《创新设计 高考总复习》高考数学( 全国专用)一轮复习:易失分点清零(二)函数的概念、图象和性质

合集下载

创新设计高考总复习数学人教A版理科时PPT教案

创新设计高考总复习数学人教A版理科时PPT教案

A.(-∞,-1)
B.(-1,1)
C.(1,+∞)
D.(-∞,-1)∪(1,+∞)
解析 f′(x)=a((x12+-1x)2)2,令 f′(x)>0,解得-1<x<1,故 f(x)的单调递增区间是(-1,
1).
答案 B
基础诊 断
考点突 破
@《创新设 计》
4.(2017·全国Ⅱ卷)若x=-2是函数f(x)=(x2+ax-1)·ex-1的极
@《创新设 计》
基础诊 断
考点突 破
@《创新设 计》
规律方法 1.已知函数的单调性,求参数的取值范围,应用条件 f′(x)≥0(或f′(x)≤0),x∈(a,b)恒成立,解出参数的取值范围(一 般可用不等式恒成立的理论求解),应注意参数的取值是f′(x)不 恒等于0的参数的范围. 2.若函数y=f(x)在区间(a,b)上不单调,则转化为f′(x)=0在(a, b)上有解.
基础诊 断
考点突 破
h′(x)=1x+176x-2=16+71x62x-32x=(7x-4)16(x x-4), ∵x∈[1,4], ∴h′(x)=(7x-4)16(x x-4)≤0, 当且仅当x=4时等号成立.(***) ∴h(x)在[1,4]上为减函数. 故实数 a 的取值范围是-176,+∞.
基础诊 断
考点突 破
@《创新设 计》
易错警示 (1)本例中,对特称命题理解不清,不能把第(1)问转化为1x-ax-2<0 有 解,难以得到不等式(*).错求 a 的取值范围.(2)错误理解“f(x)为减函数的充要条件是 对任意的 x∈(a,b)都有 f′(x)≤0,且在(a,b)内的任一非空子区间上 f′(x)不恒为 0”. 应注意此时式子中的等号不能省略,否则漏解.导致在第(2)问中(**)处易错求 h′(x)<0 恒成立,另外在(***)处容易忽视 a=-176进行检验.

[精品]【配套课件】《创新设计·高考一轮总复习》数学

[精品]【配套课件】《创新设计·高考一轮总复习》数学
(1)设 z=xy,求 z 的最小值; (2)设 z=x2+y2,求 z 的取值范围.
抓住2个考点
突破3个考向
揭秘3年高考
[解析]
由约束条件x3-x+4y5+y-3≤250≤,0, x≥1,
作出(x,y)的可行域如图所示.
抓住2个考点
突破3个考向
揭秘3年高考
由x3=x+1, 5y-25=0,
抓住2个考点
突破3个考向
揭秘3年高考
【训练3】 (2012·江西)某农户计划种植黄瓜和韭菜,种植 面积不超过50亩,投入资金不超过54万元,假设种植 黄瓜和韭菜的产量、成本和售价如下表
解得
A1,252

.

由xx= -14, y+3=0, 解得 C(1,1),
由x3-x+4y5+y-3= 25=0,0, 解得 B(5,2).
抓住2个考点
突破3个考向
揭秘3年高考
Hale Waihona Puke (1)∵z=yx=yx- -00.
∴z 的值即是可行域中的点与原点 O 连线的斜率.
观察图形可知 zmin=kOB=25.
抓住2个考点
突破3个考向
揭秘3年高考
【训练 2】 (2012·陕西)设函数 f(x)=-ln 2xx,-x1>,0x,≤0, D 是 由 x 轴和曲线 y=f(x)及该曲线在点(1,0)处的切线所围成的 封闭区域,则 z=x-2y 在 D 上的最大值为________. 解析 由题知在点(1,0)处的切线的斜率
抓住2个考点
突破3个考向
揭秘3年高考
x+y-1≥0, 【训练 1】 若不等式组x-1≤0,
ax-y+1≥0a为常数
面区域的面积等于 2,则 a 的值为

【创新设计】(江苏专用)高考数学一轮复习 第二章 第1讲 函数及其表示配套课件 理 新人教A版

【创新设计】(江苏专用)高考数学一轮复习 第二章 第1讲 函数及其表示配套课件 理 新人教A版

【训练3】 求下列函数的值域: (1)y=x2x-2-x+x 1;(2)y=2x-1- 13-4x. 解 (1)法一 (配方法)
∵y=1-x2-1x+1,又 x2-x+1=x-122+34≥34,
∴0<x2-1x+1≤43,∴-13≤y<1.
∴函数的值域为-13,1.
法二 (判别式法) 由 y=x2x-2-x+x 1,x∈R. 得(y-1)x2+(1-y)x+y=0. ∵y=1 时,x∈∅,∴y≠1.
考向一 函数与映射的概念
【例1】 (1)(2012·临沂调研)已知a,b为两个不相等的实 数,集合M={a2-4a,-1},N={b2-4b+1,-2}, f:x―→x表示把M中的元素x映射到集合N中仍为x, 则a+b等于________. (2)已知映射f:A―→B.其中A=B=R,对应关系f: x―→y=-x2+2x,对于实数k∈B,在集合A中不存在 元素与之对应,则k的取值范围是________.
又∵x∈R,∴Δ=(1-y)2-4y(y-1)≥0,解得-13≤y≤1. 综上得-13≤y<1.∴函数的值域为-13,1.
(2)法一 (换元法) 设 13-4x=t,则 t≥0,x=13-4 t2, 于是 f(x)=g(t)=2·13-4 t2-1-t =-12t2-t+121=-12(t+1)2+6, 显然函数 g(t)在[0,+∞)上是单调递减函数,
[方法总结] (1)当所给函数是分式的形式,且分子、分母是 同次的,可考虑用分离常数法;(2)若与二次函数有关, 可用配方法;(3)若函数解析式中含有根式,可考虑用换 元法或单调性法;(4)当函数解析式结构与基本不等式有 关,可考虑用基本不等式求解;(5)分段函数宜分段求 解;(6)当函数的图象易画出时,还可借助于图象求解.

《创新设计 高考总复习》2014届高考数学(人教B版 全国专用)一轮复习:易失分点清零(十一) 解析几何(一)

《创新设计 高考总复习》2014届高考数学(人教B版 全国专用)一轮复习:易失分点清零(十一)  解析几何(一)

易失分点清零(十一) 解析几何(一)1.若过点A (4,0)的直线l 与曲线(x -2)2+y 2=1有公共点,则直线l 的斜率的取值范围为( ).A .[-3,3]B .(-3,3) C.⎣⎢⎡⎦⎥⎤-33,33D.⎝ ⎛⎭⎪⎫-33,33解析 易知直线的斜率存在,设直线方程为y=k (x -4),即kx -y -4k =0,直线l 与曲线(x -2)2+y 2=1有公共点,圆心到直线的距离小于等于半径,d =⎪⎪⎪⎪⎪⎪2k -4k k 2+1≤1,得4k 2≤k 2+1,k 2≤13,解得-33≤k ≤33,故选C. 答案 C2.已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围为( ).A.⎣⎢⎡⎭⎪⎫0,π4 B.⎣⎢⎡⎭⎪⎫π4,π2 C.⎝ ⎛⎦⎥⎤π2,3π4D.⎣⎢⎡⎭⎪⎫3π4,π 解析 设曲线在点P 处的切线斜率为k ,则k =y ′=-4e x(1+e x )2=-4e x+1e x +2,因为e x >0,所以由均值不等式,得k ≥-42e x ×1e x +2.又k <0,所以-1≤k <0,即-1≤tan α<0.所以3π4≤α<π. 答案 D3.直线x-2y+1=0关于直线x=1对称的直线是().A.x+2y-1=0 B.2x+y-1=0C.2x+y-3=0 D.x+2y-3=0解析点(x,y)关于直线x=1的对称点为(2-x,y),2-x-2y+1=0⇒x+2y -3=0.答案 D4.圆(x+2)2+y2=5关于原点(0,0)对称的圆的方程为().A.(x-2)2+y2=5 B.x2+(y-2)2=5C.(x+2)2+(y+2)2=5 D.x2+(y+2)2=5解析根据圆自身的对称性,原圆心(-2,0)对称后的圆心(2,0),两圆为等圆,不同处在于圆心变化了,所以对称后圆的方程为(x-2)2+y2=5.答案 A5.已知圆的方程为(x-1)2+(y-1)2=9,点P(2,2)是该圆内一点,过点P的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积是().A.3 5 B.4 5 C.57 D.67解析依题意,知圆的最长弦为直径,最短弦为过点P且垂直于最长弦的弦,所以|AC|=2×3=6.又因为圆心到BD的距离为(2-1)2+(2-1)2=2,所以|BD|=232-(2)2=27.于是,四边形ABCD的面积为S=12×|AC|×|BD|=12×6×27=67.答案 D6.将直线2x-y+λ=0沿x轴向左平移1个单位,所得直线与圆x2+y2+2x-4y =0相切,则实数λ的值为().A.-3或7 B.-2或8C.0或10 D.1或11解析由题意,可知直线2x-y+λ=0沿x轴向左平移1个单位后的直线l为2(x+1)-y+λ=0.已知圆的圆心为O(-1,2),半径为 5.法一直线与圆相切,则圆心到直线的距离等于圆的半径,因而有|2×(-1+1)-2+λ|5=5,得λ=-3或7.法二设切点为C(x,y),则切点满足2(x+1)-y+λ=0,即y=2(x+1)+λ,代入圆的方程,整理得5x2+(2+4λ)x+(λ2-4)=0,(*)由直线与圆相切可知,(*)方程只有一个解,因而有Δ=0,得λ=-3或7.法三设平移后的直线l与圆相切的切点为C(x,y),由直线与圆相切,可知CO⊥l,因而斜率相乘得-1,即y-2x+1×2=-1,又因为C(x,y)在圆上,满足方程x2+y2+2x-4y=0,解得切点为(1,1)或(-3,3),又C(x,y)在直线2(x+1)-y+λ=0上,解得λ=-3或7.答案 A7.已知圆(x-a)2+(y-b)2=r2的圆心为抛物线y2=4x的焦点,且与直线3x+4y +2=0相切,则该圆的方程为().A.(x-1)2+y2=6425B.x2+(y-1)2=6425C.(x-1)2+y2=1 D.x2+(y-1)2=1解析因为抛物线y2=4x的焦点坐标为(1,0),所以a=1,b=0.又根据|3×1+4×0+2|32+42=1=r,所以圆的方程为(x-1)2+y2=1.答案 C8.若圆(x-3)2+(y+5)2=r2上有且仅有两个点到直线4x-3y-2=0的距离为1,则半径r的取值范围是().A.(4,6) B.[4,6) C.(4,6] D.[4,6]解析已知圆的圆心为(3,-5),圆心到直线的距离为5,由数形结合,易得r的取值范围是(4,6).答案 A9.(2013·兰州诊断)若直线mx+ny=4和⊙O:x2+y2=4没有交点,则过点(m,n)的直线与椭圆x29+y24=1的交点个数为().A.至多一个B.2 C.1 D.0解析 ∵直线mx +ny =4和⊙O :x 2+y 2=4没有交点,∴4m 2+n 2>2,∴m 2+n 2<4,∴m 29+n 24<m 29+4-m 24=1-536m 2<1,∴点(m ,n )在椭圆x 29+y 24=1的内部,∴过点(m ,n )的直线与椭圆x 29+y 24=1的交点有2个,故选B. 答案 B10.直线y =kx +3与圆(x -3)2+(y -2)2=4相交于M ,N 两点,若|MN |≥23,则k 的取值范围是( ).A.⎣⎢⎡⎭⎪⎫-34,0B.⎝ ⎛⎦⎥⎤-∞,-34∪[0,+∞) C.⎣⎢⎡⎦⎥⎤-33,33D.⎣⎢⎡⎦⎥⎤-23,0 解析 圆(x -3)2+(y -2)2=4的圆心(3,2)到直线y =kx +3的距离d =|3k +1|k 2+1,则弦MN 的长为|MN |=24-d 2=2 4-(3k +1)2k 2+1=2-5k 2-6k +3k 2+1≥23,解得k ∈⎣⎢⎡⎦⎥⎤-34,0.答案 A11.经过点A (3,2)且在两轴上截距相等的直线方程是________.解析 当直线过坐标原点时,直线方程为2x -3y =0;当直线不过坐标原点时,设直线在两坐标轴上的截距为a ,由3a +2a =1,得a =5,所以直线方程为x +y -5=0.答案 2x -3y =0或x +y -5=012.已知l 1:x +ay +6=0和l 2:(a -2)x +3y +2a =0,则l 1∥l 2的充要条件是________.解析 由l 1∥l 2知a (a -2)-3=0,解得a =3或a =-1. 检验当a =3时两直线重合,舍去.故a =-1. 答案 a =-113.已知直线2x sin α+2y -5=0,则该直线的倾斜角的变化范围是________.解析 由题意,得直线2x sin α+2y -5=0的斜率为k =-sin α. 又-1≤sin α≤1,所以-1≤k ≤1.当-1≤k <0时,倾斜角的变化范围是⎣⎢⎡⎭⎪⎫34π,π;当0≤k ≤1时,倾斜角的变化范围是⎣⎢⎡⎦⎥⎤0,π4.故直线的倾斜角的变化范围是⎣⎢⎡⎭⎪⎫34π,π∪⎣⎢⎡⎦⎥⎤0,π4. 答案 ⎣⎢⎡⎭⎪⎫34π,π∪⎣⎢⎡⎦⎥⎤0,π414.已知圆C 的圆心与抛物线y 2=4x 的焦点关于直线y =x 对称.直线4x -3y -2=0与圆C 相交于A ,B 两点,且|AB |=6,则圆C 的方程为________. 解析 抛物线y 2=4x 的焦点(1,0),圆C 的圆心与抛物线y 2=4x 的焦点关于直线y =x 对称,所以C (0,1).设圆C 的半径为r ,点C 到直线AB 的距离为d ,则d =1.因为|AB |=6,所以r 2=10.所以圆C 的方程为x 2+(y -1)2=10. 答案 x 2+(y -1)2=1015.已知抛物线y 2=4x 的焦点为F ,过F 作两条相互垂直的弦AB ,CD ,设弦AB ,CD 的中点分别为M ,N .求证:直线MN 恒过定点. 证明 由题设,知F (1,0),直线AB 的斜率存在且不为0, 设l AB :y =k (x -1)(k ≠0),代入y 2=4x ,得k 2x 2-2(k 2+2)x +k 2=0,得x M =x A +x B2=k 2+2k 2, 又y M =k (x M -1)=2k ,故M ⎝ ⎛⎭⎪⎫k 2+2k2,2k .因为CD ⊥AB ,所以k CD =-1k .以-1k 代k ,同理,可得N (2k 2+1,-2k ). 所以直线MN 的方程为⎝⎛⎭⎪⎫2k 2+1-k 2+2k 2(y +2k )=⎝ ⎛⎭⎪⎫-2k -2k (x -2k 2-1),化简整理,得yk 2+(x -3)k -y =0,该方程对任意k 恒成立,故⎩⎨⎧y =0,x -3=0,-y =0,解得⎩⎨⎧x =3,y =0.故不论k 为何值,直线MN 恒过定点(3,0).。

