分数阶傅立叶变换

合集下载

分数阶傅里叶变换的原理与应用

分数阶傅里叶变换的原理与应用

分数阶傅里叶变换的原理与应用一、分数阶傅里叶变换的原理1.1传统傅里叶变换的局限性传统的傅里叶变换可以将时域信号转换为频域信号,但其变换后的结果是旋转对称的,并且无法提供选择性的时频分辨率,即无法同时精确地描述信号的瞬时特性和频率特性。

1.2分数阶傅里叶变换的引入为了弥补传统傅里叶变换的不足,分数阶傅里叶变换被引入。

分数阶傅里叶变换是将传统傅里叶变换的旋转对称性由倾斜对称的情况首次引入到信号处理领域。

1.3 分数阶傅里叶变换的定义F(a,b) = ∫f(t)K(a,b,t)dt其中,a和b是变换的参数,f(t)是原始信号,K(a,b,t)为分数阶的核函数,核函数代表了信号在时域和频域中的变换关系,通过核函数可以实现对信号的不同时频特性的描述。

1.4分数阶傅里叶变换的数学表达式F(a,b) = ∫f(t)exp(-jπat²)exp(-jπb²/t²)dt其中,a和b分别代表旋转因子,通过调整a和b的取值,可以实现对信号的不同时频域特性的描述。

二、分数阶傅里叶变换的应用2.1信号处理2.2通信系统2.3图像处理2.4声音和视频处理2.5生物医学信号处理分数阶傅里叶变换在生物医学信号处理中也有广泛应用,如心电信号分析、脑电信号分析、磁共振成像分析等。

通过对生物医学信号进行分数阶傅里叶变换,可以实现对信号的精确分析和刻画,从而有助于疾病的早期诊断和治疗。

总结:分数阶傅里叶变换作为傅里叶变换的一种扩展形式,克服了传统傅里叶变换的不足,通过调整变换的参数,分数阶傅里叶变换可以实现对信号的精确时频分辨率分析,被广泛应用于信号处理、通信系统、图像处理、声音和视频处理、生物医学信号处理等领域。

随着对分数阶傅里叶变换的进一步研究和应用,相信将会有更多的应用场景被发现,为信号处理和通信领域带来更多创新和发展。

分数阶傅立叶变换

分数阶傅立叶变换

分数阶傅立叶变换分数阶傅立叶变换(Fractional Fourier Transform)是一种多阶数学变换,可以将一个函数的时域特征转换到频域特征,同时也具有快速的计算特性。

它能够提供更加准确的信息处理方法,能够在信号处理中有效地应用。

分数阶傅立叶变换是在标准傅立叶变换基础上进行改进,其基本思想是将原始信号的时间域特征转换到频域特征。

转换后的信号可以更好地反映信号的频率分布,并且可以更好地处理诸如正弦波、高斯函数等不同形态的信号。

分数阶傅立叶变换的基本概念是将原始信号的时域特征变换到频域特征,这样就可以有效地处理各种不同形态的信号,而不会损失信号的细节和特征。

分数阶傅立叶变换的基本原理是将一个函数的时域特征转换到频域特征。

它是由一组数学公式组成的,可以将时域信号转换为频域信号,从而使信号可以在频域进行处理。

接下来要介绍的是分数阶傅立叶变换的公式。

首先,变换的基本公式是:$$F_T (f) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(t) e^{-i 2 \pi f t}dt $$其中,$f$为一个函数,$t$是时间坐标。

要实现分数阶傅立叶变换,需要对这个公式作出改变:$$F_T (f) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(t) e^{-i 2 \pi f t + i \alpha}dt $$其中,$\alpha$为变换参数,可以改变信号在时域和频域之间的映射关系,从而实现对信号的更加准确处理。

另外,分数阶傅立叶变换也可以通过建立矩阵进行表示:$$F_T (f) = \frac{1}{2\pi} \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} \int_{-\infty}^{\infty} f(t) \cos(2 \pi f t) dt \\ \int_{-\infty}^{\infty} f(t) \sin(2 \pi f t) dt\end{bmatrix} $$可以看出,分数阶傅立叶变换的矩阵表示其实就是一个二维旋转矩阵。

分数傅里叶变换

分数傅里叶变换

分数傅里叶变换分数傅里叶定义:分数傅里叶变换的物理意义即做傅里叶变换次,其中不一定要为整数(比傅里叶变换更加广泛);通过分数傅里叶变换之后,图像或信号便会同时拥有时域与频域两者的特征。

1.1(维基百科)第一种定义:第二种定义:1.2从数学上分数傅立叶变换定义了积分形式:Wigner分布函数相空间定义的分数傅立叶变换A.W.Lohmann在1993 年利用傅里叶变换相当于在Wigner分布函数相空间中角度为π/2的旋转这一性质,说明分数傅里叶变换在Wigner分布函数空间中相当于角度是pπ/2的旋转,这里,p是分数傅里叶变换的级次。

分数傅里叶变换的定义在数学上是等价的。

当分数傅里叶变换的幂次p从0 连续增长到达1 时,分数傅里叶变换的结果相应地从原始信号的纯时间(空间)形式开始逐渐变化成为它的纯频域(谱)形式,幂次p在0到1之间的任何时刻对应的分数傅里叶变换采取了介乎于时(空)域和频域之间的一个过渡域的形式,形成一个既包含时(空)域信息同时也包含频(谱)域信息的混合信号。

因此,这样定义的分数傅里叶变换确实是一种时(空)-频描述和分析工具分数傅里叶的分类:1.一维分数傅里叶变换分数傅里叶变换的数学表达式有积分形式和级数表达式两种等价形式,1.积分形式2级数表达式形式其中2.二维分数傅里叶变换其中C为相应常系数。

当a=b时, 上式就是二维分数傅里叶变换的表达式; 当a=b=1时, 上式转化为常规二维傅里叶变换; 当a与b不相等时, 我们称这种情况的二维分数傅里叶变换为不对称分数傅里叶变换。

此时在x、y 方向实施的变换级次是不同的。

分数傅里叶变换的性质1周期性:(k为整数)2线性:(c1和c2是复常数)3阶数可加性:4尺度变换特性:5时移特性:6频移特性:7可逆性:对一个函数进行P 级分数傅里叶变换后,接着进行-P 级的分数傅里叶变换,则可得到原函数:分数傅里叶变换的数值算法(1) 基于傅立叶变换矩阵因子幂的离散化算法,利来计算离散的分数傅立叶变换的核矩阵,从而利用FFT来计算离散分数傅立叶。

分数阶傅立叶变换域中测不准原理的下界

分数阶傅立叶变换域中测不准原理的下界

() 4
其 ,) 击£ (J, = 』 (J (为 (的 数 立 变 ,有 中(一 z ( = “x )dX )z)分 傅 叶 换则 £ J£ d = I 。 o ) £) 吉 。 u
收 稿 日期 : 0 90 — 2 2 0 — 92
基 金 项 目 : 苏省 教 育 厅 自然 科 学基 金 资 助 项 目(6 D1 0 7 ) 江 0d 。l “ , J X f
( I ( X口 。 ,
() 7
所 以
△ 2一 2 (
易知

