人教版九年级数学下册《相似三角形》
合集下载
九年级数学下册272《相似三角形》PPT课件
3. 解等式求出三角形的面积。
注意事项:在解题过程中,要确保已知的三边长度是准 确的,避免因为数据不准确而导致错误。同时,要注意 选择合适的公式或方法进行计算。
典型例题四:综合应用举例
• 解题思路:综合运用相似三角形的性质和判定方法,解决 复杂的实际问题。
典型例题四:综合应用举例
解题步骤 1. 分析问题,确定需要使用的相似三角形的性质和判定方法;
利用相似三角形的面积比等于相似比的平 方性质,求解面积问题 通过已知三角形的面积和相似比,计算另 一个三角形的面积 结合图形变换和面积公式,利用相似三角 形解决复杂面积问题
利用相似三角形解决综合问题
综合运用相似三角形 的性质,解决涉及线 段、角度和面积的复 杂问题
结合多种数学方法, 如代数运算、方程求 解等,提高解决问题 的效率
通过分析问题的条件 ,选择合适的相似三 角形性质和定理进行 求解
04
典型例题分析与解题思路展示
典型例题一:已知两边求第三边长度
解题思路:利用相似三角形的性质, 即对应边成比例,可以通过已知的两
边长度求出第三边的长度。
解题步骤
2. 利用相似三角形的性质列出比例式 ;
3. 解比例式求出第三边的长度。
1. 确定已知的两边和夹角;
注意事项:在解题过程中,要确保已 知的两边和夹角是对应的,避免因为 数据不对应而导致错误。
典型例题二:已知两角求第三角大小
01
解题思路:根据三角形内角和为180°的性质,可以通过 已知的两角求出第三角的大小。
04
2. 利用三角形内角和为180°的性质列出等式;
02
解题步骤
对应角相等,对应边成比例的两 个三角形叫做相似三角形。
《相似三角形应用举例》相似PPT免费课件
探究新知
考点 2 利用相似三角形测物体的宽
如图,为了估算河的宽度,我们可以在河对岸选定一个目标点P,
在近岸取点Q和S,使点P、Q、S共线且直线PS与河垂直,接着
在过点S且与PS垂直的直线a上选择适当的点T,确定PT与过点Q
且垂直PS的直线b的交点R.如果测得QS=45m,
ST=90m,QR=60m,求河的宽度PQ.
求旗杆的高度.
E
C
FD
B
G
课堂检测
解:由题意可得:△DEF∽△DCA,
则 DE EF .
DC CA
∵DE=0.5米,EF=0.25米,DG=1.5米,DC=20米,
∴ 0.5 0.25,
20 CA
A
解得:AC = 10,
AB = AC + BC = 10 + 1.5 = 11.5 (m).
答:旗杆的高度为 11.5 m.
D E
B
C
课堂小结
相似 三角 形的 应用 举例
利用相似三角形测量高度 利用相似三角形测量宽度 利用相似解决有遮挡物问题
人教版 数学 九年级 下册
27.2 相似三角形
27.2.3 相似三角形应用举例
导入新知
1. 在前面,我们学过哪些判定三角形相似的方法?相似三角 形的性质是什么? 2. 观察下列图片,你会利用相似三角形知识解决一些不能直 接测量的物体(如塔高、河宽等)的长度或高度的问题吗?
导入新知
怎样测量 河宽?
相似三角形,来测量金字塔的高度.
如图,如果木杆EF长2m,它的影长FD为3m,测得OA为
201m,求金字塔的高度BO. 解:太阳光是平行光线,因此∠BAO=∠EDF.
怎样测出 OA的长?
27.2.1相似三角形的判定(2)课件2024-2025学年人教版数学九年级下册
二、要熟悉该定理的几种基本图形
A
D
DA
B
E
BE
C
F
C
F
三、注意该定理在三角形中的应用
四、平行于三角形一边的直线和其他两边(或延 长线)相交,所构成的三角形与原三角形相似.
1、 如图 请尽可能多地找出下列图中的
相似三角形,并说明理由。
A
A
A
B
D
E
D
E
O
F
G
E
F
B
F
C
图1
DE∥BC ,DF∥AC
B 图2
DE∥FG//BC
CC
D
图3
AB∥EF∥CD,
如图,△ABC 中,DE∥BC,GF∥AB,
DE、GF交于点O,则图中与△ABC相 似的三角形共有多少个?请你写出来.
解: 与△ABC相似的三角形有3个: A
A
D E F
B
G H I
C
新知应用
如图所示,如果D,E,F分别在OA,OB,
OC上,且DF∥AC,EF∥BC.
求证:OD∶OA=OE∶OB
证明: ∵ DF∥AC,
OD OA
OF OC
.
EF∥BC,
OF OC
OE , OB
OD OE . OA OB
课堂小结
一、平行线分线段成比例定理:
三条平行线截两条直线,所得的对应线段成比例. (关键要能熟练地找出对应线段)
符号语言:
∵DE//BC,
∴△ABC∽△A’B’C’
思考
如图 DE//BC,△ADE与△ABC有什么关系?
