C→B 路径匀速运动,N 沿O→B→C 路径匀速运动,当两点相遇时运动停止,已知点M 的运动速度为1.5单位/秒,点N 的运动速度为1单位/秒,设运动时间为x 秒,△OMN 的面积为y ,求当x 为何值时y 取得最大值.最大值为多少?解:(1)由旋转性质可知OB =OC ,∠BOC =60°, ∴△OBC 是等边三角形,∴∠OBC =60°.第7题答图1(2)如答图1中, ∵OB =4,∠ABO =30°, ∴OA =12OB =2,AB =3OA =23,∴S △AOC =12·OA·AB=12×2×23=2 3.∵△BOC 是等边三角形,∴∠OBC =60°,∠ABC =∠ABO +∠OBC =90°, ∴AC =AB 2+BC 2=2r(32+42)=27,∴OP =2S △AOC AC =4327=2217.第7题答图2(3)①当0<x≤83时,M 在OC 上运动,N 在OB 上运动,此时过点N 作NE ⊥OC 且交OC 于点E.如答图2,则NE =ON·sin60°=32x ,∴S △OMN =12·OM·NE=12×1.5x×32x ,∴y =338x 2,∴当x =83时,y 有最大值,最大值为833.第7题答图3②当83<x≤4时,M 在BC 上运动,N 在OB 上运动.如答图3,作MH ⊥OB 于H.则BM =8-1.5x ,MH =BM·sin60°=32(8-1.5x),∴y =12×ON×MH=-338x 2+23x.当x =83时,y 取得最大值,最大值为833.第7题答图4③当4<x≤4.8时,M,N都在BC上运动,作OG⊥BC于G.如答图4,MN=12-2.5x,OG=AB=23,∴y=12·MN·OG=123-532x,当x=4时,y有最大值,最大值为2 3.综上所述,y有最大值,最大值为83 3.8.在菱形ABCD中,∠ABC=60°,点P是射线BD上一动点,以AP为边向右侧作等边△APE,点E 的位置随着点P的位置变化而变化.(1)如图1,当点E在菱形ABCD内部或边上时,连接CE,BP与CE的数量关系是PB=EC,CE与AD 的位置关系是CE⊥AD;(2)当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理);(3)如图4,当点P在线段BD的延长线上时,连接BE.若AB=23,BE=219,求四边形ADPE的面积.解:(1)结论:PB=EC,CE⊥AD.理由:如答图1中,连接AC.∵四边形ABCD是菱形,∠ABC=60°,∴△ABC,△ACD都是等边三角形,∠ABD=∠CBD=30°.∵△APE是等边三角形,∴AB=AC,AP=AE,∠BAC=∠PAE=60°,∴△BAP≌△CAE,∴BP=CE,∠ABP=∠ACE=30°,延长CE交AD于H,∵∠CAH=60°,∴∠CAH+∠ACH=90°,∴∠AHC=90°,即CE⊥AD.第8题答图2(2)结论仍然成立.理由:如答图2,连接AC交BD于O,设CE交AD于H.∵四边形ABCD是菱形,∠ABC=60°,∴△ABC,△ACD都是等边三角形,∠ABD=∠CBD=30°.∵△APE是等边三角形,∴AB=AC,AP=AE,∠BAC=∠PAE=60°,∴△BAP≌△CAE,∴BP=CE,∠ABP=∠ACE=30°,∵∠CAH=60°,∴∠CAH+∠ACH=90°,∴∠AHC=90°,即CE⊥AD.(3)如答图3,连接AC 交BD 于点O ,连接CE 交AD 于点H , 由(2)可知EC ⊥AD ,CE =BP , 在菱形ABCD 中,AD ∥BC , ∴EC ⊥BC.∵BC =AB =23,BE =219, ∴在Rt △BCE 中,EC =2r(192-2r(3)2)=8,∴BP =CE =8.∵AC 与BD 是菱形的对角线, ∴∠ABD =12∠ABC =30°,AC ⊥BD ,∴BD =2BO =2AB·cos30°=6,∴OA =12AB =3,DP =BP -BD =8-6=2,∴OP =OD +DP =5,在Rt △AOP 中,AP =AO 2+OP 2=27, ∴S 四边形ADPE =S △ADP +S △AEP =12DP·AO+34·AP 2=12×2×3+34×(27)2=8 3.考点3 三角形、四边形混合几何探究9.我们把两条中线互相垂直的三角形称为“中垂三角形”,例如图1,图2,图3中,AF ,BE 是△ABC 的中线,AF ⊥BE ,垂足为P ,像△ABC 这样的三角形均称为“中垂三角形”,设BC =a ,AC =b ,AB =c.特例探索(1)如图1,当∠ABE =45°,c =22时,a =____25____,b =____25____. 如图2,当∠ABE =30°,c =4时,a =____213____,b =____27____. 归纳证明(2)请你观察(1)中的计算结果,猜想a 2,b 2,c 2三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式.拓展应用(3)如图4,在□ABCD中,点E,F,G分别是AD,BC,CD的中点,BE⊥EG,AD=25,AB=3,求AF的长.解:(1)∵AF⊥BE,∠ABE=45°,∴AP=BP=22AB=2.∵AF,BE是△ABC的中线,∴EF∥AB,EF=12AB=2,∴∠PFE=∠PEF=45°,∴PE=PF=1.在Rt△FPB和Rt△PEA中,AE=BF=12+22=5,∴AC=BC=25,∴a=b=2 5.如答图1,连接EF.同理可得EF=12×4=2.∵EF∥AB,∴△PEF∽△PBA,∴PFAP=PEPB=EFAB=12.在Rt△ABP中,AB=4,∠ABP=30°,∴AP=2,PB=23,∴PF=1,PE= 3.在Rt△APE和Rt△BPF中,AE=7,BF=13,∴a=213,b=27.(2)猜想:a2+b2=5c2,证明如下:如答图2,连接EF.设∠ABP=α,∴AP=csinα,PB=ccosα,由(1)同理可得PF=12PA=csinα2,PE=12PB=ccosα2, ∴AE 2=AP 2+PE 2=c 2sin 2α+c 2cos 2α4,BF 2=PB 2+PF 2=c 2cos 2α+c 2sin 2α4,∴(b 2)2=c 2sin 2α+c 2cos 2α4,(a 2)2=c 2sin 2α4+c 2cos 2α,∴a 24+b 24=c 2sin 2α4+c 2cos 2α+c 2sin 2α+c 2cos 2α4, ∴a 2+b 2=5c 2.(3)如答图3,连接AC ,EF 交于点H ,AC 与BE 交于点Q ,设BE 与AF 的交点为P. ∵点E ,G 分别是AD ,CD 的中点,∴EG ∥AC. ∵BE ⊥EG ,∴BE ⊥AC.∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC =25,∴∠EAH =∠FCH. ∵E ,F 分别是AD ,BC 的中点, ∴AE =12AD ,BF =12BC ,∴AE =BF =CF =12AD = 5.∵AE ∥BF ,∴四边形ABFE 是平行四边形, ∴EF =AB =3,AP =PF.在△AEH 和△CFH 中,⎩⎨⎧∠EAH =∠FCH ,∠AHE =∠FHC ,AE =CF ,∴△AEH ≌△CFH ,∴EH =FH ,∴EP ,AH 分别是△AFE 的中线,由(2)的结论得AF 2+EF 2=5AE 2,或连接F 与AB 的中点M ,证MF 垂直BP ,构造出“中垂三角形”,由AB =3,BC =12AD =5及(2)中的结论,直接可求AF.10.我们定义:如图1,在△ABC 中,把AB 绕点A 顺时针旋转α(0°<α<180°)得到AB′,把AC 绕点A 逆时针旋转β得到AC′,连接B′C′.当α+β=180°时,我们称△AB′C′是△ABC 的“旋补三角形”,△AB′C′边B′C′上的中线AD 叫做△ABC 的“旋补中线”,点A 叫做“旋补中心”.特例感知(1)在图2,图3中,△AB′C′是△ABC 的“旋补三角形”,AD 是△ABC 的“旋补中线”. ①如图2,当△ABC 为等边三角形时,AD 与BC 的数量关系为AD =12BC ;②如图3,当∠BAC =90°,BC =8时,则AD 长为4. 猜想论证(2)在图1中,当△ABC 为任意三角形时,猜想AD 与BC 的数量关系,并给予证明. 拓展应用(3)如图4,在四边形ABCD ,∠C =90°,∠D =150°,BC =12,CD =23,DA =6.在四边形内部是否存在点P ,使△PDC 是△PAB 的“旋补三角形”?若存在,给予证明,并求△PAB 的“旋补中线”长;若不存在,说明理由.图1 图2 图3 图4解:(1)①∵△ABC 是等边三角形,∴AB =BC =AC =AB′=AC′.∵DB′=DC′, ∴AD ⊥B′C′.∵∠BAC =60°,∠BAC +∠B′AC′=180°, ∴∠B′AC′=120°,∴∠B′=∠C′=30°, ∴AD =12AB′=12BC.②∵∠BAC =90°,∠BAC +∠B′AC′=180°,∴∠B′AC′=∠BAC=90°.∵AB=AB′,AC=AC′,∴△BAC≌△B′AC′,∴BC=B′C′.∵B′D=DC′,∴AD=12B′C′=12BC=4.(2)结论:AD=12 BC.证明如下:如答图1,延长AD到M,使得AD=DM,连接B′M,C′M.∵B′D=DC′,AD=DM,∴四边形AC′MB′是平行四边形,∴AC′=B′M=AC.第10题答图1∵∠BAC+∠B′AC′=180°,∠B′AC′+∠AB′M=180°,∴∠BAC=∠MB′A.∵AB=AB′,∴△BAC≌△AB′M,∴BC=AM,∴AD=12 BC.(3)存在.理由:如答图2,延长AD交BC的延长线于M,作BE⊥AD于E,作线段BC的垂直平分线交BE于P,交BC于F,连接PA,PD,PC,作△PCD的中线PN,第10题答图2连接DF交PC于O.∵∠ADC=150°,∴∠MDC=30°.在Rt△DCM中,CD=23,∠DCM=90°,∠MDC=30°,∴CM=2,DM=4,∠M=60°.在Rt△BEM中,∠BEM=90°,BM=14,∠MBE=30°,∴EM=12BM=7,∴DE=EM-DM=3.∵AD=6,∴AE=DE.∵BE⊥AD,∴PA=PD,PB=PC.在Rt△CDF中,CD=23,CF=6,∴tan∠CDF=3,∴∠CDF=60°=∠CPF,易证△FCP≌△CFD,∴CD=PF.∵CD∥PF.∴四边形CDPF是矩形,∴∠CDP=90°,∴∠ADP=∠ADC-∠CDP=60°,∴△ADP是等边三角形,∴∠ADP=60°.∵∠BPF=∠CPF=60°,∴∠BPC=120°,∴∠APD+∠BPC=180°,∴△PDC是△PAB的“旋补三角形”.在Rt△PDN中,∠PDN=90°,PD=AD=6,DN=3,∴PN=DN2+PD2=r(32+62)=39.考点4 多边形几何探究11.【图形定义】如图,将正n边形绕点A顺时针旋转60°后,发现旋转前后两图形有另一交点O,连接AO,我们称AO为“叠弦”;再将“叠弦”AO所在的直线绕点A逆时针旋转60°后,交旋转前的图形于点P,连接PO,我们称∠OAB为“叠弦角”,△AOP为“叠弦三角形”;【探究证明】(1)请在图1和图2中选择其中一个证明:“叠弦三角形”(△AOP)是等边三角形.(2)如图2,求证:∠OAB=∠OAE′;【归纳猜想】(3)图1、图2中的“叠弦角”的度数分别为15°,24°;(4)图n中,“叠弦三角形”是等边三角形(填“是”或“不是”);(5)图n中,“叠弦角”的度数为60°-180°n.(用含n的式子表示)解:(1)∵四边形ABCD是正方形,由旋转知,AD=AD′,∠D=∠D′=90°,∠DAD′=∠OAP=60°,∴∠DAP=∠D′AO,∴△APD≌△AOD′(ASA),∴AP=AO.∵∠OAP=60°,∴△AOP是等边三角形;第11题答图(2)如答图,作AM⊥DE于M,作AN⊥CB于N.∵五边形ABCDE是正五边形,由旋转知,AE=AE′,∠E=∠E′=108°,∠EAE′=∠OAP=60°,∴∠EAP=∠E′AO.在Rt△AEM和Rt△ABN中,∠AEM=∠ABN=72°,AE=AB,∴Rt△AEM≌Rt△ABN (AAS),∴∠EAM =∠BAN ,AM =AN.在Rt △APM 和Rt △AON 中,AP =AO ,AM =AN , ∴Rt △APM ≌Rt △AON (HL), ∴∠PAM =∠OAN ,∴∠PAE =∠OAB, ∴∠OAE′=∠OAB.(3)由(1)知,△APD ≌△AOD′, ∴∠DAP =∠D′AO.在Rt △AD′O 和Rt △ABO 中,⎩⎨⎧AD′=AB ,AO =AO ,∴Rt △AD′O≌Rt △ABO(HL), ∴∠D′AO=∠BAO.由旋转得,∠DAD′=60°.∵∠DAB =90°, ∴∠D′AB=∠DAB -∠DAD′=30°, ∴∠D′AO=12∠D′AB=15°,∵题图2的多边形是正五边形, ∴∠EAB =5-2×180°5=108°,∴∠E′AB=∠EAB -∠EAE′=108°-60°=48°, ∴同理可得,∠E′AO=12∠E′AB=24°.(4)是(5)同(3)的方法得,∠OAB =[(n -2)×180°÷n-60°]÷2=60°-180°n.考点5 圆形几何探究12.如图,在半径为3 cm 的⊙O 中,A ,B ,C 三点在圆上,∠BAC =75°.点P 从点B 开始以π5cm/s 的速度在劣弧BC 上运动,且运动时间为t s ,∠AOB =90°,∠BOP =n°.(1)求n与t之间的函数关系式,并求t的取值范围;(2)试探究:当点P运动多少秒时,①在BP,PC,CA,AB四条线段中有两条相互平行?②以P,B,A,C四点中的三点为顶点的三角形是等腰三角形?解:(1)∵∠BOP=n°,∴π5t=3πn180,n=12t.当n=150时,150=12t,t=12.5.∴t的取值范围为0≤t≤12.5.(2)①∠BOP=n°,n=12t.如答图1,当BP∥AC时,t=5.理由:∵∠PBA=180°-75°=105°,∠OBA=45°,∴∠OBP=60°.∵OB=OP,∴∠BOP=60°,∴60=12t,t=5.如答图2,当PC∥AB时,t=10.理由:易得∠PBA=∠BAC=75°,∴∠PBO=∠BPO=30°,∴∠BOP=120°,∴120=12t,t=10.综上所述,当点P的运动时间为5 s时,BP∥AC.当点P的运动时间为10 s时,PC∥AB.②在△ABP中,以AB为腰时(如答图3),∠BPA=∠BAP=45°,∠BOP=90°,∴t=7.5. 以AB为底边时(如答图4),∠BPA=45°,∠BAP=67.5°,∠BOP=2×67.5°=135°,∴t=11.25.如答图5,在△APC中,易得∠AOC=120°,∴∠APC=60°,△APC是等边三角形.∴∠AOP=120°,∴∠BOP=30°,t=2.5.如答图6,在△BPC中,∠BPC=105°,只有BP=PC这种情况.此时点P是弧BC的中心,∴∠BOP=75°,t=6.25.综上所述,当点P的运动时间为7.5 s或11.25 s时,△ABP为等腰三角形;当点P的运动时间为2.5 s时,△APC为等边三角形;当点P的运动时间为6.25 s时,△BPC为等腰三角形.。

