13.2画轴对称图形(第2课时)

合集下载

人教版八年级数学上册:13.2画轴对称图形(第二课时)ppt课件

人教版八年级数学上册:13.2画轴对称图形(第二课时)ppt课件

, 2
(2)△OAB的面积等于

9.如图,△ABC在平面直角坐标系中,其中点A、B、 C的坐标分别为A(-2,1),B(-4,5),C(-5,2).
(1)作△ABC关于直线l:x=-1对称的△A1B1C1,其中, 点A、B、C的对称点分别为点A1、B1、C1;
(2)写△出A1B1C1的坐标.
解:(1)△A1B1C1如下图. (2)A1(0,1),B1(2,5), C1(3,2).
+(b+4) 2=0,那么点M(a,b)关于y轴的
对称点的坐标(-为3,-4)

8.如图,知△OAB关于x轴对称. (1)点A的坐标为(1,-2),那么点B的坐标为(1,2)

假设△OAB关于y轴对称的图形是△O1A1B1,那么
△O1A(01,B10)
(-1,-2)
O1 (-1,2) ,A1
B1
;
【提示】首先由正方形ABCD中,顶点A(1,3)、B(1, 1)、C(3,1),求得点M的坐标为(2,2),然后根据题 意求得第1次、2次、3次变换后的对角线交点M的对应 点的坐标,即可得规律:当n为奇数时, M的坐标为(2-n,-2),当n为偶数时,M的坐标为 (2-n,2).故当n=2019时,M的坐标为 (-2019,-2) .
6.一只电子跳蚤从点A(1,-2)开场,先以x轴为对称轴 跳至点B,紧接着又以y轴为对称轴跳至点C,那么点C 的坐标为(-1,2) .
7.(1)点(-4,b)与点(a-1,-3)关于y轴对称,那么a=5 , b= -3 ;
(2)知点A(a,-3)与B( ,b)关于x轴对称,那么a+b=
;
(3)假设
10.如图,在边长为1个单位长度的小正方形组成的坐标系网格 中,点A、B、C都是格点. (1)画出△ABC关于x轴对称的△A1B1C1; (2)将△A1B1C1向左平移7个单位,得到△A2B2C2,请画出 △A2B2C2; (3)知△ABC的边AC上有一点D(m,n), 求点D在(1)(2)中的两次操作后对应 △A2B2C2的点E坐标.

人教版八年级数学上册13.2画轴对称图形 用坐标表示轴对称(第二课时)教案 (1)

人教版八年级数学上册13.2画轴对称图形 用坐标表示轴对称(第二课时)教案 (1)

§13.2 用坐标表示轴对称(第二课时)教学目标(一)教学知识点1.在平面直角坐标系中,探索关于x轴、y轴对称的点的坐标规律.2.利用关于x轴、y轴对称的点的坐标的规律,能作出关于x轴、y•轴对称的图形.(二)能力训练要求1.在探索关于x轴,y轴对称的点的坐标的规律时,•发展学生数形结合的思维意识. 2.在同一坐标系中,•感受图形上点的坐标的变化与图形的轴对称变换之间的关系.(三)情感与价值观要求在探索规律的过程中,提高学生的求知欲和强烈的好奇心.教学重点1.理解图形上的点的坐标的变化与图形的轴对称变换之间的关系.2.在用坐标表示轴对称时发展形象思维能力和数形结合的意识.教学难点用坐标表示轴对称.教学方法探索发现法.教具准备课件,坐标纸.教学过程Ⅰ.提出问题,创设情境在直角坐标系中根据坐标描出四个点并依次连结如图.A(2,2),B(4,2),•C(4,4),D(2,4).(1)纵坐标不变,横坐标乘以-1,得到相应四个点为A1(-2,2),B1(-4,2),C1(-4,4)•,D1(-2,4).顺次连结所得到的图案和原图案比较,不难发现它们是关于y 轴对称的.(2)横坐标不变,纵坐标乘以-1,得到相应的四个点为A2(2,-2),B2(4,-2),C2(4,-4),D2(2,-4).顺次连结所得到的图案和原图案比较,可得它们是关于x轴对称的.A(2,2)与A1(-2,2)关于y轴对称那么关于y轴对称的点具有什么规律呢?A(2,2)与A2(2,-2)关于x轴对称,那么关于x轴对称的点有何规律呢?这节课我们就来研究关于x轴,y轴对称的每对对称点坐标的规律.Ⅱ.导入新课在如图所示的平面坐标系中,画出下列已知点及其对称点,并把坐标填入表格中.看看每对对称点的坐标有怎样的规律.再和同学讨论一下.已知点A(2,-3),B(-1,2),C(-6,-5),D(12,1),E(4,0).关于x轴的对称点A′(____,____)B′(_____,______)C•′(•_____,•_____)••D′(____,_____)E′(_____,_____).关于y轴的对称点A″(_____,____)B″(_____,______)C″(•_____,•_____)••D″(____,_____)E″(_____,_____).[生]如图,我们先在直角坐标系中描出A(2,-3),B(-1,2),C(-6,-5),D(12,1),E(4,0)点.已知点 A(2,-3)B(-1,2)C(-6,-5)关于x轴的对称点A′(2,3)B′(-1,-2) C′(-6,5)续表已知点D(12,1)E(4,0)关于x轴的对称点D′(12,-1)E′(4,0)[师]观察上表每对对称点坐标之间的关系,你发现什么规律?[生]每对对称点的横坐标相同,纵坐标互为相反数.[师生共析]关于x轴对称的每对对称点的坐标:横坐标相同,纵坐标互为相反数.已知点 A(2,-3)B(-1,2)C(-6,-5)关于y轴对称点A″(-2,-3) B″(1,2)C″(6,-5)已知点D(12,1)E(4,0)关于y轴对称点D″(12,1)E″(-4,0)C/ .[师]观察上表,比较每对关于y轴的对称点的坐标,你能发现什么规律?[生]关于y轴对称的每一对对称点的坐标纵坐标相同,横坐标互为相反数.Ⅲ.随堂练习练习:(教科书P70练习)1.分别写出下列各点关于x轴和y轴对称的点的坐标:(-2,6),(1,-2),(-1,3),(-4,-2),(1,0).2.如图,△ABC关于x轴对称,点A的坐标为(1,-2),标出点B的坐标.Ⅳ.课时小结本节课的主要内容(由学生在教师的引导下共同回忆总结):在直角坐标系中,探索了关于x轴,y轴对称的对称点坐标规律.Ⅴ.课后作业教科书习题71、3题.Ⅵ.活动与探究1.如下图,以树干为对称轴,画出树的另一半.。