方法一:过点E作EF//DB交BC 的延长线于F
数学人教版九年级下册27.2相似三角形的判定定理教案
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了相似三角形判定定理的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对相似三角形判定定理的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“相似三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.提高学生的数学建模能力,使学生能够将现实问题转化为数学模型,运用相似三角形的性质解决实际问题;
4.培养学生的数据分析能力,通过分析相似三角形的判定定理在不同情境中的应用,提高学生解决复杂问题的能力;
5.培养学生的数学抽象思维,让学生从具体的几何图形中提炼出相似三角形的判定定理,并应用于不同的问题情境中。
三、教学难点与重点
1.教学重点
-本节课的核心内容是相似三角形的判定定理,包括AAA、AA和SSS相似定理。以下是具体细节:
-理解并掌握相似三角形的定义,即对应角相等且对应边成比例的两个三角形为相似三角形;
-掌握AAA相似定理,即如果两个三角形有三个角分别相等,则这两个三角形相似;
-掌握AA相似定理,即如果两个三角形有两个角分别相等,并且它们的夹角相等,则这两个三角形相似;
新课讲授中的重点难点解析部分,我发现学生在区分AAA和AA相似定理的应用条件上存在一些困难。这可能是因为我在讲解时没有足够地强调这两个定理的区别,或者举例不够典型。在后续的教学中,我需要针对这一点进行改进,设计更多具有针对性的例题和练习。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了相似三角形判定定理的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对相似三角形判定定理的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“相似三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.提高学生的数学建模能力,使学生能够将现实问题转化为数学模型,运用相似三角形的性质解决实际问题;
4.培养学生的数据分析能力,通过分析相似三角形的判定定理在不同情境中的应用,提高学生解决复杂问题的能力;
5.培养学生的数学抽象思维,让学生从具体的几何图形中提炼出相似三角形的判定定理,并应用于不同的问题情境中。
三、教学难点与重点
1.教学重点
-本节课的核心内容是相似三角形的判定定理,包括AAA、AA和SSS相似定理。以下是具体细节:
-理解并掌握相似三角形的定义,即对应角相等且对应边成比例的两个三角形为相似三角形;
-掌握AAA相似定理,即如果两个三角形有三个角分别相等,则这两个三角形相似;
-掌握AA相似定理,即如果两个三角形有两个角分别相等,并且它们的夹角相等,则这两个三角形相似;
新课讲授中的重点难点解析部分,我发现学生在区分AAA和AA相似定理的应用条件上存在一些困难。这可能是因为我在讲解时没有足够地强调这两个定理的区别,或者举例不够典型。在后续的教学中,我需要针对这一点进行改进,设计更多具有针对性的例题和练习。
人教版数学九年级下册 两边成比例且夹角相等的两个三角形相似
改变 k 的值和∠A 的大小,是否有同样的结论?
如图,在 △ABC 与 △A′B′C′ 中,已知∠A = ∠A′,
AB AC . 求证:△ABC∽△A′B′C′. A' B' A' C'
证明:在 △A′B′C′ 的边 A′B′ 上取点 D, 使 A′D = AB.过点 D 作 DE∥B′C′, D
交 A′C′ 于点 E.
B'
∵ DE∥B′C′,∴ △A′DE∽△A′B′C′.
A'
E A C'
∴ A' D A' E . A' B' A' C'
B
C
∵ A′D = AB, AB AC , A' B' A' C'
∴ A' D A' E = AC . A' B' A' C' A' C'
∴ A′E = AC. 又 ∠A′ = ∠A, ∴ △A′DE≌△ABC. ∴ △A′B′C′∽△ABC.
A
B. AC : BC = AB : AD
C. AB2 = CD·BC D. AB2 = BD·BC → AB BC B
BD AB
DC
3. 如图,△AEB 和 △FEC 相似 (填 “相似” 或 “不相似”) .
B
45
A
54
E 36 F
30
C
4. 如图,在四边形 ABCD 中,已知 ∠B =∠ACD,AB
DF = 2.1 cm,EF = 1.5 cm,
A
B
∴ DF EF 3 .
F
AC BC 5
初中数学人教版九年级下册 27.2.1相似三角形的判定(课时1) 课件(共32张PPT)
1 k
B′
A C
A′ C′
探究新知
如图,任意画两条直线 l1,l2,再画三条与 l1,l2,都相交的平 行线 l3,l4,l5. 分别度量在 l1 上截得的两条线段 AB,BC 和在 l2 上截得的两条线段 DE,EF 的长度
(1)AB 与 DE 相等吗?
BC EF
l1 A
(2)任意平移
l5,BACB
归纳总结
把平行线分线段成比例的基本事实应用到三角形中,会出现下面
两种情况.
l1A D
l2 l3
E l4
l1
l2
E D l3
A
l4
B
C l5
B
C l5
平行线分线段成比例定理推论:平行于三角形一边的直线截其他 两边(或两边的延长线),所得的对应线段成比例.
探究新知
思考:如图,在△ABC中,DE∥BC,且DE分别交AB,AC于点
A E C
要想利用前面学到的结论来证明三角形相似,需将DE平移
到BC边上去,使BF=DE,再证明
AE AC
BF BC
就可以了.
探究新知
证明:先证明两个三角形的角分别相等 在 △ADE与 △ABC中,∠A =∠A.
平行于三角形一边的 直线截其他两边(或两 边的延长线),所得的
对应线段成比例
∵ DE∥BC,∴ ∠ADE =∠B,∠AED =∠C.
∴. DE AD 2 1 BC AB 2 4 3
故选:C.
练习 6 如图, DC//EF//AB ,若 EG 1 , DC 6 ,则 GF 的长为 AB 2
( B)
A.2
B.3
C.4
D.1.5
解析:∵ EF//AB , ∴△DEG∽△DAB , ∴ DG EG 1 ,即点 G 为 DB 的中点,
人教版初中数学九年级下册 27.2.1 相似三角形的判定(第4课时)课件 【经典初中数学课件】
A
3.如图,△ABC中,DE∥BC,EF∥AB,
D
E
试说明△ADE∽△EFC.