高三数学第一轮复习 高三数学第一轮复习(9篇)

高三数学第一轮复习 高三数学第一轮复习(9篇)

高三数学第一轮复习高三数学第一轮复习(9篇)复习应结合自己的实际,基本知识是学习的基础,复习阶段就不能只满足会背诵会证明,复习过程中特别注意对重点知识的掌握与解题方法的锻炼。

那么怎么规划好复习计划呢?以下是编辑给大家整编的9篇高三数学一轮复习,欢迎阅读,希望对大家有所帮助。

高三数学一轮复习计划篇一一。

背景分析近年来的高考数学试题逐步做到科学化、规范化,坚持了稳中求改、稳中创新的原则。

考试题不但坚持了考查全面,比例适当,布局合理的特点,也突出体现了变知识立意为能力立意这一举措。

更加注重考查考生进入高校学习所需的基本素养,这些问题应引起我们在教学中的关注和重视。

数学试卷充分发挥数学作为基础学科的作用,既重视考查中学数学基础知识的掌握程度,又注意考查进入高校继续学习的潜能。

在前二年命题工作的基础上做到了总体保持稳定,深化能力立意,积极改革创新,兼顾了数学基础、思想方法、思维、应用和潜能等多方面的考查,融入课程改革的理念,拓宽题材,选材多样化,宽角度、多视点地考查数学素养,多层次地考查思想能力,充分体现出湖南卷的特色:1 试题题型平稳突出对主干知识的考查重视对新增内容的考查2 充分考虑文、理科考生的思维水平与不同的学习要求,体现出良好的层次性3 重视对数学思想方法的考查4 深化能力立意,考查考生的学习潜能5 重视基础,以教材为本6 重视应用题设计,考查考生数学应用意识二、教学计划与要求新课已授完,高三将进入全面复习阶段,全年复习分两轮进行。

一轮为系统复习(一学期),此轮要求突出知识结构,扎实打好基础知识,全面落实考点,要做到每个知识点,方法点,能力点无一遗漏。

在此基础上,注意各部分知识点在各自发展过程中的纵向联系,以及各个部分之间的横向联系,理清脉络,抓住知识主干,构建知识网络。

在教学中重点抓好各中通性、通法以及常规方法的复习,是学生形成一些较基本的数学意识,掌握一些较基本的数学方法。

同时有意识进行一定的综合训练,先小综合再大综合,逐步提高学生解题能力。

《创新设计 高考总复习》高考数学(人教B版 全国专用)一轮复习:易失分点清零(一)

《创新设计 高考总复习》高考数学(人教B版 全国专用)一轮复习:易失分点清零(一)

易失分点清零(一) 集合与常用逻辑用语1.设集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪ x 24+y 216=1,B ={(x ,y )|y =3x },则A ∩B 的子集的个数是( ).A .4B .3C .2D .1解析 ∵A ∩B 有2个元素,故A ∩B 的子集的个数为4.答案 A2.设集合A ={x ||x -2|≤2,x ∈R },B ={y |y =-x 2,-1≤x ≤2},则∁R (A ∩B )=( ).A .RB .{x |x ∈R ,x ≠0}C .{0}D .∅ 解析 A ={x ||x -2|≤2}={x |0≤x ≤4},B ={y |y =-x 2,-1≤x ≤2}={y |-4≤y ≤0},∴A ∩B ={0},则∁R (A ∩B )={x |x ∈R ,x ≠0}.答案 B3.若条件p :|x +1|≤4,条件q :x 2<5x -6,则綈p 是綈q 的( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 解析 p :A ={x ||x +1|≤4}={x |-5≤x ≤3},q :B ={x |x 2<5x -6}={x |2<x <3},则q 是p 的充分不必要条件⇔綈p 是綈q 的充分不必要条件. 答案 A4.对于数列{a n },“a n +1>|a n |(n =1,2,3,…)”是“{a n }为递增数列”的( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析 ∵a n +1>|a n |,∴a n +1>a n ,∴数列{a n }为递增数列,但是{a n }为递增数列不一定能得到a n +1>|a n |,如数列为-4,-2,-1,….虽然为递增数列,但是不满足a n +1>|a n |.故选A.答案 A5.下列命题的否定中真命题的个数是( ). ①p :当Δ<0时,方程ax 2+bx +c =0(a ≠0,a ,b ,c ∈R )无实根;②q :存在 一个整数b ,使函数f (x )=x 2+bx +1在[0,+∞)上是单调函数; ③r :存在x ∈R ,使x 2+x +1≥0不成立.A .0B .1C .2D .3解析 由于命题p 是真命题,∴命题①的否定是假命题;命题q 是真命题,∴命题②的否定是假命题;命题r 是假命题,∴命题③的否定是真命题.故只有一个正确的,故选B.答案 B6.已知集合A ={x ,xy ,lg(xy )}={0,|x |,y }=B ,则x +y =________.解析 由A =B 知需分多种情况讨论,由lg(xy )有意义,则xy >0.又0∈B =A ,则必有lg(xy )=0,即xy =1.此时,A =B ,即{0,1,x }={0,|x |,y }.∴⎩⎪⎨⎪⎧ x =|x |,xy =1,y =1或⎩⎪⎨⎪⎧ x =y ,xy =1,|x |=1,解得x =y =1或x =y =-1.当x =y =1时,A =B ={0,1,1}与集合元素的互异性矛盾,应舍去;当x =y =-1时,A =B ={0,-1,1}满足题意,故x =y =-1.答案 -27.已知集合⎩⎨⎧⎭⎬⎫a ,b a ,1={a 2,a +b,0},则a -b =________.解析 由b a 可得a ≠0,又a ≠1,故a ≠a 2,从而a =a +b ,有b =0,{a,0,1}={a 2,a,0},从而由a 2=1且a ≠1得a =-1.故a -b =-1.答案 -18.已知集合A ={x |x 2-3x -10≤0},集合B ={x |p +1≤x ≤2p -1}.若B ⊆A ,则实数p 的取值范围为________.解析 A ={x |x 2-3x -10≤0}={x |-2≤x ≤5},∵B ⊆A ,分两种情况:①当B =∅时,即2p -1<p +1,解得p <2;②当B ≠∅时,即⎩⎪⎨⎪⎧ 2p -1≤5,p +1≥-2,2p -1≥p +1,解得2≤p ≤3.故实数p 的取值范围是(-∞,3].答案 (-∞,3]9.已知命题p :幂函数y =x 1-a 在(0,+∞)上是减函数;命题q :∀x ∈R ,ax 2-ax +1>0恒成立.如果p ∧q 为假命题,p ∨q 为真命题,求实数a 的取值范围.解 若命题p 真,1-a <0⇔a >1,那么p 假时,a ≤1;若命题q 真,则⎩⎨⎧ a >0,a 2-4a <0或a =0⇔0≤a <4, 那么q 假时,a <0或a ≥4.∵p ∧q 假,p ∨q 真,∴命题p 与q 一真一假.当命题p 真q 假时,⎩⎨⎧ a >1,a <0或a ≥4⇔a ≥4. 当命题p 假q 真时,⎩⎨⎧a ≤1,0≤a <4⇔0≤a ≤1. ∴所求a 的取值范围是[0,1]∪[4,+∞).10.已知集合A ={1,3,-x 3},B ={1,x +2},是否存在实数x ,使得B ∪(∁A B )=A?若存在,求出集合A,B;若不存在,请说明理由.解存在.假设存在实数x,使得B∪(∁A B)=A,则B是A的真子集,若x +2=3,则x=1,符合题意.若x+2=-x3,则x=-1,不满足集合元素的互异性,∴x=1,A={1,3,-1},B={1,3}满足题意.。

