大学物理第二十一章题解
大学物理题目问题详解
第一章 质点运动学T1-4:BDDB1 -9 质点的运动方程为23010t t x +-=22015t t y -=式中x ,y 的单位为m,t 的单位为s.试求:(1) 初速度的矢量表达式和大小;(2) 加速度的矢量表达式和大小 解 (1) 速度的分量式为t t x x 6010d d +-==v t tyy 4015d d -==v 当t =0 时, v o x =-10 m ·s-1, v o y =15 m ·s-1, 则初速度的矢量表达式为1015v i j =-+, 初速度大小为120200s m 0.18-⋅=+=y x v v v(2) 加速度的分量式为2s m 60d d -⋅==ta xx v , 2s m 40d d -⋅-==t a y y v则加速度的矢量表达式为6040a i j =-, 加速度的大小为222s m 1.72-⋅=+=y x a a a1 -13 质点沿直线运动,加速度a =4 -t2 ,式中a 的单位为m ·s-2,t 的单位为s.如果当t =3s时,x =9 m,v =2 m ·s-1,求(1) 质点的任意时刻速度表达式;(2)运动方程.解:(1) 由a =4 -t 2及dv a dt=,有2d d (4)d a t t t ==-⎰⎰⎰v ,得到 31143t t C =-+v 。
又由题目条件,t =3s时v =2,代入上式中有 3114333C =⨯-+2,解得11C =-,则31413t t =--v 。
(2)由dx v dt=及上面所求得的速度表达式,有31d vd (41)d 3t t t t ==--⎰⎰⎰x得到 2421212x t t t C =--+又由题目条件,t =3s时x =9,代入上式中有24219233312C =⨯-⨯-+ ,解得20.75C =,于是可得质点运动方程为24120.7512x t t t =--+ 1 -22 一质点沿半径为R 的圆周按规律2021bt t s-=v 运动,v 0、b 都是常量.(1) 求t 时刻质点的总加速度大小;(2) t 为何值时总加速度在数值上等于b ?(3) 当加速度达到b 时,质点已沿圆周运行了多少圈?知识点:圆周运动的加速度的切向分量及法向分量表达式.本题采用线量的方式来描述圆周运动的运动方程。
大学物理2-212章习题详细答案
Pd L0dxxθxydEd θ习题1212-3.如习题12-3图所示,真空中一长为L 的均匀带电细直杆,总电量为q ,试求在直杆延长线上到杆的一端距离为d 的点P 的电场强度。
[解] 建立如图所示坐标系ox ,在带电直导线上距O 点为x 处取电荷元x Lqq d d =,它在P 点产生的电电场强度度为()()x x d L Lq x d L qE d 41d 41d 2020-+=-+=πεπε则整个带电直导线在P 点产生的电电场强度度为()()d L d qx x d L Lq E L+=-+=⎰002041d 41πεπε故()i E d L d q+=04πε12-4.用绝缘细线弯成的半圆环,半径为R ,其上均匀地带有正电荷Q ,试求圆心处点O 的场强。
[解] 将半圆环分成无穷多小段,取一小段dl ,带电量l RQ q d d π=dq 在O 点的电场强度20204d 4d d RlR Q R qE πεππε== 从对称性分析,y 方向的电场强度相互抵消,只存在x 方向的电场强度l RQ E E d sin 4sin d d 302x ⋅=⋅=θεπθ θd d R l =θεπθd 4sin d 202x R Q E =2020202x x 2d 4sin d R QR Q E E E επθεπθπ====⎰⎰ 方向沿x 轴正方向 12-5. 如习题12-5图所示,一半径为R 的无限长半圆柱面形薄筒,均匀带电,沿轴向单位长度上的带电量为λ,试求圆柱面轴线上一点的电场强度E 。
[解]θd 对应的无限长直线单位长带的电量为θπλd d =q 它在轴线O 产生的电场强度的大小为RRq E 0202d 2d d επθλπε==因对称性y d E 成对抵消RE E 02x 2d cos cos d d επθθλθ=⋅=d θRR E E 02202x 2d cos 2d επλεπθθλπ===⎰⎰ 12-6.一半径为R 的半球面,均匀地带有电荷,电荷面密度为σ,求球心点O 处的场强。
大学物理(2-1)课后题答案
λdx'L2L 3L λdx xP0dxx习 题 十10-1 卢瑟福实验证明:两个原子核之间的距离小到1510-m 时,它们之间的斥力仍遵守库仑定律。
已知金原子核中有79个质子,α粒子中有2个质子,每个质子的带电量为C 106.119-⨯,α粒子的质量为6.682710-⨯kg 。
当α粒子与金原子核相距6.91210-⨯m 时,试求:(1) α粒子所受的力;(2) α粒子的加速度。
[解] (1) α粒子电量2e ,金核电量为79e 。
α粒子所受的库仑力为()N 1064.7109.6792414142122210--⨯=⨯⋅==ee rq q F πεπε(2) α粒子的加速度223274s m 1014.11068.61064.7⨯=⨯⨯==--m F a10-2 如图所示,真空中一长为L 的均匀带电细直杆,总电量为q ,试求在直杆延长线上到杆的一端距离为d 的点P 的电场强度。
[解] 建立如图所示坐标系ox ,在带电直导线上距O 点为x 处取电荷元x Lq q d d =,它在P 点产生的电场强度为()()x x d L Lq x dL q E d 41d 41d 22-+=-+=πεπε则整个带电直导线在P 点产生的电场强度为()()d L d q x x dL Lq E L+=-+=⎰0241d 41πεπε故()i E d L d q+=04πε10-3 两根相同均匀带电细棒,长为L ,电荷线密度为λ,沿同一直线放置,两细棒间最近距离也是L ,如图所示。
设棒上的电荷不能自由移动,试求两棒间的静电相互作用力。
[解一] 先按左棒为场源电荷,而右棒为受力电荷。
计算左棒场强再求右棒所受电场力。
建立如图所示坐标系,在距O 点为x 处取微元x d λ,它在距O 点x '处产生的场强为()204d d x x xE -'=πελ因此左棒在x '处产生的场强为()⎪⎭⎫ ⎝⎛'--'=-'=⎰x Lx x x xE L1144d 02πελπελ 在x '处取电荷元x 'd λ,它受到的左棒的电场力为x x Lx E x F '⎪⎭⎫ ⎝⎛'--'=⋅'=d 114d d 02πελλ右棒受的总电场力为34ln423ln 23ln 4d 114d 022320232πελπελπελ=⎪⎭⎫ ⎝⎛---='⎪⎭⎫ ⎝⎛'--'==⎰⎰L L LL LL x x L x F F L L LL[解二] 求电荷元dx λ与x d 'λ的库仑力叠加。
大学物理第二册习题答案详解
8-2在真空中有 , 两平行板,相对距离为 ,板面积为 ,其带电量分别为+ 和- .则这两板之间有相互作用力 ,有人说 = ,又有人说,因为 = , ,所以 = .试问这两种说法对吗?为什么? 到底应等于多少?
解:球壳内表面将出现负的感生电荷-q,外表面为的感生电荷Q+q.
(1)按电势叠加原理求电
导体球的电势为
=3.297×102V
导体球壳的电势为
=2.698×102V
(2)两球连接起来时,球壳外表面的电荷Q+q.
=2.698×102V
(3)外球接地时,球壳内表面将出现负的感生电荷-q,外表面的电荷为0.
答:场强改变。公式Ε=σ/ε0仍然成立。σ是导体表面附近的电荷密度,受导体电荷分布的影响,但仍然用高斯定理可得出Ε=σ/ε0形式不变。
9-2将一个带正电的导体Α移近一个接地导体Β时,导体Β是否维持零电势?其上是否带电?
答:接地导体Β始终是零电势。但当带正电的导体Α移近时,其上会感应出异号电荷。
9-3用电源将平行板电容器充电后与电源断开,(1)若使电容器两极板间距减小,两板上电荷、两板间场强、电势差、电容器的电容以及电容器储能如何变化?(2)若电容器充电后仍与电源连接,再回答上述问题.