B
F
C
4.已知如图,∠ABD=∠C,AD=2,AC=8,求AB.
A D
B
C
相似三角形的判别方法有那些?
方法1:通过定义
三个角对应相等 三边对应成比例
方法2:平行于三角形一边的直线.
方法3:三边对应成比例.
方法4:两边成比例且夹角相等. 方法5:两角分别相等.
A
3.如图,△ABC中,DE∥BC,EF∥AB,
D
E
试说明△ADE∽△EFC.
B
F
C
4.已知如图,∠ABD=∠C,AD=2,AC=8,求AB.
A D
B
C
相似三角形的判别方法有那些?
方法1:通过定义
三个角对应相等 三边对应成比例
方法2:平行于三角形一边的直线.
方法3:三边对应成比例.
方法4:两边成比例且夹角相等. 方法5:两角分别相等.
一定需三个角对应相等吗?
相似三角形的判别方法: 两角分别相等的两个三角形相似.
如果两个三角形仅有一组角是对应相等的,那么它们是否 一定相似?
相似三角形的判别
用数学符号表示: ∵∠A=∠A', ∠B=∠B' ∴ ΔABC ∽ ΔA'B'C'
A A'
B
C B' C'
(两个角分别相等的两个三角形相似.)
条件 DE‖BC ,就可以使△ADE与原△ABC相似.
(或者∠B=∠ADE) (或者∠C=∠AED)
2.如图,在□ABCD中,EF∥AB,
DE:EA=2:3,EF=4,求CD的长.
27.2.1.3++相似三角形的判定定理3+课件+++2023—-2024学年人教版数学九年级下册
A
证明:在△ABC 中,∵∠A = 40°,∠B = 80°,
∴∠C = 180°-∠A-∠B = 60°.
B
C
D
在△DEF 中,∵∠E = 80°,∠F = 60°,
∴∠B =∠E,∠C =∠F.
∴△ABC∽△DEF.
E
分层设计 数学 RJ 九年级 上
F
合作探究
探究2 两直角三角形相似的判定
如图,在 Rt△ABC 中,∠C = 90°,AB = 10,AC = 8.
有一个锐角相等,或两组直角边成比例的两个直角三角
形相似.
分层设计 数学 RJ 九年级 上
合作探究
思考 我们知道,两个直角三角形全等
可以用“HL”来判定,那么满足斜边和
一条直角边成比例的两个直角三角形相似吗?
AB
AC
A' B ' A' C '
分层设计 数学 RJ 九年级 上
合作探究
如图,在Rt△ABC和Rt△A'B'C' 中,∠C=90°,
∴ △ABC ∽ △A'B'C'.
B
分层设计 数学 RJ 九年级 上
C
B'
C'
合作探究
如图,在△ABC与△A′B′C′ 中,∠A=∠A′,∠B=∠B′ .
证明:△A′B′C′∽△ABC.
证明:在 △ABC 的边 AB上,截取 AD=A′B′,
过点 D 作 DE // BC,交 AC 于点 E,
则有△ADE ∽△ABC,∠ADE =∠B.
(30°与60°,或45°与45°)的两个三角尺大小可能
不同,但它们看起来是相似的.一般地,如果两个三角
证明:在△ABC 中,∵∠A = 40°,∠B = 80°,
∴∠C = 180°-∠A-∠B = 60°.
B
C
D
在△DEF 中,∵∠E = 80°,∠F = 60°,
∴∠B =∠E,∠C =∠F.
∴△ABC∽△DEF.
E
分层设计 数学 RJ 九年级 上
F
合作探究
探究2 两直角三角形相似的判定
如图,在 Rt△ABC 中,∠C = 90°,AB = 10,AC = 8.
有一个锐角相等,或两组直角边成比例的两个直角三角
形相似.
分层设计 数学 RJ 九年级 上
合作探究
思考 我们知道,两个直角三角形全等
可以用“HL”来判定,那么满足斜边和
一条直角边成比例的两个直角三角形相似吗?
AB
AC
A' B ' A' C '
分层设计 数学 RJ 九年级 上
合作探究
如图,在Rt△ABC和Rt△A'B'C' 中,∠C=90°,
∴ △ABC ∽ △A'B'C'.
B
分层设计 数学 RJ 九年级 上
C
B'
C'
合作探究
如图,在△ABC与△A′B′C′ 中,∠A=∠A′,∠B=∠B′ .
证明:△A′B′C′∽△ABC.
证明:在 △ABC 的边 AB上,截取 AD=A′B′,
过点 D 作 DE // BC,交 AC 于点 E,
则有△ADE ∽△ABC,∠ADE =∠B.
(30°与60°,或45°与45°)的两个三角尺大小可能
不同,但它们看起来是相似的.一般地,如果两个三角
27.2.2 相似三角形的性质 九年级数学下册人教版课件
AB BC CA k, A'B' B'C' C' A'
因此 AB=k A'B',BC=kB'C',CA=kC'A',
从而
AB BC CA kA' B ' kB 'C ' kC ' A' k. A' B ' B 'C ' C ' A' A' B ' B 'C ' C ' A'
归纳:相似三角形周长的比等于相似比.