《几何综合探究问题》(共48题)中考专项配套练习(重庆专用)

《几何综合探究问题》(共48题)中考专项配套练习(重庆专用)

5年(2016-2020)中考1年模拟数学试题分项详解(重庆专用)专题13 几何综合探究问题(共48题)一.解析题(共10小题)1.(2020•重庆)如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D是BC边上一动点,连接AD,把AD绕点A逆时针旋转90°,得到AE,连接CE,DE.点F是DE的中点,连接CF.(1)求证:CF=√22AD;(2)如图2所示,在点D运动的过程中,当BD=2CD时,分别延长CF,BA,相交于点G,猜想AG 与BC存在的数量关系,并证明你猜想的结论;(3)在点D运动的过程中,在线段AD上存在一点P,使P A+PB+PC的值最小.当P A+PB+PC的值取得最小值时,AP的长为m,请直接用含m的式子表示CE的长.2.(2020•重庆)△ABC为等边三角形,AB=8,AD⊥BC于点D,E为线段AD上一点,AE=2√3.以AE 为边在直线AD右侧构造等边三角形AEF,连接CE,N为CE的中点.(1)如图1,EF与AC交于点G,连接NG,求线段NG的长;(2)如图2,将△AEF绕点A逆时针旋转,旋转角为α,M为线段EF的中点,连接DN,MN.当30°<α<120°时,猜想∠DNM的大小是否为定值,并证明你的结论;(3)连接BN,在△AEF绕点A逆时针旋转过程中,当线段BN最大时,请直接写出△ADN的面五年中考真题积.3.(2019•重庆)如图,在平行四边形ABCD中,点E在边BC上,连接AE,EM⊥AE,垂足为E,交CD 于点M,AF⊥BC,垂足为F,BH⊥AE,垂足为H,交AF于点N,点P是AD上一点,连接CP.(1)若DP=2AP=4,CP=√17,CD=5,求△ACD的面积.(2)若AE=BN,AN=CE,求证:AD=√2CM+2CE.4.(2019•重庆)在▱ABCD中,BE平分∠ABC交AD于点E.(1)如图1,若∠D=30°,AB=√6,求△ABE的面积;(2)如图2,过点A作AF⊥DC,交DC的延长线于点F,分别交BE,BC于点G,H,且AB=AF.求证:ED﹣AG=FC.5.(2018•重庆)如图,在平行四边形ABCD中,点O是对角线AC的中点,点E是BC上一点,且AB=AE,连接EO并延长交AD于点F.过点B作AE的垂线,垂足为H,交AC于点G.(1)若AH=3,HE=1,求△ABE的面积;(2)若∠ACB=45°,求证:DF=√2CG.6.(2018•重庆)如图,在▱ABCD中,∠ACB=45°,点E在对角线AC上,BE=BA,BF⊥AC于点F,BF的延长线交AD于点G.点H在BC的延长线上,且CH=AG,连接EH.(1)若BC=12√2,AB=13,求AF的长;(2)求证:EB=EH.7.(2017•重庆)在△ABM中,∠ABM=45°,AM⊥BM,垂足为M,点C是BM延长线上一点,连接AC.(1)如图1,若AB=3√2,BC=5,求AC的长;(2)如图2,点D是线段AM上一点,MD=MC,点E是△ABC外一点,EC=AC,连接ED并延长交BC于点F,且点F是线段BC的中点,求证:∠BDF=∠CEF.8.(2017•重庆)如图,△ABC中,∠ACB=90°,AC=BC,点E是AC上一点,连接BE.(1)如图1,若AB=4√2,BE=5,求AE的长;(2)如图2,点D是线段BE延长线上一点,过点A作AF⊥BD于点F,连接CD、CF,当AF=DF时,求证:DC=BC.9.(2016•重庆)在△ABC中,∠B=45°,∠C=30°,点D是BC上一点,连接AD,过点A作AG⊥AD,在AG上取点F,连接DF.延长DA至E,使AE=AF,连接EG,DG,且GE=DF.(1)若AB =2√2,求BC 的长;(2)如图1,当点G 在AC 上时,求证:BD =12CG ;(3)如图2,当点G 在AC 的垂直平分线上时,直接写出ABCG 的值.10.(2016•重庆)已知△ABC 是等腰直角三角形,∠BAC =90°,CD =12BC ,DE ⊥CE ,DE =CE ,连接AE ,点M 是AE 的中点.(1)如图1,若点D 在BC 边上,连接CM ,当AB =4时,求CM 的长;(2)如图2,若点D 在△ABC 的内部,连接BD ,点N 是BD 中点,连接MN ,NE ,求证:MN ⊥AE ; (3)如图3,将图2中的△CDE 绕点C 逆时针旋转,使∠BCD =30°,连接BD ,点N 是BD 中点,连接MN ,探索MNAC 的值并直接写出结果.一.解答题(共38小题)1.(2020•渝中区校级二模)如图,CA =CB ,∠ACB =90°,点D 为AB 的中点,连接CD ;点E 为CD 的中点,EF =EG =EC ,且∠FEG =90°;点O 为CB 的中点,直线GO 与直线CF 交于点N .(1)如图1,若∠FCD =30°,OC =√2,求CF 的长;(2)连接BG 并延长至点M ,使BG =MG ,连接CM .①如图2,若NG ⊥MB ,求证:AB =√10CM ;②如图3,当点G 、F 、B 共线时,BM 交AC 于点H ,AH =14AC ,请直接写出FCMH 的值.一年模拟新题2.(2020•渝中区二模)如图,在△ABC中,∠ACB=90°,AC=BC,CD⊥AB于点D,E为线段CD上一点(不含端点),连接AE,设F为AE的中点,作CG⊥CF交直线AB于点G.(1)猜想:线段AG、BC、EC之间有何等量关系?并加以证明;(2)如果将题设中的条件“E为线段CD上一点(不含端点)”改变为“E为直线CD上任意一点”,试探究发现线段AG、BC、EC之间有怎样的等量关系,请直接写出你的结论,不用证明.3.(2020•沙坪坝区校级一模)在△ABC中,AE⊥CD且AE=CD,∠CAE+2∠BAE=90°.(1)如图1,若△ACE为等边三角形,CD=2√3,求AB的长;(2)如图2,作EG⊥AB,求证:AD=√2BE;(3)如图3,作EG⊥AB,当点D与点G重合时,连接BF,请直接写出BF与EC之间的数量关系.4.(2020•南岸区模拟)如图,在△ABC中,∠BAC=90°,AB=AC=6,AD⊥BC于点D.点G是射线AD上一点.(1)若GE⊥GF,点E,F分别在AB,AC上,当点G与点D重合时,如图①所示,容易证明AE+AF=√2AD.当点G在线段AD外时,如图②所示,点E与点B重合,猜想并证明AE,AF与AG存在的数量关系.(2)当点G在线段AD上时,AG+BG+CG的值是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.5.(2020•南岸区校级模拟)△ABC与△ADE都是等边三角形,DE与AC交于点P,点P恰为DE的中点,延长AD交BC于点F,连结BD、CD,取CD的中点Q,连结PQ.求证:PQ=12BD.(1)如图1,理清思路,完成解答:本题证明的思路可以用下列框图表示:根据上述思路,请你完整地书写本题的证明过程;(2)如图2,特殊位置,求线段长:若点P为AC的中点,连接PF,已知PQ=√3,求PF的长.(3)知识迁移,探索新知:若点P是线段AC上任意一点,直接写出PF与CD的数量关系.6.(2020•九龙坡区校级模拟)【初步探索】(1)如图1:在四边形ABC中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF =BE+FD,探究图中∠BAE、∠F AD、∠EAF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;【灵活运用】(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且EF =BE+FD,上述结论是否仍然成立,并说明理由;【拓展延伸】(3)如图3,已知在四边形ABCD中,∠ABC+∠ADC=180°AB=AD,若点E在CB的延长线上,点F 在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请写出∠EAF与∠DAB的数量关系,并给出证明过程.7.(2019•渝中区校级一模)已知△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE中点,连结DF,CF.(1)如图1,点D在AC上,请你判断此时线段DF,CF的关系,并证明你的判断;(2)如图2,在(1)的条件下将△ADE绕点A顺时针旋转45时,若AD=DE=2,AB=6,求此时线段CF的长.8.(2019•重庆模拟)一节数学课后,老师布置了一道课后练习:△ABC是等边三角形,点D是线段BC上的点,点E为△ABC的外角平分线上一点,且∠ADE=60°,如图①,当点D是线段BC上(除B,C 外)任意一点时,求证:AD=DE(1)理清思路,完成解答本题证明思路可以用下列框图表:根据上述思路,请你完整地书写本题的证明过程;(2)特殊位置,计算求解当点D为BC的中点时,等边△ABC的边长为6,求出DE的长;(3)知识迁移,探索新知当点D在线段BC的延长线上,且满足CD=BC时,若AB=2,请直接写出△ADE的面积(不必写解答过程)9.(2020•南岸区校级模拟)如图1,直角三角形△ABC中,∠ACB=90°,AC=4,∠A=60°,O为BC中点,将△ABC 绕O 点旋转180°得到△DCB .一动点P 从A 出发,以每秒1的速度沿A →B →D 的路线匀速运动,过点P 作直线PM ⊥AC 交折线段A ﹣C ﹣D 于M .(1)如图2,当点P 运动2秒时,另一动点Q 也从A 出发沿A →B →D 的路线运动,且在AB 上以每秒1的速度匀速运动,在BD 上以每秒2的速度匀速运动,过Q 作直线QN ∥PM 交折线段A ﹣C ﹣D 于N ,设点Q 的运动时间为t 秒,(0<t <10)直线PM 与QN 截四边形ABDC 所得图形的面积为S ,求S 关于t 的函数关系式,并求出S 的最大值.(2)如图3,当点P 开始运动的同时,另一动点R 从B 处出发沿B →C →D 的路线运动,且在BC 上以每秒√32的速度匀速运动,在CD 上以每秒2的速度匀速运动,是否存在这样的P 、R .使△BPR 为等腰三角形?若存在,直接写出点P 运动的时间m 的值,若不存在请说明理由.10.(2019秋•沙坪坝区校级期末)如图,在菱形ABCD 中,∠ABC =60°,连接AC ,动点P 从A 点出发沿射线AB 方向运动,同时动点Q 从B 点出发以与P 点相同的速度沿射线BC 方向运动,连接AQ ,CP ,直线AQ 与直线CP 交于点H .(1)如图1,当P ,Q 两点分别在线段AB 和线段BC 上时,直接写出∠CHQ 的度数;(2)如图2,当P ,Q 两点分别运动到线段AB 和线段BC 的延长线上时,试问(1)问中的结论是否成立:若成立请说明理由,若不成立,请求出∠CHQ 的度数;(3)如图3,在(2)问的前提下,连接DH ,过点D 作DE ⊥PH 交PH 延长线于点E .求证:AH ﹣CE =12DH .11.(2020春•沙坪坝区校级月考)如图,正方形ABCD 中,对角线AC ,BD 交于点O ,点E ,点F 分别在线段OB ,线段AB 上,且AF =OE ,连接AE 交OF 于G ,连接DG 交AO 于H .(1)如图1,若点E为线段BO中点,AE=√5,求BF的长;(2)如图2,若AE平分∠BAC,求证:FG=HG;(3)如图3,点E在线段BO(含端点)上运动,连接HE,当线段HE长度取得最大值时,直接写出cos ∠HDO的值.12.(2020•沙坪坝区自主招生)在▱ABCD中,AF平分∠BAD交BC于点F,∠BAC=90°,点E是对角线AC上的点,连结BE.(1)如图1.若AB=AE,BF=3,求BE的长;(2)如图2,若AB=AE,点G是BE的中点,∠F AG=∠BFG,求证:AB=√10FG;(3)如图3,以点E为直角顶点,在BE的右下方作等腰直角△BEM,若点E从点A出发,沿AC运动到点C停止,设在点E运动过程中,BM的中点N经过的路径长为m,AC的长为n,请直接写出nm的值.13.(2020•巴南区自主招生)已知,在矩形ABCD中,AB=2,点E在边BC上,且AE⊥DE,AE=DE,点F是BC的延长线上一点,AF与DE相交于点G,DH⊥AF,垂足为H,DH的延长线与BC相交于点K.(1)如图1,求AD的长;(2)如图2,连接KG,求证:AG=DK+KG;(3)如图3,设△ADM与△ADH关于AD对称,点N、Q分别是MA、MD的中点,请直接写出BN+NQ 的最大值.14.(2020•南岸区自主招生)如图1,在正方形ABCD中,点E是边BC上一点,连接AE,过点E作EM ⊥AE,交对角线AC于点M,过点M作MN⊥AB,垂足为N,连接NE.