初二数学因式分解精选100题

合集下载

初二数学因式分解100题

初二数学因式分解100题

提升课堂托辅中心初二数学因式分解精选100题2013年1月25日一、选择题1.下列各式中从左到右的变形,是因式分解的是( )A (a +3)(a -3)=a 2-9B x 2+x -5=(x -2)(x +3)+1C a 2b +ab 2=ab (a +b ) (D)x 2+1=x (x +x1) 2.下列各式的因式分解中正确的是( )A -a 2+ab -ac = -a (a +b -c )B 9xyz -6x 2y 2=3xyz (3-2xy )C 3a 2x -6bx +3x =3x (a 2-2b ) D21xy 2+21x 2y =21xy (x +y ) 3.把多项式m 2(a -2)+m (2-a )分解因式等于( )(A)(a -2)(m 2+m ) (B)(a -2)(m 2-m ) (C)m (a -2)(m -1) (D)m (a -2)(m+1) 4.下列多项式能分解因式的是( )(A)x 2-y (B)x 2+1 (C)x 2+y +y 2 (D)x 2-4x +45.下列多项式中,不能用完全平方公式分解因式的是( )(A)412m m ++ (B)222y xy x -+- (C)224914b ab a ++- (D)13292+-n n 6.多项式4x 2+1加上一个单项式后,使它能成为一个整式的完全平方,则加上的单项式不可以是( )(A)4x (B)-4x (C)4x 4 (D)-4x 4 7.下列分解因式错误的是( )(A)15a 2+5a =5a (3a +1) (B)-x 2-y 2= -(x 2-y 2)= -(x +y )(x -y )(C)k (x +y )+x +y =(k +1)(x+y ) (D)a 3-2a 2+a =a (a -1)2 8.下列多项式中不能用平方差公式分解的是( )(A)-a 2+b 2 (B)-x 2-y 2 (C)49x 2y 2-z 2 (D)16m 4-25n 2p 29.下列多项式:①16x 5-x ;②(x -1)2-4(x -1)+4;③(x +1)4-4x (x +1)+4x 2;④-4x 2-1+4x ,分解因式后,结果含有相同因式的是( )(A)①② (B)②④ (C)③④ (D)②③ 10.两个连续的奇数的平方差总可以被 k 整除,则k 等于( ) (A)4 (B)8 (C)4或-4 (D)8的倍数11下列各式中从左到右的变形属于分解因式的是( )A a(a +b -1)=a 2+ab -aB a 2 –a -2=a(a -1)-2C -4 a 2+9b 2=(-2a +3b)(2a +3b)D . 2x +1=x(2+1/x) 12下列各式分解因是正确的是( )A .x 2y +7xy +y=y(x 2+7x)B . 3 a 2b +3ab +6b=3b(a 2+a +2)C . 6xyz -8xy 2=2xyz(3-4y)D . -4x +2y -6z=2(2x +y -3z) 13下列多项式中,能用提公因式法分解因式的是( )A . x 2-yB . x 2+2xC . x 2+y 2D .x 2-xy +y 2 14 2(a -b)3-(b - a)2分解因式的正确结果是( )A . (a -b)2(2a -2b +1)B . 2(a -b)(a -b -1)C . (b -a)2(2a -2b -1)D . (a -b)2(2a -b -1) 15下列多项式分解因式正确的是( )A . 1+4a -4a 2=(1-2a)2B . 4-4a +a 2=(a -2)2C . 1+4x 2=(1+2x)2D .x 2+xy +y 2=(x +y)2 16 运用公式法计算992,应该是( )A .(100-1)2B .(100+1)(100-1)C .(99+1)(99-1)D . (99+1)217 多项式:①16x 2-8x ;②(x -1)2 -4(x -1)2;③(x +1)4-4(x +1)2+4x 2 ④-4x 2-1+4x 分解因式 结果中含有相同因式的是( )A.①和②B.③和④C.①和④D.②和③18无论x、y取何值,x2+y2-2x+12y+40的值都是()A.正数B.负数C.零D.非负数19下列正确的是()A.x2+y2=(x+y)(x-y) B.x2-y2=(x+y)(x-y)C.-x2+y2=(-x+y)(-x-y) D.-x2-y2=-(x+y)(x-y)二、填空题20.分解因式:m3-4m= .21.已知x+y=6,xy=4,则x2y+xy2的值为.22.将x n-y n分解因式的结果为(x2+y2)(x+y)(x-y),则n的值为.23.若ax2+24x+b=(mx-3)2,则a= ,b= ,m= .24.根据图形面积关系,不连其他线,便可以得到一个分解因式的公式是.25多项式-9x2y+36xy2-3xy提公因式后的另一个因式是___________;26把多项式-x4+16分解因式的结果是_____________;27已知xy=5,a-b=3,a+b=4,则xya2-yxb2的值为_______________;28若x2+2mx+16是完全平方式,则m=______;(第24题图) 29分解因式:-x2+4x-4= ;30 +3mn+9n2=( +3n)2;31若x+y=1则1/2x2+xy+1/2y2= ;三、因式分解32. -24x3-12x2+28x 33. 6(m-n)3-12(n-m)2 34.3(a-b)2+6(b-a)35. 18(a+b)3-12b(b-a)236. (2a+b)(2a-3b)-3a(2a+b) 37.(x2+6x)2-(2x-4)238. 9(m+n)2-(m-n)239. (2x+3y)2-1 40. 9(a-b)2-16(a+b)2 41. (x+y)2-16(x-y)2 42. -16x4+81y4 43.3ax2-3ay244.2x3-8x 45. 7x2-63 46. (a2+b2)2-4a2b247. (m +n)2-6(m +n)+9 48. (3)(a -b)2-2(a -b)+1; 49. 4xy 2-4x 2y -y 350. -x 2-4y 2+4xy 51. 25)(10)(2++++y x y x ; 52. 4224817216b b a a +-;53. (a 2+4)2-16a 2 54. -4x 3+16x 2-26x 56. 21a 2(x -2a )2-41a (2a -x )357. 56x 3yz+14x 2y 2z -21xy 2z 2 58. mn(m -n)-m(n -m) 59. -41(2a -b )2+4(a -21b )260. 4xy –(x 2-4y 2) 61. -3ma 3+6ma 2-12ma 62. a 2(x -y )+b 2(y -x )63. 23)(10)(5x y y x -+- 64. 32)(12)(18b a b a b --- 65. –2x 2n -4x n66. )(6)(4)(2a x c x a b a x a ---+- 67. 4416n m - 68.22)(16)(9n m n m --+;69. 21ax 2y 2+2axy +2a 70. (x 2-6x )2+18(x 2-6x )+81 71. 24)4)(3)(2)(1(-++++x x x x72.9x 2-y 2-4y -4 73.22414y xy x +-- 74.811824+-x x75. 2ax a b ax bx bx -++--2 76.1235-+-x x x 77. )()()(23m n n m n m +--+78. 3)2(2)2(222-+-+a a a a 79. 2222224)(b a b a c ---四.特殊的因式分解 80.),(3127123且均为自然数n m b a a nn m n m >--- 81.13112121132-+-+-+++n n n n n n y x y x y x五.用简便方法计算:82. 57.6×1.6+28.8×36.8-14.4×80 83. 13.731175.231178.193117⨯-⨯+⨯84. 39×37-13×34 85)1011)(911()311)(211(2232----六.解答题86若n m y x -=))()((4222y x y x y x +-+,求m ,n 的值87已知,01200520042=+++++x x x x 求2006x 的值88若6,422=+=+y x y x 求xy 的值89已知312=-y x ,2=xy ,求 43342y x y x -的值。