∵△ABC∽△A'B'C'
AD AB k AE AB
B/
A
D
C
A/
D/
C/
归纳
由此我们可以得到: 相似三角形对应高的比等于相似比. 类似地,可以证明相似三角形对应中线、角平分线的比也 等于相似比.
一般地,我们有:相似三角形对应线段的比等于相似比.
1. 如果两个相似三角形的对应高的比为 2 : 3,那么对 应角平分线的比是 2 : 3 ,对应边上的中线的比是 __2_:_3__ .
2. 相似三角形有哪些性质? 对应角相等,对应边成比例
三角形中有各种各样的几何量,例如三条边的长度, 三个内角的度数,高、中线、角平分线的长度,以及周长、 面积等。如果两个三角形相似,那么它们的这些量之间有 什么关系呢?
1. 理解并掌握相似三角形中对应线段的比等于相似比,并 运用其解决问题 2. 理解相似三角形面积的比等于相似比的平方,并运用其 解决问题.
2. 已知△ABC ∽ △A'B'C' ,相似比为3 : 4,若 BC 边 上的高 AD=12 cm,则 B'C' 边上的高 A'D' =_1_6_c_m__ .
相似三角形的性质+课件+人教版数学九年级下册
周长比等于相似比,面积比等于相似比的平方
验一验:是不是任何相似三角形都有此关系呢?
你能加以证明吗?
已知:ΔABC∽ΔA´B´C´,相似比为k.
求证: ΔABC的周长
ΔA’B’C’的周长
=k
sABC sA´B´C´
=k2
A
A’
B
B’
C’
C
已知:ΔABC∽ΔA´B´C´,相似比为k.
求证:
ΔABC的周长 ΔA’B’C’的周长
相似三角形的周长比等于相似比吗?
A B
C D
相似三角形的周长比等于相似比. E
F
已知:如图, △ABC∽△A’B’C’,它们的相似比是K,
AD、A’D’分别是高.
A
求证:S ABC : S A'B'C ' = K 2
证明: ∵△ABC∽△A’B’C’
B
DC
A’
BC = AD = K B'C' A' D'
A
D
解: ∵AD∥BC
O
∴△AOD∽△COB S△AOD:S△COB=4:9
∴OD:OB=2:3
B
C
∴S△AOD:S△AOB=2:3
∴S△AOB=6cm2 ∴梯形ABCD的面积为25cm2
做一做:
如图,D,E分别是AC,AB边上的点,∠ADE=∠B, AG⊥BC于点G,AF⊥DE于点F,若AD=3,AB=5。 求:(1) AG ;
A'B' B'C' 72
C B'
又 AB=15厘米 B'C'=24厘米
C'
所以 A'B'=18厘米 BC=20厘米
27.2.2+相似三角形的性质++课件++-2024-2025学年人教版九年级数学下册
位置情况进行分类. 注意多种情况的存在,利用相似找函
数关系往往需要考虑相似比与对应线段的比,以及相似比
与面积比之间的关系.
综合应用创新
题型
4 利用相似三角形的性质解决实际问题
例 7 课本中有一道复习题:如图27.2-37 ①所示,有一
块三角形材料ABC,它的边BC=120 mm,高AD=
80 mm,要把它加工成正方形零件,使正方形的边
′′
= =k
′′
相似比为k
感悟新知
知1-讲
续表
图形
推理
结论
由两角分别相等
的两个三角形相 相 似 三 角
对应
似 , 得 △ABD ∽ 形 对 应 高
高的
AD , A′D′ 分 别 为 △A′B′D′ , 再 由 相 的 比 等 于
比
△ABC 和 △A′B′C′ 的 似 三 角 形 的 性 质 ,相似比
-6
3
2
6
3 2
2
) ×24= x -
2
12x
+24.
3
8
3
2
9
8
∴ y=S△A1MN-S△A1EF= x2-( x2-12x+24=- x2+12x-
24(4 <x<8).
16
易知当x= 时,y最大=8.
3
16
3
∵ 8>6,∴当x= 时,y最大,y 最大=8.
综合应用创新
解法提醒
本题运用了分类讨论思想,对点A1与四边形BCNM的
的平分线.
感悟新知
知1-练
例 1 如图27.2-32,在△ABC中,AD是BC边上的高,矩形
EFGH内接于△ABC,且长边FG在BC上,AD与EH的
数关系往往需要考虑相似比与对应线段的比,以及相似比
与面积比之间的关系.
综合应用创新
题型
4 利用相似三角形的性质解决实际问题
例 7 课本中有一道复习题:如图27.2-37 ①所示,有一
块三角形材料ABC,它的边BC=120 mm,高AD=
80 mm,要把它加工成正方形零件,使正方形的边
′′
= =k
′′
相似比为k
感悟新知
知1-讲
续表
图形
推理
结论
由两角分别相等
的两个三角形相 相 似 三 角
对应
似 , 得 △ABD ∽ 形 对 应 高
高的
AD , A′D′ 分 别 为 △A′B′D′ , 再 由 相 的 比 等 于
比
△ABC 和 △A′B′C′ 的 似 三 角 形 的 性 质 ,相似比
-6
3
2
6
3 2
2
) ×24= x -
2
12x
+24.
3
8
3
2
9
8
∴ y=S△A1MN-S△A1EF= x2-( x2-12x+24=- x2+12x-
24(4 <x<8).
16
易知当x= 时,y最大=8.
3
16
3
∵ 8>6,∴当x= 时,y最大,y 最大=8.