( 8)
』I( l 一 ( x(d 』£ , ) F{。 ) M d 』 “ )一 (£ 中(= x . z ) “ x ) “ ( )其 £= “( “ ) d = )
摘 要 : 数傅 立 叶 变换是 傅 立 叶变换 的推 广. 立 叶 变换 可 以看作 时 频平 面 的旋 转 , 分 傅 与传 统 的傅 立 叶变换域 上 的测 不准 原 理 类似. 文章 推 导 出 了一般 信 号在 分 数 傅 立 叶变换 域 测 不 准 原理 的
下 界. 一 结论 可 以方便 地分 析 复信 号在 时域 和 分数 域上 的 不确定 性 关 系. 这 关键 词 : 数傅 立 叶变换 ; 分 测不 准原 理 ; 角 ; 辐 相位 中图分 类号 : 2 文 献标 志码 : 02 A 文章 编 号 : 6 43 8 2 1 ) 10 0 —3 1 7 —5 X( 0 o 0 —0 90
第 2 卷 第 1期 5
Vo1 5 .2 No.1
徐 州 工 程 学 院 学 报 (自 然 科 学 版 )
Ju nl f o r a o Xu h u n tt t o c n l g ( t r l ce c s z o I s iu e f Te h o o y Na u a S in e Ed t n ii ) o

基于分数阶傅立叶变换的湍流退化图像相位恢复算法研究

基于分数阶傅立叶变换的湍流退化图像相位恢复算法研究
第 2 8卷
第 4期







பைடு நூலகம்
Vo. 1 28。 No. 4 Au g., 01 2 0
21 0 0年 8月 文 章编 号 :0 5 — 8 5 2 1 ) 4 0 8 — 4 2 8 1 2 ( 0 0 0 — 3 10
ACTA AERoD YNAM I CA I CA S NI
及相 位恢 复方法 l 等 。其 中 , _ 7 相位 恢复 方法 是通 过利 用 目标 图像 的傅 立 叶变换 幅值来 恢 复 目标 图像 , 由 即
傅立 叶变换 的 幅值得 到 目标 图像 的 自相关 , 恢复傅 立 叶变换 相位 , 故相 位恢 复方 法又转 化 为解相 关 问题 的
验结果表明该算法对湍流退化具有较好复原能力 。 关 键 词 : 动 光 学 ; 流退 化 ; 数 阶 傅 立 叶 变 换 ; 气 湍 分 相位 恢 复 ; 小 二 乘 共 轭 梯 度 最
中 图分 类 号 : 1 . V2 1 3 文献标识码 : A
0 引 言
光 电探 测 系统在对 目标 进行 探测 跟踪 时 , 光线 受
求解 。相位恢 复 方 法 最 早 由 J R . .F e u i p根 据 目标 n
1 基 于 分 数 阶 傅 立 叶 变 换 的 相 位 恢 复
域和频 域交 替 迭 代 的 G S复 原 算 法 改 进 得 来 , — 称
算 法 原 理
1 1 分 数 阶 傅 立 叶 变 换 .
为迭代 傅立 叶变 换 算 法 , 用 误 差 下 降 ( R) 和 ]采 E 法 混合输 入输 出 ( O) 法 交 替进 行 迭 代 运 算 。文 献 HI 算

matlab frft的实现过程

matlab frft的实现过程

matlab frft的实现过程
在Matlab中,实现分数阶傅里叶变换(FrFT)可以通过以下步骤进行:
1. 导入所需的库和函数
在Matlab中导入相关的库和函数,以便使用FrFT相关的函数和工具。

2. 定义输入信号
接下来,定义一个输入信号,可以是一个向量或矩阵,表示我们要对其进行FrFT的数据。

3. 设置分数阶
确定要使用的分数阶参数,即FrFT的阶数。

这个参数决定了变换的性质,例如时间频率关系的变化程度。

4. 执行FrFT变换
使用Matlab中提供的FrFT函数,将定义好的输入信号和分数阶参数作为输入,执行FrFT变换。

5. 分析和处理结果
根据实际需求,对FrFT变换后的结果进行进一步的分析和处理。

可以计算频谱、幅度谱、相位谱等,以便更好地理解信号的特性。

6. 可视化结果
使用Matlab提供的绘图函数,将FrFT变换后的结果可视化,以便更直观地观察和分析信号的特点和变化。

通过以上步骤,我们可以在Matlab中实现分数阶傅里叶变换(FrFT)。

这一过程可以通过调用相应的函数和工具来完成,而无需手动编写算法。

这大大简化了实现FrFT的过程,使得分析和处理信号变得更加高效和方便。

无论是在信号处理、图像处理还是其他领域,FrFT都是一个重要的工具,可以帮助我们更好地理解和处理复杂的信号。

分数傅里叶变换

分数傅里叶变换

分数傅里叶变换分数傅里叶定义:分数傅里叶变换的物理意义即做傅里叶变换次,其中不一定要为整数(比傅里叶变换更加广泛);通过分数傅里叶变换之后,图像或信号便会同时拥有时域与频域两者的特征。

1.1(维基百科)第一种定义:第二种定义:1.2从数学上分数傅立叶变换定义了积分形式:Wigner分布函数相空间定义的分数傅立叶变换A.W.Lohmann在1993 年利用傅里叶变换相当于在Wigner分布函数相空间中角度为π/2的旋转这一性质,说明分数傅里叶变换在Wigner分布函数空间中相当于角度是pπ/2的旋转,这里,p是分数傅里叶变换的级次。

分数傅里叶变换的定义在数学上是等价的。

当分数傅里叶变换的幂次p从0 连续增长到达1 时,分数傅里叶变换的结果相应地从原始信号的纯时间(空间)形式开始逐渐变化成为它的纯频域(谱)形式,幂次p在0到1之间的任何时刻对应的分数傅里叶变换采取了介乎于时(空)域和频域之间的一个过渡域的形式,形成一个既包含时(空)域信息同时也包含频(谱)域信息的混合信号。

因此,这样定义的分数傅里叶变换确实是一种时(空)-频描述和分析工具分数傅里叶的分类:1.一维分数傅里叶变换分数傅里叶变换的数学表达式有积分形式和级数表达式两种等价形式,1.积分形式2级数表达式形式其中2.二维分数傅里叶变换其中C为相应常系数。

当a=b时, 上式就是二维分数傅里叶变换的表达式; 当a=b=1时, 上式转化为常规二维傅里叶变换; 当a与b不相等时, 我们称这种情况的二维分数傅里叶变换为不对称分数傅里叶变换。

此时在x、y 方向实施的变换级次是不同的。

分数傅里叶变换的性质1周期性:(k为整数)2线性:(c1和c2是复常数)3阶数可加性:4尺度变换特性:5时移特性:6频移特性:7可逆性:对一个函数进行P 级分数傅里叶变换后,接着进行-P 级的分数傅里叶变换,则可得到原函数:分数傅里叶变换的数值算法(1) 基于傅立叶变换矩阵因子幂的离散化算法,利来计算离散的分数傅立叶变换的核矩阵,从而利用FFT来计算离散分数傅立叶。

分数阶傅里叶变换

分数阶傅里叶变换

分数阶傅里叶变换
分数阶傅里叶变换(Fractional Fourier Transform,简称FrFT)是傅里叶变换(FFT)的一种变体,主要用于信号和图像的处理和分析,它能够重构信号或图像的频域特征。

跟FFT相比,它可以提供更多的
频域参数,它的使用可以减少信号、图像的处理的时间,提高处理的
速度。

分数阶傅里叶变换的原理是将时域信号和图像通过一定的欧拉角
旋转轴系变换到频域进行处理,此处欧拉角旋转轴系是指改变时域变
量t的旋转角度ω,表示为比率α。

对于某一序列的信号变换到频域,则可以写为:F(ω,α)=Ft(Aw,αω)。

当把FFT的轴系旋转,会到达一个新的傅里叶变换领域,可以构
建分数阶傅里叶变换。

分数阶傅里叶变换的关键参数是α ,α由下
式给出:(ω,α)=(t,αt)。

α参数越大,则傅里叶变换域的
缩放程度也就越大,即改变FFT轴系旋转的程度越大,最终能够把信
号变换到一个更大更远的领域,例如远离原点的时域。

分数阶傅里叶变换的基本运算是通过一组定义的参数,前面已介
绍的α的参数就是其中的关键参数,所有的运算都由这个参数决定,
而信号或图像则由傅里叶变换的子函数来完成变换。

