开关电源PCB Layout设计原则

合集下载

开关电源PCB板的排板要点

开关电源PCB板的排板要点

开关电源PCB板的排板要点开关电源(Switching Power Supply)已成为现代化电子产品中广泛采用的一种电源形式,其小型化、高效率、稳定性优异等特点,使其更适合于现代化电子产品的应用需求。

而PCB板则作为开关电源的核心部件,其设计排版质量直接影响着开关电源的性能和寿命,因此在开关电源的设计排版中,对于PCB板的排版要点尤为重要。

一、PCB板设计原则1. PCB板大小对开关电源设计有较大影响。

开关电源大小受限于板子的大小,因此在设计PCB板时,应尽量考虑开关电源的实际应用环境,比如应确定板子尺寸和电源内部空间的比例。

2. 合理布局是开关电源设计排版的重要环节。

在布局时应注意,尽可能将输入、输出端口和各种元器件放置在合适的位置,避免尽可能地降低板子大小并增加导线长度和复杂性。

3. 要确保PCB板的可靠性,在布局阶段应确定电源电流、热量分布,从而为PCB板尺寸和散热区域提供充分的空间。

4. 满足整机的EMI和EMC要求,此外具体的PCB板排版应满足良好的电子兼容性和电磁辐射性能,需要布置合适的地面和电源平面等。

二、PCB板排版要点1. 基本元件布局开关电源最基本的元件为电容、电感、稳压管和二极管。

这些元器件的布局应根据其性能设置相应的连接方式。

布局时注意,要避免门头耦合,尽量减少迭加影响。

2. 电源信号传输线路设计在排版PCB板时,应将信号传输线路与功率传输线路分开设计,在信号传输线路上应避免与功率传输线路产生相互干扰;若必须将信号传输线路与功率传输线路安排在同一PCB板上时,可以采用抽屉式分隔方式或隔离方式进行。