人教版八年级数学 13.2画轴对称图(学习、上课课件)

人教版八年级数学  13.2画轴对称图(学习、上课课件)
作特殊点到对称轴 的垂线段并延长一 倍就得到对称点
感悟新知
解:如图13 . 2-3 所示.
知2-练
感悟新知
2-1.以虚线为对称轴画出下列图形的另一半. 解:如图所示.
知2-练
感悟新知
知2-练
2-2.如图,AB,C ′B ′是两个以直线MN 为对称轴的三角形
的两边,试画出完整的△ ABC 和△A′B′C(′保留作图痕
1-1.△ ABC 经过轴对称变换得到△ A′B′C′,若△ ABC 的周 长为20 cm,AB=5 cm,BC=8 cm,则A′C′的长为( C ) A.5 cm B.8 cm C.7 cm D.20 cm
感悟新知
知识点 2 画轴对称图形
知2-讲
1. 方法:几何图形都可以看作由点组成. 对于某些图形,只 要画出图形中的一些特殊点(如线段端点)的对称点,连接 这些对称点,就可以得到原图形的轴对称图形.
感悟新知
2. 性质
知1-讲
(1)由一个平面图形可以得到与它关于一条直线l 对称的图形,
这个图形与原图形的形状、大小完全相同,即成轴对称
的两个图形全等;
感悟新知
知1-讲
特别解读 1.成轴对称的两个图形中的任何一个可以看
成由另一个图形经过轴对称变换后得到; 一个轴对称图形也可以看成以它的一部 分为基础,经轴对称变换而成. 2.轴对称变换得到的图形一定全等,但全等 的图形不一定是由轴对称变换得到的.
解题秘方:由轴对称变换的性 质找出所求线段和角与已知线 段和角的关系.
感悟新知
知1-练
解:∵△ ABC 和△ A′B ′C ′关于直线l 成 轴对称,∴△ ABC ≌△ A′B′C′. ∴∠B ′= ∠B=135 °,AC=A ′C ′=3 0 cm, A ′B ′=AB=20 cm.