分数阶傅里叶变换过程分为5步:第一步,先检查信号的长度;第二步,根据前面定义的α参数,计算轴系旋转的角度θ;第三步,在频域求解零级子函数来提取信号或图像的特征;第四步,计算转换后的特征值;第五步,对其进行融合,降低噪声等。

分数阶傅里叶变换用在信号和图像处理当中,有着很多应用,例如图像检测、图像压缩等,它能够提高处理效率,减少计算任务的复杂度,同时提供更多的频域参数来进行分析和处理。

分数阶傅立叶变换

分数阶傅立叶变换

分数阶Fourier变换将相对独立的时域和频域联系起来,从整体上展示信号曾经出现过的频率成分,适于分析确定性信号和平稳信号。

而对频率成份随时间变化的非平稳信号则提出了时频分析,它将一维的时域信号映射为二维的时频平面,全面反映信号随时间变化的频率分布特征。

分数阶Fourier变换是一种线性算子,在时频平面,若将其看作从时间轴逆时针旋转π/2到频率轴,则分数阶Fourier变换算子就是可旋转任意角度α的算子。

可认为分数阶Fourier变换是一种广义的Fourier变换。

Fourier变换是—种线性算子,这种算子的作用可以看成在时频平面里旋转π/2,即从时间轴转到频率轴。

不难理解,如果找到一种可以做任意角度α=pπ/2 (π/2的非整数倍,即p为分数)旋转的算子,则通过该算子可得到信号新的表示,将其称之为分数阶Fourier变换。

的分数阶Fourier反变换就是具有角度-α=-pπ/2的分数阶Fourier变换,即有x(t) =∫+∞-∞Xp(u)K-p(t,u)du 分数阶Fourier变换它是Fourier变换的延拓,是—种广义形式的Fourier变换。

如图l所示,当旋转角α不是π/2的整数倍时,信号的变换形式就为信号的分数阶Fourier 变换。

从物理意义上看,它是不同于时域与频域的信号表达形式,是研究时变信号和非平稳随机信号的一种新方法,从信号分析领域来看,对信号的分析一般都是基于时域、频域或者时频域。

而分数阶Fourier变换开辟一种研究信号表示形式的新域(根据分数阶Fourier变换的逆变换公式可知,信号x (t)的分数阶Fourier变换可看作x (t)在以逆变换核为基的函数空间上的展开,而该核是u域上的一组正交的chirp基。

因此一个chirp信号在适当的分数阶Fourier域中将表现为一个冲击函数,即分数阶Fourier变换的某个阶次的分数阶Fourier域对给定的chirp 信号具有很好的能量聚集特性。