《创新设计》2014届高考数学人教A版(理)一轮复习:第二篇 第9讲 函数的应用

《创新设计》2014届高考数学人教A版(理)一轮复习:第二篇 第9讲 函数的应用

第9讲 函数的应用A 级 基础演练(时间:30分钟 满分:55分)一、选择题(每小题5分,共20分)1.(2013·成都调研)在我国大西北,某地区荒漠化土地面积每年平均比上一年增长10.4%,专家预测经过x 年可能增长到原来的y 倍,则函数y =f (x )的图象大致为 ( ).解析 由题意可得y =(1+10.4%)x .答案 D2.(2013·青岛月考)某电信公司推出两种手机收费方式:A种方式是月租20元,B 种方式是月租0元.一个月的本地网内打出电话时间t (分钟)与打出电话费s (元)的函数关系如图,当打出电话150分钟时,这两种方式电话费相差 ( ).A .10元B .20元C .30元D.403元 解析 设A 种方式对应的函数解析式为s =k 1t +20,B 种方式对应的函数解析式为s =k 2t ,当t =100时,100k 1+20=100k 2,∴k 2-k 1=15,t =150时,150k 2-150k 1-20=150×15-20=10.答案 A3.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L 1=5.06x -0.15x 2和L 2=2x ,其中x 为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得最大利润为( ). A .45.606万元B .45.6万元C .45.56万元D .45.51万元解析 依题意可设甲销售x 辆,则乙销售(15-x )辆,总利润S =L 1+L 2,则总利润S =5.06x -0.15x 2+2(15-x )=-0.15x 2+3.06x +30=-0.15(x -10.2)2+0.15×10.22+30(x ≥0),∴当x =10时,S max =45.6(万元).答案 B4.(2013·太原模拟)某汽车运输公司购买了一批豪华大客车投入营运,据市场分析每辆客车营运的总利润y (单位:10万元)与营运年数x (x ∈N *)为二次函数关系(如图所示),则每辆客车营运多少年时,其营运的年平均利润最大( ). A .3 B .4 C .5 D .6解析 由题图可得营运总利润y =-(x -6)2+11,则营运的年平均利润y x =-x-25x +12,∵x ∈N *,∴y x ≤-2 x ·25x +12=2,当且仅当x =25x ,即x =5时取“=”.∴x =5时营运的年平均利润最大.答案 C二、填空题(每小题5分,共10分)5.为了保证信息安全,传输必须使用加密方式,有一种方式其加密、解密原理如下:明文――→加密密文――→发送密文――→解密明文已知加密为y =a x -2(x 为明文,y 为密文),如果明文“3”通过加密后得到密文为“6”,再发送,接受方通过解密得到明文“3”,若接受方接到密文为“14”,则原发的明文是________.解析 依题意y =a x -2中,当x =3时,y =6,故6=a 3-2,解得a =2.所以加密为y =2x -2,因此,当y =14时,由14=2x -2,解得x =4.答案 46.如图,书的一页的面积为600 cm 2,设计要求书面上方空出2cm 的边,下、左、右方都空出1 cm 的边,为使中间文字部分的面积最大,这页书的长、宽应分别为________.解析 设长为a cm ,宽为b cm ,则ab =600,则中间文字部分的面积S =(a -2-1)(b -2)=606-(2a +3b )≤606-26×600=486,当且仅当2a =3b ,即a =30,b =20时,S max =486. 答案 30 cm 、20 cm三、解答题(共25分)7.(12分)为了发展电信事业方便用户,电信公司对移动电话采用不同的收费方式,其中所使用的“如意卡”与“便民卡”在某市范围内每月(30天)的通话时间x (分)与通话费y (元)的关系分别如图①、②所示.(1)分别求出通话费y 1,y 2与通话时间x 之间的函数关系式;(2)请帮助用户计算,在一个月内使用哪种卡便宜?解 (1)由图象可设y 1=k 1x +29,y 2=k 2x ,把点B (30,35),C (30,15)分别代入y 1,y 2得k 1=15,k 2=12.∴y 1=15x +29,y 2=12x .(2)令y 1=y 2,即15x +29=12x ,则x =9623.当x =9623时,y 1=y 2,两种卡收费一致;当x <9623 时,y 1>y 2,即使用“便民卡”便宜;当x >9623时,y 1<y 2,即使用“如意卡”便宜.8.(13分)(2013·济宁模拟)某单位有员工1 000名,平均每人每年创造利润10万元.为了增加企业竞争力,决定优化产业结构,调整出x (x ∈N *)名员工从事第三产业,调整后他们平均每人每年创造利润为10⎝ ⎛⎭⎪⎫a -3x 500万元(a >0),剩下的员工平均每人每年创造的利润可以提高0.2x %.(1)若要保证剩余员工创造的年总利润不低于原来1 000名员工创造的年总利润,则最多调整出多少名员工从事第三产业?(2)在(1)的条件下,若调整出的员工创造的年总利润始终不高于剩余员工创造的年总利润,则a 的取值范围是多少?解 (1)由题意得:10(1 000-x )(1+0.2x %)≥10×1 000,即x 2-500x ≤0,又x >0,所以0<x ≤500.即最多调整500名员工从事第三产业.(2)从事第三产业的员工创造的年总利润为10⎝ ⎛⎭⎪⎫a -3x 500x 万元,从事原来产业的员工的年总利润为10(1 000-x )(1+0.2x %)万元,则10⎝ ⎛⎭⎪⎫a -3x 500x ≤10(1 000-x )(1+0.2x %),所以ax -3x 2500≤1 000+2x -x -1500x 2,所以ax ≤2x 2500+1 000+x ,即a ≤2x 500+1 000x +1恒成立,因为2500x +1 000x ≥2 2x 500×1 000x =4,当且仅当2x 500=1 000x ,即x =500时等号成立.所以a ≤5,又a >0,所以0<a ≤5,即a 的取值范围为(0,5].B 级 能力突破(时间:30分钟 满分:45分)一、选择题(每小题5分,共10分)1.(2013·潍坊联考)一张正方形的纸片,剪去两个一样的小矩形得到一个“E”形图案,如图所示,设小矩形的长、宽分别为x ,y剪去部分的面积为20,若2≤x ≤10,记y =f (x ),则y =f (x )的图象是 ( ).解析 由题意得2xy =20,即y =10x ,当x =2时,y =5,当x =10时,y =1时,排除C ,D ,又2≤x ≤10,排除B.答案 A2.(2011·湖北)放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系:M (t )=M 02-t 30,其中M 0为t =0时铯137的含量.已知t =30时,铯137含量的变化率是-10ln 2(太贝克/年),则M (60)=( ). A .5太贝克B .75ln 2太贝克C .150ln 2太贝克D .150太贝克 解析 由题意M ′(t )=M 02-t 30⎝ ⎛⎭⎪⎫-130ln 2, M ′(30)=M 02-1×⎝ ⎛⎭⎪⎫-130ln 2=-10ln 2, ∴M 0=600,∴M (60)=600×2-2=150.答案 D二、填空题(每小题5分,共10分)3.(2013·阜阳检测)按如图所示放置的一边长为1的正方形P ABC 沿x 轴滚动,设顶点P (x ,y )的轨迹方程是y=f (x ),则y =f (x )在其两个相邻零点间的图象与x 轴所围区域的面积为________.解析 将P 点移到原点,开始运动,当P 点第一次回到x 轴时经过的曲线是三段首尾相接的圆弧,它与x 轴围成的区域面积为π4+⎝ ⎛⎭⎪⎫π2+1+π4=π+1. 答案 π+14.某市出租车收费标准如下:起步价为8元,起步里程为3 km(不超过3 km 按起步价付费);超过3 km 但不超过8 km 时,超过部分按每千米2.15元收费;超过8 km 时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________km. 解析 由已知条件y =⎩⎨⎧ 8,0<x ≤3,8+2.15(x -3)+1,3<x ≤8,8+2.15×5+2.85(x -8)+1,x >8,由y =22.6解得x =9.答案 9三、解答题(共25分)5.(12分)(2011·湖南)如图,长方体物体E 在雨中沿面P (面积为S )的垂直方向做匀速度移动,速度为v (v >0),雨速沿E 移动方向的分速度为c (c ∈R ).E 移动时单位时间内的淋雨量包括两部分:①P 或P 的平行面(只有一个面淋雨)的淋雨量,假设其值与|v -c |×S 成正比,比例系数为110;②其他面的淋雨量之和,其值为12.记y 为E 移动过程中的总淋雨量.当移动距离d =100,面积S =32时,(1)写出y 的表达式;(2)设0<v ≤10,0<c ≤5,试根据c 的不同取值范围,确定移动速度v ,使总淋雨量y 最少.解 (1)由题意知,E 移动时单位时间内的淋雨量为320|v -c |+12,故y =100v ⎝ ⎛⎭⎪⎫320|v -c |+12=5v(3|v -c |+10). (2)由(1)知,当0<v ≤c 时,y =5v (3c -3v +10)=5(3c +10)v-15; 当c <v ≤10时,y =5v (3v -3c +10)=5(10-3c )v+15. 故y =⎩⎪⎨⎪⎧ 5(3c +10)v -15,0<v ≤c ,5(10-3c )v +15,c <v ≤10.①当0<c ≤103时,y 是关于v 的减函数,故当v =10时,y min =20-3c 2.②当103<c ≤5时,在(0,c ]上,y 是关于v 的减函数;在(c,10]上,y 是关于v的增函数.故当v =c 时,y min =50c .6.(13分)(2013·徐州模拟)某学校要建造一个面积为10 000平方米的运动场.如图,运动场是由一个矩形ABCD 和分别以AD 、BC 为直径的两个半圆组成.跑道是一条宽8米的塑胶跑道,运动场除跑道外,其他地方均铺设草皮.已知塑胶跑道每平方米造价为150元,草皮每平方米造价为30元.(1)设半圆的半径OA =r (米),设建立塑胶跑道面积S 与r 的函数关系S (r );(2)由于条件限制r ∈[30,40],问当r 取何值时,运动场造价最低?最低造价为多少?(精确到元)解 (1)塑胶跑道面积S =π[r 2-(r -8)2]+8×10 000-πr 22r ×2 =80 000r +8πr -64π.∵πr 2<10 000,∴0<r <100π. (2)设运动场的造价为y 元,y =150×⎝ ⎛⎭⎪⎫80 000r +8πr -64π+30×⎝ ⎛10 000-80 000r)-8πr +64π=300 000+120×⎝ ⎛⎭⎪⎫80 000r +8πr -7 680π. 令f (r )=80 000r +8πr ,∵f ′(r )=8π-80 000r 2,当r ∈[30,40]时,f ′(r )<0,∴函数y =300 000+120×⎝ ⎛⎭⎪⎫80 000r +8πr -7 680π在[30,40]上为减函数.∴当r =40时,y min ≈636 510,即运动场的造价最低为636 510元.。

指数与对数的运算(课件)-2024届《创新设计》高考数学一轮复习(湘教版)