13.2 第2课时用坐标表示轴对称人教版数学八年级上册同步课堂教案

13.2 第2课时用坐标表示轴对称人教版数学八年级上册同步课堂教案

第十三章轴对称13.2 画轴对称图形第2课时用坐标表示轴对称一、教学目标1.理解在平面直角坐标系中, 已知点关于x轴、y轴对称的点的坐标的变化规律.2.掌握在平面直角坐标系中作出一个图形的轴对称图形的方法.3.能根据坐标系中轴对称点的坐标特点解决简单的问题.二、教学重难点重点:已知点关于x轴、y轴对称的点的坐标的变化规律;在平面直角坐标系中作出一个图形的轴对称图形的方法.难点:根据坐标系中轴对称点的坐标特点解决简单的问题.三、教学过程【新课导入】[复习导入]1.什么是轴对称变换?(由一个平面图形可以得到与它关于一条直线l对称的图形, 这个图形与原图形的大小、形状完全相同.)2.轴对称变换的性质是什么?(①新图形上的每一点都是原图形的某一点关于直线l的对称点;②连接任意一对对应点的线段被对称轴垂直平分.)3.画轴对称图形的步骤?(找:在原图形上找特殊点(如线段端点等);画:画出各个特殊点关于对称轴的对称点;连:依次连接各对称点.)4.如何画点A关于直线l的对称点A′.(作法:(1)过点A作直线l的垂线,垂足为O;(2)在垂线上截取OA′=OA.点A′就是点A关于直线l 的对称点.可简记为:作垂线;取等长)教师带领学生复习旧知,鼓励学生积极的投入到活动中,为本节课做准备.【新知探究】知识点1 关于坐标轴对称的点的坐标规律[引出课题]如图是一幅老北京城的示意图, 其中西直门和东直门是关于中轴线对称的,如果以天安门为原点, 分别以长安街和中轴线为x轴和y轴建立平面直角坐标系, 根据如图所示的东直门的坐标, 你能说出西直门的坐标吗?跟着老师学了今天的内容,你就能解答出来了.[提出问题]问题1 (1)根据“作已知点关于对称轴的对称点”的方法,你能在如图所示的平面直角坐标系中画出点A关于x轴的对称点,并求出它的坐标吗?[课件展示]教师利用多媒体展示如下过程:[提出问题](2)点B和点C关于x轴的对称点呢?[课件展示]教师利用多媒体展示如下过程:[提出问题](3)分别求出点D和点E关于x轴的对称点的坐标, 并把它们的坐标填入表格中.[动手操作]学生在已经画好的坐标系中描出点D和点E,作图,找出这两点关于x轴对称的点,之后举手回答,教师纠正,并将最终答案填到表格中,得到如下表格:[提出问题](4)看看每对对称点的坐标有怎样的规律, 再和同学讨论一下.[小组讨论]学生之间讨论.之后代表回答小组间讨论的结果.教师纠正.最后得到”横坐标相等,纵坐标互为相反数.”[提出问题]问题2 (1)根据“作已知点关于对称轴的对称点”的方法,你能在如图所示的平面直角坐标系中画出点A关于y轴的对称点,并求出它的坐标吗?[课件展示]教师利用多媒体展示如下过程:[提出问题](2)点B和点C关于y轴的对称点呢?[课件展示]教师利用多媒体展示如下过程:[提出问题](3)分别求出点D和点E关于y轴的对称点的坐标, 并把它们的坐标填入表格中.[动手操作]学生在已经画好的坐标系中描出点D和点E,作图,找出这两点关于y轴对称的点,之后举手回答,教师纠正,并将最终答案填到表格中,得到如下表格:[提出问题](4)看看每对对称点的坐标有怎样的规律, 再和同学讨论一下.[小组讨论]学生之间讨论.之后代表回答小组间讨论的结果.教师纠正.最后得到”纵坐标相等,横坐标互为相反数.”[归纳总结]关于坐标轴对称的点的坐标规律1.点(x,y)关于x轴对称的点的坐标是(x,-y).2.点(x,y)关于y轴对称的点的坐标是(-x,y).并强调:简记为“横轴横相同, 纵相反;纵轴纵相同, 横相反”.关于谁对称谁不变[提出问题]现在你能说出西直门的坐标了吗?学生集体回答.(-3.5,4)[课件展示]跟踪训练1.(2021•雅安)在平面直角坐标系中,点A(-3,-1)关于y轴的对称点的坐标是( C )A.(-3,1)B.(3,1)C.(3,-1 )D.(-1,-3)2.(2021•杭州萧山区二模)在平面直角坐标系中,点A(m,2)与点B(3,n)关于x轴对称,则( A )A.m=3,n=﹣2 B.m=﹣3,n=2C.m=3,n=2 D.m=﹣2,n=3知识点2 在坐标系中作已知图形的对称图形[课件展示]教师利用多媒体展示如下例题:例如图,四边形ABCD的四个顶点的坐标分别为A(-5,1), B(-2,1), C(-2,5), D(-5,4), 分别画出与四边形ABCD关于y轴和x轴对称的图形.解:点(x,y)关于y轴对称的点的坐标为(-x,y),因此四边形ABCD的顶点A,B,C,D关于y轴对称的点分别为A′( 5,1 ),B′( 2,1 ),C′( 2,5 ),D′( 5,4 ),依次连接A′B′,B′C′,C′D′,D′A′,就可得到与四边形ABCD关于y轴对称的四边形A′B′C′D ′.四边形ABCD的顶点A,B,C,D关于x轴对称的点分别如下表格:依次连接A′B′,B′C′,C′D′,D′A′,就可得到与四边形ABCD关于x轴对称的四边形A′′B′′C′′D′′.[归纳总结]在直角坐标系中画与已知图形关于某直线成轴对称的图形的方法:计算:求出已知图形中的一些特殊点的对称点的坐标;描点:根据对称点的坐标描点;连接:按原图对应点连接所描各点得到对称图形.并提醒学生:所找的特殊点一定要能确定原图形, 否则画出的图形与原图形不一定成轴对称.[课件展示]跟踪训练已知△ABC的三个顶点的坐标分别为分别为A (-5,-1),B(3,3),C(-2,3) ,作出△ABC关于x轴对称的图形.解:△A′B′C′即为所求.【课堂小结】【课堂训练】1.(2021•成都)在平面直角坐标系xOy中,点M(-4,2)关于x轴对称的点的坐标是( C )A. (-4,2)B. (4,2)C. (-4,-2)D. (4,-2)2.(2021•泸州)在平面直角坐标系中,将点A(-3,-2 )向右平移5个单位长度得到点B ,则点B关于y轴对称点B'的坐标为( C )A.(2,2)B.(-2,2)C.(-2,-2)D.(2,-2)3.已知点P关于x轴对称的点的坐标是(1,-2),则它关于y轴对称的点的坐标是( A )A.(-1,2)B.(-1,-2)C.(-2,1)D.(1,-2)【解析】∵点P关于x轴对称的点的坐标是(1,-2),∴点P的坐标是(1,2).∴点P关于y轴对称的点的坐标是(-1,2).4.( 2021•丽水)四盏灯笼的位置如图所示.已知A,B,C,D的坐标分别是(-1 ,b),(1,b),(2,b),(3.5,b),平移y轴右侧的一盏灯笼,使得y轴两侧的灯笼对称,则平移的方法可以是( C )A.将B向左平移4.5个单位B.将C向左平移4个单位C.将D向左平移5.5个单位D.将C向左平移3.5个单位5.(2021•荆州)若点P(a+1,2-2a)关于x轴的对称点在第四象限,则a的取值范围在数轴上表示为( C )【解析】点P(a+1,2-2a)关于x轴的对称点的坐标为(a+1,2a-2).∵该点在第四象限,∴a+1>0,2a-2<0.解得-1<a<1.故选C.6.平面直角坐标系内的点A(-1,2)与点B(-1,-2)关于 x 轴对称.7.若|a-2|+(b-5)2=0,则点P (a,b)关于y轴对称的点的坐标为___(-2,5)_____.8.平面直角坐标系中,△ABC的三个顶点坐标分别为A(-5,4),B(-3,0),C(-2,2).(1)试在平面直角坐标系中,标出A、B、C三点;(2)若△ABC与△DEF关于y轴对称,画出△DEF,并写出D、E、F的坐标.解:(1)A、B、C三点如图所示.(2)△DEF如图所示,D、E、F的坐标分别为(5,4)、(3,0)、(2,2).9.已知点A(2a-b,5+a),B(2b-1,-a+b).(1)若点A、B关于x轴对称,求点C(a,b)在第几象限;(2)若点A、B关于y轴对称,求(4a+b)2022的值.解:(1)∵点A、B关于x轴对称,∴2a-b=2b-1,5+a-a+b=0,解得a=-8,b=-5.∴点C(-8,-5)在第三象限;(2)∵点A、B关于y轴对称,∴2a-b+2b-1=0,5+a=-a+b,解得a=-1,b=3,∴(4a+b)2022=1.【教学反思】本节课通过学生熟悉、向往的北京城内天安门、长安街、东直门等的方位引入新课,强烈地吸引了学生的注意力,较好地激发学生的学习兴趣.由于学生已经系统学过平面直角坐标系的相关知识,并研究了用坐标表示平移,拥有了一定的在平面直角坐标系中研究图形的能力和方法,加上在本章之前的学习中,学生已经非常熟练地掌握了轴对称图形、图形的轴对称的概念、轴对称的基本性质、线段的垂直平分线的性质等内容,因此,本节课的教学采用教师组织引导,给学生留足空间和时间,以学生自主学习为主,付之以尝试学习、探究学习、合作交流学习,教师进行适当帮助、指导和适时的点拨、点评的教学方式.通过教学,基本达到了教育教学目标,但我觉得自己还存在以下几个不足:1.对于没有举手发言的同学的关注度不够;2.总结变化规律应该让学生尝试进行,而不是教师代劳;3.部分学生对规律的记忆还不是十分清晰,课堂上还是没有强调到位.。