(1)求证:AE=√2NE+ME;(2)如图2,延长EM至点F,使EF=EA,连接AF,过点F作FH⊥DC,垂足为H.猜想CH与FH存在的数量关系,并证明你的结论;(3)在(2)的条件下,若点G是AF的中点,连接GH.当GH=CH时,直接写出GH与AC之间存在的数量关系.15.(2020•北碚区自主招生)如图1,在正方形ABCD中,对角线AC、BD相交于点O,点E为线段BO上一点,连接CE,将CE绕点C顺时针旋转90°得到CF,连接EF交CD于点G.(1)若AB=4,BE=√2,求△CEF的面积.(2)如图2,线段FE的延长线交AB于点H,过点F作FM⊥CD于点M,求证:BH+MG=√22BE;(3)如图3,点E为射线OD上一点,线段FE的延长线交直线CD于点G,交直线AB于点H,过点F 作FM垂直直线CD于点M,请直接写出线段BH、MG、BE的数量关系.16.(2019秋•九龙坡区校级期末)已知,在平行四边形ABCD中,∠D=60°,点F,G在边BC上,且AF=AG.(1)如图1,若AG平分∠F AC,∠AFC=5∠BAF,且AF=4,求线段AC的长;(2)如图2,点E在边AB上,且BE=EF,证明:AE=BG;(3)在(2)的条件下,连接CE(如图3),若∠AEC=∠ACD,你能得到AD,FG,BE怎样的数量关系?试证明你的猜想.17.(2020春•沙坪坝区校级月考)如图,已知在矩形ABCD中,AD=8,CD=4,点E从点D出发,沿线段DA以每秒1个单位长的速度向点A方向移动,到达A点停止运动;同时点F从点C出发,沿射线CD方向以每秒2个单位长的速度移动,到达D点停止运动,设点E移动的时间为t(秒).(1)当t=1时,求四边形BCFE的面积;(2)设四边形BCFE的面积为S,求S与t之间的关系式,并写出t的取值范围;(3)若F点到达D点后立即返回,并在线段CD上往返运动,当E点到达A点时它们同时停止运动,求当t为何值时,以E,F,D三点为顶点的三角形是等腰三角形,并求出此的等腰三角形的面积S△EDF.18.(2020春•沙坪坝区校级月考)已知,在▱ABCD中,AB⊥BD,AB=BD,E为射线BC上一点,连接AE 交BD于点F.(1)如图1,若点E与点C重合,且AF=2√5,求AD的长;(2)如图2,当点E在BC边上时,过点D作DG⊥AE于G,延长DG交BC于H,连接FH.求证:AF=DH+FH;(3)如图3,当点E在射线BC上运动时,过点D作DG⊥AE于G,M为AG的中点,点N在BC边上且BN=1,已知AB=4√2,请直接写出MN的最小值.19.(2020春•沙坪坝区校级月考)已知:在△ABC中,∠C=90°,BC=AC.(1)如图1,若点D、E分别在BC、AC边上,且CD=CE,连接AD、BE,点O、M、N分别是AB、AD、BE的中点.求证:△OMN是等腰直⻆三角形;(2)将图1中△CDE绕着点C顺时针旋转90°如图2,O、M、N分别为AB、AD、BE中点,则(1)中的结论是否成⽴,并说明理由;(3)如图3,将图1中△CDE绕着点C顺时针旋转,记旋转⻆为α(0<α<360°),O、M、N分别为AB、AD、BE中点,当MN=√10,请求出四边形ABED的⽴积.20.(2019秋•九龙坡区期末)(1)如图1,四边形EFGH中,FE=EH,∠EFG+∠EHG=180°,点A,B分别在边FG,GH上,且∠AEB=12∠FEH,求证:AB=AF+BH.(2)如图2,四边形EFGH中,FE=EH,点M在边EH上,连接FM,EN平分∠FEH交FM于点N,∠ENM=α,∠FGH=180°﹣2α,连接GN,HN.①找出图中与NH相等的线段,并加以证明;②求∠NGH的度数(用含α的式子表示).21.(2019秋•吉州区期末)【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.【探究展示】(1)直接写出AM、AD、MC三条线段的数量关系:;(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.【拓展延伸】(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.22.(2019春•江北区校级期中)如图,在平面直角坐标系中,平行四边形ABCD的边AB在x轴上,点A (﹣2,0),线段AB=8,线段AD=6,且∠BAD=60°,AD与y的交点记为E,连接BE.(1)求▱ABCD的面积.(2)如图2,在线段BE上有两个动点G、K(G在K点上方),且KG=√3,点F为BC中点,点P为线段CD上一动点,当FG+GK+KP的值最小时,求出此时P点的坐标;此时在y轴上找一点H,x轴上线一点M,使得PH+HM−√22AM取得最小值,请求出PH+HM−√22AM的最小值.(3)如图3,将△AOE沿射线EB平移到△A′O'E'的位置,线段E′A′的中点N落在x轴上,此时再将△A′O'E'绕平面内某点W旋转90°,旋转后的三角形记为△A''O''E'',若△A''O''E'恰好只有两个顶点同时落在直线BC和直线BE上,且△A''E''B''的边均不在直线BC或直线BE上,请求出满足条件的W的坐标.23.(2019秋•北碚区校级月考)已知平行四边形ABCD中,N是边BC上一点,延长DN、AB交于点Q,过A作AM⊥DN于点M,连接AN,则AD⊥AN.(1)如图①,若tan∠ADM=34,MN=3,求BC的长;(2)如图②,过点B作BH∥DQ交AN于点H,若AM=CN,求证:DM=BH+NH.24.(2019秋•沙坪坝区校级月考)如图,在平行四边形ABCD中,过A作AE⊥CD于点E,点G,F分别为AD,BC上一点,连接CG交AE于点H,连接AF,AF=AH,∠GCF=∠F AE=45°.(1)若tan∠DAE=23,GH=4,求AF的长;(2)求证:AG+√2GH=GC.25.(2020春•北碚区校级期末)已知在△ABC和△ADE中,∠ACB+∠AED=180°,CA=CB,EA=ED,AB=3.(1)如图1,若∠ACB=90°,B、A、D三点共线,连接CE:①若CE=5√22,求BD长度;②如图2,若点F是BD中点,连接CF,EF,求证:CE=√2EF;(2)如图3,若点D在线段BC上,且∠CAB=2∠EAD,试直接写出△AED面积的最小值.26.(2020春•重庆期末)已知三角形ABC中,∠ACB=90°,点D(0,﹣4),M(4,﹣4).(1)如图1,若点C与点O重合,A(﹣2,2)、B(4,4),求△ABC的面积;(2)如图2,AC经过坐标原点O,点C在第三象限且点C在直线DM与x轴之间,AB分别与x轴,直线DM交于点G,F,BC交DM于点E,若∠AOG=55°,求∠CEF的度数;(3)如图3,AC经过坐标原点O,点C在第三象限且点C在直线DM与x轴之间,N为AC上一点,AB分别与x轴,直线DM交于点G,F,BC交DM于点E,∠NEC+∠CEF=180°,求证:∠NEF=2∠AOG.27.(2020春•沙坪坝区校级月考)已知Rt△ABC中,∠ACB=90°,以AC为斜边作Rt△AEC,∠AEC=90°,AB与CE相交于点D.(1)如图1,AB平分∠CAE,BD=4,CD=5,求AC;(2)如图2,若AC=BC,点F在EA的延长线上,连接FB、FC,FB与CE相交于点G,且∠EAD=∠ACF,求证:AF=2GE;(3)如图3,在(2)的条件下,CE的中垂线与AB相交于点Q,连接EQ,若∠DEQ+2∠ACE=90°,请直接写出线段FC、ED、EQ的关系.28.(2020春•沙坪坝区校级月考)已知等腰直角△ABC中,AB=AC,∠BAC=90°,点D是AC边上一点,以BD为边作等腰直角△BDE,其中BD=BE,∠DBE=90°,边AB与DE交于点F,点G是BC上一点.(1)如图1,若DG⊥DE,连接FG.①若∠ABD=30°,DE=√6+√2,求BF的长度;②求证:DG=EF﹣FG;(2)如图2,若DG⊥BD,EP⊥BE交BA的延长线于点P,连接PG,请猜想线段PG,DG,PE之间的数量关系,并证明.29.(2020春•沙坪坝区校级月考)如图,在等边△ABC中,延长AB至点D,延长AC交BD的中垂线于点E,连接BE,DE.(1)如图1,若DE=3√10,BC=2√3,求CE的长;(2)如图2,连接CD交BE于点M,在CE上取一点F,连接DF交BE于点N,且DF=CD,求证:AB=12EF;(3)在(2)的条件下,若∠AED=45°,直接写出线段BD,EF,ED的等量关系.30.(2020春•沙坪坝区校级月考)在△ABC中,AC=BC,点G是直线BC上一点,CF⊥AG,垂足为点E,BF⊥CF于点F,点D为AB的中点,连接DF.(1)如图1,如果∠ACB=90°,且G在CB边上,设CF交AB于点R,且E为CR的中点,若CG=1,求线段BG的长;(2)如图2,如果∠ACB=90°,且G在CB边上,求证:EF=√2DF;(3)如图3,如果∠ACB=60°,且G在CB的延长线上,∠BAG=15°,请探究线段EF、BD之间的数量关系,并直接写出你的结论.31.(2020春•沙坪坝区校级月考)如图所示,△ABC为等边三角形,点D,点E分别在CA,CB的延长线上,连接BD,DE,DB=DE.(1)如图1,若CA:AD=3:7,BE=4,求EC的长;(2)如图2,点F在AC上,连接BE,∠DBF=60°,连接EF,①求证:BF+EF=BD;②如图3,若∠BDE=30°,直接写出EFBF的值.32.(2020春•沙坪坝区校级月考)在△ABC,△CDE中,∠BAC=∠DEC=90°,连接BD,F为BD中点,连接AF,EF.(1)如图1,若A,C,E三点在同一直线上,∠ABC=∠EDC=45°,已知AB=3,DE=5,求线段AF的长;(2)如图2,若∠ABC=∠EDC=45°,求证:△AEF为等腰直角三角形;(3)如图3,若∠ABC=∠EDC=30°,请判断△AEF的形状,并说明理由.33.(2019秋•渝中区校级期末)如图,在△ABC中,∠ABC=30°,以AC为边作等边△ACD,连接BD.(1)如图1,若∠ACB=90°,AB=4,求△BCD的面积;(2)如图2,若∠ACB<90°,点E为BD中点,连接AE、CE,且AE⊥CE,延长BC至点F,连接AF,使得∠F=30°,求证:AF=CE+√3AE.34.(2020春•南岸区期末)把△ABC绕着点A逆时针旋转α,得到△ADE.(1)如图1,当点B恰好在ED的延长线上时,若α=60°,求∠ABC的度数;(2)如图2,当点C恰好在ED的延长线上时,求证:CA平分∠BCE;(3)如图3,连接CD,如果DE=DC,连接EC与AB的延长线交于点F,直接写出∠F的度数(用含α的式子表示).35.(2020春•渝中区期末)如图,在正方形ABCD中,E为CD边上一点,以DE为边向外作正方形DEFG,将正方形DEFG绕点D顺时针旋转,连接AG.(1)如图1,若AD=2√3、DE=2,当∠ADG=150°时,求AG的长;(2)如图2,正方形DEFG绕点D旋转的过程中,取AG的中点M,连接DM、CE,猜想:DM和CE 之间有何等量关系?并利用图2加以证明.36.(2020春•沙坪坝区校级月考)在菱形ABCD中,∠ABC=60°,点M是对角线BD上一动点,将线段CM绕点C顺时针旋转120°到CN,连接DN,连接NM并延长,分别交AB、CD于点P、Q.(1)如图1,若CM⊥BD且PQ=4√3,求菱形ABCD的面积;(2)如图2,求证:PM=QN.37.(2019秋•江津区期末)如图,四边形ABCD是平行四边形,AC=CD,∠BAC=90°,点E为BC边上一点,将AE绕点A顺时针旋转90°后得到线段AF,连接FB,FB⊥BC.且FB的延长线与AE的延长线交于点G,点E是AG的中点.(1)若BG=2,BE=1,求FG的长;(2)求证:√2AB=BG+2BE.38.(2020春•渝北区期中)如图1,光线照射在光滑表面上时会发生反射现象,入射光线与镜面的夹角等于出射光线与镜面的夹角,即∠1=∠2.(1)如图1,AB、BC为两个平面镜,∠B=90°,一束光线l经两次反射后,经点D,由从点E射出,求证:DM∥EN;(2)如图2,AB、BC为两个平面镜,∠B=122°,一束光线l经两次反射后,经点D,且由从点E射出,且EN⊥AB,求∠ADM的度数;(3)如图3,已知FL∥GS,FG⊥GS,∠LPK=∠SQK=30°,∠PKQ绕点K顺时针旋转,旋转速度为5°/秒,记旋转角α(0<α≤360°),同时,射线FG绕点F顺时针旋转,旋转速度为3°/秒,记旋转角β(0<β≤360°),当FG所在直线平行于∠PKQ边所在直线时,直接写出对应时间t的所有值.。