3. 稳压芯片放置稳压元件是开关电源工作的核心,可维持稳定的输出电压。

当排版PCB板时,放置稳压芯片时要注意散热,应在稳压芯片正下方设置散热片。

为了保证稳流、稳压作用不受电源冷却剂温度或却则气流的影响,散热片最好与PCB板底部相连。

4. 输入输出电容安置当排版控制电路时,应注意输入输出电容的安置,其中输入电容需承受高压和波动,并且需要排放噪声和电磁干扰。

开关电源pcb设计规则

开关电源pcb设计规则

开关电源pcb设计规则
开关电源PCB设计规则是指在设计开关电源电路时,需要遵循的一些规则和原则,以确保PCB设计的质量和稳定性。

以下是一些常见的开关电源PCB设计规则:
1. 安全间距:为了防止电弧和机械故障,需要保持适当的安全间距。

例如,在高压和低压之间应保持足够的安全间距,通常为3mm 以上。

2. 分隔高低压:高压和低压部分的电路应该分隔开来,以避免高压对低压电路的干扰。

3. 接地:必须正确接地,以避免地面噪声和回路问题。

所有接地点都应连接到一个共同的接地平面或接地线。

4. 降噪和去耦电容:在电源输入处和电源输出处应添加合适的降噪和去耦电容,以提供稳定的电源和降低噪声。

5. 温度管理:考虑到开关电源的热量产生,需要设计散热器和散热路径,确保电路稳定运行并具有良好的散热性能。

6. 信号完整性:保持信号线的最短和最直接路径,以减少信号延迟和互相干扰。

7. 过流保护:设计过流保护电路,以避免电路过载和损坏。

8. PCB层序:根据电路的复杂性和特定要求,设计适当的PCB层序,以提供良好的屏蔽和隔离效果。

9. 元件布局:考虑到电路的稳定性和散热问题,合理布置元件,避免集中热源和元件之间的干扰。

10. 绝缘:在高压部分和低压部分需要做绝缘处理,以确保安全。

这些规则只是一些常见的指导原则,具体的规则和要求还取决于具体的开关电源设计和应用场景。

在设计时,还需要根据具体情况做出适当的调整和优化。

开关电源的pcb设计规范

开关电源的pcb设计规范

开关电源的PCB设计规范在任何开关电源设计中,PCB板的物理设计都是最后一个环节,如果设计方法不当,PCB可能会辐射过多的电磁干扰,造成电源工作不稳定,以下针对各个步骤中所需注意的事项进行分析:一、从原理图到PCB的设计流程建立元件参数->输入原理网表->设计参数设置->手工布局->手工布线->验证设计->复查->CAM输出.二、参数设置相邻导线间距必须能满足电气安全要求,而且为了便于操作和生产,间距也应尽量宽些.最小间距至少要能适合承受的电压,在布线密度较低时,信号线的间距可适当地加大,对高、低电平悬殊的信号线应尽可能地短且加大间距,一般情况下将走线间距设为8mil. 焊盘内孔边缘到印制板边的距离要大于1mm,这样可以避免加工时导致焊盘缺损.当与焊盘连接的走线较细时,要将焊盘与走线之间的连接设计成水滴状,这样的好处是焊盘不容易起皮,而是走线与焊盘不易断开.三、元器件布局实践证明,即使电路原理图设计正确,印制电路板设计不当,也会对电子设备的可靠性产生不利影响.例如,如果印制板两条细平行线靠得很近,则会形成信号波形的延迟,在传输线的终端形成反射噪声;由于电源、地线的考虑不周到而引起的干扰,会使产品的性能下降,因此,在设计印制电路板的时候,应注意采用正确的方法.每一个开关电源都有四个电流回路: 1. 电源开关交流回路2. 输出整流交流回路3. 输入信号源电流回路4. 输出负载电流回路输入回路通过一个近似直流的电流对输入电容充电,滤波电容主要起到一个宽带储能作用;类似地,输出滤波电容也用来储存来自输出整流器的高频能量,同时消除输出负载回路的直流能量.所以,输入和输出滤波电容的接线端十分重要,输入及输出电流回路应分别只从滤波电容的接线端连接到电源;如果在输入/输出回路和电源开关/整流回路之间的连接无法与电容的接线端直接相连,交流能量将由输入或输出滤波电容并辐射到环境中去.电源开关交流回路和整流器的交流回路包含高幅梯形电流,这些电流中谐波成分很高,其频率远大于开关基频,峰值幅度可高达持续输入/输出直流电流幅度的5倍,过渡时间通常约为50ns.这两个回路最容易产生电磁干扰,因此必须在电源中其它印制线布线之前先布好这些交流回路,每个回路的三种主要的元件滤波电容、电源开关或整流器、电感或变压器应彼此相邻地进行放置,调整元件位置使它们之间的电流路径尽可能短.建立开关电源布局的最好方法与其电气设计相似,最佳设计流程如下:·放置变压器·设计电源开关电流回路·设计输出整流器电流回路·连接到交流电源电路的控制电路·设计输入电流源回路和输入滤波器设计输出负载回路和输出滤波器根据电路的功能单元,对电路的全部元器件进行布局时,要符合以下原则:1 首先要考虑PCB尺寸大小.PCB尺寸过大时,印制线条长,阻抗增加,抗噪声能力下降,成本也增加;过小则散热不好,且邻近线条易受干扰.电路板的最佳形状矩形,长宽比为3:2或4:3,位于电路板边缘的元器件,离电路板边缘一般不小于2mm.2 放置器件时要考虑以后的焊接,不要太密集.3 以每个功能电路的核心元件为中心,围绕它来进行布局.元器件应均匀、整齐、紧凑地排列在PCB上,尽量减少和缩短各元器件之间的引线和连接, 去耦电容尽量靠近器件的VCC.4 在高频下工作的电路,要考虑元器件之间的分布参数.一般电路应尽可能使元器件平行排列.这样,不但美观,而且装焊容易,易于批量生产.5 按照电路的流程安排各个功能电路单元的位置,使布局便于信号流通,并使信号尽可能保持一致的方向.6 布局的首要原则是保证布线的布通率,移动器件时注意飞线的连接,把有连线关系的器件放在一起.7 尽可能地减小环路面积,以抑制开关电源的辐射干扰.四、布线开关电源中包含有高频信号,PCB上任何印制线都可以起到天线的作用,印制线的长度和宽度会影响其阻抗和感抗,从而影响频率响应.即使是通过直流信号的印制线也会从邻近的印制线耦合到射频信号并造成电路问题甚至再次辐射出干扰信号.因此应将所有通过交流电流的印制线设计得尽可能短而宽,这意味着必须将所有连接到印制线和连接到其他电源线的元器件放置得很近.印制线的长度与其表现出的电感量和阻抗成正比,而宽度则与印制线的电感量和阻抗成反比.长度反映出印制线响应的波长,长度越长,印制线能发送和接收电磁波的频率越低,它就能辐射出更多的射频能量.根据印制线路板电流的大小,尽量加租电源线宽度,减少环路电阻. 同时、使电源线、地线的走向和电流的方向一致,这样有助于增强抗噪声能力.接地是开关电源四个电流回路的底层支路,作为电路的公共参考点起着很重要的作用,它是控制干扰的重要方法.因此,在布局中应仔细考虑接地线的放置,将各种接地混合会造成电源工作不稳定.在地线设计中应注意以下几点:1. 正确选择单点接地通常,滤波电容公共端应是其它的接地点耦合到大电流的交流地的唯一连接点,同一级电路的接地点应尽量靠近,并且本级电路的电源滤波电容也应接在该级接地点上,主要是考虑电路各部分回流到地的电流是变化的,因实际流过的线路的阻抗会导致电路各部分地电位的变化而引入干扰.在本开关电源中,它的布线和器件间的电感影响较小,而接地电路形成的环流对干扰影响较大,因而采用一点接地,即将电源开关电流回路中的几个器件的地线都连到接地脚上,输出整流器电流回路的几个器件的地线也同样接到相应的滤波电容的接地脚上,这样电源工作较稳定,不易自激.做不到单点时,在共地处接两二极管或一小电阻,其实接在比较集中的一块铜箔处就可以.2. 尽量加粗接地线若接地线很细,接地电位则随电流的变化而变化,致使电子设备的定时信号电平不稳,抗噪声性能变坏,因此要确保每一个大电流的接地端采用尽量短而宽的印制线,尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线>电源线>信号线,如有可能,接地线的宽度应大于3mm,也可用大面积铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用.进行全局布线的时候,还须遵循以下原则:1.布线方向:从焊接面看,元件的排列方位尽可能保持与原理图相一致,布线方向最好与电路图走线方向相一致,因生产过程中通常需要在焊接面进行各种参数的检测,故这样做便于生产中的检查,调试及检修注:指在满足电路性能及整机安装与面板布局要求的前提下.2.设计布线图时走线尽量少拐弯,印刷弧上的线宽不要突变,导线拐角应≥90度,力求线条简单明了.3.印刷电路中不允许有交叉电路,对于可能交叉的线条,可以用“钻”、“绕”两种办法解决.即让某引线从别的电阻、电容、三极管脚下的空隙处“钻”过去,或从可能交叉的某条引线的一端“绕”过去,在特殊情况下如何电路很复杂,为简化设计也允许用导线跨接,解决交叉电路问题.因采用单面板,直插元件位于top面,表贴器件位于bottom 面,所以在布局的时候直插器件可与表贴器件交叠,但要避免焊盘重叠. 3.输入地与输出地本开关电源中为低压的DC-DC,欲将输出电压反馈回变压器的初级,两边的电路应有共同的参考地,所以在对两边的地线分别铺铜之后,还要连接在一起,形成共同的地.五、检查布线设计完成后,需认真检查布线设计是否符合设计者所制定的规则,同时也需确认所制定的规则是否符合印制板生产工艺的需求,一般检查线与线、线与元件焊盘、线与贯通孔、元件焊盘与贯通孔、贯通孔与贯通孔之间的距离是否合理,是否满足生产要求. 电源线和地线的宽度是否合适,在PCB中是否还有能让地线加宽的地方.注意:有些错误可以忽略,例如有些接插件的Outline的一部分放在了板框外,检查间距时会出错;另外每次修改过走线和过孔之后,都要重新覆铜一次.六、复查根据“PCB检查表”,内容包括设计规则,层定义、线宽、间距、焊盘、过孔设置,还要重点复查器件布局的合理性,电源、地线网络的走线,高速时钟网络的走线与屏蔽,去耦电容的摆放和连接等.七、设计输出输出光绘文件的注意事项:a. 需要输出的层有布线层底层、丝印层包括顶层丝印、底层丝印、阻焊层底层阻焊、钻孔层底层,另外还要生成钻孔文件NC Drillb. 设置丝印层的Layer时,不要选择Part Type,选择顶层底层和丝印层的Outline、Text、Linec. 在设置每层的Layer时,将Board Outline选上,设置丝印层的Layer时,不要选择Part Type,选择顶层底层和丝印层的Outline、Text、Line.d. 生成钻孔文件时,使用PowerPCB的缺省设置,不要作任何改.。

