小学奥数位值原理练习题

合集下载

小学奥数:5-7-1 位值原理

小学奥数:5-7-1 位值原理

小学奥数:5-7-1 位值原理.教师版龄。

求XXX老师的年龄。

【考点】位值原理的表达形式【难度】3星【题型】解答关键词】学而思,年龄,颠倒,位值原理,表达式解析】设XXX老师的年龄为ab,即十位数为a,个位数为b。

根据题意得到以下两个方程:a=b+1810b+a=10a+b化简得到:9a-9b=180a-b=2解得a=11,b=9,因此XXX的年龄为119岁。

答案】119岁注:文章中的错误已全部改正,删除了无关紧要的句子,同时对每段话进行了小幅度改写,使其更加清晰易懂。

例12】在下面的等式中,相同的字母表示同一数字,若$abcd-dcba=\square997$,那么 $\square$ 中应填。

解析】由题意知,$a \geq d$,由差的个位为7可知,被减数个位上的$d$ 要向十位上的$c$ 借一位,则$10+d-a=7$,即 $a-d=3$。

又因为差的十位及百位均为9,由分析可知$b=c$,故被减数的十位要向百位借一位,百位要向千位借一位,即 $(a-1)-d=2$,因此 $\square$ 内应填入2.答案】2例13】某三位数$abc$ 和它的反序数$cba$ 的差被99除,商等于______与______的差。

解析】本题属于基础型题型。

我们不妨设 $a>b>c$。

abc-cba) \div 99 = [(100a+10b+c)-(100c+10b+a)] \div 99 = (99a-99c) \div 99 = a-c$。

答案】$a$ 与 $c$ 的差。

巩固】用1,2,3,4,5,7,8,9组成两个四位数,这两个四位数的差最小是___________。

解析】千位数差1,后三位,大数的尽量取小,小者尽量取大,最大的可以取987,小的可以取123,所以这两个四位数应该是4987和5123,差为136.答案】136剔除明显有问题的段落。

小学奥数精品【答案】a与b的差题目要求求出ab与ba的和被11除的商,等于a与b的和。

五年级奥数春季班第11讲 位值原理

五年级奥数春季班第11讲 位值原理

位值原理模块一、位值原理的认识例1.填空:(1)365= ×100+ ×10+ ×1;20220=2× 2× +2× ;(2)aaa= ;abc= ;aabb= ;+++=a× +b× +c× +d× ;(3)abcd abc ab aab= a× +b× +1× +2× +3× +4(4)1234=ab× +12× +34× ;解:(1)365=3×100+6×10+5×1;20220=2×10000+2×100+2×10;(2)aaa=a×100+a×10+a;abc=a×100+b×10+c;aabb=a×1000+a×100+b×10+b;+++=a×1111+b×111+c×11+d×1;(3)abcd abc ab aab= a×100000+b×10000+1×1000+2×100+3×10+4(4)1234=ab×10000+12×100+34×1;例2.(1)用数字1、2、3各一个可以组成三位数,所有这样的三位数之和是;(2)三个不同的非零数字a、b、c共可以组成6个不同的三位数,这六个三位数之和一定是的倍数;(3)三个互不相同的数字,可以组成6个不同的三位数,知道这6个三位数的和是2886,那么这三个数字的和为;这六个三位数中最小可能值是;这六个三位数中最大可能值是。

解:(1)用数字1、2、3各一个可以组成6个三位数,在个位上有2个1、2个2、2个3,个位上的数字和是12;同样十位上的数字和也是12,百位上的数字和也是12,于是这六个数的和是111×12=1332;(2)由第(1)问的答案可以知道,这六个三位数的和一定是222的倍数;(3)三个互不相同的数字,可以组成6个不同的三位数,所以三个数字都不是0,2886÷222=13,13=1+3+9,所以这六个三位数中最小的可能是139,最大的是931.模块二、位值原理的完全拆分例3.一个两位数,是它各个数位数字和的(1)9倍,求这个两位数;(2)5倍,求这个两位数;(3)7倍,求这个两位数 ; 解:(1)设这个两位数为ab =10a +b , 10a +b =9(a +b ),所以a =8b ,b =1,a =8,所以ab =81。

小学奥数精讲第四讲 进位制与位值原理

小学奥数精讲第四讲 进位制与位值原理

第4讲 进位制与位值原理(二)同步练习: 1. 计算:102(2014)()= 210(101110)()=【答案】见解析【解析】倒取余数法:102(2014)(11111011110)=位值原理法:210(101110)(46)=2. 八进制的1234567化成四进制后,前两位是多少? 【答案】11【解析】先八进制化为二进制:一位变三位:82(1234567)(1010011100101110111)=;再把二进制化为四进制:两位合一位:24(1010011100101110111)(1103211313)=.可见,前两位为11.3. 在几进制中有12512516324⨯=? 【答案】7【解析】注意101010(125)(125)(15625)⨯=,因为1562516324<,所以一定是不到10就已经进位,才能得到16324,所以10<n .再注意尾数分析,101010(5)(5)(25)⨯=,而16324的末位为4,于是25421-=进到上一位.所以说进位制n 为21的约数,又小于10,也就是可能为7或3.因为出现了6,所以n 只能是7.4. 已知100(1)3=+-÷bab b a ,则b =_____. 【答案】7【解析】10110=+bab b a ;100(1)1001003+=+-÷b b a .得313300+=a b .(a ,b )= (9,7),b =7.5. 将6个灯泡排成一行,用○和●表示灯亮和灯不亮,下图是这一行灯的五种情况,分别表示五个数字:1,2,3,4,5.那么●○○●○●表示的数是______.【答案】26【解析】从图中数字1、2、4的表示可知:自右向左第一个灯亮表示1,第二个灯亮表示2,第三个灯亮表示4,第四个灯亮表示8,第五个灯亮表示16,第六个灯亮表示32.因此问题当中的表示168226++=54321●○○○●○○●○○●●●●●●●●●●●●●●●●●●●●6. 在宇宙中有一个使用三进制的星球.小招移居到这个星球后更换身份证,要把年龄从十进制数变为三进制数表示.小招发现,只要在原来十进制年龄末尾添个“0”,就是三进制下的年龄.请问小招多少岁? 【答案】21岁【解析】①设小招为a 岁,得(10)(3)0=a a ,又10(3)(10)03033=⨯+⨯=a a a ,解得0=a ,不合题意,所以小招的年龄不可能是一位数.②设小招是ab 岁,由题意得:(10)(3)0=ab ab .因为(10)10=+ab a b ,(3)0930193=⨯+⨯+⨯=+ab a b a b ,所以1093+=+a b a b ,即2=a b . 又因为0ab 是三进制数,a ,b 都小于3,所以2=a ,1=b .所以,小招为21岁. ③设小招为abc 岁,由题意有,(10)(3)0=abc abc ,因为(10)10010=++abc a b c , 32(3)03332793=⨯+⨯+⨯=++abc a b c a b c ,所以100102793++=++a b c a b c .即732+=a b c .又a 、b 、c 都小于3,所以上述等式不成立. 综上可知小招的年龄是21岁.7. abcd ,abc ,ab ,a 依次表示四位数、三位数、两位数及一位数,且满足abcd -abc -ab -a = 1787,则这四位数=______或______. 【答案】2009或2010【解析】原式可表示成:8898991787+++=a b c d ,则知a 只能取:1或2,当1=a 时,b 无法取,故此值舍去.当2=a 时,0=b ,0=c 或1,d 相应的取9或0.所以这个四位数是:2009或2010.8. 十进制计算中,逢10必须进位,有保密员之间采用r 进位制方式计算,在他们的运算中: 10(166)(133)(24)-=r r ,则r =______.【答案】7【解析】(166)(133)(33)33247-==⨯+=⇒=r r r r r .9. 一个三位数A 的三个数字所组成的最大三位数与最小三位数的差仍是数A ,这个三位数A 是_____. 【答案】495【解析】设这个最大三位数为abc ,那么最小三位数为cba ,于是99()=-=-A abc cba a c ,三位数A 是99的倍数,所有可能值如下:198、297、396、495、594、693、792、891.代入题中检验,得A =495.10. 记号(75)k 表示k 进制的数,如果(70)k 在m 进制中表示为(56)m ,又m 、k 均小于等于10,求k 和m 的值.【答案】8,10==k m【解析】由于()()107077=⨯=k k k ,()()10565656=⨯+=+m m m ;所以567+=m k ,求得8,10==k m .深化练习11. 正整数3、5、6、15可以分别表示为121⨯+,2121⨯+,21212⨯+⨯,321212121⨯+⨯+⨯+,他们的上述表示(又称之为二进制)中1的个数分别是2,2,2,4,都是偶数,像3、5、6、15…这样的数,称为魔数,前10个魔数(从小到大)的和是______. 【答案】115【解析】魔数从小到大排列:11,101,110,1001,1010,1100,1111,10001,10010,10100,……,前10个有5个1在末位,5个1在倒数第二位,5个1在倒数第三位,4个1在倒数第4位,3个1在倒数第5位,和为2345152524232115⨯⨯⨯⨯⨯++++=.12. 四位数1234可通过下面的变换变成1541:现在有一个四位数,通过以上方法变换成3779,那么原来的这个四位数是______. 【答案】3271【解析】设原来这个四位数是,则有37++=a b ,79++=c d ,即11237+=a b ,11279+=c d ,解得3,2,7,1====a b c d ,所以原来这个四位数是3271.13. 一个人今年的年龄恰好等于他出生年的数字和,那么这个人今年的年龄是______. 【答案】5或23【解析】(1)设这个人的出生年为19ab ,根据题意19201719+++=-a b ab102017190010++=---a b a b化简得:112107+=a b .所以111072=-a b 因为9≤b ,所以111071889≥-=a .从而9≥a 推出9=a ,4=b .这个人的年龄为2017199423-=(岁).(2)设这个人的出生年月为20ab ,根据题意 20201720+++=-a b ab , 11215+=a b12==,a b .这个人的年龄为201720125-=(岁).14. 四位数及其逆序数的和是35的倍数,求满足条件的四位数一共有多少个? 【答案】238【解析】()()1001110+=+++abcd dcba a d b c ,可以知道+a d 是5的倍数,+b c 是7的倍数,其中a ,d 不为0,有5/10/15+=a d ,0/7/14+=b c ,(),a d 一共有17组,(),b c 一共有14组,那么一共有1714238⨯=.12+1+21541123415.a、b、c是0~9中不同的数字,用a、b、c共可组成六个数,如果其中五个数之和不小于2009,也不大于2012,那么另一个数是______.【答案】208【解析】这六个数的总和为222(a+b+c).若a+b+c=10,那么六个数总和为2220,所求的数不小于208,不大于211,只有208满足条件;若a+b+c=11,那么六个数总和为2442,所求的数不小于430,不大于433,都不符合条件;若a+b+c=12,那么六个数总和为2664,所求的数不小于652,不大于655,都不符合条件;若a+b+c=13,那么六个数总和为2886,所求的数不小于874,不大于877,都不符合条件;若a+b+c≥14,那么六个数总和不小于3108,那么另一个数超过1000,不符合题意.综上可得,另一个数必是208.。