指数与对数的运算(课件)-2024届《创新设计》高考数学一轮复习(湘教版)
ZHISHIZHENDUANJICHUHANGSHI
知识梳理
1.根式的概念及性质
(1)概念:式子n a(n∈N,n≥2)叫作_根__式__,这里 n 叫作根指数,a 叫作被开方数. (2)性质:① 负数 没有偶次方根.
n
②0 的任何次方根都是 0,记作 0= 0 .
n
③( a)n=
a
n
(n∈N*,且 n>1).④ an=a(n 为大于 1 的奇数).
∴t2-t1=0ln.328≈00..6398≈1.8(天).
索引
角度 2 对数运算的实际应用
例 4 (1)(2022·临汾三模)我国在防震减灾中取得了伟大成就,并从 2009 年起,将
每年 5 月 12 日定为全国“防灾减灾日”.尽管目前人类还无法准确预报地震,
但科学家经过研究,已经对地震有所了解,地震学家查尔斯·里克林提出了关系
索引
解析 对于A,当T=220,P=1 026时,lg P=lg 1 026>lg 103=3,根据图象可 知,二氧化碳处于固态; 对于B,当T=270,P=128时,lg P=lg 128∈(lg 102,lg 103),即lg P∈(2,3), 根据图象可知,二氧化碳处于液态; 对于C,当T=300,P=9 987时,lg P=lg 9 987<lg 104=4,且与4非常接近, 根据图象可知,二氧化碳处于固态; 对于D,当T=360,P=729时,lg P=lg 729∈(lg 102,lg 103), 即lg P=lg 729∈(2,3),根据图象可知,二氧化碳处于超临界状态,故选D.
式:lg E=4.8+1.5M,其中 E 为地震释放出的能量,M 为地震的里氏震级.已知
2008 年 5 月 12 日我国发生的汶川地震的里氏震级为 8.0 级,2017 年 8 月 8 日

《创新设计 高考总复习》2014届高考数学(人教B版 全国专用)一轮复习:易失分点清零(十二) 解析几何(二)

《创新设计 高考总复习》2014届高考数学(人教B版 全国专用)一轮复习:易失分点清零(十二) 解析几何(二)

易失分点清零(十二) 解析几何(二)1. 已知动点P (x ,y )满足5(x -1)2+(y -2)2=|3x +4y -11|,则P 点的轨迹是( ).A .直线B .抛物线C .双曲线D .椭圆解析 由已知,得(x -1)2+(y -2)2=|3x +4y -11|5,即动点P (x ,y )到定点(1,2)和定直线3x +4y -11=0的距离相等,而定点(1,2)在直线3x +4y -11=0上,所以P 点的轨迹是过点(1,2)且与直线3x +4y -11=0垂直的直线. 答案 A2.“m >n >0”是“方程mx 2+ny 2=1表示焦点在y 轴上的椭圆”的( ).A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解析 要使mx 2+ny 2=1,即x 21m +y21n =1是焦点在y 轴上的椭圆须有⎩⎪⎨⎪⎧1m >0,1n >0,1m <1n⇔m >n >0,故互为充要条件.答案 C3.已知双曲线的方程为x 2a 2-y 2b 2=1(a >0,b >0),双曲线的一个焦点到一条渐近线的距离为53c (c 为双曲线的半焦距长),则双曲线的离心率为( ).A.52B.32C.352D.23解析 双曲线的一个焦点为(c,0),一条渐近线方程为y =ba x ,即bx -ay =0,所以焦点到渐近线的距离为|bc |b 2+a2=53c ,整理得b 2=54a 2,所以有c 2-a 2=54a 2,c 2=94a 2,即c =32a ,离心率e =32,选B.答案 B4.已知动点P 在曲线2x 2-y =0上移动,则点A (0,-1)与点P 连线中点的轨迹方程是( ).A .y =2x 2B .y =8x 2C .2y =8x 2-1D .2y =8x 2+1解析 设AP 中点为(x ,y ),则P (2x,2y +1)在2x 2-y =0上,即2(2x )2-(2y +1)=0,∴2y =8x 2-1.答案 C5.已知抛物线y 2=2px (p >0)的焦点F 与双曲线x 212-y 24=1的一个焦点重合,直线y =x -4与抛物线交于A ,B 两点,则|AB |等于( ).A .28B .32C .20D .40解析 双曲线x 212-y 24=1的焦点坐标为(±4,0),故抛物线的焦点F 的坐标为(4,0),因此p =8,故抛物线方程为y 2=16x ,易知直线y =x -4过抛物线的焦点.所以|AB |=2p sin 2α=2×8⎝ ⎛⎭⎪⎫222=32(α为直线AB 的倾斜角).答案 B6.若点O 和点F (-2,0)分别为双曲线x 2a 2-y 2=1(a >0)的中心和左焦点,点P 为双曲线右支上的任意一点,则OP →·FP →的取值范围为( ).A .[3-23,+∞)B .[3+23,+∞) C.⎣⎢⎡⎭⎪⎫-74,+∞D.⎣⎢⎡⎭⎪⎫74,+∞ 解析 由题意,得22=a 2+1,即a =3,设P (x ,y ),x ≥3,FP→=(x +2,y ),则OP →·FP →=(x +2)x +y ·y =x 2+2x +x 23-1=43⎝ ⎛⎭⎪⎫x +342-74,因为x ≥3,所以OP →·FP→的取值范围为[3+23,+∞).答案 B7.“点M 在曲线y 2=4x 上”是点M 的坐标满足方程y =-2x 的 ( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件解析 点M 在曲线y 2=4x 上,其坐标不一定满足方程y =-2x ,但当点M 的坐标满足方程y =-2x 时,则点M 一定在曲线y 2=4x 上,如点M (4,4)时,故选B. 答案 B8.设θ是三角形的一个内角,且sin θ+cos θ=15,则方程x 2sin θ+y 2cos θ=1所表示的曲线为( ).A .焦点在x 轴上的椭圆B .焦点在y 轴上的椭圆C .焦点在x 轴上的双曲线D .焦点在y 轴上的双曲线解析 由条件知sin θ·cos θ=-1225,且θ∈(0,π),从而sin θ>0,cos θ<0,故选C. 答案 C9.(2012·山东)已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)的离心率为9.若抛物线C 2:x 2=2py (p >0)的焦点到双曲线C 1的渐近线的距离为2,则抛物线C 2的方程为( ).A .x 2=833y B .x 2=1633y C .x 2=8yD .x 2=16y解析 双曲线的渐近线方程为y =±b a x ,由于ca=a 2+b 2a 2= 1+⎝ ⎛⎭⎪⎫b a 2=2,所以b a =3,所以双曲线的渐近线方程为y =±3x .抛物线的焦点坐标为⎝ ⎛⎭⎪⎫0,p 2,所以p22=2,所以p =8,所以抛物线方程为x 2=16y . 答案 D10.已知F 1、F 2为椭圆E 的左、右焦点,抛物线C 以F 1为顶点,F 2为焦点,设P 为椭圆与抛物线的一个交点,如果椭圆的离心率为e ,且|PF 1|=e |PF 2|,则e 的值为( ).A.22B .2- 3C.33D .2- 2解析 设椭圆的中心在原点,焦距为2c ,则由题意,知抛物线的准线为x =-3c ,由|PF 1|=e |PF 2|,得|PF 1|PF 2=e ,由于P 为椭圆与抛物线的一个公共点,设点P 到抛物线的准线的距离为d ,则由抛物线的定义,知|PF 1|d =e .又点P 是椭圆上的点,故抛物线的准线也是椭圆的左准线,所以a 2c =3c ,解得e =33. 答案 C11.已知椭圆x 24+y 2m =1(m >0)的离心率等于32,则m =________.解析 (1)当椭圆的焦点在x 轴上时,则由方程,得a 2=4,即a =2.又e =c a =32, 所以c =3,m =b 2=a 2-c 2=22-(3)2=1.(2)当椭圆的焦点在y 轴上时,椭圆的方程为y 2m +x 24=1. 则由方程,得b 2=4,即b =2.又e =c a =32,故a 2-b 2a =32,解得b a =12,即a =2b , 所以a =4.故m =a 2=16. 综上,m =1或16. 答案 1或1612.已知双曲线x 2a 2-y 2b 2=1(b >a >0),直线l 过点A (a,0)和B (0,b ),且原点到直线l 的距离为34c (c 为半焦距),则双曲线的离心率为________.解析 因为直线l 过点A (a,0)和B (0,b ),所以其方程为x a +yb =1,即bx +ay -ab =0.又原点到直线l 的距离为34c ,所以ab a 2+b2=34c .又a 2+b 2=c 2,所以4ab =3c 2,即16a 2(c 2-a 2)=3c 4.所以3e 4-16e 2+16=0,解得e 2=4或e 2=43.又b >a >0,e 2=c2a 2=a 2+b 2a 2>a 2+a 2a 2=2.所以e 2=4,故e =2.答案 213.已知F (1,0),M 点在x 轴上,P 点在y 轴上,且MN →=2MP →,PM →⊥PF →.当点P在y 轴上运动时,N 点的轨迹C 的方程为________.解析 ∵MN →=2 MP →,故P 为MN 中点.又∵PM →⊥PF →,P 在y 轴上,F 为(1,0),故M 在x 轴的负半轴上,设N (x ,y ),则M (-x,0),P ⎝ ⎛⎭⎪⎫0,y 2,(x >0),∴PM →=⎝ ⎛⎭⎪⎫-x ,-y 2,PF →=⎝ ⎛⎭⎪⎫1,-y 2,又∵PM →⊥PF →,∴PM →·PF →=0,即-x +y 24=0,∴y 2=4x (x >0)是轨迹C 的方程. 答案 y 2=4x (x >0)14.设F 1、F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若在直线x =a 2c 上存在点P ,使线段PF 1的中垂线过点F 2,则椭圆的离心率的取值范围是________.解析 设点P 的坐标为⎝ ⎛⎭⎪⎫a 2c ,y ,则F 1P 的中点Q 的坐标为⎝ ⎛⎭⎪⎫b 22c ,y 2.当y ≠0时,则kF 1P =cy b 2+2c 2,kQF 2=cy b 2-2c2,由kF 1P ·kQF 2=-1,得y 2=(b 2+2c 2)(2c 2-b 2)c 2,y 2>0,即2c 2-b 2>0,即3c 2-a 2>0,即e 2>13,故33<e <1;当y =0时,此时F 2为PF 1的中点,由a 2c -c =2c ,得e =33.综上,得33≤e <1. 答案 ⎣⎢⎡⎭⎪⎫33,115.如图,已知椭圆的中心在原点,焦点在x 轴上,长轴长是短轴长的3倍且经过点M (3,1).平行于OM 的直线l 在y 轴上的截距为m (m ≠0),且交椭圆于A ,B 两不同点. (1)求椭圆的方程;(2)求m 的取值范围;(3)设直线MA ,MB 的斜率分别为k 1,k 2,求证:k 1+k 2=0. (1)解 设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0), ⎩⎪⎨⎪⎧a =3b ,9a 2+1b2=1⇒⎩⎨⎧a 2=18,b 2=2.所求椭圆的方程为x 218+y 22=1.(2)解 ∵直线l ∥OM 且在y 轴上的截距为m , ∴直线l 的方程为y =13x +m . 由⎩⎪⎨⎪⎧y =13x +m ,x 218+y 22=1⇒2x 2+6mx +9m 2-18=0.∵直线l 交椭圆于A ,B 两点,∴Δ=(6m )2-4×2×(9m 2-18)>0⇒-2<m <2, 所以m 的取值范围是(-2,0)∪(0,2). (3)证明 设A (x 1,y 1),B (x 2,y 2), 则k 1=y 1-1x 1-3,k 2=y 2-1x 2-3.由2x 2+6mx +9m 2-18=0,得 x 1+x 2=-3m ,x 1x 2=92m 2-9. 又y 1=13x 1+m ,y 2=13x 2+m ,代入k 1+k 2=(y 1-1)(x 2-3)+(y 2-1)(x 1-3)(x 1-3)(x 2-3),整理得k 1+k 2=23x 1x 2+(m -2)(x 1+x 2)+6-6m(x 1-3)(x 2-3)=23⎝ ⎛⎭⎪⎫92m 2-9+(m -2)(-3m )+6-6m (x 1-3)(x 2-3)=0,∴k1+k2=0.。