人教版数学八年级上册13.2画轴对称图形(第2课时)教学设计

人教版数学八年级上册13.2画轴对称图形(第2课时)教学设计
4.家长参与作业,有助于激发学生的学习兴趣,培养学生的观察力和实践能力。
希望同学们认真完成作业,通过实践和练习,不断提高自己的几何图形认识和运用能力。
(四)课堂练习,500字
1.教师布置课堂练习题,要求学生在规定时间内完成。
“下面,请同学们完成这几道练习题,巩固所学知识。遇到问题可以互相讨论,也可以请教老师。”
2.学生独立完成练习题,教师巡回辅导,解答学生疑问。
3.教师选取部分学生的练习题进行讲解,分析解题思路和方法。
“这道题目考查了我们对轴对称图形的性质的理解。我们可以通过找到对称轴,然后利用对称性质解决问题。”
“现在,请同学们分成小组,讨论一下轴对称图形的性质以及它们在实际生活中的应用。每个小组派一名代表分享讨论成果。”
2.学生在小组内展开讨论,教师巡回指导,解答学生疑问。
“同学们,你们发现轴对称图形有哪些性质?它们在生活中有哪些应用?”
3.各小组代表分享讨论成果,教师点评并总结。
“很好,各小组都取得了不错的成果。轴对称图形的性质包括:对称轴两侧的图形完全一致,对称轴上的点称为对称点等。它们在生活中的应用非常广泛,如剪纸、建筑、标志等。”
3.教师布置课后作业,提醒学生加强练习。
“课后,请同学们完成这几道练习题,巩固所学知识。下节课我们将进一步探讨轴对称图形的其他性质和应用。”
五、作业布置
为了巩固本节课所学的轴对称图形知识,培养学生的动手操作能力和应用能力,特布置以下作业:
1.完成课本第13.2节课后练习题,包括填空题、选择题和解答题,要求学生在规定时间内独立完成,注意解题过程的规范性和逻辑性。
人教版数学八年级上册13.2画轴对称图形(第2课时)教学设计
一、教学目标
(一)知识与技能

广东学导练八年级数学上册第十三章13.2画轴对称图形(第2课时)课件(新版)新人教版

广东学导练八年级数学上册第十三章13.2画轴对称图形(第2课时)课件(新版)新人教版
A.(3,1) B.(-3,-1) C.(1,-3) D.(3,-1)
解析 根据关于y轴对称的点的横坐标互为相反数,纵 坐标相等,可得答案.由点A坐标,得C(-3,1),由翻折, 得C′与C关于y轴对称,C′(3,1).
答案 A
举一反三
1. 如图13-2-11,在平面直角坐标系中,△ABC与 △DEF关于直线m=1对称,点M,N分别是这两个三角形中的 对应点,如果点M的横坐标是a,那么点N的横坐标是( D )
A. (2,9)
B. (5,3)
C. (1,2)
D. (-9,-4)
3. 如果A(1-a,b+1)关于y轴的对称点在第三象限,
那么点B(1-a,在( D )
A. 第一象限
B. 第二象限
C. 第三象限
D. 第四象限
4. 点A(2,-3)关于x轴对称的点的坐标是 (2,3) , 关于y轴对称的点的坐标是 (-2,-3) ,关于原点对称的点的 坐标是 (-2,3) .
第十三章 轴对称
13.2 画轴对称图形(第二课时)
课前预习
1. 若点A(a-2,3)和点B(-1,b+5)关于y轴对称,
则点C(a,b)在( D )
A. 第一象限
B. 第二象限
C. 第三象限
D. 第四象限
2. 线段CD是由线段AB平移得到的,点A(-1,4)的对应
点为C(4,7),则点B(-4,-1)对应点D的坐标为( C )
如答图13-2-6所示.
在平面直角坐标系中,画一个图形关于某一坐标轴 的对称图形,只要分别描出这个图形关于这个坐标轴对 称的点,再连接这些对应点,就可以得到原图形关于这 个坐标轴对称的图形.
例题精讲
【例2】如图13-2-13在平面直角坐标系中,△ABC各顶点的 坐标分别为:A(4,0),B(-1,4),C(-3,1).