2024成都中考数学一轮复习专题 几何综合压轴问题 (含解析)

2024成都中考数学一轮复习专题 几何综合压轴问题 (含解析)

2024成都中考数学一轮复习专题几何综合压轴问题1.(2023·四川自贡·统考中考真题)如图1,一大一小两个等腰直角三角形叠放在一起,M ,N 分别是斜边DE ,AB 的中点,2,4DE AB ==.(1)将CDE 绕顶点C 旋转一周,请直接写出点M ,N 距离的最大值和最小值;(2)将CDE 绕顶点C 逆时针旋转120︒(如图2),求MN 的长.2.(2023·山东烟台·统考中考真题)如图,点C 为线段AB 上一点,分别以,AC BC 为等腰三角形的底边,在AB 的同侧作等腰ACD 和等腰BCE ,且A CBE ∠=∠.在线段EC 上取一点F ,使EF AD =,连接,BF DE .(1)如图1,求证:DE BF =;(2)如图2,若2AD BF =,的延长线恰好经过DE 的中点G ,求BE 的长.(1)如图1,求AB边上的高CH的长.''.(2)P是边AB上的一动点,点,C D同时绕点P按逆时针方向旋转90︒得点,C D①如图2,当点C'落在射线CA上时,求BP的长.△是直角三角形时,求BP的长.②当AC D''(2)知识应用:如图2,在Y是菱形;①求证:ABCD②延长BC至点E,连接OE交CD于点由60PC P C PCP ''=∠=︒,,可知PCP '△为①三角形,故PP PC '=,又PA PB PC PA PB PP A B '''++=++≥,由②可知,当B ,P ,P ',A 在同一条直线上时,PA PB PC ++取最小值,如图的P 点为该三角形的“费马点”,且有APC BPC APB ∠=∠=∠=③;(3)如图5,设村庄A ,B ,C 的连线构成一个三角形,且已知4km AC BC =,建一中转站P 沿直线向A ,B ,C 三个村庄铺设电缆,已知由中转站P 到村庄元/km ,a 元/km ,2a 元/km ,选取合适的P 的位置,可以使总的铺设成本最低为用含a 的式子表示)上的中线.如图2,将ABC 的两个顶点B ,C 分别沿,EF GH 折叠后均与点D 重合,折痕分别交,,AB AC BC 于点E ,G ,F ,H .猜想证明:(1)如图2,试判断四边形AEDG 的形状,并说明理由.问题解决;(2)如图3,将图2中左侧折叠的三角形展开后,重新沿MN 折叠,使得顶点B 与点H 重合,折痕分别交,AB BC 于点M ,N ,BM 的对应线段交DG 于点K ,求四边形MKGA 的面积.8.(2023·湖南·统考中考真题)(1)[问题探究]如图1,在正方形ABCD 中,对角线AC BD 、相交于点O .在线段AO 上任取一点P (端点除外),连接PD PB 、.①求证:PD PB =;②将线段DP 绕点P 逆时针旋转,使点D 落在BA 的延长线上的点Q 处.当点P 在线段AO 上的位置发生变化时,DPQ ∠的大小是否发生变化?请说明理由;③探究AQ 与OP 的数量关系,并说明理由.(2)[迁移探究]如图2,将正方形ABCD 换成菱形ABCD ,且60ABC ∠=︒,其他条件不变.试探究AQ 与CP 的数量关系,并说明理由.9.(2023·湖南岳阳·统考中考真题)如图1,在ABC 中,AB AC =,点,M N 分别为边,AB BC 的中点,连接MN .(1)求BCF ∠的度数;(2)求CD 的长.深入探究:(3)若90BAC ∠<︒,将BMN 绕点B 顺时针旋转α,得到BEF △,连接AE ,CF 满足0360α︒<<︒,点,,C E F 在同一直线上时,利用所提供的备用图探究BAE ∠与ABF ∠的数量关系,并说明理由.(1)如图1,当1m =时,直接写出AD ,BE 的位置关系:____________;(2)如图2,当1m ≠时,(1)中的结论是否成立?若成立,给出证明;若不成立,说明理由.【拓展应用】(3)当3,47,4m AB DE ===时,将CDE 绕点C 旋转,使,,A D E 三点恰好在同一直线上,求(1)若点P 在AB 上,求证:A P AP '=;(2)如图2.连接BD .①求CBD ∠的度数,并直接写出当180n =时,x 的值;②若点P 到BD 的距离为2,求tan A MP '∠的值;(2)如图②,在矩形ABCD 的BC 边上取一点E ,将四边形ABED 沿DE 翻折,使点B '处,若24,6BC CE AB ⋅==,求BE 的值;(3)如图③,在ABC 中,45,BAC AD BC ∠=︒⊥,垂足为点,10,D AD AE ==于点F ,连接DF ,且满足2DFE DAC ∠=∠,直接写出53BD EF +的值.13.(2023·湖南郴州·统考中考真题)已知ABC 是等边三角形,点D 是射线(1)如图1,当点D 在线段AB 上时,猜测线段CF 与BD 的数量关系并说明理由;(2)如图2,当点D 在线段AB 的延长线上时,①线段CF 与BD 的数量关系是否仍然成立?请说明理由;②如图3,连接AE .设4AB =,若AEB DEB ∠=∠,求四边形BDFC 的面积.(1)若正方形ABCD 的边长为2,E 是AD 的中点.①如图1,当90FEC ∠=︒时,求证:AEF DCE ∽△△;②如图2,当2tan 3FCE ∠=时,求AF 的长;(2)如图3,延长CF ,DA 交于点G ,当1,sin 3GE DE FCE =∠=时,求证:问题探究:(1)先将问题特殊化,如图(2),当90α=︒时,直接写出GCF ∠的大小;(2)再探究一般情形,如图(1),求GCF ∠与α的数量关系.问题拓展:(3)将图(1)特殊化,如图(3),当120α=︒时,若12DG CG =,求BE CE 的值.(1)数学思考:谈你解答老师提出的问题;(2)深入探究:老师将图2中的DBE 绕点B 逆时针方向旋转,问题.①“善思小组”提出问题:如图3,当ABE BAC ∠=∠时,过点A 作AM BE ⊥交BE 的延长线于点,M BM 与AC 交于点N .试猜想线段AM 和BE 的数量关系,并加以证明.请你解答此问题;②“智慧小组”提出问题:如图4,当CBE BAC ∠=∠时,过点A 作AH DE ⊥于点H ,若9,12BC AC ==,求AH 的长.请你思考此问题,直接写出结果.17.(2023·湖北十堰·统考中考真题)过正方形ABCD 的顶点D 作直线DP ,点C 关于直线DP 的对称点为点E ,连接AE ,直线AE 交直线DP 于点F .(1)如图1,若25CDP ∠=︒,则DAF ∠=___________︒;(2)如图1,请探究线段CD ,EF ,AF 之间的数量关系,并证明你的结论;(3)在DP 绕点D 转动的过程中,设AF a =,EF b =请直接用含,a b 的式子表示DF 的长.18.(2023·辽宁大连·统考中考真题)综合与实践问题情境:数学活动课上,王老师给同学们每人发了一张等腰三角形纸片探究折叠的性质.已知,90AB AC A =∠>︒,点E 为AC 上一动点,将ABE 以BE 为对称轴翻折.同学们经过思考后进行如下探究:独立思考:小明:“当点D 落在BC 上时,2EDC ACB ∠=∠.”小红:“若点E 为AC 中点,给出AC 与DC 的长,就可求出BE 的长.”实践探究:奋进小组的同学们经过探究后提出问题1,请你回答:问题1:在等腰ABC 中,,90,AB AC A BDE =∠>︒△由ABE 翻折得到.(1)如图1,当点D 落在BC 上时,求证:2EDC ACB ∠=∠;(2)如图2,若点E 为AC 中点,43AC CD ==,,求BE 的长.问题解决:小明经过探究发现:若将问题1中的等腰三角形换成90A ∠<︒的等腰三角形,可以将问题进一步拓展.问题2:如图3,在等腰ABC 中,90,4,2A AB AC BD D ABD ∠<===∠=∠︒.若1CD =,则求BC 的长.19.(2023·山东·统考中考真题)(1)如图1,在矩形ABCD 中,点E ,F 分别在边DC ,BC 上,AE DF ⊥,垂足为点G .求证:ADE DCF △∽△.【问题解决】(2)如图2,在正方形ABCD 中,点E ,F 分别在边DC ,BC 上,AE DF =,延长BC 到点H ,使CH DE =,连接DH .求证:ADF H ∠=∠.【类比迁移】(3)如图3,在菱形ABCD 中,点E ,F 分别在边DC ,BC 上,11AE DF ==,8DE =,60AED ∠=︒,求CF 的长.20.(2023·福建·统考中考真题)如图1,在ABC 中,90,,BAC AB AC D ∠=︒=是AB 边上不与,A B 重合的一个定点.AO BC ⊥于点O ,交CD 于点E .DF 是由线段DC 绕点D 顺时针旋转90︒得到的,,FD CA 的延长线相交于点M .(1)求证:ADE FMC △∽△;(2)求ABF ∠的度数;(3)若N 是AF 的中点,如图2.求证:ND NO =.21.(2023·四川·统考中考真题)如图1,已知线段AB ,AC ,线段AC 绕点A 在直线AB 上方旋转,连接BC ,(1)若=90BDC ∠︒,以AB 为边在AB 上方作Rt BAE △,且90AEB ∠=示线段AC 与DE 的数量关系是;(2)如图2,在(1)的条件下,若DE AB ⊥,4AB =,2AC =,求BC (3)如图3,若90BCD ∠=︒,4AB =,2AC =,当AD 的值最大时,求此时请完成:(1)观察图1中1∠,2∠和3∠,试猜想这三个角的大小关系(2)证明(1)中的猜想;【类比操作】如图2,N 为矩形纸片请完成:(3)证明BB '是NBC ∠的一条三等分线.(1)如图1,若9AC =,3BD =,求线段AD 的长.(2)如图2,以CD 为边在CD 上方作等边CDE ,点F 是DE 的中点,连接BF 并延长,交G .若G BCE ∠=∠,求证:GF BF BE =+.(3)在CD 取得最小值的条件下,以CD 为边在CD 右侧作等边CDE .点M 为CD 所在直线上一点,(1)证明:在点P 的运动过程中,总有120PEQ ∠=(2)当AP DP为何值时,AQF 是直角三角形?26.(2023·黑龙江齐齐哈尔·统考中考真题)综合与实践(1)发现问题:如图1,在ABC 和AEF △中,AB AC =,AE AF =,30BAC EAF ∠=∠=︒,连接BE ,CF ,延长BE 交CF 于点D .则BE 与CF 的数量关系:______,BDC ∠=______︒;(2)类比探究:如图2,在ABC 和AEF △中,AB AC =,AE AF =,120BAC EAF ∠=∠=︒,连接BE ,CF ,延长BE ,FC 交于点D .请猜想BE 与CF 的数量关系及BDC ∠的度数,并说明理由;(3)拓展延伸:如图3,ABC 和AEF △均为等腰直角三角形,90BAC EAF ∠=∠=︒,连接BE ,CF ,且点B ,E ,F 在一条直线上,过点A 作AM BF ⊥,垂足为点M .则BF ,CF ,AM 之间的数量关系:______;(4)实践应用:正方形ABCD 中,2AB =,若平面内存在点P 满足90BPD ∠=︒,1PD =,则ABP S =△______.27.(2023·广东深圳·统考中考真题)(1)如图,在矩形ABCD 中,E 为AD 边上一点,连接BE ,①若BE BC =,过C 作CF BE ⊥交BE 于点F ,求证:ABE FCB ≌△△;②若20ABCD S =矩形时,则BE CF ⋅=______.(2)如图,在菱形ABCD 点F ,若24ABCD S =菱形(3)如图,在平行四边形ABCD 一点,连接EF ,过E 作EG ⊥长.(1)如图1,连接QA .