综合应用创新
解法提醒
本题运用了分类讨论思想,对点A1与四边形BCNM的
的平分线.
感悟新知
知1-练
例 1 如图27.2-32,在△ABC中,AD是BC边上的高,矩形
EFGH内接于△ABC,且长边FG在BC上,AD与EH的
人教版九年级数学下册1相似三角形应用举例
不到右边较高的树的顶端C 了?
探
索
新
知
分析:如图,设观察者眼睛的位置 (视点) 为点 F,画出观察者的水平视
线 FG,它交 AB,CD 于点 H,K.视线 FA,FG 的夹角 ∠AFH 是观察点
A 的仰角. 类似地,∠CFK 是观察点 C 时的仰角,由于树的遮挡,区域
Ⅰ和Ⅱ都在观察者看不到的区域 (盲区) 之内. 再往前走就根本看不到 C
第二十七章 相似
27.2 相似三角形
相似三角形应用举例
学
习
目
标
1. 能够利用相似三角形的知识,求出不能直接测量
的物体的高度和宽度. (重点)
2. 进一步了解数学建模思想,能够将实际问题转化
为相似三角形的数学模型,提高分析问题、解决
问题的能力. (难点)
0 1 . 课 前 导 入
0 2 . 探 索 新 知
∴ BO
FD
3
=134 (m).
因此金字塔的高度为
134 m.
探
索
新
知
方法总结:
测量不能到达顶部的物体的高度,可以用“在同一
时刻物高与影长成正比例”的原理解决.
表达式:物1高 :物2高 = 影1长 :影2长
探
索
新
知
小明身高 1.5 米,在操场的影长为 2 米,同时
测得教学大楼在操场的影长为 60 米,则教学大楼
因此,河宽大约为 90 m.
探
索
新
知
方法总结:
测量如河宽等不易直接测量的物体的宽度,常构造相
似三角形求解.
探
索
新
知
如图,为了测量水塘边 A、B 两点之间的距离,在可以看
探
索
新
知
分析:如图,设观察者眼睛的位置 (视点) 为点 F,画出观察者的水平视
线 FG,它交 AB,CD 于点 H,K.视线 FA,FG 的夹角 ∠AFH 是观察点
A 的仰角. 类似地,∠CFK 是观察点 C 时的仰角,由于树的遮挡,区域
Ⅰ和Ⅱ都在观察者看不到的区域 (盲区) 之内. 再往前走就根本看不到 C
第二十七章 相似
27.2 相似三角形
相似三角形应用举例
学
习
目
标
1. 能够利用相似三角形的知识,求出不能直接测量
的物体的高度和宽度. (重点)
2. 进一步了解数学建模思想,能够将实际问题转化
为相似三角形的数学模型,提高分析问题、解决
问题的能力. (难点)
0 1 . 课 前 导 入
0 2 . 探 索 新 知
∴ BO
FD
3
=134 (m).
因此金字塔的高度为
134 m.
探
索
新
知
方法总结:
测量不能到达顶部的物体的高度,可以用“在同一
时刻物高与影长成正比例”的原理解决.
表达式:物1高 :物2高 = 影1长 :影2长
探
索
新
知
小明身高 1.5 米,在操场的影长为 2 米,同时
测得教学大楼在操场的影长为 60 米,则教学大楼
因此,河宽大约为 90 m.
探
索
新
知
方法总结:
测量如河宽等不易直接测量的物体的宽度,常构造相
似三角形求解.
探
索
新
知
如图,为了测量水塘边 A、B 两点之间的距离,在可以看
人教版九年级数学下册相似三角形全章课件
∴△A′B′C′∽△ABC
B
E C
A A′
B
B′ C
C′
△ABC∽△A′B′C′
如果一个三角形的三条边和另一个三角形的三条边 对应成比例,那么这两个三角形相似. 简单地说:三边对应成比例,两三角形相似.
【例】在△ABC和△A′B′C′中,已知:AB=6cm,BC= 8cm,AC=10cm,A′B′=18cm,B′C′=24cm,A′C′ =30cm.试证明△ABC与△A′B′C′相似.
A C
B
D
P2 P3
P1 P4
E
P5 F
【解析】(1)△ABC和△DEF相似.根据勾股定理,
得
, ,BC=5;
,,
.
∵
,∴ △ABC∽△DEF.
(2) 答案不唯一,下面6个三角形中的任意2个均可.
A C
B
P3 E
D P1 P2
P4
P5 F
△P2P5D,△P4P5F,△P2P4D,
△P4P5D,△P2P4 P5,△P1FD.
4.(成都中考)如图,已知线段AB∥CD,AD与B
C相交于点K,E是线段AD上一动点。 (1)若BK= KC,
求 的值;
(2)连接BE,若BE平分∠ABC,则当AE= AD时,猜想线
段AB、BC、CD三者之间有怎样的等量关系?请写出你的
结论并予以证明.再探究:当AE= AD (n>2),而其余
MN∥AB交BC于N,量得MN=38cm,则AB的长为 152c . m
2.如图,在△ABC中,DG∥EH∥FI∥BC, (1)请找出图中所有的相似三角形;
△ADG∽△AEH∽△AFI∽△ABC
(2)如果AD=1,DB=3,那么DG:BC=_1_:_4__. A
27.2.2 相似三角形的性质 人教版九年级数学下册课件
解:如图,分别作出 △ABC 和△A' B' C' 的角平分线 A
AD 和 A'D',则∠BAD =∠B' A' D'
∵△ABC ∽△A′B′C′ ∴∠B=∠B' , AB k
A'B' ∴△ABD ∽△A' B' D'
(两角分别相等的两个三角形相似) ∴ AD AB k
A'D' A'B'
BD
C
相似三角形的性质
——第二十七章相似
教学目标
01.掌握相似三角形对应高线、中线和角 平分线的比与相似比之间的关系 重点
02.理解并掌握相似三角形周长与面积的的 比与相似比之间的关系. 重点
03.能够运用相似三角形的性质解决相 关问题 难点
大家回忆一下相似三角形的定义是什么?