3.2画轴对称图形第2课时用坐标表示轴对称课件(新人教版)_1

3.2画轴对称图形第2课时用坐标表示轴对称课件(新人教版)_1

C(-2,5),D(-5,4),分别画出与四边形ABCD关于y轴和x轴对称的图形.
Cy
C′
D
D′
A
B
B′
A′
A′
B′ O
x
D′ C′
知识要点 在坐标系中作已知图形的对称图形 对于这类问题,只要先求出已知图形中的一些特殊点(如多边形的顶点)的对称点 的坐标,描出并连接这些点,就可以得到这个图形的轴对称图形.
第十三章 轴对称 13.2 画轴对称图形 第2课时 用坐标表示轴对称
学习目标
1.探究在平面直角坐标系中关于x轴和y轴对称点的坐标特点.(重点) 2.能在平面直角坐标系中画出一些简单的关于x轴和y轴的对称图形.( 重点) 3.能根据坐标系中轴对称点的坐标特点解决简单的问题.(难点)
导入新课
问题引入
y
A (2,3)
你能说出点A与点 A'坐标的关系吗?
O
x
A′(2,-3)
做一做:在平面直角坐标系中画出下列各点关于x轴的对称点.
y
(x , y)
关于 x 轴对称
B(-4,2)
O
C '(3,4)
x
( x , -y)
B '(-4,-2)
C (3,-4)
知识归纳
关于x轴对称的点的坐标的特点是:
横坐标相等,纵坐标互为相反数.
(一找二描三连)
讲授新课
一 用坐标表示轴对称
互动探究
问题1:已知点A和一条直线MN,你能画出这个点关于已知直
线的对称点吗?
(1)过点A作AO⊥MN,
M
垂足为点O,
(2)延长AO至A′,使
A
OA′=AO.
O

画轴对称图形(八上人教版)教案

画轴对称图形(八上人教版)教案

13.2 画轴对称图形教案第二课时教学目标:1.理解在直角坐标系中,已知点A(a,b)关于x轴y轴对称的点的坐标变化规律。

2.掌握在直角坐标系中做一个图形的轴对称图形的方法。

3.培养学生用数学解决生活中的问题,继续培养学生的审美观,激励学生学好数学。

教学重点:直角坐标系中关于x轴y轴对称点的坐标变化规律及其应用。

教学难点:平面直角坐标系中关于直线x=m或关于直线y=n对称的点的坐标变化规律。

探究:已知点A(5,4)请在直角坐标系中分别找到点A关于x轴和y 轴的对称点,并且写出点A关于x轴和y轴的对称点的坐标。

小结:关于坐标轴对称的点的坐标变化规律是:点A(x,y)关于x轴对称的点的坐标为A(x,-y)点A(x,y)关于y轴对称的点的坐标为A(-x,y)简单的记为:关于哪条轴对称,那个坐标的值就不变,而另一个坐标值则互为相反数。

练习1:(1)分别写出A(3,7),B(-2,6),C(-4,-5),D(1,-9) 关于x轴对称的点的坐标A1,B1, C1, D1.关于y轴对称的点的坐标A2,B2,C2, D2. 解:关于x轴对称的点的坐标分别为:A1(3,-7),B1(-2,-6),C1(-4,5), D1(1,9).关于y轴对称的点的坐标分别为:A2(-3, 7),B2(2,6),C2(4,-5), D2(-1,-9) . (2)a.已知点A关于x轴对称的点的坐标A1(-5,6),则点A的坐标是什么?b.已知点B关于y轴对称的点的坐标B1(-2,-3),则点B的坐标是什么?解:(2)a.点A关于X轴对称的点的坐标A1(-5,6),则点A的坐标是:(-5,-6)。

b.已知点B关于y轴对称的点的坐标B1(-2,-3),则点B的坐标是:(2,-3)。

(3)若点A(2m+n,-3)与A1(5,-2n-1)关于y轴对称,试求出m,n的值。

解:(3)∵点A(2m+n,-3)与A1(5,-2n-1)关称于y轴对称∴2m+n = -5-2n-1 = -3∴m = -3n = 1答:m,n的值各为-3,1.(或m = -3,n = 1)练习2:如图(略),已知 ABC中,A(-2,4),B(-4,-2),C(0,2),分别求出点A,B,C关于x轴,y轴对称的点的坐标。

13.2 画轴对称图形第2课时

13.2 画轴对称图形第2课时

B
1
D
1
O B′
D′ A
E x E′
探究并归纳已知点关于坐标轴对称的点 的坐标变化规律
在平面直角坐标系中,画出下列已知点及其关于 y 轴对称的点,把它们的坐标填入表格中.
探究并归纳已知点关于坐标轴对称的点 的坐标变化规律
y B B〞 1 D〞 D E〞 O 1 C A〞 A
E
x
C〞
探究并归纳已知点关于坐标轴对称的点 的坐标变化规律
探究并归纳已知点关于坐标轴对称的点 的坐标变化规律
如图,如果以天安门为原点,分别以长安街和中 轴线为x轴和y 轴建立平面直角坐标系,对应于东直门 的坐标,你能找到西直门 的位置,说出西直门的坐 标吗?
探究并归纳已知点关于坐标轴对称的点 的坐标变化规律
对于平面直角坐标系中任意一点,你能找出其关于 x 轴或y 轴对称的点的坐标吗?它们之间有什么规律?
解:关于x 轴对称的点的坐标:(-2, -6), (1,2),(-1, -3),(-4,2),(1,0) . 关于y 轴对称的点的坐标:(2,6), (-1,-2),(1,3),(4,-2),(-1,0) .
课堂练习
练习2 若点P(2a+b,-3a)与点P′(8,b+2) 2 ,b= 4 ;若关于y 轴对 关于x 轴对称,则a = -20 6 ,b=______. 称,则a =
探究并归纳已知点关于坐标轴对称的点 的坐标变化规律
在平面直角坐标系中,画出下列已知点及其关 于x 轴对称的点,把它们的坐标填入表格中.
探究并归纳已知点关于坐标轴对称的点 的坐标变化规律
y
C′ A′
B
1
D
1
O B′ C
D′ A