开关电源PCB设计要求

开关电源PCB设计要求

开关电源PCB设计要求
开关电源是一种电子电源设备,用于将电源输入变换为特定电压、电
流或功率的输出。

PCB(Printed Circuit Board)则是开关电源的基本组
成部分,用于连接和支持开关电源的各个电子元件。

开关电源PCB设计对
于整个设备的性能和可靠性至关重要。

以下是开关电源PCB设计的一些重
要要求。

1.适配性:
2.布局和层次:
3.热管理:
开关电源通常会产生较大的热量,因此PCB设计必须考虑到热的排散。

在设计阶段应确定散热器的位置和尺寸,并优化散热路径,以确保设备工
作在安全的温度范围内。

4.电源轨迹:
应确保电源轨迹的短且低阻抗,以减少电压降和电源波动。

电源轨迹
也应与地轨迹分离,以减少互相干扰。

此外,应在电源轨迹上增加滤波电容,以降低噪声。

5.输入和输出滤波:
6.信号完整性:
7.EMC兼容性:
8.可维护性:
9.安全性:
总结:
开关电源PCB设计对于设备的性能和可靠性起着重要的作用。

在设计开关电源PCB时,需要考虑适配性、布局和层次、热管理、电源轨迹、输入和输出滤波、信号完整性、EMC兼容性、可维护性和安全性等要求。

理解并遵循这些设计要求将有助于确保开关电源PCB设计的质量和可靠性。

开关电源的PCB布线要求

开关电源的PCB布线要求

开关电源的PCB布线要求开关电源是一种常见的电源之一。

在集成电路的建设中,PCB布线设计是非常重要的,因为合理的PCB布线设计可以大大提高电路的稳定性和可靠性。

特别是在开关电源中,良好的PCB布线设计可以保证电源的性能表现。

因此,本文将介绍开关电源的PCB布线要求。

1. 开关电源PCB布线的基本原则布线设计应遵循以下原则:最短距离布线、线路走向自然、防止串信和互相干扰、保证信号传输质量、减少交叉、噪声与干扰。

开关电源的PCB布线应遵循其工作原理和特征。

因此,布线应考虑以下几个方面:(1)控制单元和功率单元之间的布线开关电源中,控制单元和功率单元之间的布线最好采用双面铜箔。

两面分别贴附于不同的电路板侧面,通过足够的接地区域将控制单元与功率单元连接起来。

此外,控制单元和功率单元之间的布线应避免走近其他信号线,以减少干扰和噪声。

(2)开关管的布局在开关电源的设计中,布置开关管时,应考虑其焊盘的布局,避免电容器等元器件太近,导致开关管与其他元器件之间出现串扰和互相干扰的情况。

同时,开关管布线的电感应该保持足够小,以减少噪声的产生。

(3)输入输出滤波在开关电源中,输入和输出滤波电容应布置在尽可能近的地方,以便缩短电流路径,减小共模噪声,提高抗干扰性。

2. 开关电源PCB布线的具体实现(1)输出过滤电路的布置在开关电源中,输出过滤电容(Cout)、输出电感(LOut)和输出短路电菩(Rout)等元件构成的过滤电路主要是为了抵抗输出端的高频噪声,因此应尽可能在开关管的输出端背面布置上述元件,并较短距离地接线连接一起。

为进一步减小信号在跑动过程中的干扰,如条件允许可以考虑在输出位置借助Lcl滤波来过滤掉高频扰动。

(2)高频降噪电阻的布置在高频降噪电阻(RF)的布置中,为了规避开关管;管贞周围存在的两对互相耦合的集成电路阻抗,对RF电阻的参考铺方式有两种形式,具体布置如下。

(3)控制电路的布置控制电路包括开关电源脉宽调制芯片、反馈电路、保险丝、脉冲变压器等基本单元,其布置和连线应符合以下要求:a. 脉宽调制控制芯片应该在布局与连接两方面得到考虑,控制芯片两侧的布局以及自身内部元器件布局一定要工整、规整、紧凑,以避免噪声的干扰和影响;b. 比较器反馈电路应布置在控制芯片上,以尽可能减少反馈信号跑动的距离和串扰的影响;c. 连接在主电路和控制电路间的脉冲变压器电路应该收紧磁感线,保证高频信号附着到比较器变化的上升沿或下降沿。

开关电源PCB排版基本要点2

开关电源PCB排版基本要点2

对开关电源的Layout时的注意事项:
1.对于输入电容、MOSFET、检测电流的电阻器、电感器、整流器、变压器和输出电容,它们可能有很大的电流通过,所以,需要粗的走线连接,并且应优先考虑走线。

2.源电流和它的回流路径所围成的板上面积应该尽可能的小,以防止产生电磁干扰。

直线宽度计算公式如下:
T= (2/CuWt)*(-1.31+5.813I+1.548I*I -0.052I *I*I)
导线宽度以mil为单位,电流I以A为单位,CuWt以ounce为单位。

比如:1A、1oz的线宽要求12mil
5A、1/2oz的线宽要求240mil
20A、1/2oz的线宽要求1275mil
3.模拟信号控制元器件最后走线,因为它们只需要很细的直线,因而占用很少的板上面积。

4.滤波电容、软启动电容和调节频率的电阻组成一个子组件,它们之间应该尽可能的靠近直线,并尽可能的靠近PWM控制器。

5.去耦电容必须靠近需要去耦的管脚边上。

6.所有的大元器件,比如MOSFET、滤波器、电解电容、电感和连接器应该放在板子的上层,以防止在焊接的时候脱落下来。

7.模拟小信号地和开关电源用的电源地必须保持独立,最后在单点连通。

8.在连接高阻和低阻的元器件时,必须靠近高阻的结点处连接。

9.电源电感/变压器、MOSFET和滤波器必须远离低电平的模拟信号,以降底模拟信号的噪音。

10.对孔的要求,直径14mil->2A,40mil->4A,过孔尽可能的用锡填充。

开关电源PCB布局指南

开关电源PCB布局指南

开关电源PCB布局指南开关电源是一种常见的电源供应器件,可将输入电压转换为所需的输出电压,广泛应用于各种电子设备中。

为了确保开关电源的正常运行和安全性,合理的PCB布局设计是非常重要的。

下面是一些开关电源PCB布局的指南。

1.分离高频和低频部分开关电源由高频和低频电路组成,应将它们分离开来以避免互相干扰。

将高频部分放在一块区域,并采取适当的隔离措施,例如增加地平面间距和降噪电容。

2.确保良好的地面平面地面平面是开关电源PCB布局的关键之一、地面平面应尽可能大,并尽量避免断裂和断层,以提供稳定的地面引用。

在地面平面上加入一些分隔岛来隔离高频和低频部分。

3.确保短而粗的电流路径为了减少损耗和EMI干扰,应尽量缩短电流路径。

合理优化布局,使输入和输出的电流路径尽量短。

同时,应采用足够宽的供电和接地线,以降低电阻和电感。

4.高频组件的布局高频组件包括开关管、变压器和滤波电容器等。

这些组件之间应尽量缩短距离,以降低电感和串扰。

变压器应放置在开关管附近,并与开关管垂直放置,以减少磁耦合和电感。

5.散热片和散热孔的布局开关电源的工作过程中会产生较大的热量,因此必须确保良好的散热能力。

散热片应尽量与功率器件接触紧密,并通过散热孔将热量导出。

散热片和散热孔的布局要合理,以确保均匀散热和良好的风流。

6.调试界面和滤波器为了便于调试和测量,应在PCB上设置相应的调试接口。

此外,为了减少EMI干扰,应在输入和输出端口附近添加合适的滤波器,以滤除高频噪声。

7.引脚位置和距离组件的引脚位置和距离对于开关电源的性能和可靠性至关重要。

引脚之间应尽量保持足够的距离,以避免串扰和短路。

同时,引脚的布局也应考虑到易于焊接和布线的因素。

8.信号和功率的分离为了避免信号和功率互相干扰,应尽量将它们分离开来。

信号线和电源线应尽量平行布置,但不要交叉或靠得太近。

此外,还可以在它们之间添加隔离层或屏蔽层,并使用差分传输线来减少干扰。

以上是关于开关电源PCB布局的一些指南。

开关电源PCB Layout注意事项

开关电源PCB Layout注意事项

開關電源PCB Layout一般要求PCB Layout是開關電源研發過程中的极為重要的步驟和環節,關系到開關電源能否正常工作,生產是否順利進行,使用是否安全等問題。

開關電源PCB Layout比起其它產品PCB Layout來說都要複雜和困難,要考慮的問題要多得多,歸納起來主要有以下幾個方面的要求:一.電路要求1.PCB 中的元器件必須與BOM一致。