初二数学因式分解精选100题

初二数学因式分解精选100题

提升课堂托辅中心初二数学因式分解精选100题2013年1月25日一、选择题1.下列各式中从左到右的变形,是因式分解的是( )A (a +3)(a -3)=a 2-9B x 2+x -5=(x -2)(x +3)+1C a 2b +ab 2=ab (a +b ) (D)x 2+1=x (x +x1) 2.下列各式的因式分解中正确的是( )A -a 2+ab -ac = -a (a +b -c )B 9xyz -6x 2y 2=3xyz (3-2xy )C 3a 2x -6bx +3x =3x (a 2-2b ) D21xy 2+21x 2y =21xy (x +y ) 3.把多项式m 2(a -2)+m (2-a )分解因式等于( )(A)(a -2)(m 2+m ) (B)(a -2)(m 2-m ) (C)m (a -2)(m -1) (D)m (a -2)(m+1) 4.下列多项式能分解因式的是( )(A)x 2-y (B)x 2+1 (C)x 2+y +y 2 (D)x 2-4x +45.下列多项式中,不能用完全平方公式分解因式的是( )(A)412m m ++ (B)222y xy x -+- (C)224914b ab a ++- (D)13292+-n n 6.多项式4x 2+1加上一个单项式后,使它能成为一个整式的完全平方,则加上的单项式不可以是( )(A)4x (B)-4x (C)4x 4 (D)-4x 4 7.下列分解因式错误的是( )(A)15a 2+5a =5a (3a +1) (B)-x 2-y 2= -(x 2-y 2)= -(x +y )(x -y )(C)k (x +y )+x +y =(k +1)(x+y ) (D)a 3-2a 2+a =a (a -1)2 8.下列多项式中不能用平方差公式分解的是( )(A)-a 2+b 2 (B)-x 2-y 2 (C)49x 2y 2-z 2 (D)16m 4-25n 2p 29.下列多项式:①16x 5-x ;②(x -1)2-4(x -1)+4;③(x +1)4-4x (x +1)+4x 2;④-4x 2-1+4x ,分解因式后,结果含有相同因式的是( )(A)①② (B)②④ (C)③④ (D)②③ 10.两个连续的奇数的平方差总可以被 k 整除,则k 等于( ) (A)4 (B)8 (C)4或-4 (D)8的倍数11下列各式中从左到右的变形属于分解因式的是( )A a(a +b -1)=a 2+ab -aB a 2 –a -2=a(a -1)-2C -4 a 2+9b 2=(-2a +3b)(2a +3b)D . 2x +1=x(2+1/x) 12下列各式分解因是正确的是( )A .x 2y +7xy +y=y(x 2+7x)B . 3 a 2b +3ab +6b=3b(a 2+a +2)C . 6xyz -8xy 2=2xyz(3-4y)D . -4x +2y -6z=2(2x +y -3z) 13下列多项式中,能用提公因式法分解因式的是( )A . x 2-yB . x 2+2xC . x 2+y 2D .x 2-xy +y 2 14 2(a -b)3-(b - a)2分解因式的正确结果是( )A . (a -b)2(2a -2b +1)B . 2(a -b)(a -b -1)C . (b -a)2(2a -2b -1)D . (a -b)2(2a -b -1) 15下列多项式分解因式正确的是( )A . 1+4a -4a 2=(1-2a)2B . 4-4a +a 2=(a -2)2C . 1+4x 2=(1+2x)2D .x 2+xy +y 2=(x +y)2 16 运用公式法计算992,应该是( )A .(100-1)2B .(100+1)(100-1)C .(99+1)(99-1)D . (99+1)217 多项式:①16x 2-8x ;②(x -1)2 -4(x -1)2;③(x +1)4-4(x +1)2+4x 2 ④-4x 2-1+4x 分解因式 结果中含有相同因式的是( )A.①和②B.③和④C.①和④D.②和③18无论x、y取何值,x2+y2-2x+12y+40的值都是()A.正数B.负数C.零D.非负数19下列正确的是()A.x2+y2=(x+y)(x-y) B.x2-y2=(x+y)(x-y)C.-x2+y2=(-x+y)(-x-y) D.-x2-y2=-(x+y)(x-y)二、填空题20.分解因式:m3-4m= .21.已知x+y=6,xy=4,则x2y+xy2的值为.22.将x n-y n分解因式的结果为(x2+y2)(x+y)(x-y),则n的值为.23.若ax2+24x+b=(mx-3)2,则a= ,b= ,m= .24.根据图形面积关系,不连其他线,便可以得到一个分解因式的公式是.25多项式-9x2y+36xy2-3xy提公因式后的另一个因式是___________;26把多项式-x4+16分解因式的结果是_____________;27已知xy=5,a-b=3,a+b=4,则xya2-yxb2的值为_______________;28若x2+2mx+16是完全平方式,则m=______;(第24题图) 29分解因式:-x2+4x-4= ;30 +3mn+9n2=( +3n)2;31若x+y=1则1/2x2+xy+1/2y2= ;三、因式分解32. -24x3-12x2+28x 33. 6(m-n)3-12(n-m)2 34.3(a-b)2+6(b-a)35. 18(a+b)3-12b(b-a)236. (2a+b)(2a-3b)-3a(2a+b) 37.(x2+6x)2-(2x-4)238. 9(m+n)2-(m-n)239. (2x+3y)2-1 40. 9(a-b)2-16(a+b)2 41. (x+y)2-16(x-y)2 42. -16x4+81y4 43.3ax2-3ay244.2x3-8x 45. 7x2-63 46. (a2+b2)2-4a2b247. (m +n)2-6(m +n)+9 48. (3)(a -b)2-2(a -b)+1; 49. 4xy 2-4x 2y -y 350. -x 2-4y 2+4xy 51. 25)(10)(2++++y x y x ; 52. 4224817216b b a a +-;53. (a 2+4)2-16a 2 54. -4x 3+16x 2-26x 56. 21a 2(x -2a )2-41a (2a -x )357. 56x 3yz+14x 2y 2z -21xy 2z 2 58. mn(m -n)-m(n -m) 59. -41(2a -b )2+4(a -21b )260. 4xy –(x 2-4y 2) 61. -3ma 3+6ma 2-12ma 62. a 2(x -y )+b 2(y -x )63. 23)(10)(5x y y x -+- 64. 32)(12)(18b a b a b --- 65. –2x 2n -4x n66. )(6)(4)(2a x c x a b a x a ---+- 67. 4416n m - 68.22)(16)(9n m n m --+;69. 21ax 2y 2+2axy +2a 70. (x 2-6x )2+18(x 2-6x )+81 71. 24)4)(3)(2)(1(-++++x x x x72.9x 2-y 2-4y -4 73.22414y xy x +-- 74.811824+-x x75. 2ax a b ax bx bx -++--2 76.1235-+-x x x 77. )()()(23m n n m n m +--+78. 3)2(2)2(222-+-+a a a a 79. 2222224)(b a b a c ---四.特殊的因式分解 80.),(3127123且均为自然数n m b a a nn m n m >--- 81.13112121132-+-+-+++n n n n n n y x y x y x五.用简便方法计算:82. 57.6×1.6+28.8×36.8-14.4×80 83. 13.731175.231178.193117⨯-⨯+⨯84. 39×37-13×34 85)1011)(911()311)(211(2232----六.解答题86若n m y x -=))()((4222y x y x y x +-+,求m ,n 的值87已知,01200520042=+++++x x x x 求2006x 的值88若6,422=+=+y x y x 求xy 的值89已知312=-y x ,2=xy ,求 43342y x y x -的值。