五年级下册数学奥数试题——位值原理

五年级下册数学奥数试题——位值原理

第12讲 位值原理一、知识点在十进制中,每个数都是由90—这十个数字中的若干个组成,而每个数字在数中都占一个数位,从右往左依次是个、十、百、千、万、十万,....,数的大小是由数字和数字所处的数位共同决定的.个位上的数字表示几个1,十位上的数字表示几个,10百位上的数字表示几个 ,100.利用这种方法可以将一个多位数拆开,例如132021001123⨯+⨯+⨯=,这个结论被称为位值原理.有的时候,为了分析问题,我们并不将多位数逐位展开,而是采用整体展开的办法,比如610451002323456+⨯+⨯=.二、典型例题例1 一个两位数等于它的数字之和的6倍,求这个两位数.练习1 一个两位数等于它的数字之和的7倍,这个两位数可能是多少?例2 在一个两位数的两个数字中间加一个0,所得的三位数是原数的9倍,求这个两位数.练习2 在一个两位数的两个数字中间加一个0,所得的三位数是原数的6倍,求这个两位数.例3 一个三位数,把它的个位和百位调换位置之后,得到一个新的三位数,这个新三位数和原三位数的差的个位数字是7.求这两个数的差.练习3 把一个三位数颠倒顺序后得到一个新数,这个数比原来的数大792,那么原来的三位数最大可以是多少?例 4 若用相同汉字表示相同的数字,不同汉字表示不同数字,则在等式85⨯=⨯勤动脑学习好学习好勤动脑中,“学习好勤动脑”所表示的六位数最小是多少?例5 设c b a ,,是91—中的三个不同的数码,用它们组成的六个没有重复数字的三位数之和是)(c b a ++的多少倍?例6 在一个三位数的百位和十位之间加入一个数字后,得到的四位数恰好是原三位数的9倍,那么这样的三位数最小是多少?最大是多少?三、水平测试1. 在一个两位数的两个数字之间加一个0,所得到的三位数是原数的7倍,求这个两位数.2. 将一个两位数的个位数字和十位数字交换位置,得到一个新的两位数,它比原来的两位数小54,那么原来的两位数最小是多少?3. 将一个两位数的个位数字和十位数字交换位置,得到一个新的两位数,它比原来的两位数的和是187,那么原来的两位数是多少?。

五年级奥数.数论.位值原理(C级)

五年级奥数.数论.位值原理(C级)

五年级奥数.数论.位值原理(C级)「例jj把一个数的数字顺序颠倒迪來得到的数称为这个数时逆序数,比如的的逆序数为9氛姒果一个曲位数零丁-其逆序数与I的平均数+这个苗隹数恳________ .【丰点】衙準的住值原理折好[难度J 2壘【题型】填空【关憔词】2009年’学而思杯,5年级,第3題【解析】设为爲\即I 0« + b = 1 UZf + 1,整理晋1加=鼬+ 1, « = 3,^ = 7 ,两便數为3了2I答案】37I孔円】将一个数A的小数点向右移动两位,得到数乩那么B+A是B-A的_______________ 倍。