2.線條走線必須符合原理圖,利用網絡連線可以輕做到這一點。

3.線條寬度必須滿足最大電流要求,不得小於1mm/1A,以保證線條溫升不超過℃.為了減少電壓降有時還必須加寬寬度。

4.為了減小電壓降和損耗,視需要在線條上鍍錫。

二.安規要求1. 一次側和二次側電路要用隔離帶隔開,隔離帶清晰明確. 靠隔離帶的元件,在10N的推力作用下應保持電氣距離要求。

2. 隔離帶中線要用1mm的絲印虛線隔開,並在高壓區標識DANGER / HIGH VOLTAGE。

3. 各電路間電氣間隙(空間距離):(1) 一次側交流部分: 保險絲前L-N≧2..5mmL.N↔大地(PE)≧2. 5mm保險絲後不做要求.(2) 一次側交流對直流部分≧2mm(3) 一次側直流地對大地≧4mm(4) 一次側對二次側部分4mm(一二次側元件之間)(5) 二次側部分: 電壓低於100V≧0.5mm電壓高於100 V(6) 二次側地對大地≧1mm4. 各電路間的爬電距離:(1) 一次側交流電部分: 保險絲前L-N≧2..5mmL.N↔大地(PE)≧2. 5mm保險絲後不做要求.(2) 一次側交流對直流部分≧2mm(3) 一次側直流地對大地≧4mm(4) 一次側對二次側≧6.4mm光耦,Y電容,腳間距≦6.4時要開槽。

(5) 二次側部分之間:電壓低於100V時≧0.5mm; 電壓高於100V時,按電壓計算。

(6) 二次側對大地≧2mm.(7) 變壓器二次側之間≧8mm5. 導線與PCB邊緣距離應≧1mm6. PCB上的導電部分與機殼之空間距離小於4 mm時, 應加0.4 mm麥拉片。

开关电源Layout:记住这5大规则就够了!

开关电源Layout:记住这5大规则就够了!

开关电源Layout:记住这5大规则就够了!引言PCB Layout是开关电源研发过程中的极为重要的步骤和环节,关系到开关电源能否正常工作,生产是否顺利进行,使用是否安全等问题。

开关电源PCB Layout比起其它产品PCB Layout来说都要复杂和困难,要考虑的问题要多得多,归纳起来主要有以下几个方面的要求:一、电路要求1PCB 中的元器件必须与BOM一致。

2线条走线必须符合原理图,利用网络联机可以轻做到这一点。

3线条宽度必须满足最大电流要求,不得小于1mm/1A,以保证线条温升不超过70℃.为了减少电压降有时还必须加宽宽度。

4为了减小电压降和损耗,视需要在线条上镀锡。

二、安规要求1一次侧和二次侧电路要用隔离带隔开,隔离带清晰明确. 靠隔离带的组件,在10N的推力作用下应保持电气距离要求。

2 隔离带中线要用1mm的丝印虚线隔开,并在高压区标识DANGER / HIGH VOLTAGE。

3各电路间电气间隙(空间距离):(1) 一次侧交流部分:保险丝前 L-N≧2..5mmL.N↔大地(PE) ≧2. 5mm保险丝后不做要求.(2) 一次侧交流对直流部分≧2mm(3) 一次侧直流地对大地≧4mm(4) 一次侧对二次侧部分4mm(一二次侧组件之间)(5) 二次侧部分:电压低于100V≧0.5mm电压高于100V≧1.0mm(6) 二次侧地对大地≧1mm5各电路间的爬电距离:(1) 一次侧交流电部分:保险丝前 L-N≧2..5mmL.N↔大地(PE) ≧2. 5mm保险丝后不做要求.(2) 一次侧交流对直流部分≧2mm(3) 一次侧直流地对大地≧4mm(4) 一次侧对二次侧≧6.4mm光耦,Y电容,脚间距≦6.4时要开槽。

(5) 二次侧部分之间:电压低于100V时≧0.5mm; 电压高于100V时,按电压计算。

(6) 二次侧对大地≧2mm.(7) 变压器二次侧之间≧8mm5导线与PCB边缘距离应≧1mm6PCB上的导电部分与机壳之空间距离小于4 mm时, 应加0.4 mm 麦拉片。