(完整版)经典因式分解练习题100道

(完整版)经典因式分解练习题100道

1.)3a³b²c-12a²b²c2+9ab²c³2.)16x²-813.)xy+6-2x-3y4.)x²(x-y)+y²(y-x)5.)2x²-(a-2b)x-ab6.)a4-9a²b²7.)x³+3x²-48.)ab(x²-y²)+xy(a²-b²)9.)(x+y)(a-b-c)+(x-y)(b+c-a)10.)a²-a-b²-b11.)(3a-b)²-4(3a-b)(a+3b)+4(a+3b)²12.)(a+3)²-6(a+3)13.)(x+1)²(x+2)-(x+1)(x+2)²14.)16x²-8115.)9x²-30x+2516.)x²-7x-3017.)x(x+2)-x18.)x²-4x-ax+4a19.)25x²-4920.)36x²-60x+2521.)4x²+12x+922.)x²-9x+1823.)2x²-5x-324.)12x²-50x+825.)3x²-6x26.)49x²-2527.)6x²-13x+528.)x²+2-3x29.)12x²-23x-2430.)(x+6)(x-6)-(x-6)31.)3(x+2)(x-5)-(x+2)(x-3)32.)9x²+42x+4933.)x4-2x³-35x34.)3x6-3x²35.)x²-2536.)x²-20x+10037.)x²+4x+338.)4x²-12x+539.)3ax²-6ax40.)(x+2)(x-3)+(x+2)(x+4)41.)2ax²-3x+2ax-342.)9x²-66x+12143.)8-2x²44.)x²-x+1445.)9x²-30x+2546.)-20x²+9x+2047.)12x²-29x+1548.)36x²+39x+949.)21x²-31x-2250.)9x4-35x²-451.)(2x+1)(x+1)+(2x+1)(x-3)52.)2ax²-3x+2ax-353.)x(y+2)-x-y-154.)(x²-3x)+(x-3)²55.)9x²-66x+12156.)8-2x²57.)x4-158.)x²+4x-xy-2y+459.)4x²-12x+560.)21x²-31x-2261.)4x²+4xy+y²-4x-2y-362.)9x5-35x3-4x63.)若(2x)n−81 = (4x2+9)(2x+3)(2x−3),那么n的值是(64.)若9x²−12xy+m是两数和的平方式,那么m的值是(65)把多项式a4− 2a²b²+b4因式分解的结果为()66.)把(a+b)²−4(a²−b²)+4(a−b)²分解因式为()) )1ö67.)æç-÷è2ø2001æ1ö+ç÷è2ø200068)已知x ,y 为任意有理数,记M = x ²+y ²,N = 2xy ,则M 与N的大小关系为()69)对于任何整数m ,多项式( 4m+5)²−9都能()A .被8整除B .被m 整除C .被(m−1)整除D .被(2m −1)整除70.)将−3x ²n −6x n 分解因式,结果是()71.)多项式(x+y−z)(x−y+z)−(y+z−x)(z−x−y)的公因式是()2x 72.)若+2(m -3)x +16是完全平方式,则m 的值等于_____。

初中因式分解经典练习题100道

初中因式分解经典练习题100道

初中因式分解经典练习题100道1.3a³b²c - 12a²b²c² + 9ab²c³可以因式分解为3abc(a - 3b)²。

2.16x² - 81可以因式分解为(4x - 9)(4x + 9)。

3.xy + 6 - 2x - 3y可以重写为xy - 2x - 3y + 6.4.x²(x - y) + y²(y - x)可以重写为x²(x - y) - y²(x - y)。

5.2x² - (a - 2b)x - ab可以重写为2x² - ax + 2bx - ab。

6.a⁴ - 9a²b²可以因式分解为(a² - 3ab)(a² + 3ab)。

7.x³ + 3x² - 4可以重写为x³ - x² + 4x² - 4.8.ab(x² - y²) + xy(a² - b²)可以重写为ab(x + y)(x - y) + xy(a +b)(a - b)。