分数阶傅里叶变换数值计算中的量纲归一化_赵兴浩

分数阶傅里叶变换数值计算中的量纲归一化_赵兴浩

第25卷 第4期2005年4月北京理工大学学报Tr ansactions of Beijing Institute of T echnolog y V o l.25 No.4Apr.2005 文章编号:1001-0645(2005)04-0360-05分数阶傅里叶变换数值计算中的量纲归一化赵兴浩, 邓 兵, 陶 然(北京理工大学信息科学技术学院电子工程系,北京 100081)摘 要:针对分数阶傅里叶变换(F RF T )快速算法中所要求的量纲归一化与实际工程计算脱节的问题,对量纲归一化进行了研究,提出了离散尺度变换和数据补零/截取2种实用的量纲归一化方法,研究了2种方法对chirp 信号参数估计的影响,导出了采用离散尺度化方法时,归一化前后的chirp 信号参数的变换关系.通过仿真实例说明FR FT 快速算法能够应用于实际工程计算.关键词:分数阶傅里叶变换;量纲归一化;chirp 信号;参数估计中图分类号:T N 957.51 文献标识码:ADimensional Normalization in the Digital Computationof the Fractional Fourier TransformZHAO Xing -hao , Deng B ing , TAO Ran(Depar tment o f Electr onic Engineering ,Scho o l o f Info r matio n Science and T ech no lo gy ,Beijing Institute ofT ech no lo gy ,Beijing 100081,China )Abstract :The fast a lg o rithm of the digital computation o f the fractional Fourier transform(FRFT)requires the dimensiona l no rmalizatio n,but how to do it fo r practical discrete sig nal is no t settled yet .Fo r this reaso n ,the paper presents tw o engineering -oriented metho ds o f the dimensio nal normaliza tion.One is called as the discrete scaling transfo rm metho d,another is called a s the data zero-padding /interception method.Furthermo re,their effects o n the parameter estima tion of the chirp sig nal are studied and for discrete scaling metho d ,a rela tionship befo re and after the no rmalizatio n is dev elo ped .Finally ,these methods a re v erified by simulation exa mples.These engineering-o riented methods o f the dimensional no rmalizatio n makes the FRFT m ore practical in digital signal processing.Key words :fractional Fo urier transform;dim ensio nal norma lizatio n;chirp sig nal;parameterestimatio n收稿日期:20040415基金项目:国家自然科学基金重点资助项目(60232010);高校青年教师奖资助项目;国家部委预研项目(6140445)作者简介:赵兴浩(1969-),男,博士生;陶 然(1964-),男,教授,博士生导师,E-mail :rantao @. 分数阶傅里叶变换(FRFT)作为一种全新的时频分析工具[1],已经引起信号处理领域研究人员的广泛重视.目前基于分数阶傅里叶变换的chirp 信号的检测和参数估计已经在雷达、通信等诸多领域获得应用[2,3].以往人们都在积极研究各种FRFT 的快速数值计算方法[4~7],文献[3]提出了一种基于FRFT 表达式分解的算法,这种算法的计算速度几乎与FFT 相当,被公认为目前为止计算速度最快的一种FRFT数值计算方法.需要特别强调的是,这种快速算法的运算机理决定了在进行FRFT数值计算之前必须先对原始信号进行量纲归一化处理,但是文中所给出的量纲归一化方法是以时间原点对称地对连续信号进行尺度变换,然后再按照规定时间间隔采样得到离散信号序列.这种方法在实际工程应用中不具有操作性,因为在实际工程中,所得到的信号往往是按照一定采样率进行采样得到离散信号的,而且时间取正值.为将FRFT快速算法成功地应用于实际工程计算,就必须解决对实际的离散信号进行量纲归一化处理.作者提出了2种实用的量纲归一化方法:离散尺度化法和数据补零/截取法,分析了2种归一化方法对chirp信号参数估计的影响.该方法解决了FRFT快速数值计算中的实际问题,使算法进一步实用化.1 量纲归一化方法量纲归一化原理如下[3]:假定原始连续信号f(t)在时间轴和频率轴上都是紧凑(紧支撑)的,其时域表示限定在区间[-t b/2,t b/2],而其频域表示限定在区间[-f b/2,f b/2],t b和f b分别表示信号的时宽和带宽.信号的时宽带宽积N=t b f b.由于时域和频域具有不同的量纲,所以为了FRFT计算处理方便,应将时域和频域分别转换成量纲为一的域.引入一个具有时间量纲的尺度因子S,并定义新的尺度化坐标x=t/S,v=f S.(1)新的坐标系(x,v)实现了量纲归一化(量纲为1).信号在新坐标系中被限定在区间[-t b/(2S),t b/(2S)]和[-f b S/2,f b S/2]内.为使2个区间的长度相等,选择S=(t b/f b)1/2,则2个区间长度都为x b= (t b f b)1/2,即2个区间归一化为[-x b/2,x b/2].最后,根据采样定理对归一化后的信号进行采样,采样间隔为1/x b,采样点数N=x2b.在实际应用中,能获得的是一组原始连续信号经采样后得到的离散观测数据,其中观测时间t0和采样率f s为已知.如何对这样的离散数据作量纲归一化,是将FRFT快速算法应用于实际的一个重要环节.作者提出了2种实用的量纲归一化方法:①离散尺度化法;②数据补零/截取法.1.1 离散尺度化法对离散数据通过尺度变换作归一化,关键是要选择合适的时宽t b、带宽f b、尺度因子S以及归一化宽度x b,使得尺度化后的离散数据与原始连续信号经尺度变换归一化,再以间隔1/x b采样得到的数据相同.信号的时宽比较容易确定,直接取为观测时间t0,即t b=t0,信号的时域表示限定在区间[-t0/2,t0/ 2].信号的带宽确切值并不知道,但是在实际中信号的采样频率f s是知道的,根据采样定理,采样频率一定大于信号最高频率的2倍.信号带宽f b的选取并不要求是最小值,只要满足将信号的全部能量包含在其中即可.将带宽直接取为采样频率是合适的,即f b=f s,信号的频域表示限定在区间[-f s/2,f s/ 2].在确定了信号的时宽和带宽之后,可以得到尺度因子S和归一化宽度x b分别为S=(t b/f b)1/2=(t0/f s)1/2,(2)x b=(t b f b)1/2=(t0f s)1/2.(3)离散数据原来的采样间隔为t s=1/f s,对离散数据按式(1)作尺度变换,则采样间隔变为t′s=(t0f s)-1/2=1/x b,(4)而原来的时域区间[-t0/2,t0/2],经尺度变换后变为[-x b/2,x b/2].因此,所谓离散尺度化法就是以采样率为带宽,以观测时间为时宽,按照式(1)和式(2)对离散数据作尺度伸缩变换,就实现了归一化,而且离散数据与对归一化连续信号以1/x b间隔采样所得的离散数据完全相同.1.2 数据补零/截取法离散尺度化法是通过对离散数据在时间域上的伸缩实现归一化的.信号尺度的伸缩必然会导致原有信号的某些特征发生畸变,例如对一个chirp信号进行尺度伸缩,将使它的调频率变大或变小.数据补零/截取法可以使原有信号不发生畸变而又实现量纲归一化.为了保证原有信号不发生畸变,尺度因子只能选1,即S= 1.先将时宽定为观测时间,即t b=t0,带宽定为采样频率,即f b=f s.在确定归一化宽度x b时,分2种情况.第一种情况:当f s>t0,则x b直接取两者中的较大值,即x b= f s.由于原始数据的采样间隔为1/f s,时间区间在[-t0/2,t0/2],而归一化后要求采样间隔仍为1/f s,时间区间增加为[-f s/2,f s/2].因此,通过在[-f s/2,-t0/2]和[t0/2,f s/2]区间以同样的采样间隔进行数据补零,人为地增加信号的时宽,从而实现信号的时宽和带宽归一化,这就是数据补零法实现361 第4期赵兴浩等:分数阶傅里叶变换数值计算中的量纲归一化归一化的原理.第二种情况:当t0>f s,则x b取两者中的较小值,即x b=f s.由于原始数据的采样间隔为1/f s,时间区间在[-t0/2,t0/2],而归一化后要求采样间隔仍为1/f s,时间区间减小为[-f s/2,f s/2].因此需要对原有数据做截取处理,只取出在区间[-f s/2,f s/2]内的数据,从而实现信号的时宽和带宽归一化,这就是数据截取法实现归一化的原理.2 归一化方法对chirp信号参数估计的影响 分数阶傅里叶变换在某个分数阶域对给定调频率的chirp信号具有最好的能量聚集特性,利用这一特性,可实现chirp信号的检测和参数估计.具体方法是先对观测信号分别求所有阶次p∈[0,2]的分数阶傅里叶变换,形成信号能量在由分数阶域u和分数阶次p组成的二维参数平面(p,u)上的二维分布,在此平面上按阀值进行峰值点的二维搜索,即可实现chirp信号的检测,同时估计出峰值所对应的分数阶次p^0和分数阶域坐标u^0.若含噪声的chirp信号观测模型表示为f(t)=a0ex p(j h0+j2πf0t+π_0t2)+W(t),-t0/2≤t≤t0/2,(5)式中W(t)为加性高斯白噪声,则可得到chirp信号的调频率_^0、中心频率f^0和峰值所对应的分数阶次p^0、分数阶域坐标u^0之间的对应关系式[7]_^0=-co t(p^0π/2),f^0=u^0csc(p^0π/2),(6)根据式(6)就可算出chirp信号的调频率_^0和中心频率f^0.许多技术人员根据上述原理对chirp信号进行参数估计时,都是对离散观测数据直接做FRFT快速数值计算的.然而他们发现,虽然能够检测到chirp信号,但是算出的调频率和中心频率值与理论值总是不同,这就是忽略了归一化对参数估计的影响.因为离散观测数据在做FRFT数值计算之前必须要做量纲归一化处理,直接对离散观测数据做FRFT数值计算相当于对原始数据已经通过离散尺度化法进行了归一化处理.chirp信号在尺度伸缩归一化后,它的参数值必然发生变化,用FRFT方法所估计得出的调频率和中心频率是归一化的chirp信号参数值,而不是实际chirp信号的参数值,这就是为什么计算得到的参数值与理论值不同的原因.