(结果写成分数应式)【考点】简单的悝值廂理拆余【难度】2星【題型J填空【关轉词]2006年,暗望協第四禺六年级,初亂第9题,5^【解祈】将A的小数点向右秒动两位则為变版】00舊’即吐】00儿那B+A=101A. B*A=99A. B + A 是B-A的竺倍.101【篆案】妁「例2)—个十位数字是0的三位数’等于它的各位数字之和的67倍,交换这个T位数的个位数字和百悅数字,得到的新三位数足它的各位数字之和的_________ 佻【考点】简单帕位值原理拆【难度】3星【題型】境空【提捷词】囚)09年,命璧杯,第七届,五年乩复赛,第斗題,$分【解析】辱这个三俚數aQb>刚由题意可^P h lOOu + fr = fi7(o+A),可得a = 2/> T而调捉个位和百位之后变为:/?Ofj = 100b + a = 102b i a + b- 3 b t則得到的聊三位數是它的各位字之奔的 102^ ^3i = 34 書*【尊案】34【班囲】一个三位数,个位利百位数字交换后还是一个三也数,它与原三位数的差的个也数字是几试求它们的差.【考点】简单的住值原理拆分【难糜】2矍【趣型】填空【关惟词】2003年*帝望杯,第一届、四年羅一足寮、第II{题'厲分【解析】赢-嬴个位是7,明显£1妃于口所a10+<r*u=7> 所以他们的養为297【答案】297「例MSI三也数abc比三也数c%小99, Via t h r e此不同*则口柴最大是______________【孝点】简单时往值原理祈分【难度】2星【题型】填空【关蝕词]2008年’需曜杯,第六揭、丑年殂初執第7^> 6^【.呼折】由題意,a be+ 49 ■ cba T有□ 堂$要亦r最丸,如杲口・孕*那盘与dxi为三住数矛盾;^^a=X ,那么『=垦,刺下启最丸取入所以乔蓋丸是$79*【答樂】E「.巩酊一个二位数血与它的反序数辰的和等J 8S8,这样的泡数有__________________ 卜【考点】简单的位值原理拆分【难度】2星【题型〕境空【关披词】20(血年,那玺杯,第六届’六年给二试,第小题,5分【解析】显然4*厂、h+血都没有发生赶位,所以□ + = ■!!・ b + 则h-4 3a、「的情况有L+7、 2+6、3+54+4、5+3. £+2. 7+1这7种*所以这样妁三位魏有了种”【答案】7个丨例4)a, b, c分别足讥9中不同的数码,用小执£共可组成六个三垃数*如风其中五个三位数之和是2234.那么另一个丄位数足几?【谱点]笈杂的住值原理拆令【难度】3S-【题型]解骞「解桐〕由“ t>t r 组扳的夫个皺的和是222x (a + ft + c) 囲为 2234 > 222 x 10 T a +f> + oiO ,若m-zll,则所求數为222M I I -2234= 20fi > 怛 2十0十;(二10*11* 不合题蕙+若口+ b + dS 則所永数为22S I 2 _ 2234 ■ 430 ,但斗+ 3 + 0-7八"不合題索.^a + h + c = 13 ,则所奉數222x 13-2234 = fi;2 » 6 + 5 + 2 = 13 ,苻合题意.若o + h + c = l4*則所求數为222 x I 4 - 2234 - 874 +但* + 7+斗=■ 19L 不舍题就<a + t +ci 15 >則聊卓数2: 222 x I—2勢4 * L肿" 但所菠数秀三住數,不合題囂. 所%只有—"匸=山时持合题賦所求的三位数为652.【答案】652丨巩【可】有3个不同的数字,用它们组成&个不同的X拉数,如呆这百个三位数的和1554,那么这3 个数字分别昆爭少?【哮点】复杂帕住值原理拆裁【难度】3虽【題型】解券【关键词】第五秋獰望洛塔训试題「解析]设速7T个不同的三住數%ahc ,fich,hac ,hca ,c(ib r fba i因为血『=10血+1帖毗b=】0血十1(k+1……,它如的和是:222 K(d + fr+<7)=1554 ?所 ^fl + fr + c-1554-222 - 7 ,由于遑三个數字互不拥同且均不为6所取逗三个數中较小的两个数至少为I’ 2’而7-0 +2) =4「師以最丸的数叢丸为4;也+ 2 +二=血C、所臥最犬的魏丸于/ 所以最大的巍为4’其他两敷裁别是],2.〔答漿】1,2*4「例畀LL^lubiti + abc+ n占+ 甘=I 衍山求 uhrd “【申点】简单的位值原理拆分【难启J 3星【题型】孵答「娜折j 原式:llllfi+ 111^+ llc' +J- 1370,所 - b 別 IU/>+ lk + d- 1370- Hll-259, llli?+ lie + J-259推知占・2; fr]222 + ]lc. + d-259, 11c + rf-37进而抠知J = 4所以abed - 1234,l答案】1234「巩固亍abed , abL. t abt a依次表六四位数、二位数、柄位数及一也数,且满足aM—abc—nb—a= 17E7,则这四位数而・_ 或_ °【考点】简单的位值原理拆录【难魔】3星【题型]填空【粧憧词】2009年"第7届,疲玺拣+ 4年圾,初霉,16题【解析】廊式可表示咸:SKMa + K9A + 9c + J - J7S7 ,则知□只能取:】就玄書°」时丫去无決取’故此值舍去.当口・2时.C = 0^. L tf栩应的取9 Aa所泓这个回位数是:2009 A 20)0.[答集J 3004 2010[:例C □知1 + 2 + 2+……+H (n>2)的利的个位数为3, I、位数为山则冃的最小俏是【考点J巧用方程解伍值原理【难度】4星【題型】填空[关憧词】加的年,策14坊,华杯執决茹第客題,10令【解析】根据题盍、前昶项和等于{1+n ) x/1^2,而现在的不位为乳十住上是0,刑5+1) Xu的木两位是06、易知末住是占的连续的两个自然議的扳积的末位只能为2x3 A者"3,弊试■臥谨小的起取3?时,37x38=14()6符合杂件,所以H的最小值为37.【答案】3了「巩酊已知1 + 2 + 3+ 7 (]00>fl>2)的和的个位数为岳十也数为2,则这样的/t令____________ 个。

小学奥数 位值原理 精选例题练习习题(含知识点拨)

小学奥数  位值原理  精选例题练习习题(含知识点拨)

5-7-1.位值原理教学目标1.利用位值原理的定义进行拆分2.巧用方程解位值原理的题知识点拨位值原理当我们把物体同数相联系的过程中,会碰到的数越来越大,如果这种联系过程中,只用我们的手指头,那么到了“十”这个数,我们就无法数下去了,即使象古代墨西哥尤里卡坦的玛雅人把脚趾也用上,只不过能数二十。

我们显然知道,数是可以无穷无尽地写下去的,因此,我们必须把数的概念从实物的世界中解放出来,抽象地研究如何表示它们,如何对它们进行运算。

这就涉及到了记数,记数时,同一个数字由于所在位置的不同,表示的数值也不同。

既是说,一个数字除了本身的值以外,还有一个“位置值”。

例如,用符号555表示五百五十五时,这三个数字具有相同的数值五,但由于位置不同,因此具有不同的位置值。

最右边的五表示五个一,最左边的五表示五个百,中间的五表示五个十。

但是在奥数中位值问题就远远没有这么简单了,现在就将解位值的三大法宝给同学们。

希望同学们在做题中认真体会。

1.位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同。

也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”。

例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理。

2.位值原理的表达形式:以六位数为例:abcdef a×100000+b×10000+c×1000+d×100+e×10+f。

3.解位值一共有三大法宝:(1)最简单的应用解数字谜的方法列竖式(2)利用十进制的展开形式,列等式解答(3)把整个数字整体的考虑设为x,列方程解答例题精讲模块一、简单的位值原理拆分【例 1】一个两位数,加上它的个位数字的9倍,恰好等于100。

这个两位数的各位数字的和是。

【例 2】学而思的李老师比张老师大18岁,有意思的是,如果把李老师的年龄颠倒过来正好是张老师的年龄,求李老师和张老师的年龄和最少是________?(注:老师年龄都在20岁以上)【例 3】把一个数的数字顺序颠倒过来得到的数称为这个数的逆序数,比如89的逆序数为98.如果一个两位数等于其逆序数与1的平均数,这个两位数是________.【例 4】几百年前,哥伦布发现美洲新大陆,那年的年份的四个数字各不相同,它们的和等于16,如果十位数字加1,则十位数字恰等于个位数字的5倍,那么哥伦布发现美洲新大陆是在公元___________年。

奥数位值原则题目

奥数位值原则题目

奥数位值原则题目奥数位值原则题目1.证明:一个三位数减去它的各个数位的数字之和后,必能被9整除。

2.如果一个自然数的各个数码之积加上各个数码之和,正好等于这个自然数,我们就称这个自然数为“巧数”。

例如,99就是一个巧数,因为9×9+(9+9)=99。

可以证明,所有的巧数都是两位数。

请你写出所有的巧数。

3.有一个三位数,如果把数码6加写在它的前面,则可得到一个四位数,如果把6加写在它的后面,则也可以得到一个四位数,且这两个四位数之和是9999,求原来的三位数。

4.有一个两位数,如果把数码3加写在它的前面,则可得到一个三位数,如果把3加写在它的后面,则也可也以得到一个三位数,如果在它前后各加写一个数码3,则可得到一个四位数。

将这两个三位数和一个四位数相加等于3600。

求原来的两位数。

5.有一个两位数,如果把数码1加写在它的前面,那么可得到一个三位数,如果把1加写在它的后面,那么也可以得到一个三位数,而且这两个三位数相差414,求原来的两位数。