爱因斯坦的光子理论应用于光电效时认为光子的能量只能传递给金属中的电子在作用过程满足能量守恒定律即光强可表示为单位时间内单位面积上的光子数乘以每个光子的能量即inhv1在保持入射光频率不变的条件下光强i增加1倍意味着单位时间内入射的单位面积的光子数也增加1倍结果饱和光电流将增加1倍截止电压不变
大学物理 力学部分习题解答
第1章 质点运动与牛顿定律1-9 一人自坐标原点出发,经20(s)向东走了25(m),又用15(s)向北走了20(m),再经过10(s)向西南方向走了15(m),求:(1)全过程的位移和路程;(2)整个过程的平均速度和平均速率。
分析:从位移的概念出发,先用分量之差表示出每段位移,再通过矢量求和而求出全过程的位移,进而由路程、平均速度和平均速率的概念求出路程、平均速度和平均速率。
解: (1)以人为研究对象,建立如图所示的直角坐标系, 全过程的位移为:r r r r OC OA AB BC Δ=Δ+Δ+Δ()()()()A O B A C B C B =x x +y y +x x +y y ----i j i j =25+2015451545i j i j 00cos sin --j i 4.94.14+=其大小为:2222Δ=(Δ)+(Δ)=(14.4)+(9.4)=17.2()OC r x y m全过程位移的方向为:01.334.144.9==∆∆=arctg x y arctg θ 即方向向东偏北01.33 (2)平均速度 OCr tυ∆=∆ 其大小为:()117.20.3845OC r m s t υ-∆===⋅∆ 平均速度的方向沿东偏北01.33 平均速率 25201545s t υ∆++==∆()133.1-⋅=s m 1-10 一质点P 沿半径 3.00m R =的圆周作匀速率运动,运动一周所需时间为20.0s ,设0t =时,质点位于O 点。
按如图所示的坐标系oxy ,求:(1)质点P 在任意时刻的位矢;(2)5s 时的速度和加速度。
分析:只要找出在任意时刻质点P 点的坐标x 、y ,(通过辅助坐标系'''o x y 而找出)就能表示出质点P 在任意时刻的位矢x y =+r i j ,进而由r 对时间求导求出速度υ和加速度a 。
解:如图所示,在'''o x y 坐标系中,因t Tπθ2=,则质点P 的参数方程为: 22`,`x Rsin t y Rcos t T Tππ==- 图1-30 习题1-10图解习题1-9图解坐标变换后,在oxy 坐标系中有: 2`x x Rsint T π==,02`y y y Rcos t R Tπ=+=-+ 则质点P 的位矢方程为: 22ππ=Rsint +Rcos t +R T T ⎛⎫ ⎪⎝⎭-r i j ()()=30.1310.1i j sin t cos t ππ+⎡⎤⎣⎦- 5s 时的速度和加速度分别为 :22220.3r i j j υd R cos t R sin t dt T T T Tπππππ==+=2222222=()+()(0.03)22d =R sin t R cos t =dt T T T Tπππππ--r a i j j1-11 已知一质点的运动方程为2362x t t =-(单位为SI 制),求:(1)第2秒内的平均速度;(2)第3秒末的速度;(3)第一秒末的加速度;(4)物体运动的类型。
《大学物理A》力学部分习题解答
Y
V BA
V B地
V 地A
0
图 1.12
V A地
X
1.31、一质点沿 X 轴运动,其加速度 a 与坐标 X 的关系为
a 2 6 x 2 ( SI ) ,如果质点在原点处的速度为零,试求其在任意位置处的速
度? 解: a
dv dv dx dv v 2 6 x 2 ,利用分离变量积分解此题 dt dx dt dx
dt
,
x
k t k v0 (1 e m ) , m
t 时, x 有最大值且为 xmax
第三章
k v0 m
。
3.1、一质量为 1 kg 的物体,置于水平地面上,物体与地面之间的静摩擦系 数=0.20,滑动摩擦系数=0.16,现对物体施一水平拉力 F=t+0.96(SI),则 2 秒末物体的速度大小 v=______________。 题意分析:在 01 s 内, F<mg=1.96 ,未拉动物体.当拉力大于(克服)最大 静摩擦力后,物体开始运动,力对时间积累的效果称为:合外力对物体在 dt 时间内 的冲量。 解题思路:从题意分析中得出解题思路:由力对时间的积累,即力对时间的 积分,求出冲量,再求速度。 解题:在 1 s2 s 内, I (t 0.96) d t mg (t 2 t1 ) 0.89 N s
t1 0
t2
20
20 0
18( N ) .
3.5、一质量为 m 的物体,以初速 v0 成从地面抛出,抛射角 300 ,如忽略空
气阻力,则从抛出到刚要接触地面的过程中 (1) 物体动量增量的大小为 (2) 物体动量增量的方向为 提示: p p2 p1 。 。
大学物理第二十章题解
20-2.如图所示,将一条无限长直导线在某处弯成半径为 R 的半圆形,已知导线中的 电流为 I ,求圆心处的磁感应强度 B .
解 根据毕-萨定律,两直线段导线的电流在 O 点产生的磁感应强度 B 0 ,半圆环形 导线的电流在 O 点产生的磁感应强度 B 1 0I .由叠加原理,圆心
2 2R O 处的磁感应强度
B 1 0I 1 0I 1 0I 0I 2 ,方向垂直纸面向里.
2 2 R 2 2 R 2 2R 4 R
*20-4.如图所示,电流 I 均匀地流过宽为 2a 的无限长平面导体薄板 . P 点到薄板的 垂足 O 点正好在板的中线上,设距离 PO x ,求证 P 点的磁感应强度 B 的大小为
B 0 I arctan a
2a
解 把薄板等分成无限多条宽为 dy 的细长条,
每根细长条的电流 dI I dy ,可视为线电流;无 2a
限长载流薄板可看成由无限多条无限长载流直导线构
成.
y
处的细长条在
P
x
点产生的磁感应强度为
强度为 dB ,二者叠加为沿 Oy 方向的 dB .所以 P 点的磁感应强度 B 沿 Oy 方向, B 的大
解 在1 4 圆周的圆弧 aAb 上,单位长度弧长的线圈匝数为
N 2N 2 R 4 R
在如图 处, d 角对应弧长 dl 内通过的电流
第二十章 稳恒电流的磁场
20-1.如图所示,将一条无限长载流直导线在某处折成直角, P 点在折线的延长线上, 到折线的距离为 a .(1)设导线所载电流为 I ,求 P 点的 B .(2)当 I 20A , a 0.05m ,求 B .
解
(1)根据毕-萨定律, AB 段直导线电流在 P 点产生的磁场 B 0 ; BC 段是
大学物理第二十章题解
第二十章 稳恒电流的磁场20-1.如图所示,将一条无限长载流直导线在某处折成直角,P 点在折线的延长线上,到折线的距离为a 。
(1)设导线所载电流为I ,求P 点的B .(2)当20A I =,0.05m a =,求B .解 (1)根据毕—萨定律,AB 段直导线电流在P 点产生的磁场0B =;BC 段是“半无限长"直导线电流,它在P 点产生的磁场为001224II B a aμμππ==,方向垂直纸面向里.根据叠加原理,P 点的磁感应强度001224II B a aμμππ==方向垂直纸面向里.(2)当20A I =,0.05m a =时75141020410(T)22005B .ππ--⨯⨯=⨯=⨯⨯20-2.如图所示,将一条无限长直导线在某处弯成半径为R 的半圆形,已知导线中的电流为I ,求圆心处的磁感应强度B .解 根据毕-萨定律,两直线段导线的电流在O 点产生的磁感应强度0B =,半圆环形导线的电流在O 点产生的磁感应强度0122IB R μ=.由叠加原理,圆心O 处的磁感应强度 04I B Rμ=方向垂直纸面向里.20-3.电流I 若沿图中所示的三种形状的导线流过(图中直线部分伸向无限远), 试求各O 点的磁感应强度B.解 (a )根据毕—萨定律和叠加原理,O 点的磁感应强度等于两条半无限长直线电流的磁感应强度和14个圆环形导线的电流的磁感应强度的叠加0000111(1)22224224I I I I B R R R R μμμμππππ=++=+ ,方向垂直纸面向外.(b )根据毕-萨定律和叠加原理,O 点的磁感应强度等于下面一条半无限长直线电流的磁感应强度和34个圆环形导线的电流的磁感应强度的叠加000133(1)224242I I I B R R R μμμπππ=+=+ ,方向垂直纸面向里.(c)根据毕-萨定律和叠加原理,O 点的磁感应强度等于两条半无限长直线电流的磁感应强度和12个圆环形导线的电流的磁感应强度的叠加000111222222I I IB R R R μμμππ=++()024I Rμππ=+ ,方向垂直纸面向里.*20—4.如图所示,电流I 均匀地流过宽为a 2的无限长平面导体薄板.P 点到薄板的垂足O 点正好在板的中线上,设距离x PO =,求证P 点的磁感应强度B的大小为xa a I B arctan 20πμ=解 把薄板等分成无限多条宽为d y 的细长条,每根细长条的电流d d 2II y a=,可视为线电流;无限长载流薄板可看成由无限多条无限长载流直导线构成.y 处的细长条在P 点产生的磁感应强度为d B +,y -处的细长条在P 点产生的磁感应强度为d B -,二者叠加为沿Oy 方向的d B .所以P 点的磁感应强度B 沿Oy 方向,B的大小0220d 2cos 2a I B x y μθπ=+⎰0222202d 22a I y x a x y x yμπ=⋅⋅++⎰ 0220d 2a Ix y a x y μπ=+⎰001arctan 2aIx y a x x μπ=0arctan 2I a a x μπ=*20—5.如图所示,半径为R 的木球上绕有密集的细导线,线圈平面彼此平行,且以单层线圈盖住半个球面.设线圈的总匝数为N ,通过线圈的电流为I ,求球心O 处的B.解 在14圆周的圆弧ab 上,单位长度弧长的线圈匝数为224N NR Rππ=在如图θ处,d θ角对应弧长d l 内通过的电流22d d d NI NI I l R θππ==此电流可视为半径为r 的圆环形电流圈,参见教材p80,此圆环形电流圈在O 处产生的222200033d sin 2d d sin d 22r I R NI NI B R R Rμμθμθθθππ=== 所以总磁感应强度 2002200d sin d 4NI NI B B R Rππμμθθπ===⎰⎰20—6.