9.(x + y)(a - b - c) + (x - y)(b + c - a)可以重写为(x + y)(a - b - c) - (y - x)(a - b + c)。

10.a² - a - b² - b可以重写为(a² - a) - (b² + b)。

11.(3a - b)² - 4(3a - b)(a + 3b) + 4(a + 3b)²可以重写为(3a -b)² - 4(3a - b)(a + 3b) + 4(a + 3b)²。

12.(a + 3)² - 6(a + 3)可以重写为(a + 3)² - 6(a + 3)。

初中数学因式分解100题及答案

初中数学因式分解100题及答案

初中数学因式分解100题及答案一、提取公因式(1)(53)(35)(53)(54)-----x y x y(2)(74)(25)(74)(52)----+x y x y(3)(54)(73)(54)(72)a b a b--+--(4)(45)(23)(71)(45)---+-m n n m(5)(25)(41)(25)(92)(25)(63)-++--+--a b a b a b(6)(1)(51)(1)(83)+-++-a b a b(7)(35)(85)(31)(35)-+---a b b a(8)4424322-+283521xy z y z x y z(9)22242x y z x yz x y+-15615(10)(21)(34)(23)(21)--+---m n n m(11)4232+x z x y z126(12)3222-x y x y39(13)343-ab c c2114(14)2333+xyz x y z820(15)(45)(2)(45)(33)a b a b+-+++-(16)(5)(25)(5)(53)(5)(42)--+--+-+m n m n m n (17)(72)(25)(72)(31)--+-+m x m x(18)33231435a c a b c-(19)3423234664xy z x y z x y z --(20)(2)(34)(2)(25)a b a b -----二、公式法(21)224253681x y x -+-(22)2262550x xy y ++(23)2324625x -(24)22729324m n -(25)2281324m n -(26)22364816a b a -+-(27)22900225a b -(28)22289340100a ab b -+(29)2361140900x x -+(30)22495616m n n -+-三、分组分解法(31)45408172mx my nx ny--+(32)455273xy x y --+(33)224835182186a c ab bc ca+-+-(35)60125010+--mn m n(36)12402480----xy x y(37)22++--54224545x y xy yz zx (38)28327080+++mn m n(39)22++++x z xy yz zx635102529 (40)54451815+--mx my nx ny (41)40802856+--ax ay bx by (42)245637--+xy x y(44)351573+--ax ay bx by (45)36541624+--ab a b (46)981981mx my nx ny+--(47)183060100+++ab a b (48)48641216-+-mx my nx ny (49)22-+--a c ab bc ca93326 (50)45253620--+ax ay bx by四、拆添项(51)22-+++936361235x y x y(52)223610489a b a b ---+(53)2299364828x y x y ----(54)2249161127217x y x y --+-(55)229366368x y x y ----(56)4224256936a a b b -+(57)2264254830m n m n-++(58)2281181880m n m n ----(59)22164641255m n m n -+++(60)2249649814432x y x y ----五、十字相乘法(61)22----+a ab b a b5412333018 (62)22+-+--x xy y x y283152815 (63)2++--a ab a b32828749(64)22x xy y x y-+-++327635564412 (65)22--+-+x xy y x y212025352514 (66)222x y z xy yz xz++-+-491512563656 (67)222x y z xy yz xz-+-+-28182031851 (68)222-++--48182030964a b c ab bc ac(69)22691523167x xy y x y +-+-+(70)2227216542321x xy y x y -----(71)22429149171415x xy y x y -++--(72)2229108471614x y z xy yz xz+----(73)22849293535a ab a b ++--(74)22629282315x xy y x y -++--(75)2293299x xy y y --+-(76)222141211165x xy y x y -+-++(77)2254697302224x xy y x y +++--(78)2215241231210a ab b a b --+-+(79)227222242712x xy y x y+-+-(80)2274342512814x xy y x y +-+-+六、双十字相乘法(81)22185914592814x xy y x y +-+--(82)2226341219260x y z xy yz xz-++++(83)2261121483142x xy y x y +-+-+(84)2227216282513x y z xy yz xz++--+(85)22263312342060x y z xy yz xz+++--(86)2146592135x xy x y +--+(87)22499849707024x xy y x y -+-++(88)22151910252110x xy y x y +-+++(89)242723x xy x y ++++(90)2728455x xy x y-+-七、因式定理(91)32672912x x x ---(92)326132015x x x --+(93)32896x x x ++-(94)321529173x x x +++(95)322536x x x +--(96)32384x x x -++(97)3220191312a a a --+(98)32463x x x +--(99)3231024x x x --+(100)32515136x x x +++初中数学因式分解100题答案一、提取公因式(1)(53)(21)x y --+(2)(74)(37)x y --+(3)(54)(145)a b --(4)(45)(54)m n --+(5)(25)(194)a b --(6)(1)(134)a b +-(7)(35)(56)a b -+(8)2222237(453)y z xy z z x -+(9)223(525)x y yz z x y +-(10)(21)(57)m n ---(11)326(2)x z xz y +(12)223(3)x y x -(13)337(32)c ab c -(14)2224(25)xyz x y z +(15)(45)(21)a b +-(16)(5)(116)m n --(17)(72)(54)m x --(18)2237(25)a c ac b -(19)3332(332)xy z z x xz --(20)(2)(1)a b -+二、公式法(21)(259)(259)x y x y ++-+(22)2(25)x y +(23)(1825)(1825)x x +-(24)(2718)(2718)m n m n +-(25)(918)(918)m n m n +-(26)(64)(64)a b a b ++-+(27)(3015)(3015)a b a b +-(28)2(1710)a b -(29)2(1930)x -(30)(74)(74)m n m n +--+三、分组分解法(31)(59)(98)m n x y --(32)(53)(91)x y --(33)(67)(835)a c a b c ---(34)(41)(310)m n --(35)2(65)(51)m n -+(36)4(2)(310)x y -++(37)(625)(9)x y z x y +-+(38)2(25)(78)m n ++(39)(357)(25)x y z x z+++(40)3(3)(65)m n x y-+(41)4(107)(2)a b x y-+(42)(81)(37)x y--(43)2(5)(310)m n+-(44)(5)(73)a b x y-+(45)2(94)(23)a b-+(46)9()(9)m n x y-+(47)2(310)(35)a b++(48)4(4)(34)m n x y+-(49)(3)(9)a c ab c-++(50)(54)(95)a b x y--四、拆添项(51)(365)(367)x y x y++-+(52)(61)(69)a b a b+---(53)(332)(3314)x y x y++--(54)(7417)(741)x y x y+--+ (55)(362)(364)x y x y++--(56)2222(536)(536)a ab b a ab b+---(57)(85)(856)m n m n+-+(58)(98)(910)m n m n++--(59)(425)(4211)m n m n++-+ (60)(782)(7816)x y x y++--五、十字相乘法(61)(563)(26)a b a b+---(62)(453)(75)x y x y++--(63)(47)(87)a b a++-(64)(852)(476)x y x y----(65)(757)(352)x y x y++-+ (66)(752)(736)x y z x y z----(67)(435)(764)x y z x y z+---(68)(665)(834)a b c a b c+---(69)(331)(257)x y x y-+++ (70)(337)(923)x y x y--++ (71)(675)(773)x y x y-+--(72)(52)(924)x y z x y z---+(73)(75)(477)a a b-++ (74)(345)(273)x y x y-+--(75)(33)(323)x y x y+--+ (76)(65)(221)x y x y----(77)(676)(94)x y x y+++-(78)(365)(522)a b a b-+++(79)(863)(94)x y x y++-(80)(77)(762)x y x y++-+六、双十字相乘法(81)(277)(922)x y x y++--(82)(72)(946)x y z x y z-+++ (83)(676)(37)x y x y-+++ (84)(776)(3)x y z x y z-+-+ (85)(732)(96)x y z x y z+-+-(86)(27)(735)x x y-+-(87)(774)(776)x y x y----(88)(352)(525)x y x y++-+ (89)(1)(423)x x y+++(90)(9)(85)x y x-+七、因式定理(91)(3)(21)(34)x x x-++ (92)2(3)(655)x x x-+-(93)2(2)(63)x x x++-(94)(1)(53)(31)x x x+++ (95)2(1)(236)x x x++-(96)2(1)(354)x x x---(97)(1)(43)(54)a a a--+ (98)2(1)(423)x x x++-(99)(3)(4)(2)x x x+--(100)2(2)(553)x x x+++。

