第二章解析几何条件转化答案
北师大版高中数学必修二第二章《解析几何初步》测试(含答案解析)(2)
一、选择题1.已知方程2234-+=-kx k x 有两个不同的解,则实数k 的取值范围是( ) A .13,24⎡⎤⎢⎥⎣⎦B .53,124C .13,24⎛⎫⎪⎝⎭D .53,124⎛⎫⎪⎝⎭ 2.圆()()22211x y r -++=上有且仅有四个点到直线43110x y +-=的距离等于32,则半径r 的取值范围为( ) A .72r >B .72r <C .12r >D .1722r << 3.已知实数x ,y 满足()2221x y +-=,则2232x y x y++的最大值为( )A .12B .3 C .1D .274.已知直线:20l x y ++=与圆22220x y x y a ++-+=所截的弦长为4,则实数a 为( ) A .2- B .4-C .2D .45.直线3y x m =-+与圆221x y += 在第一象限内有两个不同的交点,则m 的取值范围是( ) A .(3,2)B .(3,3)C .323,⎛⎫ ⎪ ⎪⎝⎭D .231,⎛⎫⎪ ⎪⎝⎭6.在平面直角坐标系xoy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =+上至少存在一点,使得以该点为圆心,半径为1的圆与圆C 有公共点,则k 的最小值是( ) A .43-B .54-C .35D .53-7.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,四边形ABCD 为正方形,PA AB =,E 为AP 的中点,则异面直线PC 与DE 所成的角的正弦值为( ).A .25B 5C 15D 108.已知点A ,B ,C 在半径为5的球面上,且214AB AC ==,27BC =,P 为球面上的动点,则三棱锥P ABC -体积的最大值为( )A .5673B .5273 C .4973D .14739.已知平面图形PABCD ,ABCD 为矩形,4AB =,是以P 为顶点的等腰直角三角形,如图所示,将PAD △沿着AD 翻折至P AD '△,当四棱锥P ABCD '-体积的最大值为163,此时四棱锥P ABCD '-外接球的表面积为( )A .12πB .16πC .24πD .32π10.如图,在矩形ABCD 中,1AB =,3BC =,沿BD 将矩形ABCD 折叠,连接AC ,所得三棱锥A BCD -正视图和俯视图如图,则三棱锥A BCD -中AC 长为( )A .32B 3C .102D .211.已知一个正三棱锥的四个顶点都在一个球的球面上,且这个正三棱锥的所有棱长都为22 ) A .4π B .8πC .12πD .24π12.蹴鞠,又名蹴球,筑球等,蹴有用脚踢、踏的含义,鞠最早系外包皮革、内实含米糠的球.因而蹴鞠就是指古人以脚踢、踏皮球的活动,类似现在的足球运动.2006年5月20日,蹴鞠已作为非物质文化遗产经国务院批准列入第一批国家非物质文化遗产名录.3D 打印属于快速成形技术的一种,它是一种以数字模型为基础,运用粉末状金属或塑料等可粘合材料,通过逐层堆叠积累的方式来构造物体的技术.过去常在模具制造、工业设计等领域被用于制造模型,现正用于一些产品的直接制造,特别是一些高价值应用(比如人体的髋关节、牙齿或飞机零部件等).已知某蹴鞠的表面上有四个点A .B .C .D ,满足任意两点间的直线距离为6cm ,现在利用3D 打印技术制作模型,该模型是由蹴鞠的内部挖去由ABCD 组成的几何体后剩下的部分,打印所用原材料的密度为31g/cm ,不考虑打印损耗,制作该模型所需原材料的质量约为( )(参考数据)π 3.14≈ 1.41≈ 1.73≈ 2.45≈. A .101gB .182gC .519gD .731g二、填空题13.在平面直角坐标系xOy 中,设直线y =-x +2与圆x 2+y 2=r 2(r >0)交于A ,B 两点.若圆上存在一点C ,满足5344OC OA OB =+,则r 的值为________. 14.若圆222(3)(5)r x y -++=上有且只有两个点到直线432x y -=的距离为1,则半径r 的取值范围是______.15.经过两直线11370x y +-=和12190x y +-=的交点,且与()3,2A -,()1,6B -等距离的直线的方程是______.16.已知直线l 斜率的取值范围是(),则l 的倾斜角的取值范围是______.17.在平面直角坐标xOy 系中,设将椭圆()2222110y x a a a +=>-绕它的左焦点旋转一周所覆盖的区域为D ,P 为区域D 内的任一点,射线()02x y x =≥-上的点为Q ,若PQ 的最小值为a ,则实数a 的取值为_____.18.已知圆221:10C x y +=与圆222:22140C x y x y +++-=相交,则两圆的公共弦长为__________.19.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为24,则这个球的体积为____________.20.在直三棱柱111ABC A B C -中,90ABC ∠=︒,1AA O ,已知三棱锥O ABC -O 表面积的最小值为______.21.在三棱锥P ABC -中,4PA PB ==,BC =8AC =,AB BC ⊥.平面PAB ⊥平面ABC ,若球O 是三棱锥P ABC -的外接球,则球O 的半径为_________.22.在棱长为2的正方体1111ABCD A BC D -中,P 是11A B 的中点,过点1A 作与平面1PBC 平行的截面,则此截面的面积是_______________.23.已知某几何体的三视图如图所示,则该几何体的体积是__________.24.已知点O 为圆锥PO 底面的圆心,圆锥PO 的轴截面为边长为2的等边三角形PAB ,圆锥PO 的外接球的表面积为______.三、解答题25.如图,四边形ABCD 为正方形,QA ⊥平面ABCD ,PD//QA ,112QA AB PD ===.(1)证明:直线PQ ⊥平面DCQ ; (2)求二面角D QB A --的余弦值.26.如图,四面体ABCD 中,O 是BD 的中点,点G 、E 分别在线段AO 和BC 上,2BE EC =,2AG GO =,2CA CB CD BD ====,2AB AD ==.(1)求证://GE 平面ACD ; (2)求证:平面ABD ⊥平面BCD .27.如图,在直四棱柱1111ABCD A BC D -中,底面ABCD 是梯形,,//AB CD AB AD ⊥,22CD AB AD ==.(1)求证:BD ⊥平面1BCC ;(2)在线段11C D 上是否存在一点E ,使//AE 面1BC D .若存在,确定点E 的位置并证明;若不存在,请说明理由.28.在三棱锥P ABC -中,AE BC ⊥于点,E CF AB ⊥于点F ,且AE CF O ⋂=,若点P 在平面ABC 上的射影为点O .(1)证明:AC PB ⊥;(2)若ABC 是正三角形,点,G H 分别为,PA PC 的中点.