如图所示,载流长直导线的电流为I ,试求通过与直导线共面的矩形面积CDEF 的磁通量.解 用平行于长直导线的直线把矩形CDEF 分成无限多个无限小的面元,距长直导线r 处的面元的面积为d d S l r =,设矩形CDEF 的方向为垂直纸面向里,则d SΦ=B S ⋅⎰⎰0d 2baI l r r μπ=⎰b 0d 2a Il r r μπ=⎰0ln 2Il baμπ=20-7.无限长同轴电缆的横截面如图所示,内导线半径为a ,载正向电流I ,圆筒形外导线的内外半径分别为b 和c ,载反向电流I ,两导线内电流都均匀分布,求磁感应强度的分布.解 考虑毕-萨定律,又因同轴电缆无限长,电流分布具有轴对称性,所以磁感应线在与电缆轴线垂直的平面内,为以轴线为圆心的同心圆;B 沿圆周切向,在到轴线距离r 相同处B 的大小相等,()B B r =.沿磁感应线建立安培环路L (轴线为圆心、半径为r 的圆),沿磁感应线方向积分.在r c >区域,由安培环路定理110d 2()0LB l rB I I πμ⋅==-=⎰可得10B =.在c r b >>区域,由安培环路定理222222002222d 2()L r b c r B l rB I I I c b c b πππμμππ--⋅==-=--⎰可得2202222I c r B r c bμπ-=-.在b r a >>区域,由安培环路定理 330d 2LB l rB I πμ⋅==⎰可得032IB rμπ=.在a r >区域,由安培环路定理 22440022d 2L r r B l rB I I a a ππμμπ⋅===⎰可得0422IrB aμπ=.20—8.如图所示,厚度为2d 的无限大导体平板,电流密度J 沿z 方向均匀流过导体板,求空间磁感应强度的分布.解 此无限大导体板可视为无限多个无限薄的无限大平板的叠加,参见习题20—4,可知,0y >区域B 沿Ox 负方向,0y <区域B 沿Ox 正方向.选择如图矩形回路abcda ,ab 与cd 与板面平行、沿Ox 方向,长度为l ,与Oxz 面距离为r .在r d >的板外区域,根据安培环路定理,有0d 22LB l B l dlJ μ⋅==⎰外外所以0B dJ μ=外.B 外与到板面的距离无关,说明板外为匀强磁场.在r d <的板内区域,根据安培环路定理,有0d 22LB l B l rlJ μ⋅==⎰内内所以0B rJ μ=内.可表示为0B yJi μ=-内(d y d -<<).20—9.矩形截面的螺绕环如图所示,螺绕环导线总匝数为N ,导线内电流强度为I .(1)求螺绕环截面内磁感应强度的分布;(2)证明通过螺绕环截面的磁通量为012ln 2NIh D ΦD μπ=. 解 由于电流分布对过螺绕环中心的对称轴具有轴对称性,所以螺绕环截面内磁感应线在与对称轴垂直的平面内,为以对称轴为圆心的同心圆;B 沿圆周切向,在到轴线距离r 相同处B 的大小相等,()B B r =.在螺绕环截面内,沿磁感应线作安培环路(以r 为半径的圆,2122D Dr <<),由安培环路定理0d 2LB l rB NI πμ⋅==⎰所以02NIB rμπ=. 通过螺绕环截面的磁通量为12200122d d ln 22D D NI NIh D B S h r r D μμΦππ=⋅==⎰⎰20-10.如图所示,半径为5m 的无限长金属圆柱内部挖出一半径为 1.5m r =的无限长圆柱形空腔.两圆柱的轴线平行,轴间距离 2.5m a =.今在此空心导体上通以5A 的电流,电流沿截面均匀分布.求此导体空心部分轴线上任一点的B.解 设空心导体上电流强度为I ,则电流密度22()IJ R r π=-. 电流分布可视为由电流密度为J 、半径为R 的实心长圆柱,和填充满挖空区域的、通有反向电流、电流密度为J -、半径为r 的圆柱的叠加.可用安培环路定理求出半径为R 的实心长圆柱电流在O'处的磁感应强度为2010222212()2()Ia I B a a R r R r μμππππ==--其方向与圆柱轴线以及OO'垂直,与电流I 成右手螺旋关系.由反向电流的轴对称分布可知,反向电流在其轴线上的磁感应强度为20B =. 由叠加原理可得在空心圆柱轴线上的磁感应强度为121B B B B =+=,770122224105251110(T)2()2(515)Ia.B .R r .μπππ--⨯⨯⨯===⨯--20—11.把一个2.0keV 的正电子射入磁感应强度为0.10T 的均匀磁场内,其速度v与B成o 89角,正电子的运动轨迹将是一条螺旋线.求此螺旋线运动的周期T 、螺距h 和半径r .解 周期 311019223149111035710(s)1610010m ..T .qB ..π---⨯⨯⨯===⨯⨯⨯ 速率为 31973122210161026510(m s)91110k E .v .m .--⨯⨯⨯⨯===⨯⨯ 螺距为 7104cos 8926510cos 893571016510(m)h v T ...--==⨯⨯⨯⨯=⨯半径为 317319sin899111026510sin8915110(m)161001mv ..r .qB ..---⨯⨯⨯⨯===⨯⨯⨯20-12.速率选择器如图所示,在粒子穿过的区域V 有相互垂直的匀强电场和匀强磁场,两侧有等高的窄缝S .现有一束具有不同速率的电子束A 从左侧缝穿入,以垂直于E 和B 的方向进入区域V .若300V U =,10cm d =,4310T B -=⨯.试计算能从速率选择器右侧的缝穿出的粒子的速率.带电粒子的带电符号及质量大小是否影响选择器对它们速率的选择?解 能从速率选择器右侧的缝穿出的电子必作直线运动,这些电子在电场E 中的受力为eE -,方向竖直向上;在磁场B 中的受力为ev B -⨯,方向竖直向下;且满足eE evB = 所以 E U v B dB ==430001310.-=⨯⨯710(m s )= 由于Ev B=与带电粒子的带电符号及质量大小无关,所以电粒子的带电符号及质量大小不影响选择器对它们速率的选择.20-13.一块半导体样品的体积为c b a ⨯⨯如图所示,0.10cm a =,0.35cm b =,1.0cm c =cm .沿x 轴方向有电流I,沿z 轴方向加匀强磁场B,已测得 1.0mA I =,1310T B -=⨯,样品两侧的电势差 6.55mV AA U '=.(1)问这半导体是p 型还是n 型,即该半导体的载流子是带正电还是带负电?(2)求载流子浓度n .解 (1)由电流方向、磁场方向和A 侧电势高于A'侧电势可知,此半导体的载流子带负电,属于n 型.(2)AA'IBn U qa=3319310100365510161010....----⨯⨯=⨯⨯⨯⨯20328610m .-=⨯20—14.如图所示,一条长直导线载有电流130A I =,矩形线圈载有电流220A I =,试计算作用在线圈上的合力.已知:0.01m a =,0.08m b =,0.12m l =.解 线圈左侧边导线受力0111222I F B I l I l aμπ==,方向向左. 线圈右侧边导线受力()0122222I F B I l I l a b μπ==+ ,方向向右.线圈上下两边导线所受的磁力大小相等、方向相反.因此线圈所受磁力的合力为()0120121222I I I I F F F l l a a b μμππ=-=-+()0122I I lba ab μπ=+ 741030200120082001(008001).....ππ-⨯⨯⨯⨯⨯=⨯⨯+312810(N).-=⨯方向向左,垂直指向长直导线.20—15.如图所示,无限长直导线通有电流1I ,半径为R 的半圆形导线ABCDE 通有电流2I .长直导线过圆心O 且与半圆形导线共面(但不相交),a DE AB ==。
大学物理第二十章题解
第二十章 稳恒电流的磁场20-1.如图所示,将一条无限长载流直导线在某处折成直角,P 点在折线的延长线上,到折线的距离为a .(1)设导线所载电流为I ,求P 点的B r.(2)当20A I =,0.05m a =,求B r .解 (1)根据毕-萨定律,AB 段直导线电流在P 点产生的磁场0B =;BC 段是“半无限长”直导线电流,它在P 点产生的磁场为001224II B a aμμππ==,方向垂直纸面向里.根据叠加原理,P 点的磁感应强度001224II B a aμμππ==方向垂直纸面向里.(2)当20A I =,0.05m a =时75141020410(T)22005B .ππ--⨯⨯=⨯=⨯⨯20-2.如图所示,将一条无限长直导线在某处弯成半径为R 的半圆形,已知导线中的电流为I ,求圆心处的磁感应强度B r.解 根据毕-萨定律,两直线段导线的电流在O 点产生的磁感应强度0B =,半圆环形导线的电流在O 点产生的磁感应强度0122IB Rμ=.由叠加原理,圆心O 处的磁感应强度 04I B Rμ=方向垂直纸面向里.20-3.电流I 若沿图中所示的三种形状的导线流过(图中直线部分伸向无限远), 试求各O 点的磁感应强度B ρ.解 (a )根据毕-萨定律和叠加原理,O 点的磁感应强度等于两条半无限长直线电流的磁感应强度和14个圆环形导线的电流的磁感应强度的叠加0000111(1)22224224I I I I B R R R R μμμμππππ=++=+ ,方向垂直纸面向外.(b )根据毕-萨定律和叠加原理,O 点的磁感应强度等于下面一条半无限长直线电流的磁感应强度和34个圆环形导线的电流的磁感应强度的叠加000133(1)224242I I I B R R R μμμπππ=+=+ ,方向垂直纸面向里.(c )根据毕-萨定律和叠加原理,O 点的磁感应强度等于两条半无限长直线电流的磁感应强度和12个圆环形导线的电流的磁感应强度的叠加000111222222I I I B R R R μμμππ=++()024I Rμππ=+ ,方向垂直纸面向里.*20-4.如图所示,电流I 均匀地流过宽为a 2的无限长平面导体薄板.P 点到薄板的垂足O 点正好在板的中线上,设距离x PO =,求证P 点的磁感应强度B ρ的大小为xaa I B arctan 20πμ=解 把薄板等分成无限多条宽为d y 的细长条,每根细长条的电流d d 2II y a=,可视为线电流;无限长载流薄板可看成由无限多条无限长载流直导线构成.y 处的细长条在P 点产生的磁感应强度为d B +r,y -处的细长条在P 点产生的磁感应强度为d B -r,二者叠加为沿Oy 方向的d B r .