6.☆将一个三位数的数字重新排列,在所得到的三位数中,用最大的减去最小的,正好等于原来的三位数,求原来的三位数。

7.有一个三位数,把它的个位数移到百位上,百位和十位上的数码相应后移一位成了一个新的三位数,原三位数的2倍恰好比新三位数大1,求原来的三位数。

8求一个三位数,它等于抹去它的首位数字之后剩下的两位数的4倍与25之差。

9把5写在某个四位数的左端得到一个五位数,把5写在这个数的右端也得到一个五位数,已知这两个五位数的差是22122,求这个四位数。

10某三位数是其各位数字之和的23倍,求这个三位数。

11.a,b,c是1~9中的三个不同数码,用它们组成的六个没有重复数字的三位数之和是(a+b+c)的多少倍?12.从1~9九个数字中取出三个,用这三个数可组成六个不同的三位数。

若这六个三位数之和是3330,则这六个三位数中最小的可能是几?最大的可能是几?13.用1,9,7三张数字卡片可以组成若干个不同的`三位数,所有这些三位数的平均值是多少?14.某校的学生总数是一个三位数,平均每个班35人。

(教师版)小学奥数5-7-1 位值原理.专项检测题及答案解析

(教师版)小学奥数5-7-1 位值原理.专项检测题及答案解析

1. 利用位值原理的定义进行拆分2. 巧用方程解位值原理的题位值原理 当我们把物体同数相联系的过程中,会碰到的数越来越大,如果这种联系过程中,只用我们的手指头,那么到了“十”这个数,我们就无法数下去了,即使象古代墨西哥尤里卡坦的玛雅人把脚趾也用上,只不过能数二十。

我们显然知道,数是可以无穷无尽地写下去的,因此,我们必须把数的概念从实物的世界中解放出来,抽象地研究如何表示它们,如何对它们进行运算。

这就涉及到了记数,记数时,同一个数字由于所在位置的不同,表示的数值也不同。

既是说,一个数字除了本身的值以外,还有一个“位置值”。

例如,用符号555表示五百五十五时,这三个数字具有相同的数值五,但由于位置不同,因此具有不同的位置值。

最右边的五表示五个一,最左边的五表示五个百,中间的五表示五个十。

但是在奥数中位值问题就远远没有这么简单了,现在就将解位值的三大法宝给同学们。

希望同学们在做题中认真体会。

1.位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同。

也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”。

例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理。

2.位值原理的表达形式:以六位数为例:abcdef a ×100000+b ×10000+c ×1000+d ×100+e ×10+f 。

3.解位值一共有三大法宝:(1)最简单的应用解数字谜的方法列竖式(2)利用十进制的展开形式,列等式解答(3)把整个数字整体的考虑设为x ,列方程解答模块一、简单的位值原理拆分【例 1】 一个两位数,加上它的个位数字的9倍,恰好等于100。

这个两位数的各位数字的和是 。

【考点】简单的位值原理拆分 【难度】2星 【题型】填空例题精讲知识点拨教学目标5-7-1.位值原理【关键词】希望杯,4年级,初赛,7题,六年级,初赛,第8题,5分【解析】这个两位数,加上它的个位数字的9倍,恰好等于100,也就是说,十位数字的10倍加上个位数字的10倍等于100,所以十位数字加个位数字等于100÷10=10。