因式分解初二练习题和答案

因式分解初二练习题和答案

因式分解初二练习题和答案1. 将下列各式进行因式分解:(1) 3x + 6y解:先提取公因式3,得到 3(x + 2y)。

(2) 4a - 8ab解:先提取公因式4a,得到 4a(1 - 2b)。

(3) xy - x^2解:先提取公因式x,得到 x(y - x)。

(4) 16x^2 - 4xy + 8xy^2解:先提取公因式4,得到 4(4x^2 - xy + 2xy^2)。

2. 分解下列各式:(1) x^2 - 4解:这是一个差的平方,因此可以分解为 (x + 2)(x - 2)。

(2) y^2 - 9解:这是一个差的平方,因此可以分解为 (y + 3)(y - 3)。

(3) 9x^2 - 4y^2解:这是一个差的平方,可以使用公式 a^2 - b^2 = (a + b)(a - b) 分解为 (3x + 2y)(3x - 2y)。

(4) 4x^2 - 12xy + 9y^2解:这是一个完全平方,可以分解为 (2x - 3y)^2。

3. 计算下列各式的积:(1) (2x - 5)(3x + 4)解:使用分配率,计算得到 6x^2 + 8x - 15x - 20 = 6x^2 - 7x - 20。

(2) (x + 2)(x - 3)解:使用分配率,计算得到 x^2 - 3x + 2x - 6 = x^2 - x - 6。

(3) (2a + 3)(2a - 3)解:使用分配率,计算得到 4a^2 - 6a + 6a - 9 = 4a^2 - 9。

4. 解方程:(1) 2x + 8 = 12解:首先移动常数项,得到 2x = 4。

然后除以系数2,解得 x = 2。

(2) 3(x - 4) = 21解:先使用分配率,得到 3x - 12 = 21。

然后移动常数项,解得 3x = 33。

最后除以系数3,解得 x = 11。

(3) 4(2x - 1) = 20 - 2x解:先使用分配率,得到 8x - 4 = 20 - 2x。

初中数学因式分解(分组分解法)练习100题及答案

初中数学因式分解(分组分解法)练习100题及答案

初中数学因式分解(分组分解法)练习100题及答案(1)1027014ax ay bx by+--(2)224981981848x y x y--++ (3)22285132535a b ab bc ca--+-(4)222712272015x y xy yz zx--+-(5)60106010mn m n+--(6)801006480xy x y-+-+(7)22872124x y xy yz zx-++-(8)22283251520a b ab bc ca+-+-(9)20282535xy x y----(10)222141939x y xy yz zx++--(11)1070428xy x y-++-(12)221510313521x y xy yz zx+--+ (13)2220358103a c ab bc ca-+-+ (14)60501815xy x y----(15)22365452511a c ab bc ca---+ (16)226123417x z xy yz zx+-+-(17)754935ab a b-+-(18)16884xy x y-++-(19)945945mx my nx ny--+ (20)22201839a c ca++(21)22672824a b ab bc ca-+--(22)2235121220a b ab bc ca--+-(23)9327ax ay bx by+--(24)8016204mx my nx ny+++ (25)2231024x z xy yz zx---+(26)15502480xy x y----(27)221535464935x y xy yz zx++++ (28)222035154928a b ab bc ca--+-(29)632412mx my nx ny+--(30)49214218xy x y+++(31)4085ax ay bx by+--(32)16364090xy x y-++-(33)2220619624x y xy yz zx-+-+ (34)368368mn m n--+(35)45633549ax ay bx by-+-(36)2244363217a b a b--++ (37)25304554mn m n-+-(38)104156xy x y+++(39)2221126432x z xy yz zx++--(40)24286070ab a b--+(41)2249281840a b a b-+++ (42)223625652016a b ab bc ca+-+-(43)226464489m n m---(44)223664369m n m---(45)224936568433a b a b-++-(46)22331039a b ab bc ca+-+-(47)226513510a b ab bc ca+-+-(48)2294937x z xy yz zx++--(49)754935mn m n-+-(50)2291018447a c ab bc ca+--+ (51)227221272129x z xy yz zx---+ (52)530636mx my nx ny+--(53)2249241827a b a b -+-+(54)312624xy x y --++(55)225625529x z xy yz zx-++-(56)242065xy x y +++(57)2282836x y xy yz zx++--(58)2216202548a c ab bc ca++++(59)22925204x y y ---(60)2230736637a c ab bc ca--++(61)221412461035x y xy yz zx+-+-(62)2245425733x z xy yz zx-+--(63)486486mn m n +++(64)2210530627a c ab bc ca+-+-(65)205164xy x y --++(66)2272524331x z xy yz zx----(67)2293021353a c ab bc ca-++-(68)848040ab a b +++(69)81451810ab a b -+-(70)223014354952x z xy yz zx+-+-(71)22123574a b ab bc ca -+--(72)222020mx my nx ny -+-(73)153357ab a b -+-(74)18126342mn m n +--(75)99010ax ay bx