证明:四边形EFGH 是矩形.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】如图,当直线在AC 位置时,斜率303224k -==+,当直线和半圆相切时,由半径22002321k k --+=+解得k 值,即得实数k 的取值范围.【详解】 由题意得,半圆24y x =-与直线32y kx k =+-有两个交点,又直线323(2)y kx k y k x =+-⇒-=-过定点C (2,3),如图所示,又点(2,0),(2,0)A B -,当直线在AC 位置时,斜率303224k -==+. 当直线和半圆相切时,由半径2002321k k --+=+解得512k =, 故实数k 的取值范围为53(,]124故选:B 【点睛】关键点点睛:由函数解析式转化为直线与半圆有两个公共点,根据直线与圆的位置关系,点到直线的距离公式的应用,求出直线在AC 位置时的斜率k 值及切线CD 的斜率,是解题的关键.2.A解析:A 【分析】圆()()22211x y r -++=上有且仅有四个点到直线43110x y +-=的距离等于32,先求圆心到直线的距离,再根据题意求半径的范围即可. 【详解】由()()22211x y r -++=可知圆心为()1,1-,圆心到直线43110x y +-=的距离为22431123+4--=,因为圆上有且仅有四个点到直线43110x y +-=的距离等于32,所以322->r,解得72r >. 故选:A 【点睛】本题主要考查直线与圆的位置关系,属于中档题.3.B解析:B 【分析】设(),P x y 为圆()2221x y +-=上的任意一点,构造直线:30l x y +=,过点p 作PM l ⊥,将2232x y x y++转化为点p 到直线30x y +=的距离和到原点的距离的比,即223sin 2x y PMPOM OPx y +==∠+,然后利用数形结合法求得POM ∠的范围求解. 【详解】 如图所示:设(),P x y 为圆()2221x y +-=上的任意一点,则点P 30x y +=的距离为3x y PM +=点P 到原点的距离为22OP x y =+223sin 2x y PMPOM OPx y +==∠+,设圆()2221x y +-=与直线y kx =相切1=,解得k =所以POM ∠的最小值为0,最大值为60,所以0sin POM ≤∠≤即0≤≤故选:B 【点睛】本题主要考查点到直线的距离,直线与圆的位置关系以及三角函数的性质的应用,还考查了数形结合的思想和运算求解的能力,属于中档题.4.B解析:B 【分析】根据圆的标准方程确定圆心和半径,由距离公式得出圆心到直线:20l x y ++=的距离d ,最后由弦长公式得出实数a .【详解】由22(1)(1)2x y a ++-=-可知,圆心为(1,1)-,半径2r a < 圆心到直线:20l x y ++=的距离d ==∣242r =r ∴=4a ∴=-故选:B 【点睛】本题主要考查了由直线与圆相交的弦长求参数的值,属于中档题.5.D解析:D 【分析】求出直线过(0,1)时m 的值,以及直线与圆相切时m 的值,即可确定出满足题意m 的范围. 【详解】 解:如图所示:当直线过(0,1)时,将(0,1)代入直线方程得:1m =;当直线与圆相切时,圆心到切线的距离d r =,即21313=⎛⎫+ ⎪ ⎪⎝⎭,解得:233m =或233m =-(舍去), 则直线与圆在第一象限内有两个不同的交点时,m 的范围为231m <<. 故选:D .【点睛】本题考查了直线与圆相交的性质,利用了数形结合的思想,熟练掌握数形结合法是解本题的关键,属于中档题.6.A解析:A 【分析】化圆C 的方程为22(4)1x y -+=,求出圆心与半径,由题意,只需22(4)4x y -+=与直线2y kx =+有公共点即可. 【详解】 解:圆C 的方程为228150x y x +-+=,整理得:22(4)1x y -+=,即圆C 是以(4,0)为圆心,1为半径的圆;又直线2y kx =+上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,∴只需圆22:(4)4C x y '-+=与直线2y kx =+有公共点即可.设圆心(4,0)C 到直线2y kx =+的距离为d , 则221d k=+,即234k k -,403k ∴-. k ∴的最小值是43-. 故选:A . 【点睛】本题考查直线与圆的位置关系,将条件转化为“22(4)4x y -+=与直线2y kx =+有公共点”是关键,考查学生灵活解决问题的能力,属于中档题.7.D解析:D 【分析】先取正方形的中心O ,连接OE ,由PC //OE 知OED ∠为异面直线PC 与DE 所成的角,再在OED 中求OED ∠的正弦即可. 【详解】连AC ,BD 相交于点O ,连OE 、BE ,因为E 为AP 的中点,O 为AC 的中点,有PC //OE ,可得OED ∠为异面直线PC 与DE 所成的角,不妨设正方形中,2AB =,则2PA =,由PA ⊥平面ABCD ,可得,PA AB PA AD ⊥⊥, 则145BE DE ==+=1122222OD BD ==⨯= 因为BE DE =,O 为BD 的中点,所以90EOD ∠=︒,210sin 5OD OED DE ∠===故选:D. 【点睛】 方法点睛:求空间角的常用方法:(1)定义法,由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量夹角(直线方向向量与直线方向向量、直线方向向量与平面法向量,平面法向量与平面法向量)余弦值,即可求出结果.8.A解析:A 【分析】求出球心到平面ABC 的距离,由这个距离加上球半径得P 到平面ABC 距离的最大值,再由体积公式可得P ABC -体积的最大值. 【详解】如图,M 是ABC 的外心,O 是球心,OM ⊥平面ABC ,当P 是MO 的延长线与球面交点时,P 到平面ABC 距离最大,由214AB AC ==,27BC =,得72cos 214ACB ∠==,则14sin 4ACB ∠=, 21428sin 144AB AM CB ===∠,4AM =, 2222543OM OA AM =-=-=,358PM =+=,又1114sin 2142777224ABC S AC BC ACB =⋅⋅∠=⨯⨯⨯=△, 所以最大的156777833P ABC V -=⨯⨯=. 故选:A .【点睛】本题考查求三棱锥的体积,解题关键是确定三棱锥体积最大时P 点在球面上的位置,根据球的性质易得结论.当底面ABC 固定,M 是ABC 外心,当PM ⊥平面ABC ,且球心O 在线段PM 上时,P 到平面ABC 距离最大.9.C解析:C 【分析】分析出当平面P AD '⊥平面ABCD 时,四棱锥P ABCD '-的体积取最大值,求出AD 、P A '的长,然后将四棱锥P ABCD '-补成长方体P AMD QBNC '-,计算出该长方体的体对角线长,即为外接球的直径,进而可求得外接球的表面积. 