当QA QP =时,试判断点Q 是否在线段PC 的垂直平分线上,并说明理由;(2)如图2,若90APB ∠=︒,且BAP ADB ∠=∠,①求证:2AE EP =;②当OQ OE =时,设EP a =,求PQ 的长(用含a 的代数式表示).【探究一】如图②,把CDM V 绕点C 逆时针旋转90︒得到CBH ,同时得到点H 在直线AB CNM CNH ∠=∠;【探究二】在图②中,连接BD ,分别交CM ,CN 于点E ,F .求证:CEF CNM △∽△;【探究三】把三角尺旋转到如图③所示位置,直线BD 与三角尺45︒角两边CM ,CN 分别交于点接AC 交BD 于点O ,求EF NM的值.PMN PNM ∠=∠.(2)用数学的思维思考.如图,延长图中的线段AD 交MN 的延长线于点E ,延长线段BC 交MN 的延长线于点F ,求证:AEM F ∠=∠.(3)用数学的语言表达.如图,在ABC 中,AC AB <,点D 在AC 上,AD BC =,M 是AB 的中点,N 是DC 的中点,连接MN 并延长,与BC 的延长线交于点G ,连接GD ,若60ANM ∠=︒,试判断CGD △的形状,并进行证明.31.(2023·甘肃兰州·统考中考真题)综合与实践【思考尝试】(1)数学活动课上,老师出示了一个问题:如图1,在矩形ABCD 中,E 是边AB 上一点,DF CE ⊥于点F ,GD DF ⊥,AG DG ⊥,AG CF =.试猜想四边形ABCD 的形状,并说明理由;【实践探究】(2)小睿受此问题启发,逆向思考并提出新的问题:如图2,在正方形ABCD 中,E 是边AB 上一点,DF CE ⊥于点F ,AH CE ⊥于点H ,GD DF ⊥交AH 于点G ,可以用等式表示线段FH ,AH ,CF 的数量关系,请你思考并解答这个问题;【拓展迁移】(3)小博深入研究小睿提出的这个问题,发现并提出新的探究点:如图3,在正方形ABCD 中,E 是边AB 上一点,AH CE ⊥于点H ,点M 在CH 上,且AH HM =,连接AM ,BH ,可以用等式表示线段CM ,BH 的数量关系,请你思考并解答这个问题.32.(2023·贵州·统考中考真题)如图①,小红在学习了三角形相关知识后,对等腰直角三角形进行了探究,在等腰直角三角形ABC 中,,90CA CB C =∠=︒,过点B 作射线BD AB ⊥,垂足为B ,点P 在CB 上.(1)【动手操作】如图②,若点P 在线段CB 上,画出射线PA ,并将射线PA 绕点P 逆时针旋转90︒与BD 交于点在图中画出图形,图中PBE ∠的度数为_______度;(2)【问题探究】(1)如图,当点D 与点O 重合时,请直接写出线段AD 与线段EF 的数量关系;(2)如图,当点D 在线段AB 上时,求证:2CG BD BC +=;(3)连接DE ,CDE 的面积记为1S ,ABC 的面积记为2S ,当:EF BC 34.(2023·四川成都·统考中考真题)探究式学习是新课程倡导的重要学习方式,某兴趣小组拟做以下探究.在Rt ABC △中,90,C AC BC ∠=︒=,D 是AB 边上一点,且1AD BD n=(【初步感知】(1)如图1,当1n =时,兴趣小组探究得出结论:22AE BF AB +=,请写出证明过程.【深入探究】(2)①如图2,当2n =,且点F 在线段BC 上时,试探究线段AE BF AB ,,之间的数量关系,请写出结论并=;(1)求证:ED EC(2)将BE绕点E逆时针旋转,使点与B,C重合),判断(3)在(2)的条件下,已知37.(2023·安徽·统考中考真题)在点D在直线AB外,连接(1)如图1,求ADB ∠的大小;(2)已知点D 和边AC 上的点E 满足,ME AD DE AB ⊥∥.(ⅰ)如图2,连接CD ,求证:BD CD =;(ⅱ)如图3,连接BE ,若8,6AC BC ==,求tan ABE ∠的值.38.(2023·浙江宁波·统考中考真题)定义:有两个相邻的内角是直角,并且有两条邻边相等的四边形称为邻等四边形,相等两邻边的夹角称为邻等角.(1)如图1,在四边形ABCD 中,,90AD BC A ∠=︒∥,对角线BD 平分ADC ∠.求证:四边形ABCD 为邻等四边形.(2)如图2,在6×5的方格纸中,A ,B ,C 三点均在格点上,若四边形ABCD 是邻等四边形,请画出所有符合条件的格点D .(3)如图3,四边形ABCD 是邻等四边形,90DAB ABC ∠=∠=︒,BCD ∠为邻等角,连接AC ,过B 作BE AC ∥交DA 的延长线于点E .若8,10AC DE ==,求四边形EBCD 的周长.39.(2023·江苏扬州·统考中考真题)【问题情境】在综合实践活动课上,李老师让同桌两位同学用相同的两块含30︒的三角板开展数学探究活动,两块三角板分别记作ADB 和,90,30A D C ADB A D C B C ∠=∠=︒∠''''=∠=︒△,设2AB =.(1)当60α=︒时,BC =________;当22BC =时,α=________︒;(2)当90α=︒时,画出图形,并求两块三角板重叠部分图形的面积;(3)如图2,取BC 的中点F ,将A D C '' 绕着点A 旋转一周,点F 的运动路径长为刘老师进一步谈到:图形的旋转蕴含于自然界的运动变化规律中,即形旋转的关键;故数学就是一门哲学.【问题解决】(1)上述问题情境中“(2)如图,小王将一个半径为4cm,圆心角为60︒的扇形纸板ABC绕点O逆时针旋转90︒到达扇形纸板'''的位置.A B C①请在图中作出点O;BB',则在旋转过程中,点B经过的路径长为__________;②如果=6cm【问题拓展】小李突发奇想,将与(2)中完全相同的两个扇形纸板重叠,一个固定在墙上,使得一边位于水平位置,另一个在弧的中点处固定,然后放开纸板,使其摆动到竖直位置时静止,此时,两个纸板重叠部分的面积是多少呢?如图所示,请你帮助小李解决这个问题.参考答案(2)解:如图所示,过点N 作NP MC ⊥,交MC 的延长线于点∵CDE 绕顶点C 逆时针旋转120︒,∴120BCE ∠=︒,∵45BCN ECM ∠=∠=︒,∴120MCN BCM ECM BCE ∠=∠-∠=∠=︒,∴60NCP ∠=︒,∴30CNP ∠=︒,∵点G 是DE 的中点,∴GH 是FCD 的中位线,∴11122GH CD AD ===,设BE a =,则CH EH ==∴90C PQ PC Q '∠+∠='︒∵90C PQ CPH ∠+∠='︒∴PC Q CPH ∠=∠'.由旋转知PC PC '=,设C D ''与射线BA 的交点为作CH AB ⊥于点H .∵PC PC ⊥',∴90CPH TPC ∠'+∠=︒,∵C D AT ''⊥,∴90PC T TPC ∠'+∠='︒,②AD DF BD =+.理由如下:∵DF 和DC 关于AD 对称,∴DF DC =.∵AE CD =,∴AE DF =.∴AD AE DE DF BD =+=+∵DF 和DC 关于AD 对称,∴DF DC =,ADF ADC ∠=∠.∵CD BD ⊥,∴45ADF ADC ∠=∠=︒,∴45EBD ∠=︒.∴2DE BD =.∵AB AC AF ==,∴()11222HF BF BD DF ==-=,222262210BC BD CD =+=+=∴2221022AF AC BC ===⨯=25HF∴1BG BO GC OD==,∴115222CG BC AD ===,∴552OF GC .【详解】(1)解:∵60PC P C PCP ''=∠=︒,,∴PCP '△为等边三角形;∴PP PC '=,60P PC PP C ''∠=∠=︒,又P A PA ''=,故PA PB PC PA PB PP A B '''++=++≥,由两点之间线段最短可知,当B ,P ,P ',A 在同一条直线上时,PA PB PC ++取最小值,最小值为A B ',此时的P 点为该三角形的“费马点”,∴180BPC P PC '∠+∠=︒,180A P C PP C ∠+∠='''︒,∴120BPC ∠=︒,120A P C ''∠=︒,又∵A P C APC ≅'' ,∴120APC AP C '∠=∠=︒,∴360120APB APC BPC ∠=︒-∠-∠=︒,∴120APC BPC APB ∠=∠=∠=︒;∵120BAC ∠≥︒,∴BC AC >,BC AB >,∴BC AB AC AB +>+,BC AC AB AC +>+,∴三个顶点中,顶点A 到另外两个顶点的距离和最小.又∵已知当ABC 有一个内角大于或等于120︒时,“费马点”为该三角形的某个顶点.∴该三角形的“费马点”为点A ,故答案为:①等边;②两点之间线段最短;③120︒;④A .(2)将APC △绕,点C 顺时针旋转60︒得到A P C '' ,连接PP ',由(1)可知当B ,P ,P ',A 在同一条直线上时,PA PB PC ++取最小值,最小值为A B ',∵ACP A CP ''∠=∠,∴30ACP BCP A CP BCP ACB ∠+∠=∠+∠=∠=''︒,又∵60PCP '∠=︒过点A '作A H BC '⊥,垂足为H ,∵60ACB ∠=︒,90ACA '∠=︒,∴30A CH '∠=︒,1∵1122 CHGS CH HG=⋅=∴154302CG HE⋅=⨯=,∵四边形ABCD 是正方形,∴45DAC BAC ∠=∠=︒,∴四边形AMPN 是矩形,∴90MPN ∠=︒,∵四边形ABCD 是正方形,∴45BAC ∠=︒,90AOB ∠=∴45AEP ∠=︒,四边形OPEF ∴45,PAE PEA EF ∠=∠=︒=作PM AB⊥于点M,则QM MB=,∴QA BE=.∴AQ CP∵MN 是BAC 的中位线,∴MN AC ∥,∴90BMN BAC ∠=∠=︒∵将BMN 绕点B 顺时针旋转α∴,BE BM BF BN ==;BEF ∠=∵点,,A E F 在同一直线上时,∵,ADN BDE ANB BED ∠=∠∠=∠∴ADN BDE ∽,∴2222DN AN DE BE ===,设DE x =,则2DN x =,在Rt ABE △中,2,2BE AE ==在Rt ADN △中,22AD DN AN =+(3)如图所示,当点,,C E F 在同一直线上时,且点E 在FC 上时,∵AB AC =,∴A ABC CB =∠∠,设ABC ACB θ∠=∠=,则1802BAC θ∠=︒-,∵MN 是ABC 的中位线,∴MN AC∥∴MNB MBN θ∠=∠=,∵将BMN 绕点B 顺时针旋转α,得到BEF △,∴EBF MBN ≌,MBE NBF α∠=∠=,∴EBF EFB θ∠=∠=∴1802BEF θ∠=︒-,∵点,,C E F 在同一直线上,∴2BEC θ∠=∴180BEC BAC ∠+∠=︒,∴,,,A B E C 在同一个圆上,∵,BEF BAC BC BC∠=∠=∴,,,A B E C 在同一个圆上,设ABC ACB θ∠=∠=,则1802BAC BEF θ∠=∠=︒-,将BMN 绕点B 顺时针旋转α,得到BEF △,设NBF β∠=,则EBM β∠=,则360αβ+=︒,∴ABF θβ∠=-,(2)解:成立;理由如下:∵90DCE ACB ∠=∠=︒,∴DCA ACE ACE ∠+∠=∠+(3)解:当点E 在线段AD 设AE x =,则AD AE DE =+根据解析(2)可知,DCA ∽△∴3BE BC m AD AC===,()334BE AD x ==+=设AD y =,则AE AD DE =+根据解析(2)可知,DCA △∴3BE BC m AD AC===,∵PM 平分A MA'∠∴90PMA ∠=︒∴PM AB∥∴DNM DBA V V ∽。