三个角分别相等,三边成比例的两个三角形相似.
AM AM
AB AB
k
由两角分别相等的两个三角形相
似,得△ABN∽△ABN ,再由相似 对 应 角 平 分 线 的
三角形的定义,得
AN AN
AB AB
k
比等于相似比
相似三角形的周长有什么关系呢?
解:如图 △ABC ∽△A'B'C',相似比为 k,那么 AB BC CA k, A'B' B'C ' C ' A'
应角相等,所以∠BB=∠A′D′B′=90°.根据两角对应相
A'
等的两个三角形相似得到△ABD和△A′B′D′相似,
然后由相似三角形的对应边成比例得到
AD AD
27.2.1 相似三角形的判定(第2课时)人教版九年级数学下册课件
思考:如果两个三角形有两组角对应相等,它们一定相似吗?
如图所示,已知在△ABC和△A′B′C中,∠A=∠A′,∠B=∠B′.
求证△ABC∽△A′B′C′.
A
思路:作△ADE ≌ △A′B′C′.
证△ADE∽△ABC.
A'
D
E
△ABC∽△A′B′C′.
A'B' B'C ' A'C '
∴△ABC∽△A′B′C′
(三边成比例的两个三角形相似)
例题巩固: 根据下列条件,判断△ABC与△A′B′C′是否相似,并说明理由:
(1)AB=4cm,BC=6cm,AC=8cm,A′B′=12cm,B′C′=18cm,
A′C′=24cm.
(2)∠A=120°,AB=7cm,AC=14cm,∠A′=120°,A′B′=3cm, A′C′=6cm.
D
E
△ABC∽△A′B′C′.
B
C
已知:如图,在△ABC和△A'B'C'中,AB BC AC .
求证:△ABC∽△A'B'C'.
A' B' B' C' A' C' A'
证明:在AB上取AD=A'B',过点D作DE//BC,
交AC于点E ∵DE//BC ∴△ABC∽△ADE
B'A
∴ AD DE AE
解:(2)∵ AB = 7 , AC =14 = 7 ,∴ AB = AC .
A'B' 3 A'C ' 6 3
A'B' A'C '
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二十七章相似
相似三角形
1
回顾与反思
判定两个三角形相似的方法:
1.定义:三角对应相等,三边对应成比例的两个三 角形相似。 2.平行三角形一边的直线和其他两边相交(或两边的延 长线),所构成的三角形与原三角形相似. 3.三边对应成比例的两个三角形相似。 4.两边对应成比例且夹角相等的两个三角形相似。 5. 两角对应相等的两个三角形相似。
(2) BC是圆O的切线,切点为C.
(3) 移动点A,使AC成为⊙O的直径,你还能 得到哪些结论?
8
BF=4
结论:1、⊿ACF∽ ⊿ABC∽ ⊿CBF 2、CD²=AD×BD BC²=BD×AB AC²=AD×AB
9
用一用
(1)请在x轴上找一点D,使得⊿BDA与⊿BAC相似 (不包含全等),并求出点D的坐标;
C
DE∥BC
C
(5)
BD ∠BAD=∠C
C
A
DB
∠ACB=90°,
AB2=BD·BC
CD⊥AB
B
C
E
(6)
D
A
C B ∠D=∠C
12
问题:
如图,在正方形ABCD中,E为BC上任意一点 (与B、C不重合)∠AEF=90°.观察图形:
((12))若△EA为BEBC与的△中E点CF,是连否结相AF似,图?中并有证哪明些你相的似结论。
即:
m 5
3 13 m 4
3 13
4
解得: m
25 9
有公共角∠B, “A”型相似
(2)当PQ⊥BD时,⊿BPQ∽ ⊿BDA
则 BP BQ
BD 即:
3
BA
m 13 m
3
13
4 5
m
4
解得: m 125
36
11
相似的基本图形
(1)
A
D
E
E
D
(2)
A
A (3)
DE
B
C
DE∥BC
A (4)
B
(2)在(1)的条件下,如果P、Q分别是BA、BD上 的动点,连结PQ,设BP=DQ=m,
问:是否存在这样的m,使得⊿BPQ与⊿BDA相似? 如存在,请求出m的值;若不存在,请说明理由。
y
B(-3,0) O
tan∠ABC=
A
D
C(1,0) x
3 4
(1)∵⊿BDA∽⊿BAC
∴∠CAD=∠ABC
3
∴tan∠CAD=∠ABC= ∵BC=4
E的则、三EA角F、=形_B_相为5_似_顶_,点_ 则的C三E角=_形__和5中_.6以寻数_或_找学E_2、或基思1C本想2、型F为顶点
D
A
A
F
C
EE
F
C B
E
E
B
16
2.已知:D为BC上一点, ∠B= ∠C= ∠EDF=60°, BE=6 , CD=3 , CF=4 ,
则AF=___7____
B
E
C
A
A
A
FF F
α66α00°°
BBB
αα6600°°
EEE
6α6α00°°
CCC
15
变1式.矩:形.直AB角C梯D中形,AB把CDFA中沿,∠ABF=对9折0°,,C使BD=与14, CCFB=4边, 上AB的=点6, EC重F∥合A,B,若在A善注边D于意C=在分B10上复类, A找杂 讨B图 论一=形 的点8,E,使以
三角形?△ABE∽ △ECF ∽ △AEF
A
D
A
D
F
B
E
C
F
B
E
C
14
A
△ABE∽ △ECF((2)1)点点EE为为BBCC上上任任意意一一点点,
若若∠∠BB==∠∠CC==α6,0∠°A,E∠FA=E∠F= F C∠,则C△,则A△BEAB与E△与△ECEFC的F关的
系关还系成还立成吗立?吗?说明理由
4
∴AC=BC·tan ∠ABC=3 ∴CD=AC·tan ∠CAD=3×
3 =
4
9 4
∴OD=OC+CD=1+ 9 = 13 44
∴D( 13,0)
10
4
用一用
y
PP
B(-3,0) Q O Q
tan∠ABC=
A
D
C(1,0) x
3 4
(1)当PQ∥AD时,⊿BPQ∽
⊿BAD BP BQ
则 BA BD
存在,求出点E的坐标;若不存在,
请说明理由.