八年级数学上册13.2画轴对称图形第2课时用坐标表示轴对称说课稿(新版)新人教版

八年级数学上册13.2画轴对称图形第2课时用坐标表示轴对称说课稿(新版)新人教版

八年级数学上册 13.2 画轴对称图形第2课时用坐标表示轴对称说课稿(新版)新人教版一. 教材分析八年级数学上册13.2节“画轴对称图形”是新人教版数学课程的一部分,主要内容是让学生理解并掌握用坐标表示轴对称图形的方法。

这一节内容是在学生已经掌握了轴对称图形的概念和性质的基础上进行教学的,旨在培养学生的空间想象能力和坐标表示能力。

教材中通过丰富的例题和练习题,引导学生运用坐标方法,找出对称轴,并确定对称图形在坐标系中的位置。

通过这一节的学习,学生能够进一步理解坐标与图形之间的关系,提高解决问题的能力。

二. 学情分析八年级的学生已经具备了一定的数学基础,对轴对称图形的概念和性质有了初步的了解。

但是,对于如何用坐标表示轴对称图形,可能还存在一定的困难。

因此,在教学过程中,需要引导学生通过实际操作,理解并掌握坐标表示轴对称图形的方法。

三. 说教学目标1.知识与技能目标:让学生掌握用坐标表示轴对称图形的方法,能找出对称轴,并确定对称图形在坐标系中的位置。

2.过程与方法目标:通过实际操作,培养学生的空间想象能力和坐标表示能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识。

四. 说教学重难点1.教学重点:用坐标表示轴对称图形的方法。

2.教学难点:如何找出对称轴,并确定对称图形在坐标系中的位置。

五. 说教学方法与手段1.教学方法:采用问题驱动法,引导学生通过实际操作,理解并掌握坐标表示轴对称图形的方法。

2.教学手段:利用多媒体课件,展示轴对称图形的对称性质,引导学生进行实际操作。

六. 说教学过程1.导入:通过展示一些生活中的轴对称图形,引导学生回顾轴对称图形的概念和性质。

2.新课导入:介绍用坐标表示轴对称图形的方法,引导学生理解坐标与图形之间的关系。

3.实例讲解:通过具体的例题,引导学生找出对称轴,并确定对称图形在坐标系中的位置。

4.学生练习:让学生自主完成教材中的练习题,巩固所学知识。

画轴对称图形(第二课时)

画轴对称图形(第二课时)

轴对称图形具有旋转对称性,即绕对 称轴旋转180度后仍与原图形重合。
探索轴对称图形的特殊性质
轴对称图形具有唯一性,即每个 轴对称图形都只有一个对称轴。
轴对称图形具有稳定性,即轴对 称结构在力学、工程学等领域具
有较好的稳定性。
轴对称图形在几何学中具有广泛 的应用,如建筑设计、图案设计
等。
轴对称图形在几何学中的重要性
引入生活中的轴对称图形实例
总结词:直观感受
详细描述:展示生活中的轴对称图形实例,如建筑物、自然界中的对称现象等,让学生直观感受轴对称的美感,激发学习兴 趣。
02
探索轴对称图形的性质
轴对称图形的基本性质
轴对称图形是关于一条直线对称的图 形,即图形关于直线折叠后两部分完 全重合。
轴对称图形具有平移不变性,即沿对 称轴平移任意距离后仍与原图形重合。
05
总结与反思
总结本课时的学习内容
掌握了轴对称图形的 定义和性质。
理解了轴对称图形在 几何学中的重要性和 应用。
学习了如何识别和绘 制轴对称图形。
分析学习过程中的不足与问题
在识别复杂图形时,容易忽略图形的对称性质。 对于非规则的轴对称图形,绘制时存在困难。
对于轴对称图形的性质和应用,理解不够深入。
画出对称点的连线
使用直线或曲线将对称点 连接起来,形成图形的边 缘或轮廓。这些连线应与 对称轴平行或垂直。
调整对称点的分布
根据设计需求,可以适当 调整对称点的分布,以获 得所需的图形形状和比例。
连接对称点
连接相邻的对称点
按照图形的形状和设计意图,使用直线或曲线将相邻的对称点连 接起来。这些连线应保持平行或垂直于对称轴。
制定下一步的学习计划

用坐标表示轴对称ppt课件

用坐标表示轴对称ppt课件
SHUXU
八年级数学上(RJ)
第十三章轴对称
13.2画轴对称图形
第2课时用坐标表示轴对称
学习目标
1. 探究在平面直角坐标系中关于X轴和y轴对称点的坐 标特点.(重点) 2. 能在平面直角坐标系中画出一些简单的关于x轴和y 轴的对称图形.(重点) 3. 能根据坐标系中轴对称点的坐标特点解决简单的问 题.(难点)
问题2:如图,在平面直角坐标系中你能画出点A关 于X轴的对称点吗?
做一做:在平面直角坐标系中画出下列各点关于尤轴的对 称 点.
3”)
关于
■X
轴 对称
B(•4, 0

0
R ' (-4
X
■4
c (3, )
知识归纳
关于工轴对称的点的坐标的特点是: 横坐标相等,纵坐标互为相反数.
(简称:横轴横相等) 练一练: 1 .点P(-5, 6)与点Q关于技由对称,则点Q的坐标为
若点尸与点P'关于话由对称,贝蚌 2 • b= 4
若点P与点P关于y轴对称,则。=6 , b= -20
6. 若0-2|+(加5)2=0,则点P(Q,。)关于工轴对称 的
点的坐标为(2,-5).
7.已知△ ABC的三个顶点的坐标分别为A(・3, 5),B(・4, 1), C(-l, 3),作出△ABC关于y轴对称的图形.
wn F姓门
—-CS.
I_____—
沸授新课
Eg用坐标表示轴对称
问题1:已知点A和一条直线MN,你能画出这
个点关于已知直线的对称点吗?
(1) 过点A作A0丄MN, 吊 垂足为点0,
(2) 延长A0至A\ [---------------------
使 0A,=A0.