对数函数(课件)-2024届《创新设计》高考数学一轮复习(湘教版)

对数函数(课件)-2024届《创新设计》高考数学一轮复习(湘教版)
例1 (1)(2023·北京东城区质检)函数y=logax与y=-x+a在同一平面直角坐标系
中的图象可能是( A )
索引
解析 当a>1时,函数y=logax的图象为选项B,D中过点(1,0)的曲线, 此时函数y=-x+a的图象与y轴的交点的纵坐标a应满足a>1,选项B,D 中的图象都不符合要求; 当0<a<1时,函数y=logax的图象为选项A,C中过点(1,0)的曲线,此 时函数y=-x+a的图象与y轴的交点的纵坐标a应满足0<a<1,只有选项 A中的图象符合要求.
即log0.46<log0.36<log0.26, 即a>b>c.
索引
3.在同一直角坐标系中,函数 y=a1x,y=logax+12(a>0,且 a≠1)的图象可能是
(D )
索引
解析 当0<a<1时,函数y=ax的图象过定点(0,1),在R上单调递减, 于是函数 y=a1x的图象过定点(0,1),在 R 上单调递增, 函数 y=logax+12的图象过定点12,0,在-21,+∞上单调递减. 因此,D中的两个图象符合. 当a>1时,函数y=ax的图象过定点(0,1),在R上单调递增, 于是函数 y=a1x的图象过定点(0,1),在 R 上单调递减,函数 y=logax+12的图 象过定点12,0,在-12,+∞上单调递增. 显然 A,B,C,D 四个选项都不符合.故选 D.
单调递增.
当x<0时,f(x)=-2x2<0,4f(x)=-8x2=f(2x),且f(x)在(-∞,0)上单
调递增.
所以f(x)在R上有4f(x)=f(2x),且函数f(x)是R上的增函数,
于是原不等式可化为(log2x)2-3<2log2x, 得即(-lo1g<2x)l2o-g2x2<log32,x-解3得<210<,x即<(l8o.g2x+1)(log2x-3)<0,

《创新设计 高考总复习》高考数学一轮复习:易失分点清零导数及其应用

《创新设计 高考总复习》高考数学一轮复习:易失分点清零导数及其应用

警示 (1)因为点P(1,-2)在曲线f(x)=x3-2x-1上,故容易认为 点P就是切点,从而遗漏了过点P与曲线切于其它点的切线. (2)求过一点P(m,n)的函数图象的切线方程一般步骤: 设切点(x0,y0)→求导数f′(x0)→设切线方程y-y0=f′(x0)·(xx0)→代入点P的坐标n-f(x0)=f′(x0)·(m-x0)→解方程求出x0 的值→写出切线方程.
警示 容易把fx0-4ΔΔxx-fx0错看成函数 f(x)在 x=x0 附近 的平均变化率,这是因为对函数导数定义理解不透.
易失分点2 导数与极值关系不清致误
【示例 2】已知函数 f(x)=13x3+(b-1)x2+bx 存在极值点, 求实数 b 的取值范围. 解 因为 f′(x)=x2+2(b-1)x+b=0 有两个不等实根, 所 以 Δ = 4(b - 1)2 - 4b>0 , 故 b 的 取 值 范 围 是 -∞,3-2 5∪3+2 5,+∞.
易失分点清零(四) 导数及其应用
易失分点1 错误理解导数的定义致误 【示例 1】设 f(x)在 x=x0 的导数值为 f′(x0),已知当 Δx→0
时,fx0-4ΔΔxx-fx0无限趋近于 1,求 f′(x0). 解 设-4Δx=Δx′,当 Δx→0 时,Δx′→0, 则fx0+ΔΔxx′′-fx0→f′(x0), 则fx0-4ΔΔxx-fx0→-4f′(x0). 故-4f′(x0)=1,所以 f′(x0)=-14.

3
1
y-1y
dy

=4-ln 3.
12y2-ln
y
3 1
答案 D
D.4-ln 3
警示 利用定积分求曲边形的面积时,易弄错被积函数或 积分上、下限,或不能结合图形选择合适的积分变量.因此 在具体解题中,可根据两个函数的图象位置的高低,用分 段的形式将面积表示出来.

创新设计高考总复习数学人教A理科学习教案

创新设计高考总复习数学人教A理科学习教案
第21页/共32页
第二十二页,共32页。
【训练2】 (1)(2018·湛江模拟)已知函数f(x)=loga(2x+b-1)(a>0,a≠1)的图象(tú xiànɡ)如图所示,
则a,b满足的关系是( )
A.0<a-1<b<1
B.0<b<a-1<1
C.0<b-1<a<1
D.0<a-1<b-1<1
(2)函数f(x)=2ln x的图象(tú xiànɡ)与函数g(x)=x2-4x+5的图象(tú xiànɡ)的交点个数为( )
)
A.24
B.16
C.12
D.8
第17页/共32页
第十八页,共32页。
解析 (1)设 logba=t,则 t>1,因为 t+1t =52, 所以(suǒyǐ)t=2,则a=b2.又ab=ba,所以(suǒyǐ)b2b=bb2, 即2b=b2,解得b=2,a=4. (2)因为3<2+log23<4,所以(suǒyǐ)f(2+log23)=f(3+log23)=23+log23=8×2log23 =24. 答案 (1)4 2 (2)A
第12页/共32页
第十三页,共32页。
5.计算:log2 22=________;2log23+log43=________. 解析 log2 22=log2 2-log22=12-1=-12; 2log23+log43=2log23·2log43=3×2log43=3×2log2 3=3 3. 答案 -12 3 3
第13页/共32页
第十四页,共32页。
考点一 对数(duìshù)的运算
【例 1】 (1)计算:lg14-lg 25÷100-12=________. (2)(2017·全国(quán ɡuó)Ⅰ卷)设x,y,z为正数,且2x=3y=5z,则( )

创新设计江苏专用2018版高考数学一轮复习第二章函数概念与基本初等函数I2.9函数模型及其应用课时作业理

创新设计江苏专用2018版高考数学一轮复习第二章函数概念与基本初等函数I2.9函数模型及其应用课时作业理

第9讲 函数模型及其应用基础巩固题组(建议用时:40分钟) 一、填空题1.给出下列函数模型:①一次函数模型;②幂函数模型;③指数函数模型;④对数函数模型.下表是函数值y随自变量x变化的一组数据,它最可能的函数模型是________(填序号).x45678910y15171921232527解析 根据已知数据可知,自变量每增加1函数值增加2,因此函数值的增量是均匀的,故为一次函数模型.答案 ①2.某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年年产量保持不变,则该厂6年来这种产品的总产量C与时间t(年)的函数关系图象正确的是________(填序号).解析 前3年年产量的增长速度越来越快,说明呈高速增长,只有①,③图象符合要求,而后3年年产量保持不变,总产量增加,故①正确,③错误.答案 ①3.某电信公司推出两种手机收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网内打出电话时间t(分钟)与打出电话费s(元)的函数关系如图,当打出电话150分钟时,这两种方式电话费相差________元.解析 设A种方式对应的函数解析式为s=k1t+20,B种方式对应的函数解析式为s=k2t,当t=100时,100k1+20=100k2,∴k2-k1=,t=150时,150k2-150k1-20=150×-20=10.答案 104.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x为________m.解析 设内接矩形另一边长为y,则由相似三角形性质可得=,解得y=40-x,所以面积S=x(40-x)=-x2+40x=-(x-20)2+400(0<x<40),当x=20时,S max=400.答案 205.(2017·长春模拟)一个容器装有细沙a cm3,细沙从容器底下一个细微的小孔慢慢地匀速漏出,t min 后剩余的细沙量为y=a e-bt(cm3),经过8 min后发现容器内还有一半的沙子,则再经过________min,容器中的沙子只有开始时的八分之一.解析 当t=0时,y=a,当t=8时,y=a e-8b=a,∴e-8b=,容器中的沙子只有开始时的八分之一时,即y=a e-bt=a,e-bt==(e-8b)3=e-24b,则t=24,所以再经过16 min.答案 166.A,B两只船分别从在东西方向上相距145 km的甲乙两地开出.A从甲地自东向西行驶.B从乙地自北向南行驶,A的速度是40 km h,B 的速度是16 km h,经过________h,AB间的距离最短.解析 设经过x h,A,B相距为y km,则y==(0≤x≤),求得函数的最小值时x的值为.答案 7.某企业投入100万元购入一套设备,该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.为使该设备年平均费用最低,该企业需要更新设备的年数为________.解析 设该企业需要更新设备的年数为x,设备年平均费用为y,则x年后的设备维护费用为2+4+…+2x=x(x+1),所以x年的平均费用为y==x++1.5,由基本不等式得y=x++1.5≥2 +1.5=21.5,当且仅当x=,即x=10时取等号.答案 108.(2016·四川卷改编)某公司为激励创新,计划逐年加大研发奖金投入.若该公司2015年全年投入研发奖金130万元.在此基础上,每年投入的研发奖金比上一年增长12%,则该公司全年投入的研发奖金开始超过200万元的年份是________(参考数据:lg 1.12=0.05,lg 1.3=0.11,lg 2=0.30).解析 设第x年的研发奖金为200万元,则由题意可得130×(1+12%)x=200,∴1.12x=,∴x=log1.12=log1.1220-log1.1213=-===3.8.即3年后不到200万元,第4年超过200万元,即2019年超过200万元.答案 2019二、解答题9.(2016·江苏卷)现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥P-A1B1C1D1,下部分的形状是正四棱柱ABCD-A1B1C1D1(如图所示),并要求正四棱柱的高OO1是正四棱锥的高PO1的4倍.(1)若AB=6 m,PO1=2 m,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6 m,则当PO1为多少时,仓库的容积最大?解 (1)V=×62×2+62×2×4=312(m3).(2)设PO1=x,则O1B1=,B1C1=·,∴SA1B1C1D1=2(62-x2),又由题意可得下面正四棱柱的高为4x.则仓库容积V=x·2(62-x2)+2(62-x2)·4x=x(36-x2).由V′=0得x=2或x=-2(舍去).由实际意义知V在x=2(m)时取到最大值,故当PO1=2 m时,仓库容积最大.10.(2017·南通模拟)某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y(万元)与年产量x(吨)之间的函数关系式可以近似地表示为y=-48x+8 000,已知此生产线年产量最大为210吨.(1)求年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本;(2)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?解 (1)每吨平均成本为(万元).则=+-48≥2 -48=32,当且仅当=,即x=200时取等号.∴年产量为200吨时,每吨平均成本最低为32万元.(2)设年获得总利润为R(x)万元.则R(x)=40x-y=40x-+48x-8 000=-+88x-8 000=-(x-220)2+1 680(0≤x≤210).∵R(x)在[0,210]上是增函数,∴x=210时,R(x)有最大值为-(210-220)2+1 680=1 660.∴年产量为210吨时,可获得最大利润1 660万元.能力提升题组(建议用时:30分钟)11.(2017·南京调研)某市对城市路网进行改造,拟在原有a个标段(注:一个标段是指一定长度的机动车道)的基础上,新建x个标段和n个道路交叉口,其中n与x满足n=ax+5.已知新建一个标段的造价为m万元,新建一个道路交叉口的造价是新建一个标段的造价的k倍.(1)写出新建道路交叉口的总造价y(万元)与x的函数关系式;(2)设P是新建标段的总造价与新建道路交叉口的总造价之比.若新建的标段数是原有标段数的20%,且k≥3.问:P能否大于,说明理由.解 (1)依题意得y=mkn=mk(ax+5),x∈N*.(2)法一 依题意x=0.2a,所以P====≤=≤=<.P不可能大于.法二 依题意x=0.2a,所以P====.假设P>,则ka2-20a+25k<0.因为k≥3,所以Δ=100(4-k2)<0,不等式ka2-20a+25k<0无解,假设不成立.P不可能大于.12.(2017·苏、锡、常、镇四市调研)某经销商计划销售一款新型的空气净化器,经市场调研发现以下规律:当每台净化器的利润为x(单位:元,x>0)时,销售量q(x)(单位:百台)与x的关系满足:若x不超过20,则q(x)=;若x大于或等于180,则销售量为零;当20≤x≤180时,q(x)=a-b(a,b为实常数).(1)求函数q(x)的表达式;(2)当x为多少时,总利润(单位:元)取得最大值,并求出该最大值.解 (1)当20≤x≤180时,由得故q(x)=(2)设总利润f(x)=x·q(x),由(1)得f(x)=当0<x≤20时,f(x)==126 000-,又f(x)在(0,20]上单调递增,所以当x=20时,f(x)有最大值120 000.当20<x<180时,f(x)=9 000x-300·x,f′(x)=9 000-450·,令f′(x)=0,得x=80.当20<x<80时,f′(x)>0,f(x)单调递增,当80<x<180时,f′(x)<0,f(x)单调递减,所以当x=80时,f(x)有最大值240 000.当x≥180时,f(x)=0.综上,当x=80元时,总利润取得最大值240 000元.13.(2017·苏北四市调研)如图,某森林公园有一直角梯形区域ABCD,其四条边均为道路,AD∥BC,∠ADC=90°,AB=5 千米,BC=8 千米,CD=3 千米.现甲、乙两管理员同时从A地出发匀速前往D地,甲的路线是AD,速度为6千米/时,乙的路线是ABCD,速度为v千米/时.(1)若甲、乙两管理员到达D的时间相差不超过15分钟,求乙的速度v的取值范围;(2)已知对讲机有效通话的最大距离是5千米.若乙先到D,且乙从A到D的过程中始终能用对讲机与甲保持有效通话,求乙的速度v的取值范围.解 (1)由题意得AD=12 千米,≤,解得≤v≤,故乙的速度v的取值范围是.(2)设经过t小时,甲、乙之间的距离的平方为f(t).由于乙先到达D地,故<2,即v>8.①当0<vt≤5,即0<t≤时,f(t)=(6t)2+(vt)2-2×6t×vt×cos∠DAB=t2.因为v2-v+36>0,所以当t=时,f(t)取最大值,所以×2≤25,解得v≥.②当5<vt≤13,即<t≤时,f(t)=(vt-1-6t)2+9=(v-6)22+9.因为v>8,所以<,(v-6)2>0,所以当t=时,f(t)取最大值,所以(v-6)22+9≤25,解得≤v≤.③当13≤vt≤16,即≤t≤时,f(t)=(12-6t)2+(16-vt)2因为12-6t>0,16-vt>0,所以f(t)在上单调递减,所以当t=时,f(t)取最大值,2+2≤25,解得≤v≤.因为v>8,所以8<v≤.综上所述,v的取值范围是.。