18
相似基本图形 的运用
方程思想 整体思想 转化思想 分类思想
已知相似图形直接求 构造相似图形间接求
学会从复杂图形中分解出基本图形
19
A
D
例1如图,梯形ABCD中,AD∥BC,
∠ABC=90°,AD=9,BC=12,AB=10,
在线段BC上任取一点P,作射线 PE⊥PD,与线段AB交于点E.
E
(1)试确定CP=3时点E的位置; B
PH C
(2)若设CP=x,BE=y,试写出y关 于自过变D量作xD的H⊥函B数C于关H系,式,并求出自 变量由x的题取意值,范得围CH.=3,
y 3又∴从P而Cx与P11E=0H3与1x重2B2合友重,情合23提x醒:158要善于构造基本图形,对你
的解题会起到事半功倍的效果! 20
5
基本图形2
“A”字型 当∠ADE= ∠C 时, ⊿ADE∽ ⊿ACB.
6
基本图形2
A F
B
C
添加一个条件使得⊿⊿ABCCFF∽∽⊿⊿ABBACC..
பைடு நூலகம்
7
基本图形2
A AA
当∠BCF= ∠A 时, ⊿BCF∽ ⊿BAC.
F FF
.O
BB
CC
(1) 若则B⊿CA=C6F,∽AF⊿=A5B,你C∽能⊿求C出BBFF的长吗?
(2)若AE:AC=1:2,则AC:DH=2:__3_____;
若⊿ABC的周长为4,则⊿BDH的周长为_6____.
若⊿ABC的面积为4,则⊿BDH的面积为__9___.
4
相似三角形
E
E
F
M
F N
G
G
若G为BC中点,EG交AB于点F, 且EF:FG=2:3,
试求AF:FB的值.
添平行线构造相似三角形的基本图形。
2
回顾与反思
相似三角形的性质: 1.相似三角形对应角相等,对应边成比例。 2 .相似三角形对应高线比,对应中线比,对应角平分线 比等于相似比。 3.相似三角形周长比等于相似比,面积比等于相 似比的平方。
3
练一练
基本图形1
E M
DN
平行法
M
N
H
过D作DH∥EC交BC延长线于点 H (1)试找出图中的相似三角形? ⊿ADE∽ ⊿ABC ∽ ⊿DBH
A
E F
B
D
C
17
如图,已知抛物线与x轴交于A、B
X=4
两点,与y轴交于C点,且A(2,0),C(0,3) y
(1)求此抛物线的解析式;
(2)抛物线上有一点P,满足 ∠PBC=90°,求点P的坐标; (3)在(2)的条件下,问在y轴
3
C
2
OA
P
6
B
Qx
上是否存在点E,使得以A、O、E
为顶点的三角形与⊿PBC相似?若
相似三角形
1
回顾与反思
判定两个三角形相似的方法:
1.定义:三角对应相等,三边对应成比例的两个三 角形相似。 2.平行三角形一边的直线和其他两边相交(或两边的延 长线),所构成的三角形与原三角形相似. 3.三边对应成比例的两个三角形相似。 4.两边对应成比例且夹角相等的两个三角形相似。 5. 两角对应相等的两个三角形相似。
(2) BC是圆O的切线,切点为C.
(3) 移动点A,使AC成为⊙O的直径,你还能 得到哪些结论?