13.2 第2课时 用坐标表示轴对称

13.2 第2课时 用坐标表示轴对称

8.(4分)已知正方形ABCD在坐标轴上的位置如图所示, 的坐标为 (-2,-2) ,D点的坐标为 (-2,2)
是正方形的两条对称轴,若A(2,2),则B点的坐标为 (2

9.(6分)如图所示,在直角坐标系xOy中,A(-1,5) C(-4,3). (1)在图中作出△ABC关于y轴的对称图形△A′B′C′; (2)写出点C关于y轴的对称点C′的坐标. (1)略 (2)(4,3)
B2(6,0),C2(1,0)
14.(10分)(1)分别作出△ABC关于直线MN对称的图形 直线PQ对称的图形;
(2)若网格中每个小正方形的边长为1,求△ABC的面积
(1)略 (2)10
16 . (12 分 ) 在平面直角坐标系中 , 已知点 A(2 , 2) , B
1).
(1)画出△ABC关于y轴的轴对称图形△A′B′C′,则点C
12.已知点A(2x-4,6)关于y轴对称的点在第二象限, A.x>2 B.x<2 C.x>0 D.x<0
二、填空题(每小题5分,共10分)
13 . 如图所示 , 在直角坐标系内 , 线段 AB 垂直于 y 轴
AB=2,如果将线段AB沿y轴翻折,点A落在点C处,那 是 -2 .
14.点P(1,2)关于直线y=1对称的点的坐标是 (1,0 关于直线x=2对称的点的坐标是 (3,2) .
三、解答题(共35分)
15 . (10 分 ) 如图 , 已知△ ABC 的三个顶点坐标分别为
B(-6,0),C(-1,0).
(1) 在 图 中 分 别 作 出 △ ABC 关 于 x , y 轴 的 对 称 图 形
△A2B2C2;
(2)直接写出这两个三角形各顶点的坐标.
(1) 作图略

人教版初中数学13.2 画轴对称图形(第2课时) 课件

人教版初中数学13.2 画轴对称图形(第2课时) 课件

对称点的坐标为( C )
A.(1,2) B.(2,2)
1 2
C.(3,2) D.(4,2)
-1
1
课堂检测
13.2 画轴对称图形/
5.已知点P(2a+b,–3a)与点P′(8,b+2).
若点P与点P′关于x轴对称,则a=___2__, b=____4___.
若点P与点P′关于y轴对称,则a=___6__ ,b=___–_2_0__.
6.若|a–2|+(b–5)2=0,则点P (a,b)关于x轴对称的点的坐标 为__(_2_,–_5_)__.
课堂检测
13.2 画轴对称图形/
能力提升题
1. 已知△ABC的三个顶点的坐标分别为A(–3,5),B(– 4,1),
C(–1,3),作出△ABC关于y轴对称的图形. y
A
5
A′
解:点A(–3,5),B(–4,1),C(–1,3)关于y轴的
点A、B的坐标分别是(–1,–1)、(–3,–1),把正方形
ABCD经过连续7次这样的变换得到正方形A′B′C′D′,求B的对
应点B′的坐标.
课堂检测
13.2 画轴对称图形/
解:∵正方形ABCD,点A、B的坐标分别是(–1,–1)、(–3,–1), ∴根据题意,得第1次变换后的点B的对应点的坐标为(–3+2,1),即(–1,1), 第2次变换后的点B的对应点的坐标为(–1+2,–1),即(1,–1), 第3次变换后的点B的对应点的坐标为(1+2,1),即(3,1), 第n次变换后的点B的对应点的为:当n为奇数时为(2n–3,1),当n为偶数时为 (2n–3,–1), ∴把正方形ABCD经过连续7次这样的变换得到正方形A′B′C′D′,则点B的对应 点B′的坐标是(11,1).

八年级数学上册 13.2 画轴对称图形 第2课时 用坐标表示轴对称教学设计 (新版)新人教版

八年级数学上册 13.2 画轴对称图形 第2课时 用坐标表示轴对称教学设计 (新版)新人教版

八年级数学上册13.2 画轴对称图形第2课时用坐标表示轴对称教学设计(新版)新人教版一. 教材分析《八年级数学上册》第13.2节“画轴对称图形”,主要让学生理解轴对称图形的概念,学会用坐标表示轴对称图形。

这部分内容是学生在学习了平面直角坐标系、图形的性质等知识的基础上进行学习的,对学生掌握图形的变换、坐标与图形的关系等知识有着重要的意义。

二. 学情分析八年级的学生已经掌握了平面直角坐标系的知识,对图形的性质也有了一定的了解,具备了一定的逻辑思维能力和空间想象能力。

但是,对于轴对称图形的概念,以及如何用坐标表示轴对称图形,可能还比较陌生,需要通过实例和练习来理解和掌握。

三. 教学目标1.让学生理解轴对称图形的概念,掌握轴对称图形的性质。

2.学会用坐标表示轴对称图形,理解坐标与轴对称图形的关系。

3.培养学生的逻辑思维能力和空间想象能力,提高学生解决实际问题的能力。

四. 教学重难点1.轴对称图形的概念及其性质。

2.如何用坐标表示轴对称图形,以及坐标与轴对称图形的关系。

五. 教学方法采用讲解法、演示法、练习法、讨论法等教学方法,通过实例和练习,让学生理解和掌握轴对称图形的概念和性质,学会用坐标表示轴对称图形。

六. 教学准备1.准备相关的教学PPT和教学素材。

2.准备黑板和粉笔,用于板书和演示。

3.准备练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)通过一个实例,如翻转一张纸片,让学生观察和思考,引出轴对称图形的概念。