PCBLAYOUT原则

PCBLAYOUT原则

PCBLAYOUT原则PCB(Printed Circuit Board)的设计是电子产品中至关重要的一环,它决定了电路板的性能、可靠性和制造成本。

PCB LAYOUT是指将电路元件在电路板上进行布局安放的过程。

在进行PCB LAYOUT时,需要遵循一些原则,以确保电路板能够正常工作,并且易于制造和维护。

下面是一些重要的PCB LAYOUT原则:1.分隔地面层和信号层:为了减少信号串扰和电磁干扰,地面层和信号层应该被完全分隔开。

通过在PCB上使用地面层和电源层来分割信号层,并使用良好的接地技术,可以有效地减少信号串扰和电磁干扰。

2.保持信号走线短而直:尽量使信号线的长度保持短而直,可以减少信号的传输延迟和损耗,提高电路的性能。

此外,短而直的信号线也更不容易受到外界电磁干扰。

3.保持信号层平衡:当在多层PCB上进行布局时,尽量使各层的信号密度和走线长度保持平衡。

过于拥挤的信号层可能会导致信号串扰和电磁干扰,而过于稀疏的信号层可能会导致电路性能下降。

4.尽量减少过孔:过孔是连接不同层的重要组成部分,但它们会导致信号串扰和电磁干扰。

因此,在进行PCBLAYOUT时,应尽量减少过孔的数量,并合理安排其位置。

5.避免较窄的走线和间距:较窄的走线和间距可能会导致电磁干扰、屏蔽效果不好以及制造成本增加。

因此,在进行PCB设计时,应尽量避免使用较窄的走线和间距。

6.定义合适的信号和电源地区:将电路板划分为信号区、电源区和地区是PCBLAYOUT中的关键步骤。

信号区和电源区应分别位于电路板的不同部分,并通过地区作为连接。

这样可以减少信号串扰和电磁干扰,并提高电路板的可靠性。

7.优化散热设计:对于功耗较大的电路,应设计合适的散热系统,以确保电路能够正常工作。

散热系统的设计应考虑到电路板的材料、布局和环境等因素。

8.合理安放元件:在进行PCBLAYOUT时,应合理安放元件,以提高电路的可靠性和维护性。

元件之间的间距应足够大,以便于维护和测试。

开关电源pcb设计规则

开关电源pcb设计规则

开关电源PCB设计规则1. 概述开关电源是一种能将电能从一种形式转换为另一种形式的电源,广泛应用于电子设备中。

PCB(Printed Circuit Board)设计是开关电源设计中的核心环节之一,合理的PCB设计可以提高开关电源的性能和可靠性。

本文将详细介绍开关电源PCB设计的规则和注意事项。

2. PCB尺寸和层数2.1 尺寸PCB尺寸的选择应根据实际应用需求来确定,同时要考虑到安装空间和成本因素。

一般情况下,尽量选择较小的尺寸,以减小电磁干扰和噪声。

2.2 层数开关电源PCB的层数一般选择2到4层,根据电路复杂度和成本因素进行选择。

较复杂的开关电源电路可以选择4层,以提高信号完整性和电磁兼容性。

3. 元件布局3.1 输入和输出电源布局输入和输出电源应尽量分开布局,避免相互干扰。

输入电源和输出电源之间应设置隔离区域,以减小噪声的传导。

3.2 元件布局原则元件的布局应遵循以下原则: - 尽量缩短信号和电源线的长度,减小电磁干扰。

- 尽量减小元件之间的距离,减小电路的阻抗。

- 保持元件的对称布局,提高电路的稳定性。

- 避免元件之间的交叉布线,减小串扰。

3.3 热点元件布局对于发热较大的元件(如功率管、变压器等),应考虑合理的散热布局。

将这些元件放置在PCB的边缘位置,便于散热和维护。

4. 线路布线4.1 信号和电源线的布线信号线和电源线应分开布线,避免相互干扰。

尽量使用直线布线,减小电磁辐射。

对于高频信号线,应尽量采用短而粗的线路,以降低阻抗。

4.2 地线布线地线是开关电源PCB设计中非常重要的一部分。

地线应尽量宽且短,以减小地线的阻抗。

在布线时,要避免地线与信号线、电源线交叉,减小串扰。

4.3 电源线布线电源线应尽量宽,以降低线路的阻抗。

在布线时,要避免电源线与信号线、地线交叉,减小干扰。

4.4 传输线布线对于高速传输线,应采用差分线布线,以提高抗干扰能力。

差分线应保持相等的长度,并且布线要避免与其他线路交叉。

开关电源PCB-Layout一般要求

开关电源PCB-Layout一般要求

开关电源PCB-Layout一般要求————————————————————————————————作者:————————————————————————————————日期:开关电源PCB Layout一般要求PCB Layout是开关电源研发过程中的极为重要的步骤和环节,关系到开关电源能否正常工作,生产是否顺利进行,使用是否安全等问题。

开关电源PCB Layout比起其它产品PCB Layout来说都要复杂和困难,要考虑的问题要多得多,归纳起来主要有以下几个方面的要求:一.电路要求1.PCB 中的元器件必须与BOM一致。

2.线条走线必须符合原理图,利用网络联机可以轻做到这一点。

3.线条宽度必须满足最大电流要求,不得小于1mm/1A,以保证线条温升不超过℃.为了减少电压降有时还必须加宽宽度。

4.为了减小电压降和损耗,视需要在线条上镀锡。

二.安规要求1. 一次侧和二次侧电路要用隔离带隔开,隔离带清晰明确. 靠隔离带的组件,在10N的推力作用下应保持电气距离要求。

2. 隔离带中线要用1mm的丝印虚线隔开,并在高压区标识DANGER / HIGHVOLTAGE。

3. 各电路间电气间隙(空间距离):(1) 一次侧交流部分: 保险丝前L-N≧2..5mmL.N↔大地(PE)≧2. 5mm保险丝后不做要求.(2) 一次侧交流对直流部分≧2mm(3) 一次侧直流地对大地≧4mm(4) 一次侧对二次侧部分4mm(一二次侧组件之间)(5) 二次侧部分: 电压低于100V≧0.5mm电压高于100 V(6) 二次侧地对大地≧1mm4. 各电路间的爬电距离:(1) 一次侧交流电部分: 保险丝前L-N≧2..5mmL.N↔大地(PE)≧2. 5mm保险丝后不做要求.(2) 一次侧交流对直流部分≧2mm(3) 一次侧直流地对大地≧4mm(4) 一次侧对二次侧≧6.4mm光耦,Y电容,脚间距≦6.4时要开槽。

(5) 二次侧部分之间:电压低于100V时≧0.5mm; 电压高于100V时,按电压计算。

开关电源PCBLAYOUT原则概述

开关电源PCBLAYOUT原则概述

开关电源PCBLAYOUT原则概述-----------------------作者:-----------------------日期:开关电源PCB_LAYOUT原则1.0目的:规范PCB的设计思路,保证和提高PCB的设计质量。

2.0适用范围:适用于PCB Layout.3.0具体内容:(1) A:Layout 部分…………………………………………………………2-19(2) B:工艺处理部分………………………………………………………20-23(3) C:检查部分……………………………………………………………24-25(4) D:安规作业部分………………………………………………………26-322、滤波电容尽量贴近开关管或整流二极管如上图二,C1尽量靠近Q1,C3靠近D1等3、脉冲电流流过的区域远离输入、输出端子,使噪声源和输入、输出口分离,如A105。

图三图三:MOS管、变压器离入口太近,EMI传导通不过。

图四图四:MOS管、变压器远离入口,EMI传导能通过。

4、控制回路与功率回路分开,采用单点接地方式,如图五。

图五1、3842、3843、2843、2842IC周围的元件接地接至IC的地脚(第5脚);再从第5脚引出至大电容地线。

2、光耦第3脚地接到IC的第2 脚,第2脚接至IC的5脚上。

图六5、必要时可以将输出滤波电感安置在地回路上。

6、用多只ESR低的电容并联滤波。

7、用铜箔进行低感、低阻配线,相邻之间不应有过长的平行线,走线尽量避免平行、交叉用垂直方式,线宽不要突变,走线不要突然拐角(即:≤直角)。

B、抗干扰要求1、尽可能缩短高频元器件之间连线,设法减少它们的分布参数和相互间电磁干扰,易受干扰的元器件不能和强干扰器件相互挨得太近,输入输出元件尽量远离。

2、某些元器件或导线之间可能有较高电位差,应加大它们之间的距离,以免放电引出意外短路。

图三图四(d)、散热器接地多数也采用单点接地,提高噪声抑制能力如A166,更改前:走线问题:功率走线尽量实现最短化,以减少环路所包围的面积,避免干扰。

开关电源PCBLAY原则

开关电源PCBLAY原则

开关电源PCBLAY原则在当代电子产品的制造中,开关电源无疑是一种非常重要且广泛应用的电源。

无论是消费电子、通讯设备还是计算机硬件,几乎所有设备都需要使用开关电源。

而电源的核心部分就是PCB电路板,它在开关电源中占据着至关重要的地位。

本文将系统介绍开关电源PCB层的设计原则。

PCB电路板设计中的原则在进行PCB层设计之前,我们需要掌握一些基本原则。

首先是排布原则,这个原则主要是指将电子元件合理地排布在电路板上。

在排布电子元件时,我们需要注意不同元件之间的距离,以及元件之间的连线。

其次原则是连线原则,它包括连线路径和连线宽度等内容。

由于开关电源中需要传输的电流比较大,因此连线的宽度应该足够宽,从而保证电源传输的效率。

在开关电源的PCB层设计过程中,还需要注意一些特殊的原则。

首先是地面和电源面的布置。

由于开关电源中含有高达数十甚至上百个晶体管,因此在布置地面和电源面时需要非常小心,以确保整个电源系统地位的稳定性。

其次是电源芯片的布置,电源芯片通常被布置在电源板的中心位置,这样可以对热量进行比较均匀的散热处理。

实际操作中,我们可以通过采用一些专业软件(比如EAGLE、PADS等)来完成开关电源PCB层的设计。

这些软件都拥有丰富的PCB电路板设计工具,以及检测和优化机制,可以帮助设计师快速地完成电路板设计。

关于开关电源PCB层的设计思路在进行开关电源PCB层设计时,我们需要明确不同电子元件之间的布局和互相之间的传输关系。

开关电源通常由输入滤波器、电感、电源芯片、输出滤波器、电容和二极管等几个主要元件组成。

这些元件之间的关系必须清晰明了,以便保证电源能够稳定供电。

在完成最初的PCB层设计后,我们还需要进行各种实验和测试,以确保电源工作正常。

实验和测试过程中需要注意以下几个方面:1)实测电源的纹波情况2)测试电源的温度变化3)通过示波器等仪器观察输出波形情况通过这些实验和测试,可以更加全面地了解开关电源的工作情况,从而了解到电源PCB层的设计存在哪些问题,并进行相应的优化处理。