【详解】取AD 的中点E ,连接P E ',由于P AD '△是以P '为顶点的等腰直角三角形,则P E AD '⊥,设AD x =,则1122P E AD x '==, 设二面角P AD B '--的平面角为θ,则四棱锥P ABCD '-的高为1sin 2h x θ=, 当90θ=时,max 12h x =, 矩形ABCD 的面积为4S AB AD x =⋅=,2111216433233P ABCD V Sh x x x '-=≤⨯⨯==,解得22x =.将四棱锥P ABCD '-补成长方体P AMD QBNC '-, 所以,四棱锥P ABCD '-的外接球直径为22222226R P N P A P D P Q AD AB ''''==++=+=,则6R =,因此,四棱锥P ABCD '-的外接球的表面积为2424R ππ=.故选:C.【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.10.C解析:C 【分析】先由正视图、俯视图及题意还原三棱锥,过A 作AM ⊥BD 于点M ,连结MC ,把AC 放在直角三角形AMC 中解AC . 【详解】根据三棱锥A BCD -正视图和俯视图,还原后得到三棱锥的直观图如图示,由图可知:平面ABD ⊥平面CBD ,过A 作AM ⊥BD 于点M ,连结MC ,则AM ⊥平面CBD , ∴△MCA 为直角三角形. 过C 作CN ⊥BD 于点N ,在直角三角形ABD 中,AB =1,AD 3∴222BD AB AD =+=所以∠ABD=60°,∠ADB=30°,则在直角三角形ABM 中,AB =1,∠ABM=60°,∴13,2BM AM ==同理,在直角三角形CBD 中,13,2DN CN ==. ∴MN =BD -BM -DN =112122--=, ∴222237()122CM CN MN =+=+= 在直角三角形AMC 中,22227310()22AC CM AM ⎛⎫=+=+⎪ ⎪⎝⎭故选:C 【点睛】(1)根据三视图画直观图,可以按下面步骤进行:①、首先看俯视图,根据俯视图画出几何体地面的直观图 ;②、观察正视图和侧视图找到几何体前、后、左、右的高度;③、画出整体,让后再根据三视图进行调整.(2)立体几何中求线段长度:①、把线段放在特殊三角形中,解三角形;②、用等体积法求线段.11.C解析:C 【分析】将正三棱锥补成一个正方体,计算出正方体的棱长,可得出正方体的体对角线长,即为外接球的直径,进而可求得这个球的表面积. 【详解】设该正三棱锥为A BCD -,将三棱锥A BCD -补成正方体AEBF GCHD -,如下图所示:则正方体AEBF GCHD -的棱长为22222⨯=,该正方体的体对角线长为23 所以,正三棱锥A BCD -的外接球直径为223R =3R 该球的表面积为2412S R ππ==. 故选:C. 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.12.B解析:B 【分析】由题意可知所需要材料的体积即为正四面体外接球体积与正四面体体积之差,求出正四面体体积、外接球体积,然后作差可得所需要材料的体积,再乘以原料密度可得结果. 【详解】由题意可知,几何体ABCD 是棱长为6cm 的正四面体, 所需要材料的体积即为正四面体外接球体积与正四面体体积之差,设正四面体的棱长为a 2223632aa a ⎛⎫-⨯= ⎪ ⎪⎝⎭设正四面体外接球半径为R ,则222623()()3a R R =+,解得R =6a 所以3D 打印的体积为:323346113662343223812V a a a a ππ⎛⎫=-⋅=- ⎪ ⎪⎝⎭,又336216a ==,所以276182207.71125.38182.331182V π=-≈-=≈, 故选:B 【点睛】关键点点睛:本题考查正四面体与正四面体的外接球,考查几何体的体积公式,解决本题的关键点是求出正四面体外接球体积与正四面体体积,考查学生空间想象能力和计算能力,属于中档题.二、填空题13.【详解】即整理化简得cos ∠AOB =-过点O 作AB 的垂线交AB 于D 则cos ∠AOB =2cos2∠AOD -1=-得cos2∠AOD =又圆心到直线的距离为OD =所以cos2∠AOD ===所以r2=10r = 解析:10【详解】22225325539OC OA OB OA 2OA OB OB 44164416⎛⎫=+=+⋅⋅+ ⎪⎝⎭即222225159r r r cos AOB r 16816=+∠+,整理化简得cos ∠AOB =-35,过点O 作AB 的垂线交AB 于D ,则cos ∠AOB =2cos 2∠AOD -1=-35,得cos 2∠AOD =15.又圆心到直线的距离为OD =22=,所以cos 2∠AOD =15=22OD r=22r ,所以r 2=10,r =10. 14.【详解】∵圆心P(3−5)到直线4x−3y=2的距离等于由|5−r|<1解得:4<r<6则半径r 的范围为(46)故答案为:(46)当时满足题意考点:1直线和圆的位置关系;2点到直线的距离 解析:46r <<【详解】∵圆心P (3,−5)到直线4x −3y =2的距离等于,由|5−r |<1,解得:4<r <6, 则半径r 的范围为(4,6). 故答案为:(4,6),当46r <<时满足题意.考点:1、直线和圆的位置关系;2、点到直线的距离.15.或【分析】直接求两直线的交点与等距离的直线一条过AB 的中点一条平行AB 【详解】两直线和的交点为的中点为因为所求直线过且与等距离故所求直线过的中点或与直线平行当直线过的中点时直线方程为即当直线与直线平解析:790x y +-=或210x y ++= 【分析】直接求两直线的交点,与(3,2),(1,6)A B --等距离的直线,一条过AB 的中点,一条平行AB . 【详解】两直线11370x y +-=和12190x y +-=的交点为(2,5)-,(3,2),(1,6)A B --的中点为(1,2),因为所求直线过(2,5)-且与()3,2A -,()1,6B -等距离, 故所求直线过AB 的中点或与直线AB 平行, 当直线过AB 的中点时,2(5)712k --==--, 直线方程为27(1)y x -=--,即790x y +-=, 当直线与直线AB 平行时,26823(1)4k ---===---,直线方程为52(2)y x +=--,即210x y ++=. 故答案为:790x y +-=或210x y ++= 【点睛】本题主要考查了直线交点,直线的平行,直线的斜率,直线方程,属于中档题.16.【分析】根据斜率与倾斜角的关系即可求解【详解】因为直线斜率的取值范围是所以当斜率时倾斜角当斜率时倾斜角综上倾斜角的取值范围故答案为:【点睛】本题主要考查了直线的斜率直线的倾斜角属于中档题解析:20,,43πππ⎡⎫⎛⎫⎪⎪⎢⎣⎭⎝⎭【分析】根据斜率与倾斜角的关系即可求解. 【详解】因为直线l 斜率的取值范围是(), 所以当斜率01k ≤<时,倾斜角04πα≤<,当斜率0k <时,倾斜角23παπ<<, 综上倾斜角的取值范围20,,43πππ⎡⎫⎛⎫⎪⎪⎢⎣⎭⎝⎭, 故答案为:20,,43πππ⎡⎫⎛⎫⎪⎪⎢⎣⎭⎝⎭【点睛】本题主要考查了直线的斜率,直线的倾斜角,属于中档题.17.