中考数学专题复习几何探究练习(二)

中考数学专题复习几何探究练习(二)

中考数学专题复习几何探究练习(二)学校:___________姓名:___________班级:___________考生__________评卷人得分一、解答题1.[感知]如图①,在①ABCD中,点E为CD的中点,连接BE并延长交AD的延长线于点F.求证:点E是BF的中点,点D是AF的中点;[应用]如图①,在四边形ABCD中,AD//BC,①BAD=90°,AB=4,AD=3,点E是CD的中点,BE①CD,BE、AD的延长线相交于点F,则AF=.[拓展]如图①,在①ABC中,点D是AC的中点,点E是AB上一点,1=2BEEA,BD,CE相交于点F,则EFFC=.2.【教材呈现】华师版九年级上册数学教材第103页的部分内容.例:如图,在Rt△ABC中,∠ACB=90°,∠A=30°.求证:BC=12AB.证明:作邻边AB上的中线CD,则请你结合图①,将证明过程补充完整.【结论应用】如图①,在Rt△ACB中,∠ACB=90°,∠A=30°,D是AB的中点.过点D作DE∥BC交AC于点E.则线段AB与DE的数量关系为.【拓展提升】一副三角板按图①所示摆放,得到△ABD和△BCD.其中∠ADB=∠BCD=90°,∠A=60°.∠CBD=45°.点E为AB的中点,过点E作EF⊥CD于点F.若AB=8cm.则EF的长为cm.3.【问题原型】如图,在矩形ABCD中,对角线AC、BD交于点O,以AC为直径作O.求证:点B、D在O上.请完成上面问题的证明,写出完整的证明过程.【发现结论】矩形的四个顶点都在以该矩形对角线的交点为圆心,对角线的长为直径的圆上.【结论应用】如图,已知线段2AB=,以线段AB为对角线构造矩形ACBD.求矩形ACBD面积的最大值.【拓展延伸】如图,在正方形ABCD中,2AB=,点E、F分别为边AB、CD的中点,以线段EF为对角线构造矩形EGFH,矩形EGFH的边与正方形ABCD的对角线AC交于M、N两点,当MN的长最大时,矩形EGFH的面积为_____________________4.【问题原型】如图①,四边形ABDE 、AGFC 都是正方形,AB AC >,连结CE 、BG .求证:BG CE =.【发现结论】如图①,设图①中的直线CE 与直线BG 交于点H .求证:EH BG ⊥.【结论应用】将图①中的正方形AGFC 绕着点A 顺时针旋转角度(0360)αα︒<<︒,在整个旋转过程中,当点E 、C 、G 三点在同一条直线上时,若3AB =,2AC =,借助图①,直接写出BG 的长.5.【教材呈现】下图是华师版九年级上册数学教材第103页的部分内容.如图,在Rt△ABC中,①ACB=90°,CD是斜边AB上的中线.求证:12CD AB=.证明:延长CD至点E,使DE=CD,连结AE、BE.请根据教材提示,结合图①,写出完整的证明过程.图①【结论应用】(1)如图,在四边形ABCD中,90ABC ADC∠=∠=︒,45DAC∠=︒,30BAC∠=︒,E是AC的中点,连结BE、BD.则DBE∠的度数为°.(2)在ABC中,已知13AB=,12BC=,5CA=,D为边AB的中点,DE AB⊥且与ACB∠的平分线交于点E,则DE的长为.6.教材呈现:如图是华师版九年级上册第64页的课后习题.如图,在ABC中,点D是边AB的四等分点,//DE AC,//DF BC,8AC=,12BC=.求四边形DECF的周长.(1)请完成该题目(补充说明:题目中的点D是边AB靠近点A的四等分点).(2)小明和小静在复习该题目时分别对这个题目进行了改编,请分别解答小明和小静提出的问题.①小明提出的问题是:如图①,在ABC中,点D是边AB靠近点A的四等分点,//DE AC,//DF BC.当四边形DECF为菱形时,求AC与BC的数量关系?①小静提出的问题是:如图①,在ABC中,点D是边AB靠近点A的四等分点,//DE AC,//DF BC,8BC=,60A∠=︒.则四边形DECF面积的最大值是___________.7.【教材呈现】下图是华师版九年级上册数学教材102﹣103页的部分内容.性质:直角三角形的斜边中线等于斜边的一半给出上述性质证明中的部分演绎推理的过程如下:已知:如图1,在①ABC中,①ACB=90°,CD为斜边AB上的中线.求证:CD=AB证明:如图2,延长CD至点E,使DE=CD,连接AE,BE.【问题解决】请结合图3将证明过程补充完整.【应用探究】(1)如图4,在①ABC中,AD是高,CE是中线,点F是CE的中点,DF①CE,点F 为垂足,①AEC=78°,则①BCE为度.(2)如图5,在线段AC上有一点B,AB=4,AC=11,分别以AB和BC为边作正方形ABED和正方形BCFG,点E落在边BG上,连接DF,点H为DF的中点,连接GH,则GH的长为.参考答案:1.(1)证明见解析;(2)8;(3)13. 【解析】【分析】(1)通过证①DEF ①①CEB ,然后结合▱ABCD 的性质可以得到所证结论成立;(2)与(1)同理可得①DEF ①①CEB ,从而有DF =BC ,结合已知可以证得四边形DFCB 是菱形,所以可得DF =BD ,由勾股定理可得BD =5,最后即可得到AF =8;(3)过A 作AG ①EC 交BD 延长线于G ,则与(1)同理可得AG =FC ,再由平行线分线段成比例可得EF EF BE FC AG BA ==,最后根据1=2BE EA 可以得到结论. 【详解】解:(1)证明:①▱ABCD ,①AF ①BC ,AD =BC ,①①F =①EBC ,①在①DEF 和①CEB 中, F EBC DEF BEC DE EC ∠=∠⎧⎪∠=∠⎨⎪=⎩①①DEF ①①CEB ,①BE =EF ,DF =BC =AD ,①点E 是BF 的中点,点D 是AF 的中点;(2)与(1)同理可得①DEF ①①CEB ,①DF =BC ,又由已知可得DF ①BC ,①四边形DFCB 是平行四边形,①BE ①CD ,①四边形DFCB 是菱形,①DF =BD ,①①BAD =90°,AB =4,AD =3,①BD =5,①AF =AD +DF =3+5=8,故答案为8;(3)如图,过A作AG①EC交BD延长线于G,与(1)同理可得①ADG①①CDF,①AG=FC,①AG①EF,①EF EF BE FC AG BA==,①1=2 BEEA,①11 =123 BE BEBA BE EA==++,①13 EFFC=,故答案为13.【点睛】本题考查三角形全等的判定与应用,熟练掌握构造辅助线证三角形全等的方法、三角形全等的判定与性质、平行线分线段成比例定理、及类比的思维方法是解题关键.2.【教材呈现】见解析;【结论应用】BC=4DE;【拓展提升】2+6.【解析】【分析】【教材呈现】根据直角三角形斜边上的中线等于斜边一半,可得CD=BD=AD,再证明△BCD是等边三角形,即可证明结论;【结论应用】取BC的中点,连接DF,应用(1)的结论可得BC=12AB,再证明四边形CEDF是平行四边形,应用平行四边形性质即可得到答案;【拓展提升】过点A作AG①CD交CD的延长线于点G,应用(1)的结论可得出AD,再运用解直角三角形或勾股定理求出BD,BC,AG,最后应用三角形中位线定理即可求出EF.【详解】解:【教材呈现】如图①,作斜边AB上的中线CD,则CD=BD=AD,①①ACB=90°,①A═30°,①①B=90°﹣①A═90°﹣30°=60°,①①BCD是等边三角形,①BC=CD=12AB.【结论应用】如图①,取BC的中点,连接DF,①①ACB=90°,①A=30°,①BC=12AB,①D,F分别是AB,BC的中点,①DF①AC,①DE①BC,①四边形CEDF是平行四边形,①DE=CF=12BC,①DE=14BC,即BC=4DE.故答案为:BC=4DE.【拓展提升】如图①,过点A作AG①CD交CD的延长线于点G,连接AC,交EF于H,①①ADB=①BCD=90°,①A=60°.①CBD=45°,①①ABD=30°,①AD=12AB=12×8=4(cm),①BD=AB•sin①A=8sin60°=43(cm),①BC=BD•cos①CBD=43cos45°=26(cm),①①BDC=90°﹣①CBD=45°,①①ADG=180°﹣①ADB﹣①BDC=45°,①①G=90°,①AG=AD•sin①ADG=4sin45°=22(cm),①EF①CD,BC①CD,AG①CD,①AG①EF①BC,①点E为AB的中点,∴16cm2EH BC==,12cm2FH AG==①EF=EH HF+=(2+6)cm;故答案为:2+6.【点睛】本题考查了直角三角形性质,特殊角三角函数值,三角形中位线定理,平行四边形的判定与性质等,熟练掌握直角三角形性质和平行四边形的判定与性质是解题关键.3.问题原型:见解析;结论应用:见解析;发现结论:2;拓展延伸:2【解析】【分析】问题原型:运用矩形对角线互相平分且相等,即可求证四点共圆;结论应用:根据结论矩形面积最大时为正方形,利用对角线的长求得正方形的面积;拓展延伸:由上一问的结论,可知四边形EGFH为正方形, 证明四边形AEOH是正方形,继而求得面积【详解】解:【问题原型】①AC为O直径,①OA为O半径.令OA r=.①四边形ABCE为矩形,①AC BD=,12OA OC AC==,.12OB OD BD==①OB OD OA r===.①点B、D在O上.【结论应用】连续CD交AB于点O,过点D作DE AB⊥于点E.①DE OD≤.由【发现结论】可知,点D在以AB为直径的圆上,即112OD OA AB===,①当1DE OD==即AB CD⊥时,矩形ACBD的面积最大.2AB CD==①矩形ACBD的面积最大值为22112222AB=⨯=.