【创新设计(内容详细)】高考数学第一轮复习全套一

【创新设计(内容详细)】高考数学第一轮复习全套一

【创新设计】高考数学第一轮复习全套第一篇集合与常用逻辑用语细致讲解练理新人教A版第1讲集合及其运算[最新考纲]1.了解集合的含义、元素与集合的属于关系.2.理解集合之间包含与相等的含义,能识别给定集合的子集.3.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.4.理解在给定集合中一个子集的补集的含义,会求给定子集的补集.5.能使用韦恩(Venn)图表达集合的关系及运算.知识梳理1.元素与集合(1)集合中元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或?表示.2.集合间的基本关系表示关系文字语言符号语言集合间的基本关系相等集合A与集合B中的所有元素都相同A=B 子集A中任意一个元素均为B中的元素A?B真子集A中任意一个元素均为B中的元素,且B中至少有一个元素不是A中的元素空集空集是任何集合的子集,是任何非空集合的真子集3.集合的基本运算集合的并集集合的交集集合的补集图形语言符号语言A∪B={x|x∈A,或x∈B}A∩B={x|x∈A,且x∈B}?U A={x|x∈U,且x?A}辨析感悟1.元素与集合的辨别(1)若{,2x1}={0,1},则x=0,1.(×)(2)含有n个元素的集合的子集个数是2n,真子集个数是2n-1,非空真子集的个数是2n-2.(√)(3)若A={x|y=x2},B={(x,y)|y=x2},则A∩B={x|x∈R}.(×)2.对集合基本运算的辨别(4)对于任意两个集合A,B,关系(A∩B)?(A∪B)总成立.(√)(5)(2013·浙江卷改编)设集合S={x|x>-2},T={x|x2+3x-4≤0},则(?R S)∪T={x|-4≤x≤1}.(×)(6)(2013·陕西卷改编)设全集为R,函数f(x)=1-x2的定义域为M,则?R M={x|x>1,或x<-1}.(√)[感悟·提升]1.一点提醒求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.如第(3)题就是混淆了数集与点集.2.两个防范一是忽视元素的互异性,如(1);二是运算不准确,尤其是运用数轴图示法时要特别注意端点是实心还是空心,如(6).3.集合的运算性质:①A∪B=B?A?B;②A∩B=A?A?B;③A∪(?U A)=U;④A∩(?U A)=?.考点一集合的基本概念【【例1】】【例1】(1)(2013·江西卷)若集合A={x∈R|ax2+ax+1=0}中只有一个元素,则a=( ).A.4 B.2 C.0 D.0或4(2)(2013·山东卷)已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是( ).A.1 B.3 C.5 D.9解析(1)由ax2+ax+1=0只有一个实数解,可得当a=0时,方程无实数解;当a≠0时,则Δ=a2-4a=0,解得a=4(a=0不合题意舍去).(2)x-y∈{-2,-1,0,1,2}.答案(1)A (2)C规律方法集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.【训练1】已知a∈R,b∈R,若a,ba,1={a2,a+b,0},则a2 014+b2 014=________.解析由已知得ba=0及a≠0,所以b=0,于是a2=1,即a=1或a=-1,又根据集合中元素的互异性可知a=1应舍去,因此a=-1,故a2 014+b2 014=1.答案 1考点二集合间的基本关系【例2】 (1)已知集合A={x|-2≤x≤7},B={x|m+1<x<2m-1},若B?A,求实数m的取值范围.(2)设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0}.若(?U A)∩B=?,求m 的值.审题路线(1)分B=?和B≠?两种情况求解,当B≠?时,应注意端点的取值.(2)先求A,再利用(?U A)∩B=??B?A,应对B分三种情况讨论.解(1)当B=?时,有m+1≥2m-1,则m≤2.当B≠?时,若B?A,如图.则m+1≥-2,2m-1≤7,m+1<2m-1,解得2<m≤4.综上,m的取值范围是(-∞,4].(2)A={-2,-1},由(?U A)∩B=?,得B?A,∵方程x2+(m+1)x+m=0的判别式Δ=(m+1)2-4m=(m-1)2≥0,∴B≠?.∴B={-1}或B={-2}或B={-1,-2}.①若B={-1},则m=1;②若B={-2},则应有-(m+1)=(-2)+(-2)=-4,且m=(-2)·(-2)=4,这两式不能同时成立,∴B≠{-2};③若B={-1,-2},则应有-(m+1)=(-1)+(-2)=-3,且m=(-1)·(-2)=2,由这两式得m=2.经检验知m=1和m=2符合条件.∴m=1或2.规律方法 (1)已知两个集合之间的关系求参数时,要明确集合中的元素,对子集是否为空集进行分类讨论,做到不漏解.(2)在解决两个数集关系问题时,避免出错的一个有效手段是合理运用数轴帮助分析与求解,另外,在解含有参数的不等式(或方程)时,要对参数进行讨论.【训练2】(1)已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A ?C?B的集合C的个数为( ).A.1 B.2 C.3 D.4(2)(2014·郑州模拟)已知集合A={-1,1},B={x|ax+1=0},若B?A,则实数a的所有可能取值的集合为( ).A.{-1} B.{1} C.{-1,1} D.{-1,0,1}解析(1)由题意知:A={1,2},B={1,2,3,4}.又A?C?B,则集合C可能为{1,2},{1,2,3},{1,2,4},{1,2,3,4}.(2)a=0时,B={x|1≠0}=??A;a≠0时,B=x x=-1a?A,则-1a=-1或-1a=1,故a=0或a=1或-1.答案(1)D (2)D考点三集合的基本运算【例3】(1)(2013·湖北卷)已知全集为R,集合A=x 12x≤1,B={x|x2-6x+8≤0},则A∩?R B=( ).A.{x|x≤0} B.{x|2≤x≤4}C.{x|0≤x<2,或x>4} D.{x|0<x≤2,或x≥4}(2)(2014·唐山模拟)若集合M={y|y=3x},集合S={x|y=lg(x-1)},则下列各式正确的是( ).A.M∪S=M B.M∪S=SC.M=S D.M∩S=?解析(1)A=x|12x≤1={x|x≥0},B={x|2≤x≤4},所以?R B={x|x<2,或x>4},此时A∩?R B={x|0≤x<2,或x>4}.(2)M={y|y>0},S={x|x>1},故选 A.答案(1)C (2)A规律方法一般来讲,集合中的元素离散时,则用Venn图表示;集合中的元素是连续的实数时,则用数轴表示,此时要注意端点的情况.【训练3】(1)已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(?U A)∪B为( ).A.{1,2,4} B.{2,3,4} C.{0,2,4} D.{0,2,3,4}(2)已知全集U=R,集合A={x|-1≤x≤3},集合B={x|log2(x-2)<1},则A∩(?U B)=________.解析(1)?U A={0,4},∴(?U A)∪B={0,2,4}.(2)由log2(x-2)<1,得0<x-2<2,2<x<4,所以B={x|2<x<4}.故?U B={x|x≤2,或x≥4},从而A∩(?U B)={x|-1≤x≤2}.答案(1)C (2){x|-1≤x≤2}数轴和韦恩(Venn)图是进行集合交、并、补运算的有力工具,数形结合是解集合问题的常用方法,解题时要先把集合中各种形式的元素化简,使之明确化,尽可能地借助数轴、直角坐标系或韦恩图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决.学生用书第3页创新突破1——与集合有关的新概念问题【典例】已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x-y∈A},则B中所含元素的个数为( ).A.3 B.6 C.8 D.10解析法一(列表法) 因为x∈A,y∈A,所以x,y的取值只能为1,2,3,4,5,故x,y及x -y的取值如下表所示:xx-y1234 5y10-1-2-3-4210-1-2-33210-1-243210-1543210由题意x-y∈A,故x-y只能取1,2,3,4,由表可知实数对(x,y)的取值满足条件的共有10个,即B中的元素个数为10,故选 D.