开关电源pcb布线规则和技巧

开关电源pcb布线规则和技巧

开关电源pcb布线规则和技巧开关电源pcb布线规则和技巧开关电源是一种常用的电源类型,其使用广泛,如计算机、通信设备、家用电器等。

在设计开关电源时,合理的pcb布线是至关重要的。

下面介绍一些开关电源pcb布线的规则和技巧。

1. 保持信号传输路径短在布线时,应尽量缩短信号传输路径,减少信号传输过程中的干扰和损耗。

同时,在同一层内布置输入输出端口,并采用直接相连的方式进行连接。

2. 分离高频和低频信号开关电源中存在高频和低频信号,这些信号在传输过程中可能会产生互相干扰。

因此,在布线时应将高频和低频信号分离,并采用不同的层次进行布置。

3. 采用地平面地平面是一种有效减少干扰的方法。

在开关电源pcb设计中,应采用地平面,并将其与各个模块之间进行连接。

4. 避免回流现象回流现象是指当高速电流通过一个导体时,在导体两端产生感应电压并形成反向流动现象。

这种现象会导致噪声和干扰等问题。

为避免回流现象,在布线时应尽量避免导体走直线,而采用缓慢弯曲的方式进行布置。

5. 保持信号对称性在布线时,应保持信号对称性,即将输入和输出端口放置在同一侧,并采用相同的长度和宽度进行连接。

这样可以有效减少信号传输过程中的干扰和损耗。

6. 降低电感电感是一种常见的干扰源,会对开关电源的性能产生影响。

因此,在布线时应尽量降低电感,并采用短而宽的导体进行连接。

7. 避免共模干扰共模干扰是指两个信号共同受到噪声或干扰。

为避免共模干扰,在布线时应将各个信号分离,并采用不同的层次进行连接。

8. 保持距离在布线时,应保持各个元件之间的距离,以避免互相干扰。

同时,在不同层次之间也应保持一定距离,并采用合适的连接方式进行连接。

以上就是开关电源pcb布线规则和技巧的介绍。

合理的pcb布线可以有效提升开关电源的性能和稳定性,同时也可以减少噪声和干扰等问题。

因此,在设计开关电源时应重视pcb布线的规划和设计。

开关电源pcb设计规则

开关电源pcb设计规则

开关电源pcb设计规则什么是开关电源pcb设计规则?开关电源pcb设计规则是在开关电源电路设计中,遵循的一系列准则和规定,旨在确保电路的性能、稳定性、可靠性和安全性。

通过遵循这些规则,设计师可以提高电源的效率,降低功耗,减少电磁干扰,并确保电源在各种工作条件下都能正常运行。

一、布局设计规则1.1 确定器件的布局:开关电源pcb设计应将不同功率和功能的器件分隔开,以降低相互之间的干扰和损耗。

1.2 确定输入和输出电源轨的布局:将输入和输出电源轨远离彼此,并使用合适的屏蔽方法,以减少电磁干扰。

1.3 确定高功率和低功率部分之间的布局:将高功率部分和低功率部分分隔开,避免相互干扰。

1.4 确定散热部件的布局:将散热部件放置在电流流过的区域,并确保其可以有效散热。

1.5 确定负载布局:将负载电阻或负载器件放置在电路板上离开其他器件的位置,以减少干扰。

二、电源轨和地的布线规则2.1 确定输入和输出电源轨的宽度:根据负载电流和线路长度,适当增加电源轨的宽度,以降低电压降和功耗。

2.2 分离输入和输出电源轨:输入和输出电源轨应该分隔并远离彼此,以避免干扰。

2.3 构建地平面:设计一个统一的地平面,以确保信号和电源轨的地返回流平衡。

2.4 地线的布线方式:使用宽而短的地线,减少地回路的电感和电阻。

2.5 输入和输出电源轨的降噪:在电源轨上加装适当的降噪电容和电感,以滤除高频噪声。

三、滤波和降噪规则3.1 输入滤波网络:为了减少电源干扰以及滤除高频噪声,应在输入端添加适当的滤波网络。

3.2 输出滤波网络:为了减少输出端的纹波和噪声,应添加合适的滤波电容和电感。

3.3 降低连接线的电感:使用短而宽的连接线,并使用合适的屏蔽以减小电感。

3.4 适当的接地:地线的抗干扰能力对开关电源的稳定性至关重要,应遵循良好的接地规则,减少地线回流电流对其它信号的干扰。

四、散热设计规则4.1 热量产生与传导:对于高功率的开关电源,应设计出合理的散热系统,以确保器件和电路板不会过热。

5.开关电源Buck的PCBlayout技巧

5.开关电源Buck的PCBlayout技巧

5.开关电源Buck的PCBlayout技巧一、综述(1)开关电源主要拓扑结构:降压(BUCK)、升压(BOOST)、升降压(BUCK-BOOST)。

二、电流的信号流向(1)1-a中的红色线表示的是当Q1打开时整个电流信号的流向。

CBYPASS是滤除高频信号的去耦电容,而CIN则是大电容,一般用来存储电量,防止浪涌电流的产生。

(2)1-b中的红色线表示的是当开关管Q1关断时的电流流向。

此时续流二极管D1导通,此时存储在电感L中的能量通过D1来释放。

(3)1-c中的红色线显示了图1-a和1-b中两者电流路径的不同的地方。

每次开关管由ON变化到OFF或者由OFF变化到ON的时候,这条红色线上的电流会产生剧烈的变化,这些剧烈的变化会产生相应的谐波,而这些谐波就有可能产生EMC的问题,所以在布线时,整个红色线上的走线应特别注意。

三、BUCK开关电源的PCB layout的注意事项(1)将输入端的电容和续流二极管放置同一个PCB板的表面,且尽量靠近IC的响应引脚端。

(2)为了提高热传导的效率,加入散热过孔。

(3)将电感就近布置与IC旁边,不用靠近输入端的电容。

(4)将输出端的电容靠近电感布置。

(5)保证走线的回流路径应远离易产生噪声的区域,如电感以及续流二极管。

四、输入端电容和续流二极管的layout(1)3-a显示了输入电容的合理的布局方式,将去耦电容CBYPASS就近IC端子布置。

(2)有时候出于空间等考虑,大的旁路电容CBYPASS不得不布局在远离去耦电容CIN,但是如此一来会产生比较严重的脉动电流,具体如图3-b所示。

不推荐(3)同样有时候出于布局的考虑,大的旁路电容CBYPASS和去耦电容CIN不得不布置在不同的平面上,如图3-c,可以将CIN布置在底层,而CBYPAS和IC布置在顶层。

虽然这样子可以避免噪音的影响,但是由于过孔寄生电阻的存在,在高电流的情况下很产生很大的纹波电压。

不推荐(4)如果将CIN、CBYPASS布置同一层,但是与IC不在同一层,如此一来就意味着需要打两个过孔,而过孔过多,其寄生电感就会很大,如此一来很有可能因为寄生电感的存在而引入噪声,这样的布局是不合理的,具体如图3-d所示。