五年级奥数.位值原理(AB级).教师版

五年级奥数.位值原理(AB级).教师版

位值原理当我们把物体同数相联系的过程中,会碰到的数越来越大,如果这种联系过程中,只用我们的手指头,那么到了“十”这个数,我们就无法数下去了,即使象古代墨西哥尤里卡坦的玛雅人把脚趾也用上,只不过能数二十.我们显然知道,数是可以无穷无尽地写下去的,因此,我们必须把数的概念从实物的世界中解放出来,抽象地研究如何表示它们,如何对它们进行运算.这就涉及到了记数,记数时,同一个数字由于所在位置的不同,表示的数值也不同.既是说,一个数字除了本身的值以外,还有一个“位置值”.例如,用符号555表示五百五十五时,这三个数字具有相同的数值五,但由于位置不同,因此具有不同的位置值.最右边的五表示五个一,最左边的五表示五个百,中间的五表示五个十.但是在奥数中位值问题就远远没有这么简单了,现在就将解位值的三大法宝给同学们.希望同学们在做题中认真体会.1.位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同.也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”.例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理.2.位值原理的表达形式:以六位数为例:abcdef a×100000+b×10000+c×1000+d×100+e×10+f.3.解位值一共有三大法宝:(1)最简单的应用解数字谜的方法列竖式 (2)利用十进制的展开形式,列等式解答 (3)把整个数字整体的考虑设为x ,列方程解答(1)最简单的应用解数字谜的方法列竖式(2)利用十进制的展开形式,列等式解答 (3)把整个数字整体的考虑设为x ,列方程解答重难点知识框架位值原理【例 1】 一个两位数,加上它的个位数字的9倍,恰好等于100.这个两位数的各位数字的和是 .【考点】简单的位值原理拆分【难度】2星【题型】填空【关键词】2006年,第4届,希望杯,4年级,初赛,7题,六年级,初赛,第8题,5分【解析】 这个两位数,加上它的个位数字的9倍,恰好等于100,也就是说,十位数字的10倍加上个位数字的10倍等于100,所以十位数字加个位数字等于100÷10=10.【答案】10【巩固】 一个两位数,加上它的十位数字的9倍,恰好等于100.这个两位数是 .【考点】简单的位值原理拆分【难度】2星【题型】填空【关键词】2006年,第4届,希望杯,4年级,初赛,7题,六年级,初赛,第8题,5分 【解析】 设为ab ,10a+b+9a=19a+b=100,a=5,b=5. 【答案】55【例 2】 学而思的李老师比张老师大18岁,有意思的是,如果把李老师的年龄颠倒过来正好是张老师的年龄,求李老师和张老师的年龄和最少是________?(注:老师年龄都在20岁以上)【考点】简单的位值原理拆分【难度】3星【题型】填空【关键词】2010年,学而思杯,4年级,第5题【解析】 解设张老师年龄为ab ,则李老师的年龄为ba ,根据题意列式子为:18ba ab -=,整理这个式子得到:()918b a -=,所以2b a -=,符合条件的最小的值是1,3a b ==,但是13和31不符合题意,所以,答案为2a =与4b =符合条件的为:244266+=岁.例题精讲【答案】66岁【巩固】把一个数的数字顺序颠倒过来得到的数称为这个数的逆序数,比如89的逆序数为98.如果一个两位数等于其逆序数与1的平均数,这个两位数是________.【考点】简单的位值原理拆分【难度】2星【题型】填空【关键词】2009年,学而思杯,5年级,第3题【解析】设为ab,即101102b aa b+++=,整理得1981a b=+,3,7a b==,两位数为37【答案】37【例 3】几百年前,哥伦布发现美洲新大陆,那年的年份的四个数字各不相同,它们的和等于16,如果十位数字加1,则十位数字恰等于个位数字的5倍,那么哥伦布发现美洲新大陆是在公元___________年.【考点】简单的位值原理拆分【难度】2星【题型】填空【关键词】2010年,第8届,希望杯,4年级,初赛,10题【解析】肯定是1×××年,16-1=15,百位,十位与个位和是15,十位加1后,数字和是15+1=16,此时十位和个位和是6的倍数,个位不是1,只能是2,十位原来是9,百位是4,所以是在1492年.【答案】1492【巩固】小明今年的年龄是他出生那年的年份的数字之和.问:他今年多少岁?【考点】简单的位值原理拆分【难度】2星【题型】填空【关键词】1995年,第5届,华杯赛,初赛,第11题【解析】设小明出生那年是,则1+9+a+b=95-10a-b从而11a+2b=85在a≥8时,11+2b>85;在a≤6时,11a+2b≤66+2×9=84,所以必有a =7,b=4.小明今年是1+9+7+4=21(岁).【答案】21岁【例 4】一个十位数字是0的三位数,等于它的各位数字之和的67倍,交换这个三位数的个位数字和百位数字,得到的新三位数是它的各位数字之和的倍.【考点】简单的位值原理拆【难度】3星【题型】填空【关键词】2009年,希望杯,第七届,五年级,复赛,第4题,5分【解析】令这个三位数为0a b,则由题意可知,10067()+=+,可得2a b a b=,而调换个位和百位之后a b变为:0100102=+=,而3b a b a ba b b+=,则得到的新三位数是它的各位数字之和的÷=倍.102334b b【答案】34【巩固】一个三位数,个位和百位数字交换后还是一个三位数,它与原三位数的差的个位数字是7,试求它们的差.【考点】简单的位值原理拆分【难度】2星【题型】填空【关键词】2003年,希望杯,第一届,四年级,复赛,第18题,10分【解析】abc cba-个位是7,明显a大于c,所以10+c-a=7,a-c=3,所以他们的差为297【答案】297【考点】简单的位值原理拆分 【难度】2星 【题型】填空 【关键词】2008年,希望杯,第六届,五年级,初赛,第7题,6分【解析】 由题意,99abc cba +=,有9a c =+,要abc 最大,如果9a =,那么0c =,与c b a 为三位数矛盾;如果8a =,那么9c =,剩下b 最大取7,所以abc 最大是879.【答案】879【巩固】 一个三位数abc 与它的反序数cba 的和等于888,这样的三位数有_________个.【考点】简单的位值原理拆分 【难度】2星 【题型】填空 【关键词】2008年,希望杯,第六届,六年级,二试,第4题,5分【解析】 显然a c +、b b +都没有发生进位,所以8a c +=、8b b +=,则4b =,a 、c 的情况有1+7、2+6、3+5、4+4、5+3、6+2、7+1这7种.所以这样的三位数有7种.【答案】7个【例 6】 将2,3,4,5,6,7,8,9这八个数分别填入下面的八个方格内(不能重复),可以组成许多不同的减法算式,要使计算结果最小,并且是自然数,则这个计算结果是__________.-□□□□□□□□【考点】简单的位值原理拆分 【难度】2星 【题型】填空 【关键词】2010年,希望杯,第八届,六年级,初赛,第5题,6分【解析】 千位数差1,后三位,大数的尽量取小,小者尽量取大,最大的可以取987,小的可以取234,所以这两个四位数应该是5987和6234,差为247.【答案】247【巩固】用1,2,3,4,5,7,8,9组成两个四位数,这两个四位数的差最小是___________.【考点】简单的位值原理拆分【难度】2星【题型】填空【关键词】2007年,希望杯,第五届,四年级,复赛,第5题,5分【解析】千位数差1,后三位,大数的尽量取小,小者尽量取大,最大的可以取987,小的可以取123,所以这两个四位数应该是4987和5123,差为136.【答案】136【例 7】xy,zw各表示一个两位数,若xy+zw=139,则x+y+z+w= .【考点】简单的位值原理拆分【难度】2星【题型】填空【关键词】2003年,希望杯,第一届,五年级,初赛,第5题,4分【解析】和的个位为9,不会发生进位,y+w=9,十位明显进位x+z=13,所以x+y+z+w=22【答案】22【巩固】把一个两位数的十位与个位上的数字加以交换,得到一个新的两位数.如果原来的两位数和交换后的新的两位数的差是45,试求这样的两位数中最大的是多少?【考点】简单的位值原理拆分【难度】2星【题型】解答【关键词】美国,小学数学奥林匹克【解析】设原来的两位数为ab,交换后的新的两位数为ba,根据题意,ab ba a b b a a b-=+--=-=,5(10)(10)9()45-=,原两位数最大时,十位数字至多为9,即a bb=,原来的两位数中最大的是94.9a=,4【答案】94【例 8】一个两位数的中间加上一个0,得到的三位数比原来两位数的8倍小1,原来的两位数是______.【考点】简单的位值原理拆分【难度】3星【题型】填空【关键词】2007年,希望杯,第五届,六年级,初赛,第13题,6分【解析】设这个两位数是ab,则100a+b=8(10a+b)-1,化为20a+1=7b,方程的数字解只有a=1,b=3,原来的两位数是13.【答案】13【巩固】一辆汽车进入高速公路时,入口处里程碑上是一个两位数,汽车匀速行使,一小时后看到里程碑上的数是原来两位数字交换后的数.又经一小时后看到里程碑上的数是入口处两个数字中间多一个0的三位数,请问:再行多少小时,可看到里程碑上的数是前面这个三位数首末两个数字交换所得的三位数.【考点】复杂的位值原理拆分【难度】3星【题型】解答【解析】设第一个2位数为10a+b;第二个为10b+a;第三个为100a+b;由题意:(100a+b)-(10b+a)=( 10b+a)-(10a+b) ;化简可以推得b=6a,0≤a,b≤9,得a=1,b=6;即每小时走61-16=45 ;(601-106)÷45=11;再行11小时,可看到里程碑上的数是前面这个三位数首末两个数字交换所得的三位数.【答案】11小时【例 9】abcd,abc,ab,a依次表示四位数、三位数、两位数及一位数,且满足abcd—abc—ab—a= 1787,则这四位数abcd= 或 .【考点】简单的位值原理拆分【难度】3星【题型】填空【关键词】2009年,第7届,希望杯,4年级,初赛,16题【解析】 原式可表示成:8898991787a b c d +++=,则知a 只能取:1或2,当1a =时,b 无法取,故此值舍去.当2a =时,0b =,0c =或1,d 相应的取9或0.所以这个四位数是:2009或2010.【答案】2009或2010【巩固】 已知1370,abcd abc ab a abcd +++=求.【考点】简单的位值原理拆分 【难度】3星 【题型】解答 【解析】 原式:1111a +111b +11c +d =1370,所以a =1, 则111b +11c +d =1370-1111=259,111b +11c +d =259 推知b =2;则222+11c +d =259,11c +d =37 进而推知c =3,d =4所以abcd =1234.【答案】1234【例 10】 有3个不同的数字,用它们组成6个不同的三位数,如果这6个三位数的和是1554,那么这3个数字分别是多少?【考点】复杂的位值原理拆分 【难度】3星 【题型】解答 【关键词】第五届,希望杯,培训试题【解析】 设这六个不同的三位数为,,,,,abc acb bac bca cab cba ,因为10010abc a b c =++,10010acb a c b =++,……,它们的和是:222()1554a b c ⨯++=,所以15542227a b c ++=÷=,由于这三个数字互不相同且均不为0,所以这三个数中较小的两个数至少为1,2,而7(12)4-+=,所以最大的数最大为4;又12367++=<,所以最大的数大于3,所以最大的数为4,其他两数分别是1,2.【答案】1,2,4【巩固】有三个数字能组成6个不同的三位数,这6个三位数的和是2886,求所有这样的6个三位数中最小的三位数的最小值.【考点】复杂的位值原理拆分【难度】3星【题型】解答【关键词】迎春杯,决赛【解析】设三个数字分别为a、b、c,那么6个不同的三位数的和为:+++++=++⨯+++⨯+++=⨯++2()1002()102()222() abc acb bac bca cab cba a b c a b c a b c a b c所以288622213++=÷=,最小的三位数的百位数应为1,十位数应尽可能地小,由于十位a b c数与个位数之和一定,故个位数应尽可能地大,最大为9,此时十位数为13193--=,所以所有这样的6个三位数中最小的三位数为139.【答案】139【例 11】有一个两位数,如果把数码1加写在它的前面,那么可以得到一个三位数,如果把1写在它的后面,那么也可以得到一个三位数,而且这两个三位数相差414,求原来的两位数.【考点】巧用方程解位值原理【难度】3星【题型】解答【解析】方法三:设两位数为x,则有(10x+1)-(100+x)=414,解得:x=57.【答案】57【巩固】有一个三位数,如果把数码6加写在它的前面,则可得到一个四位数,如果把6加写在它的后面,则也可以得到一个四位数,且这两个四位数之和是9999,求原来的三位数.【考点】巧用方程解位值原理【难度】3星【题型】解答【解析】设三位数为x,则有(6000+x)+(10x+6)=9999,解得:x=363.【答案】363【随练1】 在下面的等式中,相同的字母表示同一数字, 若abcd dcba -=□997,那么□中应填 .【考点】填横式数字谜之复杂的横式数字谜 【难度】3星 【题型】填空 【关键词】2007年,第12届,华杯赛,五年级,决赛,第3题,10分【解析】 由题意知,a ≥d ,由差的个位为7可知,被减数个位上的d 要向十位上的c 借一位,则10+d -a =7,即a -d =3.又因为差的十位及百位均为9,由分析可知b =c ,故被减数的十位要向百位借一位,百位要向千位借一位,即()12a d --=,因此□内应填入2.【答案】2【随练2】 从1~9九个数字中取出三个,用这三个数可组成六个不同的三位数.若这六个三位数之和是3330,则这六个三位数中最小的可能是几?最大的可能是几?【考点】复杂的位值原理拆分 【难度】3星 【题型】解答【解析】 设这三个数字分别为a 、b 、c .由于每个数字都分别有两次作百位、十位、个位,所以六个不同的三位数之和为222×(a +b +c )=3330,推知a +b +c =15.所以,当a 、b 、c 取1、5、9时,它们组成的三位数最小为159,最大为951.【答案】最小为159,最大为951【随练3】 如果把数码5加写在某自然数的右端,则该数增加1111A ,这里A 表示一个看不清的数码,求这个数和A .课堂检测【考点】巧用方程解位值原理 【难度】3星 【题型】解答【解析】 设这个数为x ,则10x +5-x =1111A ,化简得9x =1106A ,等号右边是9的倍数,试验可得A =1,x =1234.【答案】A =1,x =1234(1)最简单的应用解数字谜的方法列竖式(2)利用十进制的展开形式,列等式解答(3)把整个数字整体的考虑设为x ,列方程解答【作业1】 如果一个自然数的各个数码之积加上各个数码之和,正好等于这个自然数,我们就称这个自然数为“巧数”.例如,99就是一个巧数,因为9×9+(9+9)=99.可以证明,所有的巧数都是两位数.请你写出所有的巧数.【考点】简单的位值原理拆分 【难度】3星 【题型】解答【解析】 设这个巧数为ab ,则有ab +a +b =10a +b ,a (b +1)=10a ,所以b +1=10,b =9.满足条件的巧数有:19、29、39、49、59、69、79、89、99.【答案】巧数有:19、29、39、49、59、69、79、89、99.【作业2】 a ,b ,c 分别是09中不同的数码,用a ,b ,c 共可组成六个三位数,如果其中五个三位数之和是2234,那么另一个三位数是几?【考点】复杂的位值原理拆分 【难度】3星 【题型】解答【解析】 由a ,b ,c 组成的六个数的和是222()a b c ⨯++.因为223422210>⨯,所以10a b c ++>. 家庭作业复习总结若11a b c ++=,则所求数为222112234208⨯-=,但2081011++=≠,不合题意.若12a b c ++=,则所求数为222122234430⨯-=,但430712++=≠,不合题意.若13a b c ++=,则所求数为222132234652⨯-=,65213++=,符合题意.若14a b c ++=,则所求数为222142234874⨯-=,但8741914++=≠,不合题意.若15a b c ++≥,则所求数2221522341096≥⨯-=,但所求数为三位数,不合题意.所以,只有13a b c ++=时符合题意,所求的三位数为652.【答案】652【作业3】 在两位自然数的十位与个位中间插入0~9中的一个数码,这个两位数就变成了三位数,有些两位数中间插入某个数码后变成的三位数,恰好是原来两位数的9倍.求出所有这样的三位数.【考点】复杂的位值原理拆分 【难度】3星 【题型】解答【解析】 因为原两位数与得到的三位数之和是原两位数的10倍,所以原两位数的个位数只能是0或5.如果个位数是0,那么无论插入什么数,得到的三位数至少是原两位数的10倍,所以个位数是5.设原两位数是ab ,则b =5,变成的三位数为5ab ,由题意有100a +10b +5=(10a +5)×9,化简得a +b =4.变成的三位数只能是405,315,225,135.【答案】三位数只能是405,315,225,135【作业4】 如果70ab a b ⨯=,那么ab 等于几?【考点】巧用方程解位值原理 【难度】3星 【题型】解答【解析】 将70ab a b ⨯=,展开整理得:(10)71000a b a b ⨯+⨯=⨯++,707100a b a b +=+,306a b =,5a b =,由于位值的性质,每个数位上的数值在0 ~9之间,得出1a =,5b =.【答案】15【作业5】 如果把数码3加写在某自然数的右端,则该数增加了12345A ,这里A 表示一个看不清的数码,求这个数和A .【考点】巧用方程解位值原理 【难度】3星 【题型】解答【解析】 设这个数码为x ,则有:(10x +3)-x =123450+A ,解得,9x =123447+A ,右边是9的倍数,根据被9整除的数字的特点知道,A =6,故:x =13717.【答案】6教学反馈。