法二(直接法) 因为A={1,2,3,4,5},所以集合A中的元素都为正数,若x-y∈A,则必有x-y>0,x>y.当y=1时,x可取2,3,4,5,共有4个数;当y=2时,x可取3,4,5,共有3个数;当y=3时,x可取4,5,共有2个数;当y=4时,x只能取5,共有1个数;当y=5时,x不能取任何值.综上,满足条件的实数对(x,y)的个数为4+3+2+1=10.答案 D[反思感悟] (1)解决集合中新定义问题的关键是准确理解新定义的实质,紧扣新定义进行推理论证,把其转化为我们熟知的基本运算.(2)以集合为载体的新定义问题,是高考命题创新型试题的一个热点,常见的命题形式有新概念、新法则、新运算等,这类试题中集合只是基本的依托,考查的是考生创造性解决问题的能力.【自主体验】1.(2013·广东卷)设整数n≥4,集合X={1,2,3,…,n}.令集合S={(x,y,z)|x,y,z∈X,且三条件x<y<z,y<z<x,z<x<y恰有一个成立}.若(x,y,z)和(z,w,x)都在S中,则下列选项正确的是( ).A.(y,z,w)∈S,(x,y,w)?SB.(y,z,w)∈S,(x,y,w)∈SC.(y,z,w)?S,(x,y,w)∈SD.(y,z,w)?S,(x,y,w)?S解析题目中x<y<z,y<z<x,z<x<y恰有一个成立说明x,y,z是互不相等的三个正整数,可用特殊值法求解,不妨取x=1,y=2,z=3,w=4满足题意,且(2,3,4)∈S,(1,2,4)∈S,从而(y,z,w)∈S,(x,y,w)∈S成立.答案 B2.(2013·浙江部分重点中学调研)设A是整数集的一个非空子集,对于k∈A,如果k-1? A,且k+1?A,那么称k是A的一个“好元素”.给定S={1,2,3,4,5,6,7,8},由S的3个元素构成的所有集合中,不含“好元素”的集合共有( ).A.6个 B.12个 C.9个 D.5个解析依题意,可知由S的3个元素构成的所有集合中,不含“好元素”,则这3个元素一定是相连的3个数.故这样的集合共有6个.答案 A对应学生用书P219基础巩固题组(建议用时:40分钟)一、选择题1.(2013·新课标全国Ⅰ卷)已知集合A={x|x2-2x>0},B={x|-5<x<5},则( ).A.A∩B=? B.A∪B=RC.B?A D.A?B解析集合A={x|x>2,或x<0},所以A∪B={x|x>2,或x<0}∪{x|-5<x<5}=R.答案 B2.(2013·广东卷)设集合S={x|x2+2x=0,x∈R},T={x|x2-2x=0,x∈R},则S∩T=( ).A.{0} B.{0,2} C.{-2,0} D.{-2,0,2}解析S={-2,0},T={0,2},∴S∩T={0}.答案 A3.已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的子集共有( ).A.2个 B.4个C.6个 D.8个解析P=M∩N={1,3},故P的子集共有4个.答案 B4.(2013·辽宁卷)已知集合A={x|0<log4x<1},B={x|x≤2},则A∩B=( ).A.(0,1) B.(0,2]C.(1,2) D.(1,2]解析0<log4x<1,即log41<log4x<log44,∴1<x<4,∴集合A={x|1<x<4},∴A∩B ={x|1<x≤2}.答案 D5.设集合A={x|x2+2x-8<0},B={x|x<1},则图中阴影部分表示的集合为( ).A.{x|x≥1} B.{x|-4<x<2}C.{x|-8<x<1} D.{x|1≤x<2}解析阴影部分是A∩?R B.集合A={x|-4<x<2},?R B={x|x≥1},所以A∩?R B={x|1≤x <2}.答案 D二、填空题6.(2013·江苏卷)集合{-1,0,1}共有________个子集.解析所给集合的子集个数为23=8个.答案87.集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},则a的值为________.解析根据并集的概念,可知{a,a2}={4,16},故只能是a=4.答案 48.集合A={x∈R||x-2|≤5}中的最小整数为________.解析由|x-2|≤5,得-5≤x-2≤5,即-3≤x≤7,所以集合A中的最小整数为- 3.答案-3三、解答题9.已知集合A={a2,a+1,-3},B={a-3,a-2,a2+1},若A∩B={-3},求A∪B. 解由A∩B={-3}知,-3∈B.又a2+1≥1,故只有a-3,a-2可能等于- 3.①当a-3=-3时,a=0,此时A={0,1,-3},B={-3,-2,1},A∩B={1,-3}.故a=0舍去.②当a-2=-3时,a=-1,此时A={1,0,-3},B={-4,-3,2},满足A∩B={-3},从而A∪B={-4,-3,0,1,2}.10.设A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},(1)若B?A,求a的值;(2)若A?B,求a的值.解(1)A={0,-4},①当B=?时,Δ=4(a+1)2-4(a2-1)=8(a+1)<0,解得a<-1;②当B为单元素集时,a=-1,此时B={0}符合题意;③当B=A时,由根与系数的关系得:-a+=-4,解得a=1.a2-1=0,综上可知:a≤-1或a=1.(2)若A?B,必有A=B,由(1)知a=1.能力提升题组(建议用时:25分钟)一、选择题1.若集合A={-1,1},B={0,2},则集合{z|z=x+y,x∈A,y∈B}中的元素的个数为( ).A.5 B.4 C.3 D.2解析当x=-1,y=0时,z=-1;当x=-1,y=2时,z=1;当x=1,y=0时,z=1;当x=1,y=2时,z=3.故z的值为-1,1,3,故所求集合为{-1,1,3},共含有3个元素.答案 C2.(2013·江西七校联考)设全集U=R,集合M={x|y=lg(x2-1)},N={x|0<x<2},则N∩(?U M)=( ).A.{x|-2≤x<1} B.{x|0<x≤1}C.{x|-1≤x≤1} D.{x|x<1}解析M={x|y=lg(x2-1)}={x|x2-1>0}={x|x>1,或x<-1},所以?U M={x|-1≤x≤1},结合数轴易得N∩(?U M)={x|0<x≤1}.答案 B二、填空题3.已知集合A={x∈R||x+2|<3},集合B={x∈R|(x-m)(x-2)<0},且A∩B=(-1,n),则m=________,n=________.解析A={x|-5<x<1},因为A∩B={x|-1<x<n},B={x|(x-m)(x-2)<0},所以m=-1,n=1.答案-1 1三、解答题4.已知集合A={y|y=2x-1,0<x≤1},B={x|(x-a)[x-(a+3)]<0}.分别根据下列条件,求实数a的取值范围.(1)A∩B=A;(2)A∩B≠?.解因为集合A是函数y=2x-1(0<x≤1)的值域,所以A=(-1,1],B=(a,a+3).(1)A∩B=A?A?B?a≤-1,a+3>1,即-2<a≤-1,故当A∩B=A时,a的取值范围是(-2,-1].(2)当A∩B=?时,结合数轴知,a≥1或a+3≤-1,即a≥1或a≤-4. 故当A∩B≠?时,a的取值范围是(-4,1).学生用书第3页第2讲命题及其关系、充分条件与必要条件[最新考纲]1.理解命题的概念.2.了解“若p,则q”形式的命题的逆命题、否命题与逆否命题,会分析四种命题的相互关系.3.理解充分条件、必要条件与充要条件的含义.知识梳理1.四种命题及其关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们具有相同的真假性.②两个命题为互逆命题或互否命题时,它们的真假性没有关系.2.充分条件、必要条件与充要条件的概念若p?q,则p是q的充分条件,q是p的必要条件p是q的充分不必要条件p?q且q pp是q的必要不充分条件p q且q?pp是q的充要条件p?qp是q的既不充分也不必要条件p q且q p辨析感悟1.对四种命题的认识(1)(2012·湖南卷改编)命题“α=π4,则tan α=1”的否命是“若α=π4,则tanα≠1”.(×)(2)若原命题“若p,则q”为真,则在这个命题的否命题、逆命题、逆否命题中真命题的个数为1或2.(×)(3)命题“若x2-3x+2>0,则x>2或x<1”的逆否命题是“若1≤x≤2,则x2-3x+。

《创新设计 高考总复习》2014届高考数学(人教B版 全国专用)一轮复习:易失分点清零(十) 立体几何(二)

《创新设计 高考总复习》2014届高考数学(人教B版 全国专用)一轮复习:易失分点清零(十) 立体几何(二)