因此,在得到归一化以后的chirp信号调频率和中心频率后,还要根据归一化前后参数之间的关系计算真实的chirp调频率和中心频率.设归一化前实际信号的调频率为_0,中心频率为f0,归一化后的信号调频率为_′0,中心频率为f′0,则利用式(1)和(2),可进行如下推导:_′0=vx=f St/S=_0S2=_0t0/f s,f′0=f0S=f0(t0/f s)1/2,(7)于是,尺度变换归一化前后chirp调频率和中心频率的变化关系式为_0=_′0f s/t0,f0=f′0(f s/t0)1/2.(8)采用尺度变换的方法实现归一化,使得原始信号发生了畸变.而使用数据补零/截取法归一化,原始信号在归一化过程中不会发生变形.若观测信号中含有chirp信号,则归一化前后chirp信号的参数值相等.这样,在利用分数阶傅里叶变换进行chirp 信号的参数估计时,所得到参数值就是原始信号的参数值,而不必像离散尺度化那样,计算出调频率和中心频率值后,还要经过尺度反变换才能得到原始信号的真实调频率值和中心频率值.总之,从对chirp信号进行参数估计的角度看,数据补零/截取法不必坐标的尺度变换就可实现归一化,方法简单.同时chirp信号在归一化过程中不会发生变形,算出的参数值就是实际的参数值,计算简单.但是,数据补零/截取法只适合于t0和f s相差不大的场合,因为当f s比t0大得多时,需要补很多的零才能满足归一化要求,使得FRFT的计算量过大;相反当t0比f s大得多时,数据的截取量很大,使得有效信息损失很多,影响估计精度.因此,只有在t0和f s相差不大的前提下,数据补零/截取法才是一种简单、方便的归一化方法.由于离散尺度化法通过坐标尺度变换实现归一化,所以不论t0和f s的大小如何,都是直接对原始的离散数据做FRFT数值计算,计算量只取决于原始离散数据的点数,而与t0和f s无关.但是计算所得的调频率和中心频率并不是真实的值,必须根据归一化前后参数值的关系算出真实的调频率和中心频率值.因此在t0和f s相差很大时,离散尺度化法成为一种高效的归一化方法.3 仿真实例及分析下面通过2个具体的仿真实例说明2种归一化362北京理工大学学报第25卷 方法的具体实现步骤,并对实验结果进行误差分析.例1 观测时间t 0=2s ,采样频率f s =800Hz ,采样点数为1601点,其中含有一个chirp 信号,其参数为:调频率_0=100Hz ·s -1;中心频率f 0=100Hz .干扰为高斯白噪声,信噪比为0dB .因为f s t 0,故采用离散尺度化法实现归一化.具体步骤:将时间原点定为观测时间的中点,信号的时域区间为[-1s,1s ],信号的频域区间为[-400Hz,400Hz ],尺度因子为S =0.05s,归一化后的区间为[-20,20].由式(7)算出归一化后chirp 信号的调频率变为_′0=0.25,中心频率变为f ′0= 5.然后阶次在[1.0,1.4]内以0.01为间隔取值,对观测数据直接求FRFT,并做出二维搜索chirp 信号的仿真结果如图1所示.图1中峰值所对应的二维平面坐标值为p ^0=1.16,u^0= 4.9.根据式(6)可算出chirp 信号的调频率为_^′0=0.257Hz s -1,中心频率为f ^′0= 5.059Hz.算出的参数值是对尺度变换归一化后chirp 信号的参数估计值.最后,根据式(8)可计算出归一化前实图1 利用离散尺度化法实现归一化的Chirp 信号检测结果Fig .1 Chirp signal d etection resu lt b y discrete scaling meth od 际chirp 信号的参数估计值_^0=102.720Hz ·s -1,f ^0=101.178Hz .因为在实际应用中包含着重要信息的调频率是感兴趣的参数,为了主要验证尺度变换法对不同调频率取值的估计性能,设中心频率为0,调频率分别取若干个样值,观测时间、采样频率、信噪比、阶次取样间隔与前面相同,所做的仿真测试结果如表1所示.表1 离散尺度法的调频率估计实验结果Tab .1 Test results of chirp rate est imat ion by discrete scaling method_0/(Hz·s -1)_′0p ′0p ^′0_^′0_^/(Hz ·s -1)p^0-p 0(_^0-_0)/(Hz ·s -1)500.125 1.0792 1.080.126050.500.00080.501000.250 1.1560 1.160.2568102.720.0040 2.721500.375 1.2284 1.230.3779151.160.0016 1.162000.500 1.2952 1.300.5095203.800.0048 3.802500.625 1.3556 1.360.6346253.840.0044 3.833000.750 1.4097 1.410.7508300.320.00030.323500.875 1.4576 1.460.8816352.640.0024 2.64400 1.000 1.5000 1.50 1.0000400.000.00000.00450 1.125 1.5374 1.54 1.1343453.710.0026 3.71500 1.250 1.5704 1.57 1.2482499.280.0004-0.72 550 1.375 1.5997 1.60 1.3764550.560.00030.566001.5001.62571.631.5224608.960.00438.96 从表1中数据分析可以看出:①对于不同的调频率都能得到较好的估计值.②对于所做的仿真实例,噪声对调频率估计误差影响很小,调频率估计误差主要由阶次误差决定,而阶次误差随阶次的采样间隔变化.若要减小阶次估计误差,就必须减小阶次的采样间隔,而这样又会增大计算量.③调频率大于400Hz ·s -1以后,信号的最高频率已经超过了采样频率的1/2,处于欠采样状态,但仍然可以精确地估计出调频率值,具体原因有待进一步研究.例2 观测时间t 0=4s,采样频率f s =20Hz,采样点数为81点,其中含有chirp 信号,其参数为:调频率_0=2Hz ·s -1;中心频率f 0=4Hz ;干扰为高斯363 第4期赵兴浩等:分数阶傅里叶变换数值计算中的量纲归一化白噪声;信噪比为0dB .虽然f s 大于t 0,但相差不是很大,故采用数据补零法实现归一化比较适合.具体步骤:将时间原点取在观测时间的中点,信号的时间区间为[-2s,2s ].先将时宽定为t 0=4s,带宽定为f b =20Hz ,令尺度因子S =1s ,则x b 直接取t b 和f b 的大值,x b =20.原有时间区间为[-2s,2s ],归一化后要求时间区间为[-10,10].所增加的部分必须通过补零实现归一化,因为采样间隔为1/x b =0.05,所以需要在区间[-10,-2]和[2,10]内补160个0,最后分数阶次在[1.0,2.0]内以0.01为间隔取值,对补零后的数据求FRFT ,做出二维搜索chirp 信号的仿真结果如图2所示.图2 利用数据补零法实现归一化的chirp 信号检测结果F ig .2 Chirp sig nal d etection result by data zero -padding /intercep tion meth od图2中峰值所对应的二维平面坐标值为p ^0=1.71,u^0= 1.75.根据式(6)算出chirp 信号的调频率为_^0=2.041Hz s -1,中心频率为f ^0= 3.978Hz .可见利用数据补零法计算出来的参数值就是原始信号的参数值.数据补零法的误差测试分析与前面类似,由于篇幅原因,不再赘述.4 结束语作者着重对文献[3]所提出的分解型快速算法进行了研究.在将分解型算法应用于工程实际时发 现,该快速算法所要求的量纲归一化与工程实际脱节,若不进行特殊处理将产生很大误差.针对此问题,作者提出了离散尺度变换法和数据补零/截取法2种实用的量纲归一化方法,并研究了2种归一化方法对chirp 信号参数估计的影响,导出了采用离散尺度化方法归一化前后的chirp 信号参数的变换关系.本研究解决了FRFT 分解型快速算法在实际应用中的一个重要环节,使得分解型快速算法能真正应用于实际工程.参考文献:[1] Almeida L B .Th e frac tional Fourier tra nsfo rm andtime-fr equencyrepresentations [J ].IEEE T ra nsS ig na l Pro cessing ,1994,42(11):3084-3091.[2] Zhao Xinghao ,Ta o Ra n,Zhou Siy ong.A no v elsequential estima tio n alg o rithm fo r chir p sig nalpa rame ters [Z ].2003Inter national Co nference onN eural N etwo r k&Sig nal Processing ,N anjing ,2003.[3] 齐 林,陶 然.基于分数阶Fo urier 变换的多分量L FM 信号的检测和参数估计[J ].中国科学E 辑,2003,33(8):749-759.Qi Lin,Tao Ra n.Detectio n and param eter estima tiono f multico mponent L FM signal based on the fr actio nalFo urier transfo rm [J ].Science in China Series E ,2003,33(8):749-759.(in Chinese)[4] O zaktas H M ,Kutay M A.Digital computatio n of thefrac tio nal Fo urier tra nsfo rm [J ].I EEE T rans Sig nal Processing ,1996,44(9):2141-2150.[5] Pei S C,Y eh MH .Disc rete fractio nal Fo uriertr ansfo rm ba sed o n o rtho go na l pro jectio ns [J].IEEE T rans Sig nal Processing ,1999,47(5):1335-1348.[6] Candan C,Kutay M A.Th e discre te fr actio nalFo urier t ransfor m [J].IEEE T rans Sig nal Processing ,2000,48(5):1329-1337.[7] Tao Ran ,Ping Xianjun ,Zhao Xinghao .A no v eldisc rete fr actio na l Fouriertr ansfo r m [Z ].CI EInter na tio nal Confer ence o f Rada r,Beij ing ,2001.364北京理工大学学报第25卷 。