【分析】先确定轨迹再根据射线上点与圆的位置关系求最值即得结果【详解】所以为以为圆心为半径的圆及其内部设射线的端点为所以的最小值为故答案为:【点睛】本题考查动点轨迹以及点与圆位置关系考查数形结合思想以【分析】先确定D 轨迹,再根据射线上点与圆的位置关系求最值,即得结果. 【详解】2222222(1)1,111,y x c a a c a a =+∴=--=∴=-, 所以D 为以(1,0)F -为圆心,1a +为半径的圆及其内部, 设射线()02x y x =≥-的端点为(2,2)A ,所以PQ 的最小值为||(1),12,AF a a a a -+===【点睛】本题考查动点轨迹以及点与圆位置关系,考查数形结合思想以及基本分析求解能力,属中档题.18.【分析】求出公共弦的方程再利用垂径定理求解即可【详解】由题圆与圆的公共弦方程为化简得又圆圆心到弦的距离故弦长为故答案为:【点睛】本题主要考查了求相交圆的公共弦长问题需要利用两个圆的方程相减求出公共弦解析:【分析】求出公共弦的方程,再利用垂径定理求解即可. 【详解】由题, 圆221:10C x y +=与圆222:22140C x y x y +++-=的公共弦方程为()()22222214100xy x y x y +++--+-=,化简得20x y +-=.又圆1C 圆心()0,0到弦20x y +-=的距离d ==故弦长为=故答案为:【点睛】本题主要考查了求相交圆的公共弦长问题,需要利用两个圆的方程相减求出公共弦的方程,再利用垂径定理求解.属于中档题.19.【分析】根据正方体的表面积可得正方体边长然后计算外接球的半径利用球的体积的公式可得结果【详解】设正方体边长正方体外接球的半径为R 由正方体的表面积为24所以则又所以所以外接球的体积为:故答案为:【点睛解析:【分析】根据正方体的表面积,可得正方体边长a ,然后计算外接球的半径R =,利用球的体积的公式,可得结果. 【详解】设正方体边长a ,正方体外接球的半径为R , 由正方体的表面积为24,所以2624a =,则2a =,又R =,所以R =所以外接球的体积为:334433R ππ==.故答案为:. 【点睛】方法点睛:求多面体的外接球的表面积和体积问题关键是要求出外接球的半径,常用方法有:(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;(3)如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心.20.【分析】设球的半径为连接交于点取中点连接即为三棱柱外接球球心根据三棱锥体积可得间关系表示出根据基本不等式可求得的最小值从而得到球的表面积的最小值【详解】如图因为三棱柱是且设球的半径为连接交于点取中点 解析:27π【分析】 设ABa ,BCb =,球的半径为r ,连接1AC ,1AC 交于点O ,取AC 中点D ,连接BD ,即O 为三棱柱外接球球心,根据三棱锥体积可得a b ,间关系,表示出r ,根据基本不等式可求得r 的最小值,从而得到球的表面积的最小值.【详解】如图,因为三棱柱111ABC A B C -是 ,且90ABC ∠=︒, 设ABa ,BCb =,球的半径为r ,连接1AC ,1AC 交于点O ,取AC 中点D ,连接BD ,则O 到三棱柱六个定点的距离相等,即O 为三棱柱外接球球心,11322OD AA ==, 又因为三棱锥O ABC -3 即1133322ab ⨯⨯=12ab =, 所以2222223133322242a b r AD OD ab ⎛⎫⎛⎫+=+=+≥+=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 当且仅当a b =时等号成立,所以球O 的表面积最小值为2427S r ππ==, 故答案为:27π. 【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.21.4【分析】取中点连接再根据题意依次计算进而得球的球心即为(与重合)【详解】解:因为所以又因为所以所以因为平面平面平面平面平面所以平面取中点连接所以所以平面所以此时所以即球的球心球心即为(与重合)半径解析:4 【分析】取,AB AC 中点,D E ,连接DE ,DP ,再根据题意依次计算4EA EB EC EP ====,进而得球O 的球心O 即为E (O 与E 重合)【详解】解:因为BC =8AC =,AB BC ⊥,所以AB =4PA PB ==, 所以222PA PB AB +=,所以PA PB ⊥,因为平面PAB ⊥平面ABC ,平面PAB ⋂平面ABC AB =,AB BC ⊥,BC ⊂平面ABC ,所以BC ⊥平面PAB ,取,AB AC 中点,D E ,连接DE ,DP所以//DE BC ,DE =DP =所以DE ⊥平面PAB ,所以DE PD ⊥,此时,142EB AC EA EC ====, 4EP =, 所以4EA EB EC EP ====,即球O 的球心球心O 即为E (O 与E 重合),半径为4EA =. 故答案为:4.【点睛】本题解题的关键在于寻找球心,在本题中,,PAB ABC △△均为直角三角形,故易得AC 中点即为球心.考查空间思维能力,运算求解能力,是中档题.22.【分析】取的中点分别为连接先证明四边形是平行四边形再利用面面平行的判断定理证明平面平面可得平行四边形即为所求的截面再计算其面积即可【详解】取的中点分别为连接因为所以四边形是平行四边形所以因为所以四边 解析:26【分析】取AB ,11D C 的中点分别为,M N ,连接11,,,,A M MC CN A N PM ,先证明四边形1A MCN 是平行四边形,再利用面面平行的判断定理证明平面1//PBC 平面1A MCN ,可得平行四边形1A MCN 即为所求的截面,再计算其面积即可.【详解】取AB ,11D C 的中点分别为,M N ,连接11,,,,A M MC CN A N PM ,因为11A P NC ,所以四边形11A PC N 是平行四边形,所以11A N PC ,因为1PM CC 所以四边形1PMCC 是平行四边形,所以1MC PC , 所以1A N MC ,所以四边形1A MCN 是平行四边形,因为11//PC A N ,1PC ⊄平面1A MCN ,1A N ⊂平面1AMCN , 所以1//PC 平面1A MCN ,同理可证//PB 平面1A MCN ,因为1PC PB P ⋂=,所以平面1//PBC 平面1A MCN ,因此过点1A 作与平面1PBC 平行的截面,即是平行四边形1AMCN , 连接MN ,作1A H MN ⊥于点H ,由11AM A N ==,MN =可得1A H ==所以111122A MN S MN A H =⨯⨯=⨯=所以平行四边形1A MCN 的面积为12A MN S=故答案为:【点睛】 关键点点睛:本题的关键点是找出过点1A 与平面1PBC 平行的截面,所以想到作平行线,利用面面平行的判断定理证明所求的截面即是平行四边形1A MCN ,先求四边形一半的面积,乘以2即可得所求平行四边形的面积,也可以直接求菱形的面积.23.