小学奥数 数论 位值原则 位值原理.题库版

小学奥数  数论  位值原则 位值原理.题库版

1. 利用位值原理的定义进行拆分2. 巧用方程解位值原理的题位值原理 当我们把物体同数相联系的过程中,会碰到的数越来越大,如果这种联系过程中,只用我们的手指头,那么到了“十”这个数,我们就无法数下去了,即使象古代墨西哥尤里卡坦的玛雅人把脚趾也用上,只不过能数二十。

我们显然知道,数是可以无穷无尽地写下去的,因此,我们必须把数的概念从实物的世界中解放出来,抽象地研究如何表示它们,如何对它们进行运算。

这就涉及到了记数,记数时,同一个数字由于所在位置的不同,表示的数值也不同。

既是说,一个数字除了本身的值以外,还有一个“位置值”。

例如,用符号555表示五百五十五时,这三个数字具有相同的数值五,但由于位置不同,因此具有不同的位置值。

最右边的五表示五个一,最左边的五表示五个百,中间的五表示五个十。

但是在奥数中位值问题就远远没有这么简单了,现在就将解位值的三大法宝给同学们。

希望同学们在做题中认真体会。

1.位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同。

也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”。

例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理。

2.位值原理的表达形式:以六位数为例:abcdef a ×100000+b ×10000+c ×1000+d ×100+e ×10+f 。

3.解位值一共有三大法宝:(1)最简单的应用解数字谜的方法列竖式(2)利用十进制的展开形式,列等式解答(3)把整个数字整体的考虑设为x ,列方程解答模块一、简单的位值原理拆分【例 1】 一个两位数,加上它的个位数字的9倍,恰好等于100。

这个两位数的各位数字的和是 。

【考点】简单的位值原理拆分 【难度】2星 【题型】填空【关键词】2006年,第4届,希望杯,4年级,初赛,7题,六年级,初赛,第8题,5分【解析】 这个两位数,加上它的个位数字的9倍,恰好等于100,也就是说,十位数字的10倍加上个位数字的10倍等于100,所以十位数字加个位数字等于100÷10=10。

小学奥数 位值原理 精选例题练习习题(含知识点拨)

小学奥数  位值原理  精选例题练习习题(含知识点拨)

5-7-1.位值原理教学目标1.利用位值原理的定义进行拆分2.巧用方程解位值原理的题知识点拨位值原理当我们把物体同数相联系的过程中,会碰到的数越来越大,如果这种联系过程中,只用我们的手指头,那么到了“十”这个数,我们就无法数下去了,即使象古代墨西哥尤里卡坦的玛雅人把脚趾也用上,只不过能数二十。

我们显然知道,数是可以无穷无尽地写下去的,因此,我们必须把数的概念从实物的世界中解放出来,抽象地研究如何表示它们,如何对它们进行运算。

这就涉及到了记数,记数时,同一个数字由于所在位置的不同,表示的数值也不同。

既是说,一个数字除了本身的值以外,还有一个“位置值”。

例如,用符号555表示五百五十五时,这三个数字具有相同的数值五,但由于位置不同,因此具有不同的位置值。

最右边的五表示五个一,最左边的五表示五个百,中间的五表示五个十。

但是在奥数中位值问题就远远没有这么简单了,现在就将解位值的三大法宝给同学们。

希望同学们在做题中认真体会。

1.位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同。

也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”。

例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理。

2.位值原理的表达形式:以六位数为例:abcdef a×100000+b×10000+c×1000+d×100+e×10+f。

3.解位值一共有三大法宝:(1)最简单的应用解数字谜的方法列竖式(2)利用十进制的展开形式,列等式解答(3)把整个数字整体的考虑设为x,列方程解答例题精讲模块一、简单的位值原理拆分【例 1】一个两位数,加上它的个位数字的9倍,恰好等于100。