基于一种新的交换矩阵的离散分数阶傅立叶变换实现

基于一种新的交换矩阵的离散分数阶傅立叶变换实现
v n in o re r n f r . T e e gn e n e iain o h o t u u RF a o b a l d a d d s r t e . a d s c n e t a F u r t so ol i a m h n i e r g r a z t t e c n i o s F T h s t e s mp e n ic ei d i l o f n z n u ha a h e e oe mar l l s n ot n r p r e .T u ,p o l a e d n n e e rh so ed s r t e l ain o ec r c iv d c r t x wi e ma y i ra t o e is h s e p eh v o ema y r s a c e n t ic ee r ai t t o e i lo mp p t h z o f h
HOU u—u Yo g o ’ GUO e W i L ns a IXi —h n
( .N t nl e a f o u i t n E T ,C eg u60 5 ,C ia 1 ai a K yL bo C mm nc i ,U S C hn d 104 hn ; o ao 2 ac agIstt o eh o g ,N nh n 30 9 hn ) .N nhn ntue f cnl y a cag30 9 ,C ia i T o
c n i u u rc o a F u e rn fr ,s c su i r o t o sfa t n l o r r a s m n i i t o u h a n t y,a dt e, r o o a , e e s l.F n l t e smu ain r s l a es o n t e a d i v o t g n l r v r i e i al h i lt e u t h v h w i h b y, o s h smi r y o e c r t x o e p o o e F T a d t e c r u cin o o t u u Rfr n h i lrt f wo F T fr c i l i ft o e mar t rp s d D RF n o ef n t c n i o s F v .a d t e s a y o RF s o e — at h i f h h o f n mi i t

分数阶傅里叶变换的原理与应用

分数阶傅里叶变换的原理与应用

分数阶傅里叶变换的原理与应用分数阶傅里叶变换(Fractional Fourier Transform,简称FRFT)是一种广义的傅里叶变换方法,可以描述信号在时频域中的变换关系。

与传统的傅里叶变换相比,分数阶傅里叶变换具有更广泛的应用领域和更强大的变换能力。

本文将介绍分数阶傅里叶变换的原理及其在信号处理中的应用。

分数阶傅里叶变换的原理可以通过分数阶傅里叶变换核(Fractional Fourier Transform Kernel)来描述。

分数阶傅里叶变换核是一种特殊形式的线性空间变换核,它由角度参数α和分数阶参数β决定。

通过调整α和β的取值,可以实现对信号在时频域中的不同变换操作。

分数阶傅里叶变换可以看作是一种旋转和拉伸的变换方式。

当α=0时,分数阶傅里叶变换退化为傅里叶变换;当β=1时,分数阶傅里叶变换退化为时域的平移操作;当α和β均为分数时,分数阶傅里叶变换可以描述信号在时频域中的复杂变换关系。

分数阶傅里叶变换在信号处理中有着广泛的应用。

首先,它可以用于信号的分析和合成。

通过分数阶傅里叶变换,可以将信号从时域变换到频域,进而实现对信号的频谱分析。

同时,分数阶傅里叶变换还可以将频域的信号合成为时域的信号,从而实现信号的合成。

分数阶傅里叶变换可以用于信号的压缩和去噪。

在信号的压缩中,通过选择合适的分数阶参数β,可以实现对信号的降维压缩,从而减少存储空间和传输带宽。

在信号的去噪中,分数阶傅里叶变换可以将信号在时频域中的噪声分离出来,从而实现对噪声的去除。

分数阶傅里叶变换还可以应用于图像处理和通信系统中。

在图像处理中,分数阶傅里叶变换可以用于图像的特征提取和图像的变换操作。

在通信系统中,分数阶傅里叶变换可以用于信号的调制和解调,从而实现对信号的传输和接收。

分数阶傅里叶变换是一种重要的信号处理方法,具有广泛的应用前景。

通过对信号的分析和合成、信号的压缩和去噪,以及在图像处理和通信系统中的应用,分数阶傅里叶变换可以实现对信号在时频域中的变换和处理,从而提高信号处理的效果和性能。

分数阶傅里叶变换的幻灯片

分数阶傅里叶变换的幻灯片

得信号
dx(t) dt
jF 2[ X (u)u](t) 2

tx(t) F 0[ X 0(u)u](t)

j
dx(t) dt

1
2 sin
{F [ X

(u)u](t)

F[X

(u)u](t)}
tx(t)

1
2 cos
{F
[ X

(u)u](t)

F[X

F

2
[
X


2
(u)u](t)


j
dX dt
(t)
(7)
这就把

2
阶的FRFT 域的滤波表示为

FRFT 的微分。
由FRFT 的性质可得:
F [x(u)u](t) (t cos j sin D)F[x(u)](t)(8)
F [x (u)u](t) (t cos j sin D)x(t)
3.分数阶Fourier 变换的优势
1)分数阶Fourier 变换是一种统一的时频变换, 随着阶数从0 连续增长到1,分数阶Fourier 变换展示出信号从时域逐步变 化到频域的所有变化特征, 可以为信号的时频分析提供更大 的选择余地;
2)分数阶Fourier 变换可以理解为chirp 基分解, 因此,它十分 适合处理chirp类信号。
分数阶傅立叶变换
分数阶傅立叶变换
分数阶Fourier 变换是对经典Fourier 变换的推广。 最早由Namias以数学形式提出, 并很快在光学 领域得到了广泛应用。而其在信号处理领域的 潜力直到20世纪90年代中期才逐渐得到发掘。 尽管分数阶Fourier 变换的定义式直观上看仅是 chirp 基分解, 而实质上分数阶Fourier 变换更具 有时频旋转的特性, 它是一种统一的时频变换, 随着变换阶数从0连续增长到1而展示出信号从 时域逐步变化到频域的所有特征,可以为信号 的时频分析提供更大的选择余地。

分数阶傅里叶变换仿真

分数阶傅里叶变换仿真

分数阶傅里叶变换仿真分数阶傅里叶变换(Fractional Fourier Transform,简称FrFT)是一种基于分数阶微积分理论的信号处理方法。

它在时频域中对信号进行变换,具有很好的时频分辨率和抗干扰性能。

本文将介绍分数阶傅里叶变换的原理及其在仿真中的应用。

一、分数阶傅里叶变换原理分数阶傅里叶变换是傅里叶变换的推广形式,它的核函数是复数的n次幂函数。

在时域上,分数阶傅里叶变换可以表示为以下形式:```FrFT(a,b)f(t) = \int_{-\infty}^{\infty} K(a,b,t,\omega) f(\omega)e^{j\omega t} d\omega```其中,a和b分别表示分数阶傅里叶变换的两个参数,f(t)表示输入信号,K(a,b,t,\omega)表示分数阶傅里叶变换的核函数。

二、分数阶傅里叶变换仿真方法为了对分数阶傅里叶变换进行仿真,我们可以借助计算机来实现。

以下是分数阶傅里叶变换仿真的步骤:1. 输入信号准备:选择一个合适的输入信号,可以是连续信号或离散信号。

确保信号具有一定的频谱特征,并且足够长以覆盖所需的频域范围。

2. 离散化:如果输入信号是连续信号,需要进行采样和离散化处理,得到离散信号。

3. 计算核函数:根据所选的参数a和b,计算分数阶傅里叶变换的核函数K(a,b,t,\omega),可以利用数值计算的方法进行近似求解。

4. 执行分数阶傅里叶变换:将离散信号与核函数进行卷积运算,得到分数阶傅里叶变换后的信号。

5. 可视化结果:将变换后的信号进行可视化展示,可以使用时频图或频谱图等方式来展示信号在时域和频域上的特征。

三、分数阶傅里叶变换仿真实例为了更好地理解分数阶傅里叶变换的仿真过程,我们举一个简单的实例来演示。

假设我们有一个正弦信号f(t) = A\sin(2\pi f_0 t),其中A为幅度,f_0为频率。

以下是实现分数阶傅里叶变换仿真的Python代码:```pythonimport numpy as npimport matplotlib.pyplot as plt# 参数设置A = 1.0f0 = 10.0alpha = 0.5beta = 1.0# 生成时间序列t = np.linspace(-10, 10, 1000)# 生成输入信号f = A * np.sin(2 * np.pi * f0 * t)# 计算核函数kernel = np.exp(-1j * np.pi * alpha * beta) * np.exp(1j * np.pi * beta * (f0 * t) ** 2)# 执行分数阶傅里叶变换frft = np.convolve(f, kernel, mode='same')# 可视化结果plt.figure()plt.subplot(2, 1, 1)plt.plot(t, f)plt.title('Input Signal')plt.xlabel('Time')plt.ylabel('Amplitude')plt.subplot(2, 1, 2)plt.plot(t, frft)plt.title('Fractional Fourier Transform')plt.xlabel('Time')plt.ylabel('Amplitude')plt.show()```通过运行以上代码,我们可以得到输入信号和分数阶傅里叶变换后的信号的时域波形图。