【分析】先根据三视图得到几何体是底面是直角三角形的一个三棱锥再根据锥体的体积计算公式求解即可【详解】利用正方体法还原三视图如图所示根据三视图可知该几何体是底面直角边为2的等腰直角三角形高为2的三棱锥 解析:43. 【分析】先根据三视图得到几何体是底面是直角三角形的一个三棱锥,再根据锥体的体积计算公式求解即可.【详解】利用正方体法还原三视图,如图所示,根据三视图,可知该几何体是底面直角边为2的等腰直角三角形,高为2的三棱锥S-ABC ,故其体积114222323V =⨯⨯⨯⨯=. 故答案为:43. 【点睛】本题主要考查三视图还原几何体,锥体的体积公式,考查考生的观察分析能力与空间想象能力及运算能力,属于中档题. 24.【分析】由题意知圆锥的轴截面为外接球的最大截面即过球心的截面且球心在上由等边三角形性质有即求得外接球的半径为R 进而求外接球的表面积【详解】设外接球球心为连接设外接球的半径为R 依题意可得在中有即解得故 解析:163π 【分析】由题意知圆锥PO 的轴截面为外接球的最大截面,即过球心的截面且球心在PO 上,由等边三角形性质有Rt AO O '△,即222O A AO O O ''=+求得外接球的半径为R ,进而求外接球的表面积.【详解】设外接球球心为O ',连接AO ',设外接球的半径为R ,依题意可得1AO =,3PO =,在Rt AO O '△中,有222O A AO O O ''=+,即()22213R R =+-,解得3R =, 故外接球的表面积为24164433S R πππ==⋅=. 故答案为:163π. 【点睛】 本题考查了求圆锥体的外接球面积,由截面是等边三角形,结合等边三角形的性质求球半径,进而求外接球面积,属于基础题.三、解答题25.(1)证明见解析(2)3 【分析】(1)由CD PQ ⊥,PQ DQ ⊥可证得结论成立;(2)取BQ 的中点E ,连DE 、AE ,则AED ∠是二面角D QB A --的平面角,在Rt ADE △中,通过计算可得结果.【详解】(1)因为QA ⊥平面ABCD ,∴QA CD ⊥,又四边形ABCD 为正方形,∴CD AD ⊥,又因为QA AD A =,∴CD ⊥平面AQPD ,则CD PQ ⊥,因为1AQ AD ==,AQ AD ⊥,∴2DQ =,因为4PDQ π∠=,2PD =,∴2DQP π∠=,即PQ DQ ⊥, 因为CD DQ D =,所以PQ ⊥平面DCQ .(2)取BQ 的中点E ,连DE 、AE ,如图:因为2BD DQ =BE EQ =,∴DE BQ ⊥,AE BQ ⊥,所以AED ∠是二面角D QB A --的平面角,因为QA ⊥平面ABCD ,所以QA AD ⊥,又AD AB ⊥,AB AQ A =,∴AD ⊥平面BAQ ,∴AD AE ⊥,因为1AB AQ ==,所以2BQ =,所以2AE =,在Rt ADE △中,221612DE AD AE =+=+=, 所以232cos 6AE ADE DE ∠===. 所以二面角D QB A --的余弦值为3. 【点睛】关键点点睛:根据二面角的平面角的定义作出平面角是本题解题关键.26.(1)证明见解析;(2)证明见解析.【分析】(1)先依题意得到G 为ABD △的重心,即得到21BG BE GM EC ==,证得//GE MC ,再利用线面平行的判定定理即证结论;(2)先在ABD △中,证得AO BD ⊥,求得1AO =,在BCD △中,求得3OC =,结合勾股定理证得AO OC ⊥,再利用线面垂直的判定定理证明AO ⊥平面BCD ,即证平面ABD ⊥平面BCD .【详解】证明:(1)连接BG 并延长,交AD 于M ,连接MC ,在ABD △中,O 为BD 中点,G 在AO 上,2AG GO =,∴G 为ABD △的重心∴21BG GM =, 又21BE EC =∴BG BE GM EC=∴//GE MC , ∵GE ⊄平面ACD ,AC ⊂平面ACD ,∴//GE 平面ACD ;(2)在ABD △中,O 为BD 中点,2BD =,2AB AD ==∴AO BD ⊥∴221AO AB BO -=,在BCD △中,2BC CD BD ===,O 为BD 中点,连接OC ,则OC = 又2CA =,∴222OA OC CA +=,∴AO OC ⊥由AO OC ⊥,AO BD ⊥,OCBD O =,,OC BD ⊂平面BCD ,得AO ⊥平面BCD ,又AO ⊂平面ABD ,∴平面ABD ⊥平面BCD .【点睛】思路点睛:证明线面平行时运用线面平行的判定定理证得,或者利用面面平行的性质证得;证明线面垂直时,运用其判定定理需要证明一条直线与相交的两条直线垂直,当题目条件中给出长度时可以采用勾股定理逆定理证得线线垂直,或者运用面面垂直的性质定理证得线面垂直.27.(1)证明见解析(2)存在,点E 是11C D 的中点,证明见解析【分析】(1)根据线面垂直的判定定理即可证明BD ⊥平面1BDC ;(2)存在点E 是11C D 的中点,使//AE 平面1BDC ,由线面平行的判定定理进行证明即可得到结论.【详解】(1)因为1AA ⊥底面ABCD ,所以1CC ⊥底面ABCD ,因为BD ⊂底面ABCD ,所以1CC BD ⊥,因为底面ABCD 是梯形,//AB DC ,90BAD ∠=︒, 22CD AB AD ==,设1AB =,则1AD =,2CD =所以BD =,BC所以在BCD ∆中,222BD BC CD +=,所以90CBD ∠=︒,所以BD BC ⊥,又因为1CC BD ⊥,且1CC BC C ⋂=所以BD ⊥平面1BCC .(2)存在点E 是11C D 的中点,使//AE 平面1BDC证明如下:取线段11C D 的中点为点E ,连结AE ,如图,。
2021_2022学年新教材高中数学第二章平面解析几何2.1坐标法课后练习含解析新人教B版选择性必修
第二章平面解析几何2.1坐标法课后篇巩固提升必备知识根底练1.数轴上的三点M ,N ,P 的坐标分别为3,-1,-5,如此MP ⃗⃗⃗⃗⃗⃗ +PN⃗⃗⃗⃗⃗⃗ 等于()A.-4B.4C.12D.-12⃗⃗ +PN ⃗⃗⃗⃗⃗⃗ =MN⃗⃗⃗⃗⃗⃗⃗ =-1-3=-4. 2.数轴上点P (x ),A (-8),B (-4),假如|PA|=2|PB|,如此x 等于()A.0B.-163C.163D.0或-163|PA|=2|PB|,所以|x+8|=2|x+4|,解得x=0或-163.3.点P (2,-1)关于点M (3,4)的对称点Q 的坐标为 ()A.(1,5)B.(4,9)C.(5,3)D.(9,4)Q 的坐标为(x ,y ),由中点坐标公式,得{3=2+x2,4=-1+y 2,所以{x =4,y =9,故点Q 的坐标为(4,9). 4.平行四边形的三个顶点坐标为(3,-2),(5,2),(-1,4),如此第四个顶点不是()A.(9,-4)B.(1,8)C.(-3,0)D.(1,-3)(x ,y ),然后分情况讨论.