by+--(76)24241616mn m n -+-(77)16144035xy x y -+-(78)728455mx my nx ny-+-(79)5401080mx my nx ny+++(80)2254221212x y xy yz zx++++(81)20503280xy x y --+(82)552020ax ay bx by+--(83)22124236x y xy yz zx----(84)18244864mn m n -+-(85)9020276ax ay bx by+--(86)222418391232a b ab bc ca----(87)2292142866x z xy yz zx+-+-(88)222581101a b a ---(89)24361624ax ay bx by--+ (90)20104020mn m n-+-(91)229961x y y---(92)226416647265x y x y----(93)229424209m n m n----(94)2245220813a c ab bc ca--+-(95)22449325648m n m n--++ (96)22481412648x y x y-++-(97)22634276103x z xy yz zx+--+ (98)223030202461x z xy yz zx++--(99)221012352126a c ab bc ca+--+ (100)24275663ax ay bx by--+初中数学因式分解(分组分解法)练习100题答案(1)2(7)(5)a b x y-+(2)(798)(796)x y x y+---(3)(75)(45)a b a b c-+-(4)(935)(34)x y z x y+--(5)10(1)(61)m n-+(6)4(54)(45)x y-+-(7)(87)(3)x y x y z-+-(8)(75)(43)a b c a b---(9)(45)(57)x y-++ (10)(3)(743)x y x y z++-(11)2(52)(7)x y---(12)(527)(35)x y z x y-+-(13)(45)(527)a c ab c-++ (14)(103)(65)x y-++(15)(95)(45)a c ab c+--(16)(34)(23)x z x y z---(17)(7)(75)a b+-(18)4(21)(21)x y---(19)9()(5)m n x y--(20)(56)(43)a c a c++(21)(4)(67)a b c a b--+(22)(53)(744)a b a b c-+-(23)(3)(9)a b x y-+(24)4(4)(5)m n x y++ (25)(325)(2)x y z x z--+ (26)(58)(310)x y-++ (27)(357)(57)x y z x y+++(28)(557)(47)a b c a b+--(29)3(4)(2)m n x y-+ (30)(76)(73)x y++(31)(8)(5)a b x y-+(32)2(25)(49)x y---(33)(4)(566)x y x y z-++ (34)4(1)(92)m n--(35)(97)(57)a b x y+-(36)(2217)(221)a b a b+---(37)(59)(56)m n+-(38)(23)(52)x y++(39)(32)(726)x z x y z-+-(40)2(25)(67)a b--(41)(234)(2310)a b a b++-+(42)(45)(954)a b a b c---(43)(883)(883)m n m n+---(44)(683)(683)m n m n+---(45)(763)(7611)a b a b+--+(46)(3)(33)a b a b c---(47)(355)(2)a b c a b---(48)(9)(4)x z x y z-+-(49)(7)(75)m n+-(50)(92)(25)a c ab c+-+ (51)(97)(833)x z x y z+--(52)(56)(6)m n x y-+(53)(239)(233)a b a b++-+ (54)3(2)(4)x y--+(55)(5)(56)x z x y z++-(56)(41)(65)x y++(57)(423)(2)x y z x y+-+(58)(84)(25)a b c a c+++ (59)(352)(352)x y x y++--(60)(6)(567)a c ab c--+ (61)(72)(265)x y x y z---(62)(57)(96)x z x y z-++ (63)6(1)(81)m n++(64)(265)(5)a b c a c---(65)(54)(41)x y--+ (66)(935)(8)x y z x z--+(67)(35)(376)a c ab c++-(68)4(10)(21)a b++(69)(92)(95)a b+-(70)(672)(57)x y z x z---(71)(35)(47)a b c a b--+ (72)2(10)()m n x y+-(73)(37)(51)a b+-(74)3(27)(32)m n-+(75)(10)(9)a b x y-+ (76)8(32)(1)m n+-(77)(25)(87)x y+-(78)(85)(9)m n x y+-(79)5(2)(8)m n x y++ (80)(922)(6)x y z x y+++ (81)2(58)(25)x y--(82)5(4)()a b x y-+(83)(643)(2)x y z x y--+ (84)2(38)(34)m n+-(85)(103)(92)a b x y-+(86)(83)(364)a b a b c+--(87)(7)(943)x z x y z---(88)(591)(591)a b a b+---(89)4(32)(23)a b x y--(90)10(2)(21)m n+-(91)(331)(331)x y x y++--(92)(845)(8413)x y x y++--(93)(321)(329)m n m n++--(94)(94)(52)a b c a c-+-(95)(2712)(274)m n m n+---(96)(296)(298)x y x y+--+ (97)(76)(97)x z x y z+-+ (98)(645)(56)x y z x z+--(99)(53)(274)a c ab c+-+ (100)(37)(89)a b x y--。