所以P 点的磁感应强度B ρ沿Oy 方向,B ρ的大小aB θ=⎰0a=⎰0220d 2a Ix y a x y μπ=+⎰001arctan 2aIx y a x x μπ=0arctan 2I a a x μπ=*20-5.如图所示,半径为R 的木球上绕有密集的细导线,线圈平面彼此平行,且以单层线圈盖住半个球面.设线圈的总匝数为N ,通过线圈的电流为I ,求球心O 处的B ρ.解 在14圆周的圆弧ºab上,单位长度弧长的线圈匝数为 224N NR Rππ=在如图θ处,d θ角对应弧长d l 内通过的电流22d d d NI NII l R θππ== 此电流可视为半径为r 的圆环形电流圈,参见教材p80,此圆环形电流圈在O 处产生的222200033d sin 2d d sin d 22r IR NI NI B R R Rμμθμθθθππ=== 所以总磁感应强度 2002200d sin d 4NI NI B B R Rππμμθθπ===⎰⎰20-6.如图所示,载流长直导线的电流为I ,试求通过与直导线共面的矩形面积CDEF 的磁通量.解 用平行于长直导线的直线把矩形CDEF 分成无限多个无限小的面元,距长直导线r 处的面元的面积为d d S l r =,设矩形CDEF 的方向为垂直纸面向里,则d S Φ=B S ⋅⎰⎰r r 0d 2b a I l r r μπ=⎰b 0d 2a Il r r μπ=⎰0ln 2Il b aμπ=20-7.无限长同轴电缆的横截面如图所示,内导线半径为a ,载正向电流I ,圆筒形外导线的内外半径分别为b 和c ,载反向电流I ,两导线内电流都均匀分布,求磁感应强度的分布.解 考虑毕-萨定律,又因同轴电缆无限长,电流分布具有轴对称性,所以磁感应线在与电缆轴线垂直的平面内,为以轴线为圆心的同心圆;B r沿圆周切向,在到轴线距离r 相同处B r的大小相等,()B B r =.沿磁感应线建立安培环路L (轴线为圆心、半径为r 的圆),沿磁感应线方向积分.在r c >区域,由安培环路定理110d 2()0LB l rB I I πμ⋅==-=⎰rr Ñ可得10B =.在c r b >>区域,由安培环路定理222222002222d 2()L r b c r B l rB I I I c b c b πππμμππ--⋅==-=--⎰r r Ñ 可得2202222I c r B r c bμπ-=-.在b r a >>区域,由安培环路定理 330d 2LB l rB I πμ⋅==⎰r r Ñ可得032IB rμπ=.在a r >区域,由安培环路定理 22440022d 2L r r B l rB I I a a ππμμπ⋅===⎰r r Ñ可得0422IrB aμπ=.20-8.如图所示,厚度为2d 的无限大导体平板,电流密度J 沿z 方向均匀流过导体板,求空间磁感应强度的分布.解 此无限大导体板可视为无限多个无限薄的无限大平板的叠加,参见习题20-4,可知,0y >区域B r 沿Ox 负方向,0y <区域B r沿Ox 正方向.选择如图矩形回路abcda ,ab 与cd 与板面平行、沿Ox 方向,长度为l ,与Oxz 面距离为r .在r d >的板外区域,根据安培环路定理,有0d 22LB l B l dlJ μ⋅==⎰r rÑ外外所以0B dJ μ=外.B 外与到板面的距离无关,说明板外为匀强磁场.在r d <的板内区域,根据安培环路定理,有0d 22L B l B l rlJ μ⋅==⎰r rÑ内内 所以0B rJ μ=内.可表示为0B yJi μ=-r r内(d y d -<<).20-9.矩形截面的螺绕环如图所示,螺绕环导线总匝数为N ,导线内电流强度为I .(1)求螺绕环截面内磁感应强度的分布;(2)证明通过螺绕环截面的磁通量为012ln 2NIh D ΦD μπ=. 解 由于电流分布对过螺绕环中心的对称轴具有轴对称性,所以螺绕环截面内磁感应线在与对称轴垂直的平面内,为以对称轴为圆心的同心圆;B r沿圆周切向,在到轴线距离r 相同处B r的大小相等,()B B r =.在螺绕环截面内,沿磁感应线作安培环路(以r 为半径的圆,2122D Dr <<),由安培环路定理 0d 2LB l rB NI πμ⋅==⎰r r Ñ所以02NIB rμπ=. 通过螺绕环截面的磁通量为1200122d d ln 22D D NI NIh D B S h r r D μμΦππ=⋅==⎰⎰r r20-10.如图所示,半径为5m 的无限长金属圆柱内部挖出一半径为 1.5m r =的无限长圆柱形空腔.两圆柱的轴线平行,轴间距离 2.5m a =.今在此空心导体上通以5A 的电流,电流沿截面均匀分布.求此导体空心部分轴线上任一点的B ρ.解 设空心导体上电流强度为I ,则电流密度22()IJ R r π=-.电流分布可视为由电流密度为J r、半径为R 的实心长圆柱,和填充满挖空区域的、通有反向电流、电流密度为J -r、半径为r 的圆柱的叠加.可用安培环路定理求出半径为R 的实心长圆柱电流在O'处的磁感应强度为2010222212()2()Ia I B a a R r R r μμππππ==-- 其方向与圆柱轴线以及OO'垂直,与电流I 成右手螺旋关系.由反向电流的轴对称分布可知,反向电流在其轴线上的磁感应强度为20B =r. 由叠加原理可得在空心圆柱轴线上的磁感应强度为121B B B B =+=r r r r,770122224105251110(T)2()2(515)Ia.B .R r .μπππ--⨯⨯⨯===⨯--20-11.把一个2.0keV 的正电子射入磁感应强度为0.10T 的均匀磁场内,其速度v ρ与Bρ成o89角,正电子的运动轨迹将是一条螺旋线.求此螺旋线运动的周期T 、螺距h 和半径r .解 周期 311019223149111035710(s)1610010m ..T .qB ..π---⨯⨯⨯===⨯⨯⨯速率为 726510(m v .===⨯ 螺距为 7104cos 8926510cos 893571016510(m)h v T ...--==⨯⨯⨯⨯=⨯oo半径为 317319sin899111026510sin8915110(m)161001mv ..r .qB ..---⨯⨯⨯⨯===⨯⨯⨯o o20-12.速率选择器如图所示,在粒子穿过的区域V 有相互垂直的匀强电场和匀强磁场,两侧有等高的窄缝S .现有一束具有不同速率的电子束A 从左侧缝穿入,以垂直于E r 和B r的方向进入区域V .若300V U =,10cm d =,4310T B -=⨯.试计算能从速率选择器右侧的缝穿出的粒子的速率.带电粒子的带电符号及质量大小是否影响选择器对它们速率的选择?解 能从速率选择器右侧的缝穿出的电子必作直线运动,这些电子在电场E r中的受力为eE -r ,方向竖直向上;在磁场B r 中的受力为ev B -⨯rr ,方向竖直向下;且满足eE evB =所以 E U v B dB ==430001310.-=⨯⨯710(m s )= 由于Ev B=与带电粒子的带电符号及质量大小无关,所以电粒子的带电符号及质量大小不影响选择器对它们速率的选择.20-13.一块半导体样品的体积为c b a ⨯⨯如图所示,0.10cm a =,0.35cm b =,1.0cm c =cm .沿x 轴方向有电流I ,沿z 轴方向加匀强磁场B ρ,已测得 1.0mA I =,1310T B -=⨯,样品两侧的电势差 6.55mV AA U '=.(1)问这半导体是p 型还是n 型,即该半导体的载流子是带正电还是带负电?(2)求载流子浓度n .解 (1)由电流方向、磁场方向和A 侧电势高于A'侧电势可知,此半导体的载流子带负电,属于n 型.(2)AA'IBn U qa=3319310100365510161010....----⨯⨯=⨯⨯⨯⨯20328610m .-=⨯20-14.如图所示,一条长直导线载有电流130A I =,矩形线圈载有电流220A I =,试计算作用在线圈上的合力.已知:0.01m a =,0.08m b =,0.12m l =.解 线圈左侧边导线受力0111222I F B I l I l aμπ==,方向向左. 线圈右侧边导线受力()0122222I F B I l I l a b μπ==+ ,方向向右.线圈上下两边导线所受的磁力大小相等、方向相反.因此线圈所受磁力的合力为()0120121222I I I I F F F l l a a b μμππ=-=-+()0122I I lba ab μπ=+ 741030200120082001(008001).....ππ-⨯⨯⨯⨯⨯=⨯⨯+312810(N).-=⨯方向向左,垂直指向长直导线.20-15.如图所示,无限长直导线通有电流1I ,半径为R 的半圆形导线ABCDE 通有电流2I .长直导线过圆心O 且与半圆形导线共面(但不相交),a DE AB ==. 求:(1)ABCDE 导线中,AB 、¼BCD 、DE 各段所受1I 产生的磁场的作用力的大小和方向,(2)长直导线在圆心O 处元段d l 上所受2I 的磁场力的大小和方向.解 (1)设直线电流1I 产生的磁感应强度为1B r.求AB 段受1I 的作用力时,令y ξ=-,则01212d d 2R a AB R I F I l B I k μξπξ+=⨯=⋅⎰⎰r r r r012ln 2I I R a k aμπ+=⋅rDE 段受到1I 的作用力为01012212d d ()ln 22R a DE R I I I R a F I l B I y k k y aμμππ++=⨯=⋅-=-⋅⎰⎰r r r r r求¼BCD 段受1I 的作用力时,取电流元2d I l 如图,d d l R θ=.由于Oz 方向的分力会相互抵消(参见图),只需计算Oy 方向的分量,则¼21202cos d BCD F B I R j πθθ=-⋅⋅⎰r r 201202cos d 2cos I I R j R πμθθπθ=-⋅⎰r 0122I I j μ=-r(2)半圆形导线电流2I 在圆心O 点处产生的磁场0224I B i Rμ=r r,所以0121212d d d d 4I I l F I l B I B l j j Rμ=⨯=⋅=r r r r r20-16.有一匝数为10匝,长为0.25m ,宽为0.10m 的矩形线圈,放在31.010T B -=⨯的匀强磁场中,通以15A 的电流,求它所受的最大力矩.解 线圈在匀强磁场中所受的最大力偶矩为m T NIBS =31015101002501...-=⨯⨯⨯⨯⨯337510(N m).-=⨯⋅(第二十章题解结束)。