分数阶傅里叶变换FRFT研究

分数阶傅里叶变换FRFT研究

电信工程学院
2019/9/7
21
三.分数阶Fourier变换的基本性质
旋转相加性 FRFT可以反复地进行下去,直到满意为止。
F p F q F pq
两个特例:pp+1对应FFT pp-1对应IFFT
电信工程学院
2019/9/7
22
三.分数阶Fourier变换的基本性质
连续性 当p1,p2,c1,c2 为任意实数时,FRFT满足连续性
FRFT为无条件的.
电信工程学院
2019/9/7
19
二.FRFT的基本概念
传统Fourier变换的性质
1.线性 2.卷积定理
F[anf(t)]= an F[f(t)] F[f(t)*g(t)]=F[f(t)]•F[g(t)]
3.时域相关性定理 Rf1f2=f1()f2*(t- )d
若 2n 若x (2n 1)
电信工程学院
2019/9/7
15
二.FRFT的基本概念
方波的几种分数阶Fourier变换. 实线:
实部
虚线: 虚部
电信工程学院
2019/9/7
16
二.FRFT的基本概念
图(a): 三角函数rect(x/2)* rect(x/2)的幅值(实线) 和p=0.5的FRFT的幅值 (虚线)
图(b):图(a)的相位,三角函数 (实线),FRFT(虚线)
图(c):有限长正旋函数 e j2x rect(x/20)的实部
图(d):图(c):有限长正旋函数的 FRFT(p=0.5)的实部
图(e):线性调频函数e -j2x2的 实部
图(f):图(e)的FRFT (p=2arctan(-2)/ +1)

分数阶傅里叶变换的快速计算新方法

分数阶傅里叶变换的快速计算新方法
A j( m { F f} = e 2∀x 2∀x
a - ! ) m 2∀x
2 2 n= - N
Байду номын сангаас
∀x # j2
2 2
e
# ∀x
m 2P ∀x
2
#
N
e
j !
m- n 2∀x
2
%
2
n= - N
#
N
ej
1 m- n P! 2∀x n 2∀x
∃e
j ( - !)
m 2∀x
f
n , 2∀x
- ∀ m∀ N
( 4)
e
j2 ! x
n 2∀x
e
j
n 2∀x
2
f
n 2∀x
( 3)
上式中时域 变量 已经 实现 离散 化, 接 下来 对 分数 阶域 变量离散 化. 以 1/ ( 2 ∀x ) 为 采 样间 隔, 在 全 程范 围 [ ∀x /2, ∀x / 2] 内 对 分 数 阶 域 变 量 采 样, 即 令 x = m/ ( 2 ∀x) , 代入公式( 3) , 经过整理得到
FRFT 在局部谱 区间 [ x 1, x 2 ] 上 的 M 点等 间隔 取样 值, x 1, x 2 和 M 的取值任意. 将分数阶域变量离散化为 x = x i+ m ∀I , - M / 2 ∀ m ∀ M / 2, 其中 x i = ( x 2- x 1) / 2 表示 区间中点, ∀I = ( x 2 - x 1 ) / ( M - 1) 表 示采样 间隔. 然后 将其代入公式( 3) 中, 得到
! 4PN N#
2
3
FRFT 高分辨计算( Zoom FRFT)
可以看出, 分解型算法 包含了 2 个离 散化 步骤: 第

离散分数阶傅里叶变换采样和重建学术汇报1

离散分数阶傅里叶变换采样和重建学术汇报1
n N N
y n K * m, n K p m, n y k p
n N
N
t 2 2 sin
n N m N
exp( 2j cot k 2 n2 t 2 )exp( j csc m n k t u ) y (n);

exp( j t 2 ) s(t )
N 2
采样
2
n n n exp( j t ) s(t ) exp( j )sin c 2x t )s( 2x 2x 2x n N
9
Ozaktas的采样型DFrFT
原信号的最优阶次 p=0.90, 信号下采样后 最优阶次变成 p=0.82
地震信号的离散分数域采样
地震信号的分数域谱 2 1.5 1 0.5
50
100
150
200
250
分数域下采样的分数域谱
1.5 1 0.5
20
40
60
80
100
120
原信号的最优阶次p=0.90, 分数域下采样后最优阶次变成p=0.79
2
csc j cot /2u 2 2 j cot /2 u 2 X s u e X u e * u csc n Ts 2 n
csc j cot /2u 2 2 sin j cot /2 u 2 X s u e X u e * u n Ts 2 n
1 0 2 1 1 2cos S 0 1 2cos 2 M M M 1 0 0 L 0 L 0 O M L 2cos( N 1) L 1

分数阶傅里叶变换

分数阶傅里叶变换
ห้องสมุดไป่ตู้
Application
分数阶傅里叶变换作为非平稳信号处理的重要方向之一,其基本理论 近十多年来得到了长足的发展,并被广泛地应用于雷达、通信、信息安全
等领域
谢谢!
李李张制 家阳艺作 树萌勉
• 分数阶Fourier变换是信号在时频平面内坐标轴绕原点逆时针旋转任意
角度后构成的分数阶Fourier域上的表示方法,是一种广义的Fourier变 换。

现在很多人总喜欢拿分数阶傅里叶变换与短时傅里叶变换、小波变换以及威格纳变换这些时频 分析做比较,从此怀疑分数阶傅里叶变换的实用价值。这是对分数阶傅里叶变化的广义时频分 析特点认识不足所致。首先,必须声明的一点是分数阶傅里叶变换并不是传统意义上的时频分 析,它只是一种广义的时频分析,它并没有完全解决传统傅里叶变换在时频定位以及分辨率上 的局限性。所以,我们要做的工作是在分数阶傅里叶变换的基础上构建新的时频分析体系,例
•分数阶傅里叶变换实际是一种统一的时频变换,同时也反映出了信号在 时域和频域的信息,而与常用的二次型时频分布的不同在于分数阶傅里 叶变换用单一的变量来表示时频信息,并且还没有交叉项的干扰。相比 于传统的傅里叶变换,分数阶傅里叶变换十分的适用于处理非平稳信号 ,尤其大部分的类信号,并且多了一个自由的变换阶数。所以分数阶傅 里叶变换在同等条件下能够得到传统时频分析或者傅里叶变换得到不同 的效果,并且所得到的效果比其它方法有着更高的分辨率并且提高了性 噪比,而且有力的消除了带来的一些噪声。由于分数阶傅里叶变换具有 比较成熟的快速离散算法,因此在得到更好效果的同时还不需要付出更 多的计算代价。
简介 分数阶傅里叶变换
定义与特点 发展与现状 应用
Definition & Characteristics