经典因式分解练习题100道

经典因式分解练习题100道

经典因式分解练习题100道1.3a³b²c - 12a²b²c² + 9ab²c³ can be factored as 3ab²c( a² - 4abc + 3c²).2.16x² - 81 can be factored as (4x + 9)(4x - 9).3.xy + 6 - 2x - 3y can be simplified as (x - 3)(y - 2).4.x²(x - y) + y²(y - x) simplifies to -xy(x - y).5.2x² - (a - 2b)x - ab can be factored as (2x + b)(x - a).6.a⁴ - 9a²b² can be factored as (a² - 3ab)(a² + 3ab).7.x³ + 3x² - 4 can be factored as (x + 1)(x + 2)(x - 2).8.ab(x² - y²) + xy(a² - b²) simplifies to ab(x + y)(x - y) + xy(a + b)(a - b).9.(x + y)(a - b - c) + (x - y)(b + c - a) can be simplified as2y(b - c).10.a² - a - b² - b can be factored as (a - b)(a + b) - (a + b).11.(3a - b)² - 4(3a - b)(a + 3b) + 4(a + 3b)² can be simplified as (a - 5b)².12.(a + 3)² - 6(a + 3) can be factored as (a - 3)(a + 9).13.(x + 1)²(x + 2) - (x + 1)(x + 2)² can be simplified as -(x + 1)(x - 2)².14.16x² - 81 can be factored as (4x - 9)(4x + 9).15.9x² - 30x + 25 can be factored as (3x - 5)².16.x² - 7x - 30 can be factored as (x - 10)(x + 3).17.x(x + 2) - x simplifies to x² + x.18.x² - 4x - ax + 4a can be factored as (x - 4)(x - a).19.25x² - 49 can be factored as (5x - 7)(5x + 7).20.36x² - 60x + 25 can be factored as (6x - 5)².21.4x² + 12x + 9 can be factored as (2x + 3)².22.x² - 9x + 18 can be factored as (x - 3)(x - 6).23.2x² - 5x - 3 can be factored as (2x + 1)(x - 3).24.12x² - 50x + 8 can be factored as 4(3x - 1)(x - 2).26.49x² - 25 can be factored as (7x - 5)(7x + 5).27.6x² - 13x + 5 can be factored as (2x - 1)(3x - 5).28.x² + 2 - 3x can be rewritten as x² - 3x + 2 and factored as (x - 1)(x - 2).29.12x² - 23x - 24 can be factored as (4x + 3)(3x - 8).30.(x + 6)(x - 6) - (x - 6) can be simplified as (x + 6 - 1)(x - 6) and further simplified as (x + 5)(x - 6).31.3(x + 2)(x - 5) - (x + 2)(x - 3) can be simplified as 2(x + 2)(x - 5).32.9x² + 42x + 49 can be factored as (3x + 7)².33.x^4 - 2x³ - 35x can be factored as x(x - 5)(x + 7)(x - 1).34.3x^6 - 3x² can be factored as 3x²(x - 1)(x + 1)(x² + 1).35.x² - 25 can be factored as (x - 5)(x + 5).36.x² - 20x + 100 can be factored as (x - 10)².37.x² + 4x + 3 can be factored as (x + 1)(x + 3).38.4x² - 12x + 5 cannot be XXX.39.3ax² - 6ax can be factored as 3ax(x - 2).40.(x+2)(2x+4)+(x+2)(x-3) = (x+2)(3x+1)41.4ax^2 + 2ax - 3x - 342.(3x-11)^243.x = ±√(2)44.No real ns45.(3x-5)^246.(4x+5)(-5x+4)47.(3x-5)(4x-3)48.9(2x+1)^249.(7x-11)(3x+2)50.(3x^2-1)(3x^2+4)51.(4x^2-4x-2)(2x-2) = 2(2x-1)(2x^2-3x-1)52.4ax^2 + 2ax - 3x - 353.x(y+1) - y - 154.x^2 - 6x + 955.(3x-11)^256.x = ±√257.(x^2+1)(x+1)(x-1)58.x^2 - (y+2)x - 2y + 459.4x²-12x+5 = (2x-1)(2x-5)60.21x²-31x-22 = (7x+2)(3x-11)61.4x²+4xy+y²-4x-2y-3 = (2x+y-3)(2x+y+1)62.9x5-35x3-4x = x(3x-5)(3x+5)(x²-4)63.n = 764.m = 9a²-4x²65.(a²-b²)²66.(a+b-2a²+2ab-2b²)(a-b-2a²-2ab+2b²)67.-1/268.M-N = (x-y)²。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