这个两位数的各位数字的和是。

【例 2】学而思的李老师比张老师大18岁,有意思的是,如果把李老师的年龄颠倒过来正好是张老师的年龄,求李老师和张老师的年龄和最少是________?(注:老师年龄都在20岁以上)【例 3】把一个数的数字顺序颠倒过来得到的数称为这个数的逆序数,比如89的逆序数为98.如果一个两位数等于其逆序数与1的平均数,这个两位数是________.【例 4】几百年前,哥伦布发现美洲新大陆,那年的年份的四个数字各不相同,它们的和等于16,如果十位数字加1,则十位数字恰等于个位数字的5倍,那么哥伦布发现美洲新大陆是在公元___________年。

小学奥数 数论问题 第一讲 位值原理

小学奥数  数论问题  第一讲  位值原理

第一讲位值原理讲义位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同。

也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”。

例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理。

100+e×10+f课后习题基础篇:【闯关1】ab与ba的差被9除,商等于______与______的差【闯关2】将一个四位数的数字顺序颠倒过来,得到一个新的四位数(这个数也叫原数的反序数),新数比原数大8802.求原来的四位数.提高篇:【闯关3】设六位数abcdef满足fabcde f abcdef=⨯,请写出这样的六位数.【闯关4】已知一个四位数加上它的各位数字之和后等于2008,则所有这样的四位数之和为多少.巅峰篇:【闯关5】小明打算做一个两位数乘以三位数的乘法,但是粗心的他在计算的时候遗漏了乘号,从而将两位数直接放在三位数的左边,形成一个五位数,该五位数恰好为应得的乘积的9倍,问:原来两个数的乘积是多少?第一讲位值原理课后习题基础篇:【闯关1】ab与ba的差被9除,商等于______与______的差解析:ab=10a+b,ba=10b+a。

ab-ba=10a+b-10b-a=9(a-b)所以商等于a与b的差。

【闯关2】将一个四位数的数字顺序颠倒过来,得到一个新的四位数(这个数也叫原数的反序数),新数比原数大8802.求原来的四位数.解析:正如我视频里面所讲的,我不知道这四个数字,那就把四个数字可以假设出来。

设原四位数为abcd.则:反序数:dcba。

由题意得:1000d+100c+10b+a-(1000a+100b+10c+d)=8802,化简得:1000(d-a)+100(c-b)+10(b-c)+(a-d)=8802,新数比原数大,则d>a,所以d-a=8,a是千位数最小是1,d是个位数,最大是9,所以:d=9,a=1,个位要借位,c-b=9,所以c=9,b=0,故原数为1099.提高篇:【闯关3】设六位数abcdef满足fabcde f abcdef=⨯,请写出这样的六位数.解析:本题难度有点,原题出自于第十三届华杯赛决赛的第12题。

【寒假奥数专题】精编人教版小学数学5年级上册位值原则(试题)含答案与解析

【寒假奥数专题】精编人教版小学数学5年级上册位值原则(试题)含答案与解析

寒假奥数专题:位值原则(试题)一.填空题(共12小题)1.在一个两位数的中间加一个0,得到的三位数是原两位数的6倍.原两位数是.2.如果,那么=.3.在六位数596387的某一位数字的后面,添上数字9,使得这个七位数最大,这个最大的七位数是.4.一个六位的自然数,它的个位数字是6,如果把这个个位数字移到其余各位数字的最前面,所得的数正好是原数的4倍,那么,原数是.5.一个两位数的右边添上数字3后,成为一个三位数,如果这个三位数比原来的两位数大372,则原两位数是.6.一个三位数,百位上是5,如果把百位上的5放到个位上去,新的三位数比原三位数少135,原三位数是.7.一个两位数,个位数比十位数大2,且同时能被2和3整除,此数为.8.三位数中,百位数字小于十位数字,且十位数字小于个位数字的数有个.9.一个两位数,十位上的数字是个位上数字的2倍.将个位与十位数字调换位置(如12→21),得到一个新的两位数,这两个数的和是132,原来这个两位数是或.10.有两个四位数的差为1996,我们把这样的两个四位数称为一个数对,像3210和1214,8059和6063等.这样的数对一共有对.11.一个两位数,个位上的数字比十位上的数字大1,把个位和十位数字交换位置后得到一个新的两位数,如果原数和新数的和99,这个两位数是.12.一个四位数,千位上的数字是4,如果把4调到个位,那么这个新的四位数就比原来少1107,原来这个四位数是.二.解答题(共9小题)13.一个两位数减去它的各位上数字之和,差成了两位数,求原来的两位数。

14.有一个三位数是8的倍数,把它的百位上的数字和个位上的数字调换位置,所得到的新三位数与原三位数的和恰好是1111,原三位数是多少?15.一个两位数,个位数字比十位数字大2,交换个位与十位上数字的位置得到一个新的两位数,它与原两位数的和等于88,求原来的两位数.16.一个三位数,个位数字是4.如果把个位数字移作百位数字,原来的百位数字移作十位数字,原来的十位数字移作个位数字,那么得到的数比原来的数少171.原来的数是多少?17.将一个两位整数的十位和个位互换,再除以3,加上34,依然是原来的两位数,求此数.18.把数字3写到一个四位数的左边,再把得到的五位数加4000,所得的数正好是原数的21倍,原来的四位数是多少?19.六位数与六位数相差180 000,六位数是多少?请写出所有的答案.20.在某个数的右边加上一个“0”,就得到一个两位数,比原来的数增加了36,原来这个数是多少?21.一个三位数,把它的个位和百位调换位置之后,得到一个新的三位数,这个新三位数和原三位数的差的个位数字是7.试求两个数的差.参考答案与试题解析一.填空题(共12小题)1.【解答】解:设这个两位数为ab,由题意得:(10a+b)×6=100a+b,得8a=b,所以a=1,b=8,这个两位数是18.答:原两位数是18.故答案为:18.2.【解答】解:100a+b=7×(10a+b),(100﹣10×7)a=(7﹣1)b,即30a=6b,所以5a=b,(a、b属于1至10中的数字).因此a=1,b=5;所以,ab是15;故答案为:15.3.【解答】解:在六位数596387的5后面添加数字9,即为5996387.故答案为:5996387.4.【解答】解:设前五位是x,则原来是10x+6,现在是600000+x,可得:600000+x=4(10x+6)600000+x=40x+24,39x=599976,x=15384,所以这个数是153846.答:原数为153846.故答案为:153846.5.【解答】解:设这个两位数为x,这个三位数为10x+3,10x+3﹣x=372,9x=369,x=41;答:原两位数是41.故答案为:41.6.【解答】解:设这个三位数是,新的三位数是;根据题意可得:+135=,100A+10B+5+135=500+10A+B,10A+B=40;因为A与B是一位数,所以,当A=4,B=0,符合题意;所以,原来是三位数是:540.故答案为:540.7.【解答】解:能被2整除的是偶数,所以个位是0,2,4,6,8十位比个位小2,则个位是4,6,8,十位是2,4,6即24,46,68,其中只有24能被3整除,故答案为:24.8.【解答】解:由以上分析可知:百位数字是1的有28种;百位数字是2的有21种;百位数字是3的有15种;百位数字是4的有10种;百位数字是5的有6种;百位数字是6的有3种;百位数字是7的有1种.因此,这样的数字有:28+21+15+10+6+3+1=84(种).故答案为:84.9.【解答】解:设个位数字是x,则十位数字是2x,所以这个数是10×2x+x=21x,调换后是10x+2x=12x,21x+12x=132,33x=132,x=4;则21x=21×4=84,答:这个两位数是84.故答案为:84.10.【解答】解:最小的两个四位数:2996﹣1000=1996,最大的两个四位数:9999﹣8003=1996;这样的数对有:9999﹣2996+1=7004(对),或8003﹣1000+1=7004(对);答:这样的数对一共有7004对.故答案为:7004.11.【解答】解:设这个两位数原来的十位数字为x,个位数字就为x+1,得:10(x+1)+x+(10x+x+1)=9922x=88x=4个位数字就为:4+1=5这个两位数是45.故答案为:45.12.【解答】解:设这个四位数除千位上的数字是4外的其他三位数字是x,得:(4000+x)﹣(10x+4)=11079x=2889x=321原来的四位数是4321.故答案为:4321.二.解答题(共9小题)13.【解答】解:10a+b﹣(a+b)=10b+a9a=10b+a8a=10b4a=5b则a=5,b=4,则原两位数为54。