8
BF=4
结论:1、⊿ACF∽ ⊿ABC∽ ⊿CBF 2、CD²=AD×BD BC²=BD×AB AC²=AD×AB
9
用一用
(1)请在x轴上找一点D,使得⊿BDA与⊿BAC相似 (不包含全等),并求出点D的坐标;
C
DE∥BC
C
(5)
BD ∠BAD=∠C
C
A
DB
∠ACB=90°,
AB2=BD·BC
CD⊥AB
B
C
E
(6)
D
A
C B ∠D=∠C
12
问题:
如图,在正方形ABCD中,E为BC上任意一点 (与B、C不重合)∠AEF=90°.观察图形:
((12))若△EA为BEBC与的△中E点CF,是连否结相AF似,图?中并有证哪明些你相的似结论。
即:
m 5
3 13 m 4
3 13
4
解得: m
25 9
有公共角∠B, “A”型相似
(2)当PQ⊥BD时,⊿BPQ∽ ⊿BDA
则 BP BQ
BD 即:
3
BA
m 13 m
3
13
4 5
m
4
解得: m 125
36
11
相似的基本图形
(1)
A
D
E
E
D
(2)
A
A (3)
DE
B
C
DE∥BC
A (4)
B
(2)在(1)的条件下,如果P、Q分别是BA、BD上 的动点,连结PQ,设BP=DQ=m,
问:是否存在这样的m,使得⊿BPQ与⊿BDA相似? 如存在,请求出m的值;若不存在,请说明理由。
y
B(-3,0) O
tan∠ABC=
A
D
C(1,0) x
3 4
(1)∵⊿BDA∽⊿BAC
∴∠CAD=∠ABC
3
∴tan∠CAD=∠ABC= ∵BC=4
E的则、三EA角F、=形_B_相为5_似_顶_,点_ 则的C三E角=_形__和5中_.6以寻数_或_找学E_2、或基思1C本想2、型F为顶点
D
A
A
F
C
EE
F
C B
E
E
B
16
2.已知:D为BC上一点, ∠B= ∠C= ∠EDF=60°, BE=6 , CD=3 , CF=4 ,
则AF=___7____
B
E
C
A
A
A
FF F
α66α00°°
BBB
αα6600°°
EEE
6α6α00°°
CCC
15
变1式.矩:形.直AB角C梯D中形,AB把CDFA中沿,∠ABF=对9折0°,,C使BD=与14, CCFB=4边, 上AB的=点6, EC重F∥合A,B,若在A善注边D于意C=在分B10上复类, A找杂 讨B图 论一=形 的点8,E,使以
三角形?△ABE∽ △ECF ∽ △AEF
A
D
A
D
F
B
E
C
F
B
E
C
14
A
△ABE∽ △ECF((2)1)点点EE为为BBCC上上任任意意一一点点,
若若∠∠BB==∠∠CC==α6,0∠°A,E∠FA=E∠F= F C∠,则C△,则A△BEAB与E△与△ECEFC的F关的
系关还系成还立成吗立?吗?说明理由
4
∴AC=BC·tan ∠ABC=3 ∴CD=AC·tan ∠CAD=3×
3 =
4
9 4
∴OD=OC+CD=1+ 9 = 13 44
∴D( 13,0)
10
4
用一用
y
PP
B(-3,0) Q O Q
tan∠ABC=
A
D
C(1,0) x
3 4
(1)当PQ∥AD时,⊿BPQ∽
⊿BAD BP BQ
则 BA BD
存在,求出点E的坐标;若不存在,
请说明理由.
18
相似基本图形 的运用
方程思想 整体思想 转化思想 分类思想
已知相似图形直接求 构造相似图形间接求
学会从复杂图形中分解出基本图形
19
A
D
例1如图,梯形ABCD中,AD∥BC,
∠ABC=90°,AD=9,BC=12,AB=10,
在线段BC上任取一点P,作射线 PE⊥PD,与线段AB交于点E.
E
(1)试确定CP=3时点E的位置; B
PH C
(2)若设CP=x,BE=y,试写出y关 于自过变D量作xD的H⊥函B数C于关H系,式,并求出自 变量由x的题取意值,范得围CH.=3,
y 3又∴从P而Cx与P11E=0H3与1x重2B2合友重,情合23提x醒:158要善于构造基本图形,对你
的解题会起到事半功倍的效果! 20
5
基本图形2
“A”字型 当∠ADE= ∠C 时, ⊿ADE∽ ⊿ACB.
6
基本图形2
A F
B
C
添加一个条件使得⊿⊿ABCCFF∽∽⊿⊿ABBACC..
பைடு நூலகம்
7
基本图形2
A AA
当∠BCF= ∠A 时, ⊿BCF∽ ⊿BAC.
F FF
.O
BB
CC
(1) 若则B⊿CA=C6F,∽AF⊿=A5B,你C∽能⊿求C出BBFF的长吗?
(2)若AE:AC=1:2,则AC:DH=2:__3_____;
若⊿ABC的周长为4,则⊿BDH的周长为_6____.
若⊿ABC的面积为4,则⊿BDH的面积为__9___.
4
相似三角形
E
E
F
M
F N
G
G
若G为BC中点,EG交AB于点F, 且EF:FG=2:3,
试求AF:FB的值.
添平行线构造相似三角形的基本图形。
2
回顾与反思
相似三角形的性质: 1.相似三角形对应角相等,对应边成比例。 2 .相似三角形对应高线比,对应中线比,对应角平分线 比等于相似比。 3.相似三角形周长比等于相似比,面积比等于相 似比的平方。
3
练一练
基本图形1
E M
DN
平行法
M
N
H
过D作DH∥EC交BC延长线于点 H (1)试找出图中的相似三角形? ⊿ADE∽ ⊿ABC ∽ ⊿DBH
A
E F
B
D
C
17
如图,已知抛物线与x轴交于A、B
X=4
两点,与y轴交于C点,且A(2,0),C(0,3) y
(1)求此抛物线的解析式;
(2)抛物线上有一点P,满足 ∠PBC=90°,求点P的坐标; (3)在(2)的条件下,问在y轴
3
C
2
OA
P
6
B
Qx
上是否存在点E,使得以A、O、E
为顶点的三角形与⊿PBC相似?若