提升课堂托辅中心初二数学因式分解精选100题2013年1月25日 一、选择题1.下列各式中从左到右的变形,是因式分解的是( )A (a +3)(a -3)=a 2-9B x 2+x -5=(x -2)(x +3)+1C a 2b +ab 2=ab (a +b ) (D)x 2+1=x (x +x 1) 2.下列各式的因式分解中正确的是( )A -a 2+ab -ac = -a (a +b -c )B 9xyz -6x 2y 2=3xyz (3-2xy )C 3a 2x -6bx +3x =3x (a 2-2b )D 21xy 2+21x 2y =21xy (x +y ) 3.把多项式m 2(a -2)+m (2-a )分解因式等于( )(A)(a -2)(m 2+m ) (B)(a -2)(m 2-m ) (C)m (a -2)(m -1) (D)m (a -2)(m+1)4.下列多项式能分解因式的是( )(A)x 2-y (B)x 2+1 (C)x 2+y +y 2 (D)x 2-4x +45.下列多项式中,不能用完全平方公式分解因式的是( ) (A)412m m ++ (B)222y xy x -+- (C)224914b ab a ++- (D)13292+-n n 6.多项式4x 2+1加上一个单项式后,使它能成为一个整式的完全平方,则加上的单项式不可以是( )(A)4x (B)-4x (C)4x 4 (D)-4x 47.下列分解因式错误的是( )(A)15a 2+5a =5a (3a +1) (B)-x 2-y 2= -(x 2-y 2)= -(x +y )(x -y )(C)k (x +y )+x +y =(k +1)(x+y ) (D)a 3-2a 2+a =a (a -1)28.下列多项式中不能用平方差公式分解的是( )(A)-a 2+b 2 (B)-x 2-y 2 (C)49x 2y 2-z 2 (D)16m 4-25n 2p 29.下列多项式:①16x 5-x ;②(x -1)2-4(x -1)+4;③(x +1)4-4x (x +1)+4x 2;④-4x 2-1+4x ,分解因式后,结果含有相同因式的是( )(A)①② (B)②④ (C)③④ (D)②③10.两个连续的奇数的平方差总可以被 k 整除,则k 等于( )(A)4 (B)8 (C)4或-4 (D)8的倍数11下列各式中从左到右的变形属于分解因式的是( )A a(a +b -1)=a 2+ab -aB a 2 –a -2=a(a -1)-2C -4 a 2+9b 2=(-2a +3b)(2a +3b)D . 2x +1=x(2+1/x) 12下列各式分解因是正确的是( )A .x 2y +7xy +y=y(x 2+7x)B . 3 a 2b +3ab +6b=3b(a 2+a +2)C . 6xyz -8xy 2=2xyz(3-4y)D . -4x +2y -6z=2(2x +y -3z)13下列多项式中,能用提公因式法分解因式的是( )A . x 2-yB . x 2+2xC . x 2+y 2D .x 2-xy +y 214 2(a -b)3-(b - a)2分解因式的正确结果是( )A . (a -b)2(2a -2b +1)B . 2(a -b)(a -b -1)C . (b -a)2(2a -2b -1)D . (a -b)2(2a -b -1) 15下列多项式分解因式正确的是( )A . 1+4a -4a 2=(1-2a)2B . 4-4a +a 2=(a -2)2C . 1+4x 2=(1+2x)2D .x 2+xy +y 2=(x +y)2 16 运用公式法计算992,应该是( )A .(100-1)2B .(100+1)(100-1)C .(99+1)(99-1)D . (99+1)217 多项式:①16x 2-8x ;②(x -1)2 -4(x -1)2;③(x +1)4-4(x +1)2+4x 2 ④-4x 2-1+4x 分解因式 结果中含有相同因式的是( )A.①和② B.③和④ C.①和④ D.②和③18无论x 、y 取何值,x 2+y 2-2x +12y +40的值都是( )A.正数 B.负数 C.零 D.非负数19下列正确的是( )A.x 2+y 2=(x +y)(x -y) B.x 2-y 2=(x +y)(x -y)C.-x 2+y 2=(-x +y)(-x -y) D.-x 2-y 2=-(x +y)(x -y) 二、填空题20.分解因式:m 3-4m = . 21.已知x +y =6,xy =4,则x 2y +xy 2的值为 .22.将x n -y n 分解因式的结果为(x 2+y 2)(x +y )(x -y ),则n 的值为 .23.若ax 2+24x +b =(mx -3)2,则a = ,b = ,m = .24.根据图形面积关系,不连其他线,便可以得到一个分解因式的公式是 .25多项式-9x 2y +36xy 2-3xy 提公因式后的另一个因式是___________;26把多项式-x 4+16分解因式的结果是_____________;27已知xy=5,a -b=3,a +b=4,则xya 2-yxb 2的值为_______________;28若x 2+2mx +16是完全平方式,则m=______; (第24题图)29分解因式:-x 2+4x -4= ;30 +3mn +9n 2=( +3n)2;31若x +y=1则1/2x 2+xy +1/2y 2= ;三、因式分解32. -24x 3-12x 2+28x 33. 6(m -n)3-12(n -m)2 34. 3(a -b)2+6(b -a)35. 18(a +b)3-12b(b -a)2 36. (2a +b)(2a -3b)-3a(2a +b) 37.(x 2+6x)2-(2x -4)238. 9(m +n)2-(m -n)2 39. (2x +3y)2-1 40. 9(a -b)2-16(a +b)241. (x +y)2-16(x -y)2 42. -16x 4+81y 4 43. 3ax 2-3ay 244. 2x 3-8x 45. 7x 2-63 46. (a 2+b 2)2-4a 2b 247. (m +n)2-6(m +n)+9 48. (3)(a -b)2-2(a -b)+1; 49. 4xy 2-4x 2y -y 350. -x 2-4y 2+4xy 51. 25)(10)(2++++y x y x ; 52. 4224817216b b a a +-; 53. (a 2+4)2-16a 2 54. -4x 3+16x 2-26x 56.21a 2(x -2a )2-41a (2a -x )3 57. 56x 3yz+14x 2y 2z -21xy 2z 2 58. mn(m -n)-m(n -m) 59. -41(2a -b )2+4(a -21b )2 60. 4xy –(x 2-4y 2) 61. -3ma 3+6ma 2-12ma 62. a 2(x -y )+b 2(y -x )63. 23)(10)(5x y y x -+- 64. 32)(12)(18b a b a b --- 65. –2x 2n -4x n 66. )(6)(4)(2a x c x a b a x a ---+- 67. 4416n m - 68.22)(16)(9n m n m --+; 69. 21ax 2y 2+2axy +2a 70. (x 2-6x )2+18(x 2-6x )+81 71. 24)4)(3)(2)(1(-++++x x x x 72.9x 2-y 2-4y -4 73.22414y xy x +-- 74.811824+-x x75. 2ax a b ax bx bx -++--2 76.1235-+-x x x 77. )()()(23m n n m n m +--+78. 3)2(2)2(222-+-+a a a a 79. 2222224)(b a b a c ---四.特殊的因式分解 80.),(3127123且均为自然数n m b a a n n m n m >--- 81.131********-+-+-+++n n n n n n y x y x y x五.用简便方法计算:82. 57.6×1.6+28.8×36.8-14.4×80 83. 13.731175.231178.193117⨯-⨯+⨯84. 39×37-13×34 85)1011)(911()311)(211(2232----Λ 六.解答题 86若n m y x -=))()((4222y x y x y x +-+,求m ,n 的值87已知,01200520042=+++++x x x x Λ求2006x 的值88若6,422=+=+y x y x 求xy 的值89已知312=-y x ,2=xy ,求 43342y x y x -的值。

90已知2=+b a ,求)(8)(22222b a b a +--的值91已知2,2-==+xy y x ,求xy y x 622++的值;92已知21,122=+-=-y x y x ,求y x -的值; 93已知21=+b a ,83-=ab ,求(1)2)(b a -;(2)32232ab b a b a +- 94已知0516416422=+--+y x y x ,求x+y 的值;95先分解因式,然后计算求值(a 2+b 2-2ab )-6(a -6)+9,其中a=10000,b=9999 96已知,8=+n m ,15=mn 求22n mn m +-的值。

97已知:,012=-+a a (1)求222a a +的值; (2)求1999223++a a 的值。

98已知x(x -1)-(x 2-y)=-2.求xy y x -+222的值. 99.试说明:两个连续奇数的平方差是这两个连续奇数和的2倍。

100.如图,在一块边长为a 厘米的正方形纸板四角,各剪去一个边长为 b(b<2a )厘米的正方形,利用因式分解计算当a=13.2,b=3.4时,剩余部分的面积。

望家长监督孩子做好此套题。

祝孩子年齡和知识同步增长!。

相关文档
最新文档