(1)假如点(3,-2),(5,2)为平行四边形的对顶点,如此有3+52=-1+x 2,-2+22=4+y 2,解得x=9,y=-4,即(9,-4);(2)假如(5,2),(-1,4)为对顶点,同理可求第四个顶点为(1,8);(3)假如(3,-2),(-1,4)为对顶点,同理可求第四个顶点为(-3,0).应当选D .5.在数轴上有点A (1),假如点A 负向移动3个单位长度到达点B ,如此AB ⃗⃗⃗⃗⃗ =.向量AB ⃗⃗⃗⃗⃗ 与以B 为起点,终点坐标为的向量是相等向量.3 -5A (1)负向移动3个单位长度到达B 点,所以B 点坐标为-2,如此向量AB⃗⃗⃗⃗⃗ 的坐标为-3,假如以B 为起点的向量为-3,如此终点坐标应为-5.6.A ,B ,C 三点在数轴上,且点B 的坐标为3,|AB⃗⃗⃗⃗⃗ |=5,|AC ⃗⃗⃗⃗⃗ |=2,如此点C 的坐标为.4或0或6或10,设A ,C 的坐标分别为x A ,x C ,如此|AB⃗⃗⃗⃗⃗ |=3-x A =5或|AB ⃗⃗⃗⃗⃗ |=x A -3=5,∴x A =-2或x A =8, ∴|AC⃗⃗⃗⃗⃗ |=x C -x A =x C -(-2)=2,或|AC ⃗⃗⃗⃗⃗ |=x C -x A =x C -8=2,或|AC ⃗⃗⃗⃗⃗ |=x A -x C =-2-x C =2,或|AC ⃗⃗⃗⃗⃗ |=x A -x C =8-x C =2,解得x C =0或x C =10或x C =-4或x C =6.7.四边形ABCD 的顶点A (-4,3),B (2,5),C (6,3),D (-3,0),E ,F 分别为边AB ,BC 的中点,求CE ,DE ,AF ,DF 的长度.AB 的中点为E (x ,y ),如此x=-4+22=-1,y=3+52=4,如此|CE|=√(-1-6)2+(4-3)2=5√2,|DE|=√[-1-(-3)]2+(4-0)2=2√5.即CE ,DE 的长度分别为5√2,2√5.设线段BC 的中点为F (m ,n ),如此m=2+62=4,n=5+32=4,如此|AF|=√[4-(-4)]2+(4-3)2=√65,|DF|=√[4-(-3)]2+(4-0)2=√65,即AF ,DF 的长度都为√65.8.如下列图,△ABD 和△BCE 是在直线AC 同一侧的两个等边三角形,求证:|AE|=|CD|.B 为原点,以直线AC 为x 轴建立如下列图的平面直角坐标系,设△ABD 和△BCE 的边长分别为a ,c ,如此有A (-a ,0),C (c ,0),D (-a 2,√32a),E (c 2,√32c). 于是|AE|=√(c 2+a)2+(√32c-0)2=√c 24+ac +a 2+34c 2=√a 2+ac +c 2,|CD|=√(c+a2)2+(0-√32a)2=√c2+ac+a24+34a2=√a2+ac+c2,所以|AE|=|CD|.关键能力提升练9.当数轴上的三个点A,B,O互不重合时,它们的位置关系共有六种情况,其中使AB⃗⃗⃗⃗⃗ =OB⃗⃗⃗⃗⃗ −OA⃗⃗⃗⃗⃗ 和|AB⃗⃗⃗⃗⃗ |=|OB⃗⃗⃗⃗⃗ |-|OA⃗⃗⃗⃗⃗ |同时成立的情况有()A.1种B.2种C.3种D.4种⃗ =OB⃗⃗⃗⃗⃗ −OA⃗⃗⃗⃗⃗ 恒成立,而要使|AB⃗⃗⃗⃗⃗ |=|OB⃗⃗⃗⃗⃗ |-|OA⃗⃗⃗⃗⃗ |成立,如此点A应在点O和点B中间,共有2种可能.10.某县位于山区,居民的居住区域大致呈如下列图的五边形,近似由一个正方形和两个等腰直角三角形组成,假如AB=60 km,AE=CD=30 km,为了解决当地人民看电视难的问题,准备建一个电视转播台,理想方案是转播台距五边形各顶点距离的平方和最小,图中P1,P2,P3,P4是AC的五等分点,如此转播台应建在()A.P1处B.P2处C.P3处D.P4处A为原点,建立如下列图的平面直角坐标系,如此P4(6,6),P3(12,12),P2(18,18),P1(24,24).设转播台的坐标为P(x,y),如此|PA|2+|PB|2+|PC|2+|PD|2+|PE|2=x2+y2+(x-60)2+y2+(x-30)2+(y-30)2+(x-30)2+(y-60)2+x2+(y-30)2=5x2-(120+120)x+5y2-(120+120)y+2×602+4×302,故当x=24,且y=24时,|PA|2+|PB|2+|PC|2+|PD|2+|PE|2最小,故P应在P1处.11.使得|x-3|+|x+1|≥a恒成立的a的取值X围为.-∞,4]y=|x-3|+|x+1|,因为函数y=|x-3|+|x+1|的最小值为4,即y≥4,所以使|x-3|+|x+1|≥a恒成立a的取值X围为(-∞,4].12.x ,y ∈(0,1),如此√x 2+y 2 +√x 2+(y -1)2 +√(x -1)2+y 2 +√(x -1)2+(y -1)2的最小值是.√2x ,y ∈(0,1),∴√x 2+y 2+√x 2+(y -1)2+√(x -1)2+y 2+√(x -1)2+(y -1)2表示以(0,0),(0,1),(1,0),(1,1)为顶点的正方形内部的动点(x ,y )到四个顶点距离的和,根据两点之间线段最短,可得当(x ,y )为正方形对角线的交点,即x=y=12时,√x 2+y 2+√x 2+(y -1)2+√(x -1)2+y 2+√(x -1)2+(y -1)2的最小值为2√2.13.一平行四边形三个顶点的坐标分别为(-1,-2),(3,1),(0,2),求这个平行四边形第四个顶点的坐标.A (-1,-2),B (3,1),C (0,2),第四个顶点D 的坐标为(x ,y ),(1)假如四边形ABCD 是平行四边形,如此由中点坐标公式得{x+32=-1+02,y+12=-2+22,解得{x =-4,y =-1,∴点D 的坐标为(-4,-1);(2)假如四边形ABDC 是平行四边形,如此由中点坐标公式得{x -12=3+02,y -22=1+22,解得{x =4,y =5,∴点D 的坐标为(4,5);(3)假如四边形ACBD 是平行四边形,如此由中点坐标公式得{-1+32=x+02,-2+12=y+22,解得{x =2,y =-3,∴点D 的坐标为(2,-3).综上所述,满足条件的平行四边形第四个顶点的坐标为(-4,-1)或(4,5)或(2,-3).14.用坐标法证明:三角形的中位线平行于第三边且等于第三边的一半.BC 的中点为原点,BC 所在直线为x 轴,建立如下列图的平面直角坐标系.设A (a ,b ),C (c ,0)(c>0),如此B (-c ,0).线段AB 的中点E 的坐标是a -c 2,b 2.线段AC 的中点F 的坐标是a+c 2,b 2,如此|EF|=√(a -c 2-a+c 2)2+(b 2-b2)2=c.因为|BC|=2c ,所以|EF|=12|BC|.又E ,F 的纵坐标一样,所以EF ∥BC.综上所述,三角形的中位线平行于第三边且等于第三边的一半.15.河流的一侧有A,B两个村庄,如下列图,计划在河上共建一座水电站给两村供电.A,B两村到河边的垂直距离分别为300 m和600 m,且两村相距500 m.为了使水电站到两村的距离之和最小,水电站P 应建在什么位置?,以河边所在直线为x轴,以AC为y轴建立平面直角坐标系,如此A(0,300),B(400,600).