《大学物理学》第十一、十二、十三章练习题(解答)
《大学物理学》第十一、十二、十三章练习题解答可能用到的物理量:122208.8510/C m N ε-=⨯⋅,922019.010/4m N C πε=⨯⋅一、选择题:1. 两个均匀带电的同心球面,半径分别为R 1、R 2(R 1<R 2),小球带电Q ,大球带电-Q ,下列各图中哪一个正确表示了电场的分布 ( D )(A) (B) (C) (D)2. 如图所示,任一闭合曲面S 内有一点电荷q ,O 为S 面上任一点,若将q 由闭合曲面内的P 点移到T 点,且OP =OT ,那么 ( D )(A) 穿过S 面的电通量改变,O 点的场强大小不变;(B) 穿过S 面的电通量改变,O 点的场强大小改变; (C) 穿过S 面的电通量不变,O 点的场强大小改变; (D) 穿过S 面的电通量不变,O 点的场强大小不变。
3.如图所示,在点电荷q +的电场中,若选取图中P 为电势零点,则M 点的电势为:( D ) (A)04q aπε;(B)08q aπε ;(C) 04q aπε-;(D) 08q aπε-。
4.在边长为a 的正立方体中心有一个电量为q 的点电荷,则通过该立方体任一面的电通量为 ( D ) (A)qε; (B)02q ε ; (C) 04q ε; (D) 06q ε。
5. 如图所示,a 、b 、c 是电场中某条电场线上的三个点,由此可知 ( C ) (A) E a >E b >E c ; (B) E a <E b <E c ; (C) U a >U b >U c ; (D) U a <U b <U c 。
6. 关于高斯定理的理解有下面几种说法,其中正确的是 ( C )(A) 如果高斯面内没有自由电荷,则高斯面上E ϖ处处为零; (B) 如果高斯面上电位移矢量D v为零,则该面内必无电荷;(C) 如果高斯面内有净电荷,则通过该面的电通量必不为零; (D) 如果高斯面上电通量为零,则该面内必无电荷。
大学物理学(下册)习题答案详解
第十二章 热力学基础一、选择题 12-1 C 12-2 C 12-3 C 12-4 B 12-5 C 12-6 A 二、填空题 12-710000100p V p V p V p V --12-8 260J ,280J - 12-912-10 )(5.21122V p V p -,))((5.01212V V p p -+,)(5.0)(312211122V p V p V p V p -+- 12-11 268J ,732J 三、计算题12-12 分析:理想气体的内能是温度T 的单值函数,内能的增量E ∆由始末状态的温度的增量T ∆决定,与经历的准静态过程无关.根据热力学第一定律可知,在等温过程中,系统从外界吸收的热量全部转变为内能的增量,在等压过程中,系统从外界吸收的热量部分用来转变为内能的增量,同时对外做功. 解:单原子理想气体的定体摩尔热容,32V m C R = (1) 等体升温过程20=A,21333()8.3150623222V V m E Q C T R T R T T J J ∆==∆=∆=-=⨯⨯= (2) 等压膨胀过程,2133()8.315062322V m E C T R T T J J ∆=∆=-=⨯⨯= 2121()()8.3150416A p V V R T T J J =-=-=⨯=1039p Q A E J =+∆=或者,,215()8.315010392p p m p m Q C T C T T J J =∆=-=⨯⨯=12-13 分析:根据热力学第一定律和理想气体物态方程求解. 解:氢气的定体摩尔热容,52V m C R =(1) 氢气先作等体升压过程,再作等温膨胀过程. 在等体过程中,内能的增量为 ,558.3160124622V V m Q E C T R T J J =∆=∆=∆=⨯⨯= 等温过程中,对外界做功为221ln8.31(27380)ln 22033T T V Q A RT J J V ===⨯+⨯= 吸收的热量为3279V T Q Q Q J =+=(2) 氢气先作等温膨胀过程,然后作等体升压过程. 在等温膨胀过程中,对外界做功为211ln8.31(27320)ln 21687T V A RT J J V ==⨯+⨯= 在等体升压过程中,内能的增量为,558.3160124622V m E C T R T J J ∆=∆=∆=⨯⨯= 吸收的热量为2933T Q A E J =+∆=3虽然氢气所经历的过程不同,但由于始末状态的温差T ∆相同,因而内能的增量E ∆相同,而Q 和A 则与过程有关.12-14 分析:卡诺循环的效率仅与高、低温热源的温度1T 和2T 有关.本题中,求出等温膨胀过程吸收热量后,利用卡诺循环效率及其定义,便可求出循环的功和在等温压缩过程中,系统向低温热源放出的热量. 解:从高温热源吸收的热量321110.005ln 8.31400ln 5.35100.001V m Q RT J J M V ==⨯⨯=⨯ 由卡诺循环的效率2113001125%400T A Q T η==-=-= 可得循环中所作的功310.255350 1.3410A Q J J η==⨯=⨯传给低温热源的热量3321(1)(10.25) 5.3510 4.0110Q Q J J η=-=-⨯⨯=⨯12-15 分析:在a b →等体过程中,系统从外界吸收的热量全部转换为内能的增量,温度升高.在b c →绝热过程中,系统减少内能,降低温度对外作功,与外界无热量交换.在c a →等压压缩过程中,系统放出热量,温度降低,对外作负功.计算得出各个过程的热量和功,根据热机循环效率的定义即可得证. 证明:在a b →等体过程中,系统从外界吸收的热量为,,1222()()V m V V m b a C mQ C T T p V p V M R=-=-在c a →等压压缩过程中,系统放出热量的大小为,,2122()()p m P p m c a C mQ C T T p V p V M R=-=- 所以,该热机的循环效率为41,212221,12222(1)()111()(1)p m P V V m V C p V p V Q V p Q C p V p V p ηγ--=-=-=---12-16 分析:根据卡诺定理,在相同的高温热源(1T ),与相同的低温热源(2T )之间工作的一切可逆热机的效率都相等,有221111Q TQ T η=-=-.非可逆热机的效率221111Q T Q T η=-<-. 解:(1) 该热机的效率为21137.4%Q Q η=-= 如果是卡诺热机,则效率应该是21150%c T T η=-= 可见它不是可逆热机.(2) “尽可能地提高效率”是指热机的循环尽可能地接近理想的可逆循环工作方式.根据热机效率的定义,可得理想热机每秒吸热1Q 时所作的功为4410.50 3.3410 1.6710c A Q J J η==⨯⨯=⨯5第十三章 气体动理论一、选择题 13-1 D 13-2 B 13-3 D 13-4 D 13-5 C 13-6 C 13-7 A 二、填空题13-8 相同,不同;相同,不同,相同. 13-9 (1)分子体积忽略不计;(2)分子间的碰撞是完全弹性的; (3)只有在碰撞时分子间才有相互作用.13-10 速率大于p v 的分子数占总分子数的百分比,分子的平均平动动能,()d 1f v v ∞=⎰,速率在∞~0内的分子数占总分子数的百分之百.13-11 氧气,氢气,1T 13-12 3,2,013-13 211042.9-⨯J ,211042.9-⨯J ,1:2 13-14 概率,概率大的状态. 三、计算题13-15 分析:根据道尔顿分压定律可知,内部无化学反应的平衡状态下的混合气体的总压强,等于混合气体中各成分理想气体的压强之和.解:设氦、氢气压强分别为1p 和2p ,则12p p p =+.由理想气体物态方程,得1He He m RTp M V =, 222H H m RT p M V=所以,总压强为62255123334.010 4.0108.31(27230)()()4.010 2.010 1.010H He He H m m RT p p p Pa M M V -----⨯⨯⨯+=+=+=+⨯⨯⨯⨯ 47.5610Pa =⨯13-16 解:(1)=可得 氢的方均根速率3/ 1.9310/s m s ===⨯ 氧的方均根速率483/m s === 水银的方均根速率/193/s m s === (2) 温度相同,三种气体的平均平动动能相同232133 1.3810300 6.211022k kT J J ε--==⨯⨯⨯=⨯13-17 分析:在某一速率区间,分布函数()f v 曲线下的面积,表示分子速率在该速率区间内的分子数占总分子数的百分比.速率区间很小时,这个百分比可近似为矩形面积()Nf v v N∆∆=,函数值()f v 为矩形面积的高,本题中可取为()p f v .利用p v 改写麦克斯韦速率分布律,可进一步简化计算.解: ()Nf v v N∆=∆ 当300T K =时,氢气的最概然速率为1579/p v m s ==== 根据麦克斯韦速率分布率,在v v v →+∆区间内的分子数占分子总数的百分比为232224()2mvkT N m e v v N kTππ-∆=∆7用p v 改写()f v v ∆有223()2222()4()e ()()2pv mv v kTpp mv v f v v v v e kTv v ππ--∆∆=∆=由题意可知,10p v v =-,(10)(10)20/p p v v v m s ∆=+--=.而10p v ,所以可取p v v ≈,代入可得1201.05%1579p N e N-∆=⨯=13-18 解:(1) 由归一化条件204()d 1FF V V dN V AdV f v v N Nπ∞===⎰⎰⎰ 可得 334F NA V π= (2) 平均动能2230143()d d 24FV FV N f v v mv v N V πωωπ∞==⨯⨯⎰⎰423031313d ()2525FV F F F mv v mv E v =⨯==⎰13-19 分析:气体分子处于平衡态时,其平均碰撞次数于分子数密度和分子的平均速率有关.