FRFT的学习研究小结

FRFT的学习研究小结

分数阶傅里叶变换(FRFT )的学习研究小结一、前言1、基于Fourier 变换的信号分析Fourier 变换始于十八世纪:1()()j t F f t e dt ωω∞--∞=;1()()j t f t F e d ωωω∞-∞=在信号处理领域,Fourier 分析是一种强有力的分析方法和工具。

它具有三个特点:正交性、物理意义明确和简洁快速的计算、Fourier 变换与Fourier 反变换建立了时域和频域的通道,使信号可以由两种不同的形式表示,即可将信号从时域映射到频域。

这样便于信号的分析,并赋予其明确的物理意义。

但是Fourier 变换是一种全局变换,其时域和频域分辨率是固定不变的。

它通过对时间积分平滑了非平稳信号的突变成分,频谱上的任何一点都是由时间过程在整个时间域上的贡献决定的。

要求信号具有平稳特性。

因此,对非平稳信号以及突变信号难以准确刻画。

现实中大多信号都具有非平稳特性,因此人们寻求新的信号处理理论和方法,以弥补Fourier 变换的不足。

因此发展了一系列时频分析的方法:短时Fourier 变换,小波变换,Gabor 变换,维格纳-威尔分布,分数阶Fourier 变换等等。

2、研究分数阶Fourier 变换的意义Fourier 变换在连续时间和离散时间信号处理中占有重要的地位,是分析和处理平稳信号的有力工具。

Fourier 变换将信号在整体上分解为具有不同频率的正弦分量,得到信号的整体频谱,而对处理时变的非平稳信号则无能为力。

随着信息科学的发展,分数阶Fourier 变换(Fractional Fourier Transform ,FRFT )变换作为一种新的信号分析理论与方法被关注。

FRFT 用于 LFM 信号的检测及参数估计。

传统 Fourier 变换是信号在一组正交完备的正弦基上的展开,所以一个正弦信号的 Fourier 变换是一个δ函数;FRFT 是信号在一组正交的 LFM 基上的展开,一个 LFM 信号的某一阶次的FRFT 也是一个δ函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Fk (t) kk (t) e jk /2k (t)
k (t) Hk (t)et2 /2, Hk (t)是k阶Hermite多项式。
Hk (t)=(-1)ket2 /2
dk dt k
et2 / 2
精品课件
分数阶傅立叶变换的定义2:
令 k (t) Hk (t)et2 /2为普通傅立叶变换的特征值 k 对应的特征函数,且构成有限能量信号空间的
F p s ( t )= e jp k / 2 c k k ( t ) k0
e jp k / 2 k ( t ) k ( t ) s ( t )d t
k0
精品课件
比较原定义:
F ps(u) K p (t,u)s(t)dt
我们得到:
K p (t, u) e jpk /2 k (t) k (u) k 0
分数阶傅立叶变换是将信号在一组正交的 chirp信号上展开,则一个chirp信号的某一阶 次的FRFT也是一个δ函数。
精品课件
FRFT的一般研究思路:
单分量、多分量Chirp信号的检测和参数 估计。
雷达信号的目标检测和识别。 SAR和ISAR成像。 运动目标检测和识别。 宽带干扰抑制。
精品课件
p
K
2 n 1
2. K p (t,u ) K p (u ,t)
3.
K p (t,u ) K *p (t,u )
4. K p (t,u ) K *p (t, u )
5.
K p (t, z ) K q ( z , u )d z K pq (t, u )
6.
K
p
(t,品课件
主要研究方向和成果
FRFT的基本性质 FRFT与其他时频分析工具的关系 FRFT的光学实现技术和应用 FRFT的数值计算与快速算法 FRFT在信号处理中的应用 高维分数阶傅立叶变换的研究
精品课件
FRFT的一般研究思路:
1.将傅立叶变换的应用直接推广到FRFT。
传统的傅立叶变换是将信号在一组正 交完备的正弦基上展开,所以正弦信号的傅立 叶变换是一个δ函数。
短时傅立叶变换和Radon_Wigner变换的关系。 利用已有的研究成果研究分数阶傅立叶变换的 应用。
精品课件
FRFT的一般研究思路:
例如:分数阶傅立叶变换和Radon_Wigner变换的 关系。 信号分数阶傅立叶变换的模平方是信号在 该方向的Radon_Wigner变换。 利用这个结果可以研究基于分数阶傅立叶 变换的噪声背景下的线性调频信号检测方法。
精品课件
性质4的证明:
利用
K p (t, z ) K q ( z , u )d z K pq (t, u )
F p q ( s ( t ) ) K p q ( t , u ) s ( t )d t
( K p (t, z ) K q ( z , u )d z )s (t )d t
FRFT的一般研究思路:
2.将FRFT视为时频面上的旋转算子 信号FRFT的时频分布是信号时频分布的一
个旋转。 可用于信号间的分离,噪声抑制。这是分
数阶傅立叶域滤波或扫频滤波的基本原理。进 一步提出分数阶傅立叶变换域的最佳滤波的概 念。
可以应用于多路复用技术。
精品课件
FRFT的一般研究思路:
3.研究FRFT与其他时频分析方法的关系 研究与Wigner_Ville分布、小波变换、
分数阶傅立叶变换核的频谱展开(奇异值分解)
精品课件
H erm ite _ G auss函 数 k (u )刚 好 具 有 性 质 :
e j 2 ut e jk / 2 k (t ) k (u ) k0
1
j cot
t2 u2 exp( j
cot
j
tu
)
2
2
sin
e jpk / 2 k (t ) k (u )
分数阶傅立叶变换 (Fractional Fourier Fransform)
精品课件
简介
1929~1980 早期未被人们重视的研究。 1980年,V.Namias 从特征值和特征函数
的角度提出了分数阶傅立叶变换的概念。 定义为传统傅立叶变换的分数幂形式。 1994年, L.B.Ameida将分数阶傅立叶变 换解释为时频面上的坐标轴旋转。
K q (z,u )( K p (t, z)s(t)dt)dz
K q ( z , u ) F p ( s ( t ) ) d z F q F p ( s ( t ) )
精品课件
FRFT的其他定义:
特征函数和特征值(V.Namias,1980)
将傅立叶变换当作信号空间上的算子,
对应的特征方程为:
精品课件
Fps(u)

1 jcot s(t)exp( j t2 u2 cot j tu )dt
2
2
sin
s(u)
n 2n
s(u)
(2n1)
其中: p
2
精品课件
讨论: 变换核的性质:
1 .变 换 核 是 p的 连 续 函 数 。

lim
p 2n
K
p
K 2n
lim K
p 2n1
(u
u
)
精品课件
讨论: 变换的性质:
1. 分数阶傅立叶变换是线性变换。 2. F 0s(t) F 4s(t) s(t)
3. F 1s(t ) F 5 s(t ) sˆ( )(傅 立 叶 变 换 )
4. F p F(q s (t )) F p(q s (t )) (可 加 性 ) 5. F ( 4n p s (t )) F (p s (t ))
精品课件
分数阶傅立叶变换的定义:
定义1: 信号s(t)的p阶分数阶傅立叶变换是一个
线性积分运算
F ps(u) Kp (t,u)s(t)dt
其中:Kp (t,u)=
1 j cot exp( j t2 u2 cot j tu )
2
2
sin
(t u)
(t u)
n
2n (2n 1)
标准基,定义p阶分数阶傅立叶变换为算子:
F p k (t) kp k (t) e jpk / 2 k (t)
精品课件
计算:
对 信 号 s (t ),由 { k (t )} 是 标 准 正 交 基 , 有
s ( t )= c k k ( t ) k0
c k s ( t ) , k ( t ) s ( t ) k ( t ) d t
相关文档
最新文档