2.呈现(10分钟)讲解轴对称图形的性质,如对称轴、对称点等,并用PPT展示相关的图片和例子。

3.操练(10分钟)让学生通过PPT上的练习题,用坐标表示轴对称图形,巩固所学知识。

4.巩固(10分钟)让学生在纸上画出一些轴对称图形,并标出对称轴和对称点,加深对知识的理解。

5.拓展(10分钟)让学生思考和讨论,如何判断一个图形是否是轴对称图形,以及如何用坐标表示。

6.小结(5分钟)总结本节课所学的内容,强调轴对称图形的性质和坐标表示方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解:关于x 轴对称的点的坐标:(-2, -6), (1,2),(-1, -3),(-4,2),(1,0) . 关于y 轴对称的点的坐标:(2,6), (-1,-2),(1,3),(4,-2),(-1,0) .
课堂练习 练习2: 1、点P(-5, 6)与点Q关于y轴对称,则点Q的坐标 为__________. (5,6) 2、点M(a, -5)与点N(-2, b)关于y轴对称,则 a=_____, b =_____. 2 -5 3、已知点P(2a+b,-3a)与点P’(8,b+2).若点p与 2 b=_______. 4 点p’关于x轴对称,则a=_____ 6 -20 若点p与点p’关于y轴对称,则a=_____b=_______.
运用变化规律作图
解:点(x,y)关于y 轴对称的点的坐标为 (-x,y),因此四边形 y C′ C ABCD 的顶点A,B,C, D′ D D 关于y 轴对称的点分别 为: 1 A B B′ A′x A′( 5 , 1 ), O 1 B′( 2 , 1 ), C′( 2 , 5 ), D′( 5 , 4 ),
观察关于y 轴对称的每对对称点的坐标有怎样的变 化规律? y
关于y 轴对称的每 对对称点的横坐标互为 相反数,纵坐标相等. C
B B〞 1 D E〞 D〞 O 1
A〞 A
E
x
C〞
探究已知点关于坐标轴对称的点的坐标规律
归纳:在平面直角坐标系中,关于x轴对 称的点横坐标相等,纵坐标互为相反数.关于y 轴对称的点横坐标互为相反数,纵坐标相等.
课堂练习
练习3 以正方形ABCD 的中心为原点建立平面直 角坐标系.点A 的坐标为(1,1)、写出点B,C,D 的坐标. y D
O C B A ( 1, 1ຫໍສະໝຸດ )x运用变化规律作图
例 如图,四边形ABCD 的四个顶点的坐标分别为 A(-5,1),B(-2,1), y C C(-2,5),D(-5,4), D 分别画出与四边形ABCD 关 于y 轴对称的图形. 1 A B x O 1
点(x,y)关于x 轴对称的点的坐标 x ,____ -y ); 为(___ 点(x,y)关于y 轴对称的点的坐标 为(___ - x ,____ y ).
课堂练习
练习1:分别写出下列各点关于x 轴和y 轴 对称的点的坐标: (-2,6),(1,-2),(-1,3), (-4,-2),(1,0) .
归纳画一个图形关于x 轴或y 轴对称的图形的方法 和步骤. 先求出已知图形中一些特殊点(多边形的顶点)的 对称点的坐标,描出并连接这些点,就可以得到这个图 形的轴对称图形. 步骤简述为: (1)求特殊点的坐标;(2)描点;(3)连线.
拓展:如图,分别作出点P,M,N关于直线x=1
的对称点, 你能发现它们坐标之间分别有什 么关系吗? x=1 5
运用变化规律作图
解:依次连接 A′B′ , B′C′, C′D′ , D′A′, 就可得到与四边形ABCD y C′ C 关于y轴对称的四边形 D′ D A′B′C′D′ .
A B
1
O
1
B′ A′x
运用变化规律作图
请在图上画出四边形ABCD 关于x 轴对称的图形.
D
C y
A
B
1
O
1
x
运用变化规律作图
13.2 画轴对称图形 (第2课时)
探究已知点关于坐标轴对称的点的坐标规律
如图,如果以天安门为原点,分别以长安街和中 轴线为x轴和y 轴建立平面直角坐标系,对应于东直门 的坐标,你能找到西直门 的位置,说出西直门的坐 标吗?
探究已知点关于坐标轴对称的点的坐标规律
对于平面直角坐标系中任意一点, 你能找出其关于x 轴或y 轴对称的点的 坐标吗?它们之间有什么规律?
探究已知点关于坐标轴对称的点的坐标规律
在平面直角坐标系中,画出下列已知点及其关 于x 轴对称的点,把它们的坐标填入表格中.
探究已知点关于坐标轴对称的点的坐标规律
y
C′
B
1
A′ D D′ A
1
O B′ C
E x E′
探究已知点关于坐标轴对称的点的坐标规律
观察下图中关于x 轴对称的每对对称点的坐标有怎 样的变化规律? y C′ 关于x 轴对称的每对对 称点的横坐标相等,纵坐标 互为相反数. C
B
1
A′ D D′ A
1
O B′
E x E′
探究已知点关于坐标轴对称的点的坐标规律
在平面直角坐标系中,画出下列已知点及其关于 y 轴对称的点,把它们的坐标填入表格中.
探究已知点关于坐标轴对称的点的坐标规律
y B B〞 1 D D 〞 E〞 O 1 C A〞 A
E
x
C〞
探究已知点关于坐标轴对称的点的坐标规律
P(-2,3)
M(-1,1) -4 -3 -2 -1
· 2 ·1
3 0 -1 -2 -3 -4 1
4
M’(3,1) 2 3
· ·
4
P’(4,3)
5 N’(5,-2)
N(-3,-2)
·
·
相关文档
最新文档