【拓展延伸】如图,连接GH,设AC与EF的交点为O四边形ABCD是正方形2AB∴=,90BAD ADC∠=∠=︒,//AE DF点E、F分别为边AB、CD的中点1AE EB CF FD∴====,2EF=∴四边形AEFD是矩形//EF AD∴EF AB⊥,由【结论应用】可知,2EF=时,矩形EGFH的面积最大为2122EF=此时四边形EGFH为正方形,此时MN最大,EF GH∴⊥,112EO OF OH OG EF=====∴四边形AEOH是正方形∴112AE AH AB===∴2222112EH AE AH=+=+=∴正方形EGFH的面积为:22(2)2EH==【点睛】本题考查了矩形的性质,正方形的性质与判定,灵活运用矩形,正方形的性质和判定是解题的关键.4.【问题原型】见解析;【发现结论】见解析;【结论应用】72-或7+2【解析】【分析】【问题原型】根据题意直接运用全等三角形的判定证明EAC BAG△≌△即可得出答案;【发现结论】由题意结合全等三角形的性质EAC BAG△≌△得到①AEC=①ABG,进而通过直角三角形的互余关系进行角的等量代换即可;【结论应用】根据题意分EG在AE的右侧和EG在AE的左侧两种情况,进而利用全等三角形的判定与勾股定理进行分析计算即可.【详解】解:【问题原型】①四边形ABDE,AGFC都是正方形,①AE=AB,AC=AG,①EAB=①CAG=90︒.①①EAC+①CAB=①GAB+①CAB=90︒.①①EAC=①BAG.①EAC BAG△≌△.①BG=CE.【发现结论】如图,设EH与AB交于点O.①四边形ABDE是正方形,①①EAB=90︒.①①AEO+①AOE=90︒.①EAC BAG△≌△,①①AEC=①ABG.①①BOH=①AOE,①①OBH+①BOH=90︒.①①OHB=90︒.①EH①BG.【结论应用】当EG在AE的右侧时,如图:①EAC BAG△≌△,CG为正方形AGFC的对角线,①①ACG=①AGC=45︒,①ACE=①AGB=135︒,①①EGB=1354590︒-︒=︒,①3AB AE==,2AC AG==,①222222CG=+=,223332BE=+=,设,22BG CE m EG m===+,则有222BG EG BE+=,得到()222218m m++=,解得72m=-或72m=--(舍去);当EG在AE的左侧时,如图:①EAC BAG△≌△,①BG EC=,①①ACE=①AGB=45︒,①CGB=90︒,设EG=n,同理可得n=72-,①227272BG EC CG EG==+=+-=+,综上,BG=72-或7+2.【点睛】本题考查全等三角形的旋转问题以及正方形的性质,熟练掌握全等三角形的判定与性质以及勾股定理与设参法的应用是解题的关键.5.【教材呈现】见解析;【结论应用】(1)15;(2)132 【解析】【分析】[教材呈现]倍长中线,求证四边形ACBE 为矩形,根据矩形的性质得证;[结论应用](1)连接DE,求得DEB ∠的度数,从而求得DBE ∠;(2)以点D 为圆心,DA 为半径作圆交直线DE 于点F ,连接CF ,AF ,BF ,求证E 、F 两点重合,从而求得DE 的长.【详解】[教材呈现]证明:延长CD 到E ,使DE CD =,连接AE 、BE ,CD 是斜边AB 上的中线,AD BD ∴=,又DE CD =,∴四边形ACBE 是平行四边形又90ACB ∠=︒,ACBE ∴是矩形, CE AB ∴=,1122CD CE AB ∴==; [结论应用]解:(1)连接DE ,如下图①90ABC ADC ∠=∠=︒,E 是AC 的中点①12DE AC BE EC === 又①45DAC ∠=︒,30BAC ∠=︒①90,60DEC BEC ∠=︒∠=︒①150DEB ∠=︒①180152DEBDBE︒-∠∠==︒(2)以点D为圆心,DA为半径作圆交直线DE于点F,连接CF,AF,BF,13AB=,12BC=,5CA=.222BC CA AB∴+=,ABC∆∴为直角三角形,①DE AB⊥,∴90DBE∠=︒11904522FCB FDB∴∠=∠=⨯︒=︒,CE平分ACB∠,1452ECB ACB∴∠=∠=︒,FCB ECB∴∠=∠,AB为圆的直径,90AEB∴∠=︒,AEB∴∆是直角三角形,11322DE DF AB∴===.【点睛】此题主要考查了直角三角形斜边的中线等于斜边的一半这一性质,涉及了勾股定理、圆的性质等有关内容,熟练掌握有关性质的证明和应用是解题的关键.6.(1)18;(2)①3BC AC=;① 63【解析】【分析】(1)根据点D是边AB靠近点A的四等分点,得到14AD AB=,34BD AB=,再根据DE①AC,得到△BED①△BCA,即34DE BDAC AB==由此求解即可;(2)①由(1)得34DE AC=,14DF BC=根据四边形DECF是菱形,可得DE=DF,由此求解即可;①根据①BED①①BCA,34DE BDAC AB==,即可得到916BED ABCS S=△△,同理116ADF ABCS S=△△,从而推出63=168ABC ABCDECFS S S=△△四边形,要想四边形DECF面积最大,即三角形ABC的面积最大,再根据A、B、C三点共圆,且弦BC=8,弦BC所对的圆心角度数为120°,如图所示,分别过点A作AE①BC,OF①BC,过点O作OP①AE于P,得出当且仅当A、O、F 三点共线的时候,此时AE有最大值,即三角形ABC的面积有最大值,由此求解即可.【详解】解:(1)①点D是边AB靠近点A的四等分点,①14AD AB=,34BD AB=,①DE①AC,①①BED①①BCA,①34 DE BDAC AB==,①364DE AC==,同理可以求得134DF BC==,①DE①AC,DF①BC,①四边形DECF是平行四边形,①CF=DE=6,CE=DF=3,①四边形DECF的周长=CF+DE+CE+DF=18;(2)①由(1)得34DE AC=,14DF BC=①四边形DECF是菱形,①DE=DF,①3144AC BC=,①3BC AC=;①①DE ①AC ,①①BED ①①BCA ,①34DE BD AC AB ==, ①916BED ABC S S =△△, 同理116ADF ABC S S =△△, ①63=168ABC ABC DECF S S S =△△四边形, ①要想四边形DECF 面积最大,即三角形ABC 的面积最大,①BC =8,①A =60°,①可以看做A 、B 、C 三点共圆,且弦BC =8,弦BC 所对的圆心角度数为120°, 如图所示,分别过点A 作AE ①BC ,OF ①BC ,过点O 作OP ①AE 于P ,①1=42ABC S BC AE AE =△, 由垂径定理可知,4BF BC ==,60BOF COF ==∠∠,①83sin 3BF BO OA FOB ===∠,43=tan 3BF OF FOB =∠, 则四边形OFEP 是矩形,①OF =PE ,①AE OE OF ≤+, 当且仅当A 、O 、F 三点共线的时候,此时AE 有最大值,即三角形ABC 的面积有最大值, ①43AE AO OF =+=,①4=163ABC S AE =△,①3==638ABC DECF S S △四边形.【点睛】本题主要考查了相似三角形的性质与判定,菱形的性质,垂径定理,圆周角定理,解直角三角形,解题的关键在于能够熟练掌握相关知识进行求解.7.问题解决:见解析;应用探究:(1)26︒;(2)322【解析】【分析】问题解决:根据题意证明ADC BDE ≌即可;应用探究:(1)设=BCE α∠, 根据直角三角形斜边上的中线等于斜边的一半以及等边对等角可得,EDB EBD ∠=∠DEC DCE α∠=∠=,三角形的外角性质求得3AEC B ECB α∠=∠+∠=,即378α=︒;(2)延长FG 至M ,使得GM GF =,过点D 作DN MG ⊥于点N ,根据正方形的性质以及矩形的性质可得,DN MN 得到长,根据勾股定理即可求得DM ,根据中位线的性质即可求得GH 的长.【详解】问题解决:如图3,延长CD 至点E ,使DE =CD ,连接AE ,BECD 为斜边AB 上的中线,AD BD ∴=,DE CD =,∴四边形ACBE 是平行四边形又90ACB ∠=︒∴四边形ACBE 是矩形,∴CE AB =1122CD CE AB ∴== ∴直角三角形的斜边中线等于斜边的一半应用探究:(1)连接ED ,如图,设=BCE α∠AD 是ABC 的高AD BC ∴⊥CE 是中线AE EB ∴=∴Rt ABD △中,12DE AB AE BE === EDB EBD ∴∠=∠ 点F 是CE 的中点,DF ①CE ,DE DC ∴=DEC DCE α∴∠=∠=2EDB DEC DCE α∴∠=∠+∠=2EBD EDB α∴∠=∠=3AEC B ECB α∴∠=∠+∠=78AEC ∠=︒378α=︒26α∴=︒即26BCE ∠=︒故答案为:26(2)如图,延长FG 至M ,使得GM GF =,过点D 作DN MG ⊥于点N ,四边形,ABED BCFG 是正方形,AB =4,AC =11,则四边形DNGE 是矩形1147FG BC AC AB ∴==-=-=743MN MG NG ∴=-=-=,743DN EG BG BE ==-=-=Rt MND △中223332DM =+=MG GF =,H H 为DF 的中点,13222HG DM ∴== 故答案为:322【点睛】 本题考查了正方形的性质,矩形的性质与判定,平行四边形的性质,直角三角形斜边上的中线等于斜边的一半,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.。