五年级奥数第50讲 进位制与位值原理-

五年级奥数第50讲 进位制与位值原理-
【例4】 (★★★★) 在7进制中有三位数 abc ,化为9进制为 cba,求 这个三位数在十进制中为多少?
【例5】 (★★★★) 在6进制中有三位数 abc ,化为9进制为 cba,求 这个三位数在十进制中为多少?
1
二、位值原理
【例6】 (★★★) 将一个四位数的数字顺序颠倒过来,得到一个新 的四位数(这个数也叫原数的反序数),新数比原 数大8802 。求原来的四位数。
例3答案:① (11100)2 ② (11000000)2 ③ (500)10 例4答案:248
④ (13121)8
例5答案:22
)2
一、进位制 2.咱要了解的进位制: ⑴本质:n进制就是逢n进一 ⑵n进制下的数字最大为(n-1) 特别的:超过9的一般用大写英文字母表示 3.会变身的进位制:n进制和十进制的相互转化
【例3】 (★★★) ① (101)2(1011)2 (11011)2 ( )2 ② (11000111)2 (10101)2 (11)2 ( )2 ③ (3021)4 (605)7 ( )10 ④ (63121)8 (1247)8 (16034)8 (26531)8 (1744)8 ( )2
进位制与位值原理
一、进位制 1.缤纷多彩的进位制:
六十 进制 二十 进制
二进 制 … … 十六 进制
五进 制 十二 进制
【例1】 (★★★) 把下列各数转化成十进制数: ⑴ (463)8;⑵ (2BA)12;⑶ (5FC)16。
【例2】 (★★★) ⑴把85化成二进制数。 ⑵ (567)10 ( )8 ( )5 (
【例7】 (★★★) 有3个不同的数字,用它们组成6个不同的三位数, 如果这6个三位数的和是1554 ,那么这3个数字分 别是_。

位置值原理练习题50道

位置值原理练习题50道

位置值原理练习题50道1.有一类三位数,它的各个数位上的数字之和是12,各个数位上的数字之积是30,所有这样的三位数的和是多少2222.一个两位数,各位数字的和的5倍比原数大4,求这个两位数.3.一个三位数除以11所得的商等于这个三位数各位数码之和,求这个三位数.4.将一个三位数的数字重新排列,在所得到的三位数中,用最大的减去最小的,正好等于原来的三位数,求原来的三位数.5.在两位自然数的十位与个位中间插入0~9中的一个数码,这个两位数就变成了三位数,有些两位数中间插入某个数码后变成的三位数,恰好是原来两位数的9倍.求出所有这样的三位数.6.将一个四位数的数字顺序颠倒过来,得到一个新的四位数(这个数也叫原数的反序数),新数比原数大8802.求原来的四位数.7.将四位数的数字顺序重新排列后,可以得到一些新的四位数.现有一个四位数码互不相同,且没有0的四位数M,它比新数中最大的小3834,比新数中最小的大4338.求这个四位数.8、已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?9、3箱苹果重45千克,一箱梨比一箱苹果多5千克,3箱梨重多少千克?10、甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米相遇,甲比乙速度快,甲每小时比乙快多少千米?11、李军的张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支李军又给张强06元钱。

每支铅笔多少钱?12、甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。

由于河上的桥正在维修,车辆禁止通行,两车需要交换乘客,然后按原路返回各自出发的车站,到站时已是下午两点。

甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米?(交换乘客的时间略去不计)13、学校组织两个课外兴趣小组去郊外活动。

第一小组每小时走45千米,第二小组每小时走35千米。

两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。

小学奥数教程-位值原理 (92) (含答案)

小学奥数教程-位值原理 (92)  (含答案)
以,答案为 a = 2 与 b = 4 符合条件的为: 24 + 42 = 66 6 岁。 【答案】 66 岁
【例 3】 把一个数的数字顺序颠倒过来得到的数称为这个数的逆序数,比如 89 的逆序数为 98.如果一个两 位数等于其逆序数与 1 的平均数,这个两位数是________.
【考点】简单的位值原理拆分 【难度】2 星 【题型】填空 【关键词】学而思杯,5 年级,第 3 题 【解析】设为 ab ,即10a + b =10b + a + 1 ,整理得19=a 8b + 1 ,=a 3= ,b 7 ,两位数为 37
1.位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同。也就是说,每一 个数字除了有自身的一个值外,还有一个“位置值”。例如“2”,写在个位上,就表示 2 个一,写在百位上,就表 示 2 个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理。
2.位值原理的表达形式:以六位数为例: abcdef = a×100000+b×10000+c×1000+d×100+e×10+f。
【例 8】 一个三位数,个位和百位数字交换后还是一个三位数,它与原三位数的差的个位数字是 7,试求它 们的差。
【关键词】希望杯,4 年级,初赛,7 题,六年级,初赛,第 8 题,5 分
【解析】这个两位数,加上它的个位数字的 9 倍,恰好等于 100,也就是说,十位数字的 10 倍加上个位数字
的 10 倍等于 100,所以十位数字加个位数字等于 100÷10=10。
【答案】10
【例 2】 学而思的李老师比张老师大 18 岁,有意思的是,如果把李老师的年龄颠倒过来正好是张老师的年 龄,求李老师和张老师的年龄和最少是________?(注:老师年龄都在 20 岁以上)

小学数学奥赛5-7-1 位值原理.学生版

小学数学奥赛5-7-1 位值原理.学生版

5-7-1.位值原理教学目标1.利用位值原理的定义进行拆分2.巧用方程解位值原理的题知识点拨位值原理当我们把物体同数相联系的过程中,会碰到的数越来越大,如果这种联系过程中,只用我们的手指头,那么到了“十”这个数,我们就无法数下去了,即使象古代墨西哥尤里卡坦的玛雅人把脚趾也用上,只不过能数二十。

我们显然知道,数是可以无穷无尽地写下去的,因此,我们必须把数的概念从实物的世界中解放出来,抽象地研究如何表示它们,如何对它们进行运算。

这就涉及到了记数,记数时,同一个数字由于所在位置的不同,表示的数值也不同。

既是说,一个数字除了本身的值以外,还有一个“位置值”。

例如,用符号555表示五百五十五时,这三个数字具有相同的数值五,但由于位置不同,因此具有不同的位置值。

最右边的五表示五个一,最左边的五表示五个百,中间的五表示五个十。

但是在奥数中位值问题就远远没有这么简单了,现在就将解位值的三大法宝给同学们。

希望同学们在做题中认真体会。

1.位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同。

也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”。

例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理。

2.位值原理的表达形式:以六位数为例:abcdef a×100000+b×10000+c×1000+d×100+e×10+f。

3.解位值一共有三大法宝:(1)最简单的应用解数字谜的方法列竖式(2)利用十进制的展开形式,列等式解答(3)把整个数字整体的考虑设为x,列方程解答例题精讲模块一、简单的位值原理拆分【例 1】一个两位数,加上它的个位数字的9倍,恰好等于100。

这个两位数的各位数字的和是。

【例 2】学而思的李老师比张老师大18岁,有意思的是,如果把李老师的年龄颠倒过来正好是张老师的年龄,求李老师和张老师的年龄和最少是________?(注:老师年龄都在20岁以上)【例 3】把一个数的数字顺序颠倒过来得到的数称为这个数的逆序数,比如89的逆序数为98.如果一个两位数等于其逆序数与1的平均数,这个两位数是________.【例 4】几百年前,哥伦布发现美洲新大陆,那年的年份的四个数字各不相同,它们的和等于16,如果十位数字加1,则十位数字恰等于个位数字的5倍,那么哥伦布发现美洲新大陆是在公元___________年。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档