温度一定时,平均碰撞次数和压强成正比.解:(1) 标准状态为50 1.01310p Pa =⨯,0273T K =,氮气的摩尔质量32810/M kg mol -=⨯由公式v =kTp n =可得224Z d nv d d π===5102231.013104(10)/1.3810273s π--⨯=⨯⨯⨯次885.4210/s =⨯次(2) 41.3310p Pa -=⨯,273T K =4102231.331044(10)/1.3810273Z ds ππ---⨯==⨯⨯⨯次0.71/s =次13-20 分析:把加热的铁棒侵入处于室温的水中后,铁棒将向水传热而降低温度,但“一大桶水”吸热后的水温并不会发生明显变化,因而可以把“一大桶水”近似为恒温热源.把铁棒和“一大桶水”一起视为与外界没有热和功作用的孤立系统,根据热力学第二定律可知,在铁棒冷却至最终与水同温度的不可逆过程中,系统的熵将增加.熵是态函数,系统的熵变仅与系统的始末状态有关而与过程无关.因此,求不可逆过程的熵变,可在始末状态之间设计任一可逆过程进行求解. 解:根据题意有 1273300573T K =+=,227327300T K =+=.设铁棒的比热容为c ,当铁棒的质量为m ,温度变化dT 时,吸收(或放出)的热量为dQ mcdT =设铁棒经历一可逆的降温过程,其温度连续地由1T 降为2T ,在这过程中铁棒的熵变为2121d d 300ln 5544ln /1760/573T T T Q mc T S mc J K J K T T T ∆====⨯⨯=-⎰⎰9第十四章 振动学基础一、选择题 14-1 C 14-2 A 14-3 B 14-4 C 14-5 B 二、填空题 14-622 14-7 5.5Hz ,114-82411s ,23π 14-9 0.1,2π14-10 2222mA T π- 三、计算题14-11 解:简谐振动的振幅2A cm =,速度最大值为3/m v cm s =则 (1) 2220.024 4.20.033m A T s s s v ππππω⨯====≈ (2) 222220.03m/s 0.045m/s 4m m m a A v v T ππωωπ===⨯=⨯≈ (3) 02πϕ=-,3rad/s 2ω= 所以 30.02cos()22x t π=- [SI]14-12 证明:(1) 物体在地球内与地心相距为r 时,它受到的引力为2MmF Gr=- 负号表示物体受力方向与它相对于地心的位移方向相反.式中M 是以地心为中心,以r 为半径的球体内的质量,其值为10343M r πρ=因此 43F G m r πρ=-物体的加速度为43F aG r m πρ==- a 与r 的大小成正比,方向相反,故物体在隧道内作简谐振动. (2) 物体由地表向地心落去时,其速度dr dr dv dr v a dt dv dt dv=== 43vdv adr G rdr πρ==-043v r R vdv G rdr πρ=-⎰⎰ 所以v =又因为dr vdt == 所以tRdt =-⎰⎰则得1126721min 4t s ===≈14-13 分析:一物体是否作简谐振动,可从动力学方法和能量分析方法作出判断.动力学的分析方法由对物体的受力分析入手,根据牛顿运动方程写出物体所满足的微分方程,与简谐振动的微分方程作出比较后得出判断.能量法求解首先需确定振动系统,确定系统的机械能是否守恒,然后需确定振动物体的平衡位置和相应的势能零点,再写出物体在任意位置时的机械能表达式,并将其对时间求一阶导数后与简谐振动的微分方程作比较,最后作出是否作简谐振动的判断. 解:(1) 能量法求解取地球、轻弹簧、滑轮和质量为m 的物体作为系统.在物体上下自由振动的过程中,系统不受外力,系统内无非保守内力作功,所以系统的机械能守恒. 取弹簧的原长处为弹性势能零点,取物体受合力为零的位置为振动的平衡位11置,也即Ox 轴的坐标原点,如图14-13(a)所示.图14-13 (a)图14-13 (b)设物体在平衡位置时,弹簧的伸长量为l ,由图14-13(b)可知,有10mg T -=,120T R T R -=,2T kl =得 mgl k=当物体m 偏离平衡位置x 时,其运动速率为v ,弹簧的伸长量为x l +,滑轮的角速度为ω.由系统的机械能守恒,可得222111()222k x l mv J mgx ω+++-=常量 式中的角速度 1v dxR R dt ω==将机械能守恒式对时间t 求一阶导数,得2222d x k x x dt m J Rω=-=-+ 上式即为简谐振动所满足的微分方程,式中ω为简谐振动的角频率2km J R ω=+另:动力学方法求解物体和滑轮的受力情况如图14-13(c)所示.12图14-13 (c)1mg T ma -= (1)12()JT T R J a Rβ-==(2) 设物体位于平衡位置时,弹簧的伸长量为l ,因为这时0a =,可得12mg T T kl ===当物体对平衡位置向下的位移为x 时,2()T k l x mg kx =+=+ (3)由(1)、(2)、(3)式解得2ka x m J R =-+物体的加速度与位移成正比,方向相反,所以它是作简谐振动. (2) 物体的振动周期为222m J R T kππω+==(3) 当0t =时,弹簧无伸长,物体的位移0x l =-;物体也无初速,00v =,物体的振幅22200()()v mgA x l l kω=+=-==00cos 1x kl A mgϕ-===- 则得 0ϕπ=13所以,物体简谐振动的表达式为2cos()mg k x t k m J Rπ=++ 14-14 分析:M 、m 一起振动的固有频率取决于k 和M m +,振动的初速度0m v 由M 和m 的完全非弹性碰撞决定,振动的初始位置则为空盘原来的平衡位置.图14-14解:设空盘静止时,弹簧伸长1l ∆(图14-14),则1Mg k l =∆ (1)物体与盘粘合后且处于平衡位置,弹簧再伸长2l ∆,则12()()m M g k l l +=∆+∆ (2)将(1)式代入得2mg k l =∆与M 碰撞前,物体m 的速度为02m v gh =与盘粘合时,服从动量守恒定律,碰撞后的速度为02m m mv v gh m M m M==++取此时作为计时零点,物体与盘粘合后的平衡位置作为坐标原点,坐标轴方向竖直向下.则0t =时,02mg x l k =-∆=-,02mv v gh m M==+14ω=由简谐振动的初始条件,0000cos , sin x A v A ϕωϕ==-可得振幅A ===初相位0ϕ满足000tan v x ϕω=-== 因为 00x <,00v >所以 032πϕπ<<0ϕπ=+所以盘子的振动表式为cos x π⎤⎫=+⎥⎪⎪⎥⎭⎦14-15 解:(1) 振子作简谐振动时,有222111222k p E E E mv kx kA +==+= 当k p E E =时,即12p E E =.所以 22111222kx kA =⨯0.200.14141x m m ==±=±(2)由条件可得振子的角频率为/2/s rad s ω=== 0t =时,0x A =,故00ϕ=.动能和势能相等时,物体的坐标15x =即cos A t ω=,cos t ω= 在一个周期内,相位变化为2π,故3574444t ππππω=, , , 时间则为1 3.140.3944 2.0t s s πω===⨯ 213330.39 1.24t t s s πω===⨯=315550.39 2.04t t s s πω===⨯=417770.39 2.74t t s s πω===⨯=14-16 解:(1) 合成振动的振幅为A =0.078m== 合成振动的初相位0ϕ可由下式求出110220*********.05sin0.06sin sin sin 44tan 113cos cos 0.05cos 0.06cos 44A A A A ππϕϕϕππϕϕ⨯+⨯+===+⨯+⨯ 084.8ϕ=(2) 当0102k ϕϕπ-=± 0,1,2,k =时,即0103224k k πϕπϕπ=±+=±+时, 13x x +的振幅最大.取0k =,则 031354πϕ== 当020(21)k ϕϕπ-=±+0,1,2,k =时,即020(21)(21)4k k πϕπϕπ=±++=±++时,13x x +的振幅最小.取0k =,则 052254πϕ==(或031354πϕ=-=-) 14-17 分析:质点同时受到x 和y 方向振动的作用,其运动轨迹在Oxy 平面内,16质点所受的作用力满足力的叠加原理.解:(1) 质点的运动轨迹可由振动表达式消去参量t 得到.对t 作变量替换,令12t t '=-,两振动表达式可改写为0.06cos()0.06sin 323x t t πππ''=+=-0.03cos3y t π'=将两式平方后相加,得质点的轨迹方程为222210.060.03x y += 所以,质点的运动轨迹为一椭圆. (2) 质点加速度的两个分量分别为22220.06()cos()3339x d x a t x dt ππππ==-+=-22220.03()cos()3369y d y a t y dt ππππ==--=-当质点的坐标为(,)x y 时,它所受的作用力为22()99x y F ma i ma j m xi yj mr ππ=+=-+=-可见它所受作用力的方向总是指向中心(坐标原点),作用力的大小为223.1499F ma π====⨯=14-18 分析:充电后的电容器和线圈构成LC 电磁振荡电路.不计电路的阻尼时,电容器极板上的电荷量随时间按简谐振动的规律变化.振荡电路的固有振动频率由L 和C 的乘积决定,振幅和初相位由系统的初始状态决定.任意时刻电路的状态都可由振荡的相位决定. 解:(1) 电容器中的最大能量212e W C ε=线圈中的最大能量17212m m W LI =在无阻尼自由振荡电路中没有能量损耗,e m W W =.