易失分点清零(十) 立体几何(二)1.将下面的平面图形(每个点都是正三角形的顶点或边的中点)沿虚线折成一个正四面体后,直线MN 与PQ 是异面直线的是( ).A .①②B .③④C .①④D .②③答案 C2.已知空间直角坐标系O -xyz 中有一点A (-1,-1,2),点B 是平面xOy 内的直线x +y =1上的动点,则A ,B 两点的最短距离是( ).A. 6B.342C .3D.172解析 点B 在xOy 平面内的直线x +y =1上,设点B 为(x ,-x +1,0),所以AB =(x +1)2+(-x +2)2+(0-2)2=2x 2-2x +9= 2⎝ ⎛⎭⎪⎫x -122+172,所以当x =12时,AB 取得最小值342,此时点B 为⎝ ⎛⎭⎪⎫12,12,0.答案 B3.空间四边形OABC 中,OB =OC ,∠AOB =∠AOC =π3,则cos 〈OA →,BC →〉的值为( ).A.12B.22C .-12D .0解析 因为OA →·BC →=OA →·(OC →-OB →)=OA →·OC →-OA →·OB →=|OA →|·|OC →|cos 〈OA →,OC →〉-|OA →||OB →|cos 〈OA →,OB →〉又因为〈OA →,OC →〉=〈OA →,OB →〉=π3,|OB →|=|OC →|,所以OA →·BC →=0,所以OA →⊥BC →,所以cos 〈OA →,BC →〉=0. 答案 D4.已知a ,b 是异面直线,A 、B ∈a ,C 、D ∈b ,AC ⊥b ,BD ⊥b ,且AB =2,CD =1,则a 与b 所成的角是( ).A .30°B .45°C .60°D .90°解析 因为AB →·CD →=(AC →+CD →+DB →)·CD →=CD →2=1. 所以cos 〈AB →,CD →〉=AB →·CD →|AB →||CD →|=12.所以AB 与CD 所成的角为60°,即异面直线a 与b 所成的角为60°. 答案 C5.在长方体ABCD -A 1B 1C 1D 1中,AB =2,BC =1,DD 1=3,则AC 与BD 1所成角的余弦值是( ).A .0B.37070 C .-37070D.7070解析 分别以直线DA ,DC ,DD 1为x 轴,y 轴,z 轴建立空间直角坐标系,则A (1,0,0),B (1,2,0),C (0,2,0),D 1(0,0,3),AC →=(-1,2,0),BD →1=(-1,-2,3),cos 〈AC →,BD 1→〉=AC →·BD 1→|AC →||BD 1→|=-1×(-1)+2×(-2)+0×3(-1)2+22+02×(-1)2+(-2)2+32=-37070,故AC 与BD 1所成角的余弦值为37070. 答案 B6.如果平面的一条斜线和它在这个平面上的射影的方向向量分别是a =(1,0,1),b =(0,1,1),那么这条斜线与平面所成的角是( ).A .90°B .60°C .45°D .30°解析 ∵cos 〈a ,b 〉=12×2=12,又∵〈a ,b 〉∈[0,π], ∴〈a ,b 〉=60°. 答案 B7.二面角α-l -β为60°,A ,B 是棱l 上的两点,AC ,BD 分别在半平面α,β内,AC ⊥l ,BD ⊥l ,且AB =AC =a ,BD =2a ,则CD 的长为( ).A .2a B.5a C .aD.3a解析 ∵AC ⊥l ,BD ⊥l ,∴〈AC →,BD →〉=60°,且AC →·BA →=0,AB →·BD →=0, ∴CD →=CA →+AB →+BD →,∴|CD →|=(CA →+AB →+BD →)2=a 2+a 2+(2a )2+2a ·2a cos 120°=2a . 答案 A8.在矩形ABCD 中,AB =1,BC =2,P A ⊥平面ABCD ,P A =1,则PC 与平面ABCD 所成角是( ).A .30°B .45°C .60°D .90°解析 建立如图所示的空间直角坐标系,则P (0,0,1),C (1,2,0),PC →=(1,2,-1),平面ABCD 的一个法向量为n =(0,0,1),所以cos 〈PC →,n 〉=PC →·n|PC →||n |=-12,所以〈PC →,n 〉=120°,所以斜线PC 与平面ABCD 的法向量所在直线所成角为60°,所以斜线PC 与平面ABCD 所成角为30°. 答案 A9.已知平面α的一个法向量n =(-2,-2,1),点A (-1,3,0)在α内,则点P (-2,1,4)到平面α的距离为( ).A .10B .3C.83D.103解析 P A →=(1,2,-4),∴P 到平面α的距离d =|P A →·n ||n |=|1×(-2)+2×(-2)+(-4)×1|4+4+1=|-2-4-4|3=103.答案 D10.如图所示,已知点P 为菱形ABCD 外一点,且P A ⊥面ABCD ,P A =AD =AC ,点F 为PC 中点,则二面角C -BF -D 的正切值为( ).A.36 B.34 C.33D.23 3解析 如图所示,连接AC ,AC ∩BD =O ,连接OF .以O 为原点,OB 、OC 、OF 所在直线分别为x ,y ,z 轴建立空间直角坐标系O -xyz .设P A =AD =AC=1,则BD = 3.所以B ⎝ ⎛⎭⎪⎫32,0,0,F ⎝ ⎛⎭⎪⎫0,0,12,C 0,12,0,D ⎝ ⎛⎭⎪⎫-32,0,0. 结合图形可知,OC →=⎝ ⎛⎭⎪⎫0,12,0且OC →为面BOF 的一个法向量,由BC →=⎝ ⎛⎭⎪⎫-32,12,0,FB →=⎝ ⎛⎭⎪⎫32,0,-12,可求得面BCF 的一个法向量n =(1,3,3). 所以cos 〈n ,OC →〉=217,sin 〈n ,OC →〉=277, 所以tan 〈n ,OC →〉=23 3. 答案 D11.(2013·兰州模拟)已知点A (λ+1,μ-1,3),B (2λ,μ,λ-2μ),C (λ+3,μ-3,9)三点共线,则实数λ+μ=________.解析 因为AB →=(λ-1,1,λ-2μ-3),AC →=(2,-2,6),若A ,B ,C 三点共线,则AB →∥AC →,即λ-12=-12=λ-2μ-36,解得λ=0,μ=0,所以λ+μ=0.答案 012.已知A (2,5,-6),在xOy 平面上存在点B ,使得|AB →|=35,则点B 到原点的最短距离为________.解析 设B (x ,y,0),由|AB →|=(x -2)2+(y -5)2+62=35,得(x -2)2+(y -5)2=9,所以点B 在xOy 平面内以C (2,5)为圆心,以3为半径的圆上,到原点的最短距离是|OC |-3=29-3. 答案29-313.(2013·泰安模拟)如图,正方形ACDE 与等腰直角三角形ACB 所在的平面互相垂直,且AC =BC =2,∠ACB =90°,F 、G 分别是线段AE 、BC 的中点.AD 与GF 所成角的余弦值为________.解析 以C 为原点建立空间直角坐标系C -xyz ,A (0,2,0),B (2,0,0),D (0,0,2),G (1,0,0),F (0,2,1),AD →=(0,-2,2),GF →=(-1,2,1),|AD →|=22,|GF →|=6,AD →·GF →=-2,cos 〈AD →,GF →〉=AD →·GF →|AD →||GF →|=-36.故AD 与GF 所成角的余弦值为36. 答案 3614.如图,四棱锥P -ABCD 中,底面ABCD 是矩形,PD ⊥平面ABCD ,且PD =AD =1,AB =2,点E 是AB 上一点.AE 等于________时二面角P -EC -D 的平面角为π4.解析 以D 为原点,射线DA ,DC ,DP 为x ,y ,z 轴的正方向,建立空间直角坐标系,则P (0,0,1),C (0,2,0),PC →=(0,2,-1). 设E (1,y 0,0),则EC →=(-1,2-y 0,0),设平面PEC 的法向量为n 1=(x ,y ,z ), ∴⎩⎪⎨⎪⎧n 1·EC →=0,n 1·PC →=0⇒⎩⎨⎧-x +y (2-y 0)=0,2y -z =0,令y =1,得n 1=(2-y 0,1,2), 而平面ECD 的法向量n 2=(0,0,1), 设二面角P -EC -D 的平面角为θ,∴cos θ=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1||n 2|=2(2-y 0)2+12+22×1=22⇒y 0=2-3,即AE =2- 3.答案 2- 315.已知三棱锥P -ABC 中,P A ⊥平面ABC ,AB ⊥AC ,P A =AC =12AB ,N 为AB 上一点,AB =4AN ,M ,S 分别为PB ,BC 的中点. (1)证明:CM ⊥SN ;(2)求SN 与平面CMN 所成角的大小.(1)证明 设P A =1,以A 为原点,AB ,AC ,AP 所在直线为x ,y ,z 轴正方向建立空间直角坐标系如图所示.则P (0,0,1),C (0,1,0),B (2,0,0),M ⎝ ⎛⎭⎪⎫1,0,12,N ⎝ ⎛⎭⎪⎫12,0,0,S ⎝ ⎛⎭⎪⎫1,12,0, 所以CM →=⎝ ⎛⎭⎪⎫1,-1,12,SN →=⎝ ⎛⎭⎪⎫-12,-12,0.因为CM →·SN →=-12+12+0=0,所以CM ⊥SN .(2)NC →=⎝ ⎛⎭⎪⎫-12,1,0,设a =(x ,y ,z )为平面CMN 的一个法向量.则⎩⎪⎨⎪⎧a ·CM →=0,a ·NC →=0,即⎩⎪⎨⎪⎧x -y +12z =0,-12x +y =0,令x =2,得a =(2,1,-2).因为|cos 〈a ,SN →〉|=⎪⎪⎪⎪⎪⎪⎪⎪-1-123×22=22.所以SN 与平面CMN 所成角为45°.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D.(0,+∞)
解析
1 f(x)要有意义,需 log (2x+1)>0,即 0<2x+1<1,解 2
1 得- <x<0. 2
答案
A
警示 已知函数解析式求解函数定义域的问题,关键是确
定函数解析式有意义的条件.解本题时,只考虑对数和根式 有意义而容易忽视分式的分母不能为零的限制条件,或只
考虑根式有意义的条件而忽视对数的真数必须大于零的限
警示
第(1)小题易不考虑函数定义域,直接推算f(-
x)=f(x),致使误断为偶函数;第(2)小题易变形不到位而 误判为非奇非偶函数.
易失分点4
求解3x+2的值域.
解 由 y - 2x = x2-3x+2 , 得
y-2x2=x2-3x+2, y-2x≥0, x≤1或x≥2,
易失分点清零(二) 函数的概念、图像和性质
易失分点1
求函数定义域忽视细节致误
1 ,则 f(x)的定 1 log 2x+1 2 (
1 B.-2,0
【示例 1】 (2011· 江西)若 f(x)=
义域为
1 A.-2,0 1 C.-2,+∞
).
[1,2]上是减函数;④f(2)=f(0),其中所有正确命题的
序号是________.
解析
由 f(x+1)=-f(x)⇒f(x+2)=-f(x+1)=f(x), 故函数
f(x)是周期函数,命题①正确;由于函数是偶函数,故 f(x+ x+2-x 2)=f(-x), 函数图象关于直线 x= =1 对称, 故命题 2 ②正确; 由于函数是偶函数, 故函数在区间[0,1]上单调递减, 根据对称性, 函数在[1,2]上应该是增函数(也可根据周期性判 断 ), 故命题③不正确; 根据周期性, f(2)=f(0), 命题④正确. 故 填①②④.
制条件导致错解.
易失分点2
【示例 2】► 函数
函数单调性的判断错误
在(-∞,+∞)
2 ax +1,x≥0, f(x)= 2 ax a -1e ,x<0
上单调,则 a 的取值范围是________.
解析 a<0, 2 若函数在 R 上单调递减,则有a -1>0, a2-1e0≥1, 解
之 得 a≤ - 2 ; 若 函 数 在 R 上 单 调 递 增 , 则 有 a>0, 2 a -1>0, a2-1e0≤1, 解得 1<a≤ 2.故 a 的取值范围是(-∞,
- 2 ]∪(1, 2 ].
答案
(-∞,- 2]∪(1, 2]
警示 易忽视函数在定义域分界点上的函数值的大小,即 漏掉(a2-1)e0≥1或(a2-1)e0≤1这一条件.
2 2 3x +3-4yx+y -2=0, 即 y-2x≥0,
可看作关于 x 的二次方
程 3x +(3-4y)x+y
2
2
y -2=0(*)在区间-∞,2内有解,
设 g(x)=3x2+(3-4y)x+y2-2,
y >0, g 2 y 所以 g2≤0 或Δ≥0, 3-4y y - < , 6 2
易失分点3
函数奇偶性判定中常见的两种错误
【示例3】 判断下列函数的奇偶性.
(1)f(x)=(x-1) 1+x ;(2)f(x)=ln (x+ x2+1); 1-x

1+x (1)因为 ≥0⇒-1≤x<1,所以 f(x)的定义域 1-x
为[-1,1),不关于原点对称,故 f(x)非奇非偶. (2)因为 f(-x)=ln ( x2+1-x) x2+1-x x2+1+x 1 =ln =ln 2 x2+1+x x +1+x =-ln( x2+1+x)=-f(x), 所以 f(x)是奇函数.
解得 y≤2 或 y≥4,
3 3 或 2<y≤3- .所以值域为-∞,3- ∪[4+∞). 2 2
易失分点5
抽象函数中推理不严谨致误
【示例5】 定义在R上的偶函数f(x)满足f(x+1)=-f(x)且 f(x)在[-1,0]上是增函数,给出下列四个命题:①f(x) 是周期函数;②f(x)的图象关于x=1对称;③f(x)在
答案
①②④
警示
主要是不能抓住本质进行推理或推理层次不明致误.
研究抽象函数要注意函数的定义域,尤其是解抽象函数对 应的不等式时,通过抽象函数的单调性转变为求自变量的 大小关系时,不能忽视自变量的取值范围.
相关文档
最新文档