中考数学专题:几何难题

中考数学专题:几何难题

A
B
C
E
F
D
13. 如 图 , Rt △ ABC 中 , ∠ ACB=90 ° , AC=BD, ∠ EDB= 1 CAB , BE ⊥ DE,CD= 2 5 ,
2
3
tan ABE 1 则 AE=_______. 2
A
E F
C
B
D
14.如图,Rt△ABC 中,∠ACB=90°,AD=BC,E 为 DB 中点,∠DFE=45°,DF= 2 ,则 AC=______.
A
F E
B
C
D
40 如图 1,等边△ABC 中,CE 平分∠ACB,D 为 BC 边上一点,且 DE=CD,连接 BE
(1)若 CE=4,BC=6 3 ,求线段 BE 的长;
(2)如图 2,取 BE 中点 P,连接 AP,PD,AD,求证:AP⊥PD,且 AP= 3 PD; (3)如图 3,把图 2 中的△CDE 绕点 C 顺时针旋转任意角度,然后连接 BE,点 P 为 BE 中点, 连接 AP,PD,AD,问(2)中的结论还成立吗?若成立,请证明;若不成立,请说明理由。
G
GM
A E
DA
E
F
D
N
B
CB
图1
图2
10
11
34.等边△ABC,AB=4,将△BEF 沿 EF 翻折使 B 落在 AC 边的 D 处,且 CD=1,连结 EC 交 FD 于 G,求 EG 的长。
A
E
D
G
B
F
C
35.如图,正方形 ABCD 中,点 P 在对角线 BD 上,E 在 CB 的延长线上,且 PE=PC,过点 P 作 PF⊥AE 于点 F,若 BE=1,AB=3,则 PF 的长为______.

专题13几何类比探究题型-2024年中考数学答题技巧与模板构建(解析版)

专题13几何类比探究题型-2024年中考数学答题技巧与模板构建(解析版)

专题13几何类比探究题型题型解读|模型构建|通关试练几何的类比探究题型是近年中招解答题的必考题型,该题型往往以压轴题的形式出现,有一定的难度。

探究型问题是指命题中缺少一定的条件或无明确的结论,需要经过推断,补充并加以证明的一类问题.根据其特征大致可分为:条件探究型、结论探究型、规律探究型和存在性探究型等四类。

由于探究型试题的知识覆盖面较大,综合性较强,灵活选择方法的要求较高,再加上题意新颖,构思精巧,具有相当的深度和难度,所以要求同学们在复习时,首先对于基础知识一定要复习全面,并力求扎实牢靠;其次是要加强对解答这类试题的练习,注意各知识点之间的因果联系,选择合适的解题途径完成最后的解答.模型01图形旋转模型模型一、A字形(手拉手)及其旋转D模型二、K字型及其旋转CC手拉手模型是有两个等腰的三角形或者两个等边的三角形,他们有一个共同的顶点,且两个等腰三角形的顶角是相等的,那么就可以用角的和差求得共顶点的另外两个角相等等,然后利用等腰的边对应相等,可证明两个三角形全等(边角边)组成这样的图形模样的我们就说他是手拉手模型。

在类比探究题型中,往往会对等腰三角形或者等边三角形进行演变,变成一般三角形进行旋转,通常全等三角形变为相似三角形。

模型特征:双等腰;共顶点;顶点相等;绕着顶点作旋转解题依据:等腰共顶手拉手,旋转全等马上有;左手拉左手,右手拉右手,两根拉线抖一抖,它们相等不用愁;拉线夹角与顶角,相等互补答案有。

模型02图形平移模型探究1.四边形平移变换四边形的平移变换题型中主要考查了全等三角形的判定和性质,相似三角形的判定和性质,平移几何性质、三角形内角和定理的应用,勾股定理,解题的关键是熟练掌握三角形全等或相似的判定方法,画出相应的图形,注意分类讨论.2.三角形平移变换三角形平移变换主要利用三角形全等和三角形相似的判定和性质,勾股定理,矩形的判定和性质,平移性质、平行线的判定和性质,解题的关键是作出辅助线,熟练掌握三角形相似的判定方法.3.其它图形平移类比探究问题综合考查了全等三角形的判定和性质,相似三角形的判定和性质,三角形内角和定理的应用,勾股定理,解题的关键是熟练掌握三角形相似的判定方法,画出相应的图形,注意分类讨论.模型03动点引起的题型探究动点型问题是指题设中的图形中存在一个或多个动点,它们在线段、射线、直线、抛物线、双曲线、弧线等上运动的一类非常具有开放性的题目。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

∴在△DBE 和△CFD 中 ,
∴△DBE≌△CFD(AAS),∴EB=DF, ∴EB=AD.
第二部分
题型1 题型2
专题五 几何探究问题
考情搜索
题型3
专题归纳
典例精析 典例精析
针对训练
-8-
(3)
.
理由如下: 作DF∥BC交AC于点F,如图3所示: 同(1)得:△DBE≌△CFD(AAS),∴EB=DF, ∵△ABC是等腰直角三角形,DF∥BC, ∴△ADF是等腰直角三角形,
第二部分
题型1 题型2
专题五 几何探究问题
考情搜索
题型3
专题归纳
典例精析 典例精析
针对训练
-6-
【答案】 (1)作DF∥BC交AC于点F,如图1所示. ∴∠ADF=∠ABC,∠AFD=∠ACB,∠FDC=∠DCE, ∵△ABC是等腰三角形,∠A=60°, ∴△ABC是等边三角形,∴∠ABC=∠ACB=60°, ∴∠DBE=120°,∠ADF=∠AFD=60°=∠A, ∴△ADF是等边三角形,∠DFC=120°,∴AD=DF, ∵∠DEC=∠DCE,∴∠FDC=∠DEC,ED=CD,
专题五 几何探究问题
第二部分
专题五 几何探究问题
考情搜索
专题归纳 典例精析 针对训练
-2-
几何探究问题主要涉及利用三角形的性质进行相关的探索与证明、三角形和四边形的综 合探索与证明以及几何动态问题等.这是中考对几何推理与证明能力考查的必然体现,重 在提高学生对图形及性质的认识,训练学生的推理能力,解题时应注意演绎推理与合情推 理的结合.全国各地的中考数学试题都把几何探究问题作为中考的压轴题之一,安徽省中 考也是如此,如2016年的第23题、2015年的第23题、第2014年的第23题、2013年的第23 题等.预计2017年安徽中考中,这类问题仍是考查的重点之一,需重点复习.
第二部分
题型1 题型2
专题五 几何探究问题
考情搜索
题型3
专题归纳
典例精析 典例精析
针对训练
-4-
题型1 与全等三角形有关的探究 典例1 (2016· 山东泰安)(1)已知:△ABC是等腰三角形,其底边是BC,点D在线段AB上,E是 直线BC上一点,且∠DEC=∠DCE,若∠A=60°(如图①),求证:EB=AD; (2)若将(1)中的“点D在线段AB上”改为“点D在线段AB的延长线上”,其他条件不变(如图 ②),(1)的结论是否成立,并说明理由; (3)若将(1)中的“若∠A=60°”改为“若∠A=90°”,其他条件不变,则 结论,不要求写解答过程) 的值是多少?(直接写出
(3)如图 3,若 FE 的延长线与 BC 的延长线交于点 N,CN=1,CE= ,求
的值.
第二部分
题型1 题型2
专题五 几何探究问题
考情搜索
题型3
专题归纳
典例精析 典例精析
针对训练
-10-
图1
图2
图3
第二部分
题型1 题型2
专题五 几何探究问题
考情搜索
题型3
专题归纳
典例精析 典例精析
针对训练
-11-
∴DF=
.
第二部分
题型1 题型2
专题五 几何探究问题
考情搜索
题型3
专题归纳
典例精析 典例精析
针对训练
-9-
题型2 与相似三角形有关的探究 典例2 (2016· 内蒙古包头)如图,已知一个直角三角形纸片ACB,其中 ∠ACB=90°,AC=4,BC=3,E,F分别是AC,AB边上的点,连接EF. (1)如图1,若将纸片ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,且使S四边形 ECBF=3S△EDF,求AE的长. (2)如图2,若将纸片ACB的一角沿EF折叠,折叠后点A落在BC边上的点M处,且使MF∥CA. ①试判断四边形AEMF的形状,并证明你的结论; ②求EF的长.
【解析】本题考查三角形综合题.(1)先利用折叠的性质得到 EF⊥AB,△AEF≌ △DEF,则易得 S△ABC=4S△AEF,再证明 Rt△AEF∽Rt△ABC,然后根据相似三角 形的性质得到 ,再利用勾股定理求出 AB 即可得到 AE 的长.(2)①通 , 求出 CM 长,再利用勾股 过证明四条边相等判断四边形 AEMF 为菱形;②连接 AM 交 EF 于点 O,设 AE=x,先证明△CME∽△CBA,得到
第二部分
专题五 几何探究问题
考情搜索
专题归纳
典例精析
针对训练
-3-ቤተ መጻሕፍቲ ባይዱ
几何探究问题是中考必考题型,考查知识全面,综合性强,它把几何知识与代数知识有机 结合起来,渗透数形结合思想,重在考查分析问题的能力、逻辑思维推理能力.如折叠类型、 探究型、开放型、运动型、情境型等,背景鲜活,具有实用性和创造性,在考查考生计算能 力的同时,考查考生的阅读理解能力、动手操作能力、抽象思维能力、建模能力,力求引 导考生将数学知识运用到实际生活中去.需要通过观察、分析、比较、概括、推理、判 断等来确定所需求的结论、条件或方法,因而解题的策略是将其转化为封闭性问题. 常用的解题策略: 1.找特征或模型:如中点、特殊角、折叠、相似结构、三线合一、三角形面积等; 2.找思路:借助问与问之间的联系,寻找条件和思路; 3.照搬:照搬前一问的方法和思路解决问题,如照搬字母、照搬辅助线、照搬全等、照 搬相似等; 4.找结构:寻找不变的结构,利用不变结构的特征解决问题.常见的不变结构及方法:有直 角,作垂线,找全等或相似;有中点,作倍长,通过全等转移边和角;有平行,找相似,转比例.
第二部分
题型1 题型2
专题五 几何探究问题
考情搜索
题型3
专题归纳
典例精析 典例精析
针对训练
-5-
【解析】(1)作DF∥BC交AC于F,由已知得△ABC和△ADF均为等边三角形,则AD=DF,利 用AAS证明△DBE≌△CFD,得EB=DF,从而EB=AD;(2)作DF∥BC交AC的延长线于点F,同 (1)证出△DBE≌△CFD,得出EB=DF,即可得出结论;(3)作DF∥BC交AC于点F,同(1) AD,即可得出 得:△DBE≌△CFD,得出EB=DF,证出△ADF是等腰直角三角形,得出DF= 结果.
在△DBE 和△CFD 中,
∴△DBE≌△CFD(AAS),∴EB=DF,∴EB=AD.
第二部分
题型1 题型2
专题五 几何探究问题
考情搜索
题型3
专题归纳
典例精析 典例精析
针对训练
-7-
(2)EB=AD成立. 理由如下: 作DF∥BC交AC的延长线于点F,如图2所示. 由(1)得AD=DF,∠FDC=∠ECD,∠FDC=∠DEC,ED=CD, 又∵∠DBE=∠DFC=60°,
相关文档
最新文档