因此221122m C LI ε=21.4 1.410m I A A -===⨯(2) 当电容器的能量和电感的能量相等时,电容器能量是它最大能量的一半,即22124q C C ε= 因此661.010 1.41.0101.41q C C --⨯⨯==±=±⨯ (3) LC 振荡电路中,电容器上电荷量的变化规律为00cos()q Q t ωϕ=+式中0Q C ε=,ω=.因为0t =时,0q Q =,故有00ϕ=.于是q C ε=当首次q =时有C ε==,4π=53.147.85104t s -===⨯18第十五章 波动学基础一、选择题 15-1 B 15-2 C 15-3 B 15-4 A 15-5 C 15-6 C 二、填空题15-7 波源,传播机械波的介质 15-8B C,2B π,2C π,lC ,lC - 15-9 cos IS θ 15-10 0 15-11 0.45m 三、计算题15-12 分析:平面简谐波在弹性介质中传播时,介质中各质点作位移方向、振幅、频率都相同的谐振动,振动的相位沿传播方向依次落后,以速度u 传播.把绳中横波的表达式与波动表达式相比较,可得到波的振幅、波速、频率和波长等特征量.t 时刻0x >处质点的振动相位与t 时刻前0x =处质点的振动相位相同. 解:(1) 将绳中的横波表达式0.05cos(104)y t x ππ=-与标准波动表达式0cos(22)y A t x πνπλϕ=-+比较可得0.05A m =,52v Hz ωπ==,0.5m λ=,0.55/ 2.5/ u m s m s λν==⨯=. (2) 各质点振动的最大速度为0.0510/0.5/ 1.57/m v A m s m s m s ωππ==⨯=≈各质点振动的最大加速度为192222220.05100/5/49.3/m a A m s m s m s ωππ==⨯=≈(3) 将0.2x m =,1t s =代入(104)t x ππ-的所求相位为10140.29.2ϕπππ=⨯-⨯=0.2x m =处质点的振动比原点处质点的振动在时间上落后0.20.082.5x s s u == 所以它是原点处质点在0(10.08)0.92t s s =-=时的相位. (4) 1t s =时波形曲线方程为x x y 4cos 05.0) 4110cos(05.0πππ=-⨯=1.25t s =时波形曲线方程为)5.0 4cos(05.0) 425.110cos(05.0ππππ-=-⨯=x x y1.50t s =时波形曲线方程为) 4cos(05.0) 45.110cos(05.0ππππ-=-⨯=x x y1t s =, 1.25t s =, 1.50t s =各时刻的波形见图15-12.15-13 解:(1) 由于平面波沿x 轴负方向传播,根据a 点的振动表达式,并以a 点为坐标原点时的波动表达式为0cos[()]3cos[4()]20x xy A t t u ωϕπ=++=+(2) 以a 点为坐标原点时,b 点的坐标为5x m =-,代入上式,得b 点的振动表达式为53cos[4()]3cos(4)20b y t t πππ=-=- 若以b 点为坐标原点,则波动表达式为3cos[4()]20xy t ππ=+-s1s5.12015-14 解:由波形曲线可得100.1A cm m ==,400.4cm m λ==从而0.4/0.2/2u m s m s T λ===,2/rad s Tπωπ==(1) 设振动表达式为 0cos[()]xy A t uωϕ=++由13t s =时O 点的振动状态:2Ot Ay =-,0Ot v >,利用旋转矢量图可得,该时刻O 点的振动相位为23π-,即 10032()33Ot t t ππϕωϕϕ==+=+=-所以O 点的振动初相位为 0ϕπ=-将0x =,0ϕπ=-代入波动表达式,即得O 点的振动表达式为0.1cos()O y t ππ=-(2) 根据O 点的振动表达式和波的传播方向,可得波动表达式0cos[()]0.1cos[(5))]xy A t t x uωϕππ=++=+-(3) 由13t s =时Q 点的振动状态:0Qt y =,0Qt v <,利用旋转矢量图可得,该时刻Q 点的振动相位为2π,即013[()]30.22Q Qt t x x t u πππϕωϕπ==++=+-=可得 0.233Q x m =将0.233Q x m =,0ϕπ=-代入波动表达式,即得Q 点的振动表达式为0.1cos()6Q y t ππ=+(4) Q 点离O 点的距离为0.233Q x m =15-15 分析:波的传播过程也是能量的传播过程,波的能量同样具有空间和时间的周期性.波的强度即能流密度,为垂直通过单位面积的、对时间平均的能流.注意能流、平均能流、能流密度、能量密度、平均能量密度等概念的区别和联系.解:(1) 波中的平均能量密度为32235319.010/ 3.010/2300I w A J m J m u ρω--⨯====⨯最大能量密度为 532 6.010/m w w J m -==⨯ (2) 每两个相邻的、相位差为2π的同相面间的能量为25273000.14() 3.010() 4.621023002u d W wV w S w J v λππ--====⨯⨯⨯⨯=⨯15-16 分析:根据弦线上已知质点的振动状态,推出原点处质点振动的初相位,即可写出入射波的表达式.根据入射波在反射点的振动,考虑反射时的相位突变,可写出反射波的表达式.据题意,入射波和反射波的能量相等,因此,在弦线上形成驻波的平均能流为零.解:沿弦线建立Ox 坐标系,如图15-16所示.根据所给数据可得图15-16/100/u s m s ===,2100 /rad s ωπνπ==,100250u m m v λ===, (1) 设原点处质元的初相位为0ϕ,入射波的表达式为0cos[()]xy A t uωϕ=-+据题意可知,在10.5x m =处质元的振动初相位为103πϕ=,即有110001000.51003x u ωππϕϕϕ⨯=-+=-+=得 05326πππϕ=+=所以,入射波表达式为550.04cos[100()]0.04cos[100()]61006x x y t t u ππππ=-+=-+入考虑半波损失,反射波在2x 处质元振动的初相位为2010511100()10066ππϕππ=-++=反射波表达式为220cos[()]x x y A t uωϕ-=++反 ]611)100(100cos[04.0]611)10010(100cos[04.0ππππ++=+-+=x t x t(2)入射波和反射波的传播方向相反,叠加后合成波为驻波40.08cos()cos(100)23y y y x t ππππ=+=++入反波腹处满足条件 2x k πππ+=即 1()2x k =-因为010x m ≤≤,在此区间内波腹位置为0.5, 1.5, 2.5,,9.5x m = 波节处满足条件 (21)22x k πππ+=+即 x k = 在区间010x m ≤≤,波节坐标为0,1,2,,10x m = (3) 合成为驻波,在驻波中没有能量的定向传播,因而平均能流为零. 15-17 分析:运动波源接近固定反射面而背离观察者时,观察者即接收到直接来自波源的声波,也接收到来自固定反射面反射的声波,两声波在A 点的振动合成为拍.当波源相对于观察者静止,而反射面接近波源和观察者时,观察者接收到直接来自波源的声波无多普勒效应,但反射面反射的频率和观察者接收到的反射波频率都发生多普勒效应,因此,两个不同频率的振动在A 点也将合成为拍. 解:(1) 波源远离观察者而去,观察者接收到直接来自波源声音频率为1R S Suu v νν=+观察者相对反射面静止,接收到来自反射面的声波频率2R ν就是固定反射面接收到的声波频率,这时的波源以S v 接近反射面.2R S Suu v ννν==-反 A 处的观察者听到的拍频为21222S S R R S S S S Suv u uu v u v u v νννννν∆=-=-=-+- 由此可得方程2220S S S v uv u ννν∆+-∆=0.25/S v m s ≈(2) 观察者直接接收到的波的频率就是波源振动频率1RS νν'= 对于波源来说,反射面相当于接收器,它接收到的频率为S u vuνν+'=对于观察者来说,反射面相当于另一波源,观察者接收到的来自反射面的频率为2RS S u u u v u vu v u v u u vνννν++''===--- A 处的观察者听到的拍频为212RR S S S u v vu v u vνννννν+''∆=-=-=-- 所以波源的频率为3400.24339820.4S u v Hz Hz v νν--=∆=⨯= 15-18 解:平面电磁波波动方程的标准形式为222221y y E E x u t ∂∂=∂∂, 222221z zH H x u t ∂∂=∂∂ 与平面电磁波的标准方程相比较,可知波速为82.0010/u m s ==⨯ 所以介质的折射率为1.50cn u== 15-19 解:由电磁波的性质可得00E H =而 000B H μ=, 真空中的光速c =所以0E B c==从而可得 0008703000.8/0.8/310410B E H A m A m c μμπ-====⨯⨯⨯ 磁场强度沿y 轴正方向,且磁场强度和电场强度同相位,所以0.8cos(2)3y H vt ππ=+[SI ]第十六章 几何光学一、选择题 16-1 A 16-2 B 16-3 B 16-4 C 二、填空题16-5 6.0S cm '=,12V = 16-6 80f cm '=16-7 34s cm '=-,2V =- 16-8 左,2R 三、计算题16-9 解:设空气的折射率为n ,玻璃的折射率为n ',则 1n =, 1.5n '= 因为 2r = 所以物方焦距4nrf cm n n=='- 像方焦距6n rf cm n n ''=='- 又因为 1f fs s'+='而 8s cm = 所以 12s cm '=(实像)1ns y V y n s''==-=-' 其中 0.1y cm = 所以 0.1y Vy cm '==-16-10 分析:将球面反射看作n n '=-时球面折射的特例,可由折射球面的成像规律求解。
第二十一章 一元二次方程
【教学说明】以上两例均应先让学生自主完成,最后共同评析,达到深化理解本节知识的目的.教学时,可选派学生代表上黑板完成对于学生的解法只要合理就应给予肯定,若有更简捷解法时再予以说明.
观察表格中的结果,你有什么发现?