设A关于x轴的对称点为A',如此A'(0,-300),连接A'B交OD于点P,此时|PA|+|PB|最小.设|OP|=x,如此由△OA'P∽△DBP,得x400-x =300600.解得x=4003,故水电站P应建在C,D之间距离点C4003m的地方.学科素养拔高练16.点A(-1,2),B(1,3),在直线y=2x上求一点P,使|PA|2+|PB|2取得最小值,并写出P点坐标.P点的坐标为(x,y),由于点P在直线y=2x上,所以y=2x.|PA|=√(x+1)2+(y-2)2=√(x+1)2+(2x-2)2=√x2+2x+1+4x2-8x+4=√5x2-6x+5,|PB|=√(x-1)2+(y-3)2=√(x-1)2+(2x-3)2=√x2-2x+1+4x2-12x+9=√5x2-14x+10,所以|PA|2+|PB|2=5x2-6x+5+5x2-14x+10=10x2-20x+15=10(x-1)2+5,因此,当x=1时,|PA|2+|PB|2取得最小值为5,y=2×1=2,所以所求P点的坐标为(1,2).17.如下列图,在△ABC中,∠C=90°,P为三角形内一点,且S△PAB=S△PBC=S△PCA.求证:|PA|2+|PB|2=5|PC|2.,以CA所在的直线为x轴,点C为原点建立平面直角坐标系,设C(0,0),A(3a,0),B(0,3b),P(x,y).∵S△PCA=S△PCB=S△PAB,word11 / 11 ∴S △PCA =13S △ABC .即12×3ay=13×12×3a ·3b ,∴y=b.又S △PBC =13S △ABC ,即12×3bx=13×12×3a ·3b , ∴x=a.∴适合条件的点P 的坐标为(a ,b ).此时, |PA|2=(3a-a )2+b 2=4a 2+b 2, |PB|2=(3b-b )2+a 2=a 2+4b 2,|PC|2=a 2+b 2, |PA|2+|PB|2=5(a 2+b 2)=5|PC|2, ∴结论成立.。
解析几何答案-第二章
第2章 曲面与空间曲线的方程§2.1 曲面的方程1、 一动点移动时,与)0,0,4(A 及xoy 平面等距离,求该动点的轨迹方程。
解:设在给定的坐标系下,动点),,(z y x M ,所求的轨迹为C ,则z Cz y x M =⇔∈),,( 亦即z z y x =++-222)4( )4(2-∴x2(1(2(3(4解:(1常数为m ),,(z y x ,,,(z y x M 亦即(x -(2)建立坐标系如(1),但设两定点的距离为c 2,距离之和常数为a 2。
设动点),,(z y x M ,要求的轨迹为C ,则a z y c x z y c x Cz y x M 2)()(),,(222222=++++++-⇔∈ 亦即222222)(2)(z y c x a z y c x +++-=++-两边平方且整理后,得:)()(2222222222c a a z a y a x c a -=++- (1) 222c a b c a -=∴>令从而(1)为22222222b a z a y a x b =++即:22222222b a z a y a x b =++由于上述过程为同解变形,所以(3)即为所求的轨迹方程。
(3)建立如(2)的坐标系,设动点),,(z y x M ,所求的轨迹为C , 则a z y c x z y c x C z y x M 2)()(),,(222222±=++++++-⇔∈类似于(2),上式经同解变形为:1222222=--cz b y a x 其中 )(222a c a c b >-= (*) (*(4m 。
设动点M (*)(*2、 (1)中心(2(3(4解:(136)3()1()2(222=-+++-z y x(2)由已知,球面半径73)2(6222=+-+=R所以类似上题,得球面方程为 49222=++z y x(3)由已知,球面的球心坐标1235,1213,3242=-=-=+-==+=c b a ,球的半径21)35()31()24(21222=++++-=R ,所以球面方程为:21)1()1()3(222=-+++-z y x(4)设所求的球面方程为:0222222=++++++l kz hy gx z y x因该球面经过点)4,0,0(),0,3,1(),0,0,4(),0,0,0(-,所以 ⎪⎪⎩⎪⎪⎨⎧=-=++=+=08160621008160k h g g l (1) 解(1)有∴1(1)42x (1)42x§2.3空间曲线的方程1、平面c x =与0222=-+x y x 的公共点组成怎样的轨迹。
高中数学 第二章 解析几何初步 1.2.2 直线方程的两点式和一般式练习(含解析)北师大版必修2-北
第二课时 直线方程的两点式和一般式填一填1.直线方程的两点式和截距式名称 两点式 截距式已知条件 P 1(x 1,y 1),P 2(x 2,y 2)在x ,y 轴上的截距分别为a ,b示意图方程y -y 1y 2-y 1=x -x 1x 2-x 1 x a +y b=1 适用X 围y 1≠y 2且x 1≠x 2 ab ≠02.直线的一般式方程把关于x ,y 的二元一次方程Ax +By +C =0叫做直线的一般式方程,简称一般式.其中系数A ,B 满足A ,B 不同时为0.判一判1.两点式适用于求与两坐标轴不垂直的直线方程.(√) 2.截距式可表示除过原点外的所有直线.(×)3.任何一条直线的一般式方程都能与其他四种形式互化.(×)4.平面上任一条直线都可以用一个关于x ,y 的二元一次方程Ax +By +C =0(A ,B 不同时为0)表示.(√)5.过点P 1(x 1,y 1)和P 2(x 2,y 2)的直线都可以用方程y -y 1y 2-y 1=x -x 1x 2-x 1表示.(×)6.在x 轴,y 轴上的截距分别为a ,b 的直线方程为x a +y b=1.(×) 7.能用截距式方程表示的直线都能用两点式表示.(√)8.若直线Ax +By +想一想1.过点(1,3)和,(5,3)的直线呢? 提示:不能,因为1-1=0,而0不能做分母.过点(2,3),(5,3)的直线也不能用两点式表示.2.截距式方程能否表示过原点的直线?提示:不能,因为ab ≠0,即有两个非零截距. 3.任何直线方程都能表示为一般式吗?提示:能.因为平面上任意一条直线都可以用一个关于x ,y 的二元一次方程表示. 4.当A ,B 同时为零时,方程Ax +By +C =0表示什么?提示:当C =0时,方程对任意的x ,y 都成立,故方程表示整个坐标平面; 当C ≠0时,方程无解,方程不表示任何图像.故方程Ax +By +C =0,不一定代表直线,只有当A ,B 不同时为零时,即A 2+B 2≠0时才代表直线.思考感悟:练一练1.直线x a +y b=1(ab <0)的图像可能是( )答案:C2.过两点(2018,2019),(2018,2020)的直线方程是( ) A .x =2018 B .x =2019 C .y =2018 D .x +y =2020 答案:A3.直线x -y +5=0的倾斜角为( ) A .45° B.60° C .120° D.135° 答案:A4.