DCDC开关电源Layout讲的明明白白,收藏这篇就够了

DCDC开关电源Layout讲的明明白白,收藏这篇就够了

DCDC开关电源Layout讲的明明白白,收藏这篇就够了关于Buck和Boost的,我已经写了几篇,不过很少提到PCB Layout,这篇就说说PCB Layout。

很多DCDC芯片的手册都有对应的PCB Layout设计要求,有些还会提供一些Layout示意图,都是大同小异的。

比如我随便列几点buck的设计要点:1、输入电容器和二极管在与IC相同的面,尽可能在IC最近处。

2、电感靠近芯片的SW,输出电容靠近电感放置。

3、反馈回路远离电感,SW和二极管等噪声源。

那你知道这些要点都是怎么来的吗?如果拿到一个具体的芯片,因为芯片管脚分布的问题,可能这些条件不能同时满足,那什么办?到底孰轻孰重?举个Buck的例子比如下面这个buck,它的管脚分布就不好。

SW在IN和GND之间,如果按照要点,直接将输入滤波电容放到IN和GND旁边,那么SW的信号就出不来,而电感也要求放在芯片旁边,这就矛盾了。

那我们看看这个芯片手册推荐的Layout芯片手册推荐的layout倒是都就近放置了,但是它的方法是SW 在输入滤波电容底下走线,这是逗我吗?这在现实中能做到?我们不能采用芯片手册推荐的这种方式,但事实是这种管脚分布的芯片多得是,那我们的Layout如何布局布线呢?这个问题先不回答,我给大家说一个最根本的方法:DCDC的Layout终极奥义——心中有环心中有环“环”,指的是有大电流流过的闭合回路。

我们只要控制好这个环,Layout基本就成功一大半了。

下面来看为什么以BUCK为例,BUCK电路存在两个状态,上管导通和下管(或者是二极管)导通,因此存在两个大的电流环路。

知道这两个环路有什么用呢?我们要让这两个环路的面积越小越好,因为每一个电流环都可以看成是一个环路天线,会产生辐射,会引起EMI问题,也会干扰板上其它的电路,而辐射的大小与环路面积呈正比。

电流环所生成的高频磁场会在离开环路大约0.16λ 以后逐渐转换为电磁场,由此形成的场强大约为:可以看到,辐射的大小与环路的面积,频率的平方,电流的大小呈正比。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

开关电源PCB Layout设计原则中心议题:开关电源印制板布线原则开关电源印制板铜皮走线的一些事项开关电源印制板大电流走线的处理反激电源反射电压的一个确定因素解决方案:铝基板在开关电源中的应用多层印制板在开关电源电路中的应用一、引言开关电源是一种电压转换电路,主要的工作内容是升压和降压,广泛应用于现代电子产品。

因为开关三极管总是工作在“开” 和“关” 的状态,所以叫开关电源。

开关电源实质就是一个振荡电路,这种转换电能的方式,不仅应用在电源电路,在其它的电路应用也很普遍,如液晶显示器的背光电路、日光灯等。

开关电源与变压器相比具有效率高、稳性好、体积小等优点,缺点是功率相对较小,而且会对电路产生高频干扰,变压器反馈式振荡电路,能产生有规律的脉冲电流或电压的电路叫振荡电路,变压器反馈式振荡电路就是能满足这种条件的电路。

开关电源分为,隔离与非隔离两种形式,在这里主要谈一谈隔离式开关电源的拓扑形式,在下文中,非特别说明,均指隔离电源。

隔离电源按照结构形式不同,可分为两大类:正激式和反激式。

反激式指在变压器原边导通时副边截止,变压器储能。

原边截止时,副边导通,能量释放到负载的工作状态,一般常规反激式电源单管多,双管的不常见。

正激式指在变压器原边导通同时副边感应出对应电压输出到负载,能量通过变压器直接传递。

按规格又可分为常规正激,包括单管正激,双管正激。

半桥、桥式电路都属于正激电路。

正激和反激电路各有其特点,在设计电路的过程中为达到最优性价比,可以灵活运用。

一般在小功率场合可选用反激式。

稍微大一些可采用单管正激电路,中等功率可采用双管正激电路或半桥电路,低电压时采用推挽电路,与半桥工作状态相同。

大功率输出,一般采用桥式电路,低压也可采用推挽电路。

反激式电源因其结构简单,省掉了一个和变压器体积大小差不多的电感,而在中小功率电源中得到广泛的应用。

在有些介绍中讲到反激式电源功率只能做到几十瓦,输出功率超过100瓦就没有优势,实现起来有难度。

本人认为一般情况下是这样的,但也不能一概而论,PI公司的TOP芯片就可做到300瓦,有文章介绍反激电源可做到上千瓦,但没见过实物。

输出功率大小与输出电压高低有关。

反激电源变压器漏感是一个非常关键的参数,由于反激电源需要变压器储存能量,要使变压器铁芯得到充分利用,一般都要在磁路中开气隙,其目的是改变铁芯磁滞回线的斜率,使变压器能够承受大的脉冲电流冲击,而不至于铁芯进入饱和非线形状态,磁路中气隙处于高磁阻状态,在磁路中产生漏磁远大于完全闭合磁路。

脉冲电压连线尽可能短,其中输入开关管到变压器连线,输出变压器到整流管连接线。

脉冲电流环路尽可能小如输入滤波电容正到变压器到开关管返回电容负。

输出部分变压器出端到整流管到输出电感到输出电容返回变压器电路中X电容要尽量接近开关电源输入端,输入线应避免与其他电路平行,应避开。

Y电容应放置在机壳接地端子或FG连接端。

共摸电感应与变压器保持一定距离,以避免磁偶合。

输出电容一般可采用两只一只靠近整流管另一只应靠近输出端子,可影响电源输出纹波指标,两只小容量电容并联效果应优于用一只大容量电容。

发热器件要和电解电容保持一定距离,以延长整机寿命,电解电容是开关电源寿命的瓶劲,如变压器、功率管、大功率电阻要和电解保持距离,电解之间也须留出散热空间,条件允许可将其放置在进风口。

二、印制板布线的一些原则印制板设计时,要考虑到干扰对系统的影响,将电路的模拟部分和数字部分的电路严格分开,对核心电路重点防护,将系统地线环绕,并布线尽可能粗,电源增加滤波电路,采用DC-DC隔离,信号采用光电隔离,设计隔离电源,分析容易产生干扰的部分(如时钟电路、通讯电路等)和容易被干扰的部分(如模拟采样电路等),对这两种类型的电路分别采取措施。

对于干扰元件采取抑制措施,对敏感元件采取隔离和保护措施,并且将它们在空间和电气上拉开距离。

在板级设计时,还要注意元器件放置要远离印制板边沿,这对防护空气放电是有利的。

线间距:随着印制线路板制造工艺的不断完善和提高,一般加工厂制造出线间距等于甚至小于0.1mm已经不存在什么问题,完全能够满足大多数应用场合。

考虑到开关电源所采用的元器件及生产工艺,一般双面板最小线间距设为0.3mm,单面板最小线间距设为0.5mm,焊盘与焊盘、焊盘与过孔或过孔与过孔,最小间距设为0.5mm,可避免在焊接操作过程中出现“桥接”现象。