BC=xm,则AB的长为35
2
x
-
m,若设
再利用题设中的等量关系,可求出(1)的解;在(意味着BC边长应小于或等于18m,从而对(
4.某种服装进价每件60元,据市场调查,
每月可卖出400件,若销售价每涨价1元,就要少卖出
开始,
通过这节课的学习,谈谈你对列一元二次方程解决实际问题的【教学说明】让学生回顾整理本节知识,反思学习过程的体会,
二、自主探学、尝试解决
1.一元二次方程的一般形式为ax2+bx+c=0(a,b,c为常数,且a≠0),这里二次项系数a≠0是必要条件,而这一点往往在解题过程中易忽视,而致结论出错思考若关于x的一元二次方程(m-1)x2+5x+m2-3m+2=0有一根为0,则常数m的值为.(参考答案:m=2)
2.一元二次方程的解法有:开平方法、配方法、公式法和因式分解法.对于。
大学物理2-1第八章(气体动理论)知识题目解析
⼤学物理2-1第⼋章(⽓体动理论)知识题⽬解析第 8 章8-1 ⽬前可获得的极限真空为Pa 1033.111-?,,求此真空度下3cm 1体积内有多少个分⼦?(设温度为27℃)[解] 由理想⽓体状态⽅程nkT P =得 kT V NP =,kT PV N =故 323611102133001038110110331?==---...N (个)8-2 使⼀定质量的理想⽓体的状态按V p -图中的曲线沿箭头所⽰的⽅向发⽣变化,图线的BC 段是以横轴和纵轴为渐近线的双曲线。
(1)已知⽓体在状态A 时的温度是K 300=A T ,求⽓体在B 、C 、D 时的温度。
(2)将上述状态变化过程在 T V -图(T 为横轴)中画出来,并标出状态变化的⽅向。
[解] (1)由理想⽓体状态⽅程PV /T =恒量,可得:由A →B 这⼀等压过程中BBA A T V T V =则 6003001020=?=?=A AB B T V V T (K) 因BC 段为等轴双曲线,所以B →C 为等温过程,则==B C T T 600 (K)C →D 为等压过程,则CCD D T V T V =3006004020=?=?=C CD D T V V T (K) (2)0102030408-3 有容积为V 的容器,中间⽤隔板分成体积相等的两部分,两部分分别装有质量为m 的分⼦1N 和2N 个, 它们的⽅均根速率都是0υ,求: (1)两部分的分⼦数密度和压强各是多少?(2)取出隔板平衡后最终的分⼦数密度和压强是多少? [解] (1) 分⼦数密度 VNV N n VN V N n 2222111122==== 由压强公式:231V nm P =,可得两部分⽓体的压强为 VV mN V m n P VV mN V m n P 3231323120220222012011====(2) 取出隔板达到平衡后,⽓体分⼦数密度为 VN N V N n 21+==混合后的⽓体,由于温度和摩尔质量不变,所以⽅均根速率不变,于是压强为:VV m N N V nm P 3)(31202120+==8-4 在容积为33m 105.2-?的容器中,储有15101?个氧分⼦,15104?个氮分⼦,g 103.37-?氢分⼦混合⽓体,试求混合⽓体在K 433时的压强。
大学物理第二十一章资料
对于微观粒子,其波长与粒子的尺度可比拟,粒子 的位置和动量不能同时确定,这就是位置和动量的不确 定关系。
21-2 不确定性关系
22
2018/10/23
1927 年德国物理学家海森伯 (Heisenberg) 指出, 对于微观粒子要同时测出位置和动量,其精度有一定 的限制。若微观粒子坐标的不确定量是 x ,动量的不 确定度是px,则两者的乘积总是大于某一数值: h x p x 海森伯不确定关系 4 2 y p y z pz 2 2 海森伯不确定关系表示微观粒子的位置和动量不能 同时具有确定的值,给出了同时测定一个微观粒子位置 和动量的精度的极限,无论测量仪器精度如何,测量结 果都不可能超过这一极限,因此也称为测不准关系。与
电子晶体衍射 实验示意图
阴极 K发出电子经 U加速后,通过 光阑 B 成一细的平行电子射线,投射 到镍单晶体上,反射后经 D 收集,电 流强度I由G测出。角和U可变, 角 不变时,可得U~I的曲线关系或U不变 时测出 角和I的关系。
21-1 实物粒子的波动性
9
2018/10/23
调节U所得曲线如图,可以看出,只有当电压U为 某些特定值时,电流才有 极大值。 I
h
由此可以得到实物粒子的波长和频率
h h h 1 v2 / c 2 p mv m0 v
与实物粒子的运动相联 系的波称为德布罗意波
m0c 2 E mc2 h h h 1 v2 / c 2
粒子的运动速度并不是 和粒子相联系的德布罗 意波的波速。
6 2018/10/23
x px h
解决代数问题 PPT课件 人教版
探究新知
(4)如何利用已知数量关系列出方程,并解方 程得出结论? 解:设每轮传染中平均一个人传染了 x 个人.
1 + x + x( 1 + x) =121 x1 =__1_0___,x2 =__-_1_2__ (不合题意,舍去). 答:平均一个人传染了 10 个人.
创设情境
列一元二次方程解决实际问题的步骤有哪些? 总结: (1)审:认真审题,分清题意,弄清已知量和未 知量,寻找相等关系; (2)设:就是设未知数,分直接设未知数和间 接设未知数,到底选择何种方式设未知数,要 以有利于列出方程为准则;
创设情境
(3)列:就是根据题目中的已知量和未知量之 间的关系列出方程; (4)解:就是求出所列方程的解; (5)验:就是检验方程的解.首先检验计算是否 正确,然后检验每个解是否符合问题的实际意 义,再正确取舍; (6)答:就是对实际问题进行回答.
•
67、心中有理想 再累也快乐
•
68、发光并非太阳的专利,你也可以发光。
•
69、任何山都可以移动,只要把沙土一卡车一卡车运走即可。
•
70、当你的希望一个个落空,你也要坚定,要沉着!
•
71、生命太过短暂,今天放弃了明天不一定能得到。
•
72、只要路是对的,就不怕路远。
•
73、如果一个人爱你、特别在乎你,有一个表现是他还是有点怕你。
探究新知
(5)如果按照这样的传染速度,三轮传染后 有多少个人患流感?
121+121×10 = 1 331(人) (6)写出表示四轮、五轮传染后的患病人数 的代数式,并猜测n轮传染后的患病人数.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十一章 磁介质
21-1.铝的相对磁导率Al 1.000 023r μ=,铜的相对磁导率Cu =0.999 991 2r μ,试求出它们的磁化率并指出它们各属哪类磁介质.
解 1m r χμ=-
所以 Al 1.00002310.0000230m χ=-=> ,属于顺磁质;
0.999991210.00000880mCu χ=-=-< ,属于抗磁质.
21-2.在均匀密绕的螺绕环导线内通20A 的电流,环上线圈共400匝,环的平均周长是40cm ,利用冲击电流计测得环内磁感应强度是1.0T .求:(1)环内平均磁场强度;(2)磁化强度;(3)磁化率;(4)磁化面电流和相对磁导率.
解 (1)以螺绕环中心为圆心,半径为r ,在螺绕环内作环路L ,由安培环路定理
d 2L H l rH NI π⋅==⎰
可得 2NI H r π=400200.4
⨯=42.010(A m)=⨯ (2) 470 1.0 2.010410
B M H μπ-=-=-⨯⨯57.7610(A m)=⨯ (3)对于非铁磁物质 547.761038.82.010
m M H χ⨯===⨯ (4)因S M j =,所以2S
S I rj π'=50.47.7610=⨯⨯53.110(A)=⨯ 139.8r m μχ=+=
21-3.同轴电缆由两同心长导体组成,内层是半径为1R 的导体圆柱,外层是内外半径分别为2R 和3R 的导体圆筒,如图所示.两导体内电流强度均为I ,电流均匀分布在横截面上,两导体电流方向相反.导体的相对磁导率为1r μ,两导体间充满相对磁导率为2r μ的不导电的均匀磁介质.求磁感应强度在各区域的分布.
解 因为电流对圆柱轴线轴对称,故其磁场分布亦对圆柱轴线轴对称.取轴上O 点为圆心,半径为r 的圆周为环路L ,其绕向与内层电流成右手螺旋关系.由安培环路定理
当1r R <时,221d L r H l I R ππ⋅=⎰,2
21
2Ir H r R π⋅= 21
2Ir H R π=,0101212r r B H Ir R μμμμπ== 当12R r R <<时,d L H l I ⋅=⎰,2H r I π⋅=
2I H r π=,02022r r I B H r
μμμμπ==
当23R r R <<时,2222232d L r R H l I I R R ππππ-⋅=--⎰,22222322r R H r I I R R π-⋅=--. 2232232()2R r I
H r R R π-=-,22
0130122322r r I R r B H r R R μμμμπ-==- 当3r R >时,
d 0L H l
⋅=⎰,0H =,0B =.
21-4.螺绕环中心周长为10cm ,环上均匀密绕的线圈有200匝,线圈中的电流为0.1A .
(1)若环内充满相对磁导率 4 200r μ=的软铁磁介质,求环内的B 和H 之平均值;
(2)问磁介质中由导线中电流产生的0B 和由磁化电流产生的B '各是多少?
解 (1)以螺绕环中心为圆心,半径为r ,在螺绕环内作环路L ,由安培环路定理
d H l
NI ⋅=⎰ ,2rH NI π= 2NI H r π=2000.1200(A m)0.1
⨯== 704104200200r B H μμπ-==⨯⨯⨯ 1.06(T)=
(2) 0d B l N I
μ⋅=⎰ 7004102000.120.1
NI B r μππ-⨯⨯⨯==42.510(T)-=⨯ 40 1.06 2.510 1.06(T)B'B B -=-=-⨯=
(第二十一章题解结束)。