,这样大多数制板厂都能够很轻松满足生产要求,并可以把成品率控制得非常高,亦可实现合理的布线密度及有一个较经济的成本。

最小线间距只适合信号控制电路和电压低于63V的低压电路,当线间电压大于该值时一般可按照500V/1mm经验值取线间距。

方法一:上文提到的线路板开槽的方法适用于一些间距不够的场合,顺便提一下,该法也常用来作为保护放电间隙,常见于电视机显象管尾板和电源交流输入处。

该法在模块电源中得到了广泛的应用,在灌封的条件下可获得很好的效果。

方法二:垫绝缘纸,可采用青壳纸、聚脂膜、聚四氟乙烯定向膜等绝缘材料。

一般通用电源用青壳纸或聚脂膜垫在线路板于金属机壳间,这种材料有机械强度高,有有一定抗潮湿的能力。

聚四氟乙烯定向膜由于具有耐高温的特性在模块电源中得到广泛的应用。

在元件和周围导体间也可垫绝缘薄膜来提高绝缘抗电性能。

铝基板由其本身构造,具有以下特点:导热性能非常优良、单面缚铜、器件只能放置在缚铜面、不能开电器连线孔所以不能按照单面板那样放置跳线。

铝基板上一般都放置贴片器件,开关管,输出整流管通过基板把热量传导出去,热阻很低,可取得较高可靠性。

变压器采用平面贴片结构,也可通过基板散热,其温升比常规要低,同样规格变压器采用铝基板结构可得到较大的输出功率。

铝基板跳线可以采用搭桥的方式处理。

铝基板电源一般由由两块印制板组成,另外一块板放置控制电路,两块板之间通过物理连接合成一体。

由于铝基板优良的导热性,在小量手工焊接时比较困难,焊料冷却过快,容易出现问题现有一个简单实用的方法,将一个烫衣服的普通电熨斗(最好有调温功能),翻过来,熨烫面向上,固定好,温度调到150℃左右,把铝基板放在熨斗上面,加温一段时间,然后按照常规方法将元件贴上并焊接,熨斗温度以器件易于焊接为宜,太高有可能时器件损坏,甚至铝基板铜皮剥离,温度太低焊接效果不好,要灵活掌握。

三、印制板铜皮走线的一些事项走线电流密度:现在多数电子线路采用绝缘板缚铜构成。

常用线路板铜皮厚度为35μm,走线可按照1A/mm经验值取电流密度值,具体计算可参见教科书。

为保证走线机械强度原则线宽应大于或等于0.3mm。

铜皮厚度为70μm 线路板也常见于开关电源,那么电流密度可更高些。

模块电源行列也有部分产品采用多层板,主要便于集成变压器电感等功率器件,优化接线、功率管散热等。

具有工艺美观一致性好,变压器散热好的优点,但其缺点是成本较高,灵活性较差,仅适合于工业化大规模生产。

单面板,市场流通通用开关电源几乎都采用了单面线路板,其具有低成本的优势,在设计,及生产工艺上采取一些措施亦可确保其性能。

为保证良好的焊接机械结构性能,单面板焊盘应稍微大一些,以确保铜皮和基板的良好缚着力,而不至于受到震动时铜皮剥离、断脱。

一般焊环宽度应大于0.3mm。

焊盘孔直径应略大于器件引脚直径,但不宜过大,保证管脚与焊盘间由焊锡连接距离最短,盘孔大小以不妨碍正常查件为度,焊盘孔直径一般大于管脚直径0.1-0.2mm。

多引脚器件为保证顺利查件,也可更大一些。

单面板上元器件应紧贴线路板。

需要架空散热的器件,要在器件与线路板之间的管脚上加套管,可起到支撑器件和增加绝缘的双重作用,要最大限度减少或避免外力冲击对焊盘与管脚连接处造成的影响,增强焊接的牢固性。

线路板上重量较大的部件可增加支撑连接点,可加强与线路板间连接强度,如变压器,功率器件散热器。

双面板焊盘由于孔已作金属化处理强度较高,焊环可比单面板小一些,焊盘孔孔径可比管脚直径略微大一些,因为在焊接过程中有利于焊锡溶液通过焊孔渗透到顶层焊盘,以增加焊接可靠性。

四、大电流走线的处理线宽可按照前帖处理,如宽度不够,一般可采用在走线上镀锡增加厚度进行解决,其方法有好多种。

1. 将走线设置成焊盘属性,这样在线路板制造时该走线不会被阻焊剂覆盖,热风整平时会被镀上锡。

2. 在布线处放置焊盘,将该焊盘设置成需要走线的形状,要注意把焊盘孔设置为零。

3. 在阻焊层放置线,此方法最灵活,但不是所有线路板生产商都会明白你的意图,需用文字说明。

在阻焊层放置线的部位会不涂阻焊剂线路镀锡的几种方法如上。

一般可采用细长条镀锡宽度在1~1.5mm,长度可根据线路来确定,镀锡部分间隔0.5~1mm 双面线路板为布局、走线提供了很大的选择性,可使布线更趋于合理。

关于接地,功率地与信号地一定要分开,两个地可在滤波电容处汇合,以避免大脉冲电流通过信号地连线而导致出现不稳定的意外因素,信号控制回路尽量采用一点接地法。

电压反馈取样,为避免大电流通过走线的影响,反馈电压的取样点一定要放在电源输出最末梢,以提高整机负载效应指标。

走线从一个布线层变到另外一个布线层一般用过孔连通,不宜通过器件管脚焊盘实现,因为在插装器件时有可能破坏这种连接关系,还有在每1A电流通过时,至少应有2个过孔,过孔孔径原则要大于0.5mm,一般0.8mm可确保加工可靠性。

五、铝基板在开关电源中的应用和多层印制板在开关电源电路中的应用铝基板(金属基散热板(包含铝基板,铜基板,铁基板))是一种独特的金属基覆铜板,它具有良好的导热性、电气绝缘性能和机械加工性能。

铝基覆铜板是一种金属线路板材料、由铜箔、导热绝缘层及金属基板组成,它的结构分三层:yer线路层:相当于普通PCB的覆铜板,线路铜箔厚度loz至10oz。

DielcctricLayer绝缘层:绝缘层是一层低热阻导热绝缘材料。

厚度为:0.003“至0.006”英寸是铝基覆铜板的核心技术所在,已获得UL认证。

BaseLayer基层是金属基板,一般是铝或可所选择铜。

铝基覆铜板和传统的环氧玻璃布层压板等,目前市场上主流的是福斯莱特铝基板。

电路层(即铜箔)通常经过蚀刻形成印刷电路,使组件的各个部件相互连接,一般情况下,电路层要求具有很大的载流能力,从而应使用较厚的铜箔,厚度一般35μm~280μm;导热绝缘层是铝基板核心技术之所在,它一般是由特种陶瓷填充的特殊的聚合物构成,热阻小,粘弹性能优良,具有抗热老化的能力,能够承受机械及热应力。

该公司生产的高性能铝基板的导热绝缘层正是使用了此种技术,使其具有极为优良的导热性能和高强度的电气绝缘性能;金属基层是铝基板的支撑构件,要求具有高导热性,一般是铝板,也可使用铜板(其中铜板能够提供更好的导热性),适合于钻孔、冲剪及切割等常规机械加工。

相关文档
最新文档