在x 轴、y 轴上的截距分别是5,-3的直线的截距式方程为( ) A.x 5+y 3=1 B.x 5-y 3=1 C.y 3-x5=1 D.x 5+y3=0 答案:B5.直线2x +3y -6=0与坐标轴围成的三角形面积为________. 答案:3知识点一 直线的两点式方程1.已知直线l 经过点A (1,-2),B (-3,2),则直线l 的方程为( ) A .x +y +1=0 B .x -y +1=0 C .x +2y +1=0 D .x +2y -1=0解析:由两点式得直线l 的方程为y +22--2=x -1-3-1,即y +2=-(x -1).故选A.答案:A2.过两点(-1,1)和(3,9)的直线在x 轴上的截距为( )A .-32B .-23C.25D .2 解析:由直线的两点式方程可得直线方程为y -19-1=x +13+1,即2x -y +3=0,令y =0得x=-32.故选A.答案:A知识点二 直线的截距式方程3.过点A (4,1)且在两坐标轴上截距相等的直线方程为( ) A .x +y =5 B .x -y =5C .x +y =5或x -4y =0D .x -y =5或x -4y =0解析:当直线过点(0,0)时,直线方程为y =14x ,即x -4y =0;当直线不过点(0,0)时,可设直线方程为x a +y a=1(a ≠0),把(4,1)代入,解得a =5,∴直线方程为x +y =5.综上可知,直线方程为x +y =5或x -4y =0.选C. 答案:C4.两条直线l 1:x a -y b =1和l 2:x b -y a=1在同一平面直角坐标系中的图像可以是( )解析:将两直线方程化成截距式为l 1:x a +y -b =1,l 2:x b +y-a=1,则l 1与x 轴交于(a,0),与y 轴交于(0,-b ),l 2与x 轴交于(b,0),与y 轴交于(0,-a ).结合各选项,先假定l 1的位置,判断出a ,b 的正负,然后确定l 2的位置,知A 项符合.选A.答案:A知识点三直线的一般式方程5.已知直线l 的方程为x -3y +2=0,则直线l 的倾斜角为( ) A .30° B.45° C .60° D .150°解析:设直线l 的倾斜角为θ,则tan θ=13,则θ=30°.答案:A6.设直线l 的方程为(a +1)x +y +2-a =0(a ∈R ),若l 不经过第二象限,则实数a 的取值X 围是________.解析:将直线l 的方程化为y =-(a +1)x +a -2. 则⎩⎪⎨⎪⎧ -a +1>0,a -2≤0或⎩⎪⎨⎪⎧-a +1=0,a -2≤0,∴a ≤-1. 答案:(知识点四 直线方程的应用7.(1)求证:不论a 为何值,直线l 总经过第一象限; (2)为使直线不经过第二象限,求a 的取值X 围.解析:(1)证明:方法一 将直线l 的方程整理为 y -35=a ⎝ ⎛⎭⎪⎫x -15, ∴l 的斜率为a ,且过定点A ⎝ ⎛⎭⎪⎫15,35,而点A ⎝ ⎛⎭⎪⎫15,35在第一象限,故不论a 为何值,l 恒过第一象限.方法二 直线l 的方程可化为(5x -1)a +(3-5y )=0. 当定点为(x ,y )时,上式对任意的a 总成立,必有⎩⎪⎨⎪⎧5x -1=0,3-5y =0,即⎩⎪⎨⎪⎧x =15,y =35,即l 过定点A ⎝ ⎛⎭⎪⎫15,35.以下同方法一.(2)如图,直线OA 的斜率为 k =35-015-0=3. 要使l 不经过第二象限,需它在y 轴上的截距不大于零,即令x =0时,y =-a -35≤0,∴a ≥3.8.已知直线l :y =kx +2k +1.(1)求证:对于任意的实数k ,直线l 恒过一个定点;(2)当-3<x <3时,直线l 上的点都在x 轴的上方,某某数k 的取值X 围. 解析:(1)由y =kx +2k +1, 得y -1=k (x +2).由直线的点斜式方程,可知直线l 恒过定点(-2,1). (2)设函数f (x )=kx +2k +1.若-3<x <3时,直线l 上的点都在x 轴的上方,则⎩⎪⎨⎪⎧f -3≥0,f 3≥0,即⎩⎪⎨⎪⎧-3k +2k +1≥0,3k +2k +1≥0,解得-15≤k ≤1.所以实数k 的取值X 围是⎣⎢⎡⎦⎥⎤-1,1. 综合知识 直线的方程9.(1)经过点(-1,3),且斜率为-3; (2)经过两点A (0,4)和B (4,0);(3)经过点(2,-4)且与直线3x -4y +5=0平行; (4)经过点(3,2),且垂直于直线6x -8y +3=0.解析:(1)根据条件,写出该直线的点斜式方程为 y -3=-3(x +1),即y -3=-3x -3, 整理得其一般式为3x +y =0.(2)根据条件,写出该直线的截距式为x 4+y4=1,整理得其一般式为x +y -4=0.(3)设与直线3x -4y +5=0平行的直线为3x -4y +c =0,将点 (2,-4)代入得6+16+c =0,所以c =-22.故所求直线的一般式为3x -4y -22=0.(4)设与直线6x -8y +3=0垂直的直线为8x +6y +c =0,代入点(3,2)得24+12+c =0,c =-36.从而得8x +6y -36=0,即所求直线的一般式为4x +3y -18=0.10.已知△ABC 的三个顶点为A (0,3),B (1,5),C (3,-5). (1)求边AB 所在的直线方程; (2)求中线AD 所在直线的方程.解析:(1)设边AB 所在的直线的斜率为k ,则k =5-31-0=2.它在y 轴上的截距为3.所以,由斜截式得边AB 所在的直线的方程为y =2x +3.(2)B (1,5)、C (3,-5),1+32=2,5+-52=0,所以BC 的中点D (2,0).由截距式得中线AD 所在的直线的方程为x 2+y3=1.基础达标一、选择题1.下列四个命题中的真命题是( )A .经过定点P 0(x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示B .经过任意两个不同点P 1(x 1,y 1)、P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示C .不经过原点的直线都可以用方程x a +yb=1表示D .经过定点A (0,b )的直线都可以用方程y =kx +b 表示解析:当直线与y 轴平行或重合时,斜率不存在,直线方程不能用点斜式、斜截式,选项A 、D 不正确;当直线垂直于x 轴或y 轴时,直线方程不能用截距式表示,选项C 不正确;选项B 正确.故选B.答案:B2.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( ) A .1 B .-1 C .-2或-1 D .-2或1解析:①当a =0时,y =2不合题意.②当a ≠0时,令x =0,得y =2+a ,令y =0,得x =a +2a ,则a +2a=a +2,得a =1或a =-2.故选D.答案:D3.直线l 过点P (1,3),且与x ,y 轴正半轴围成的三角形的面积等于6的直线方程是( ) A .3x +y -6=0 B .x +3y -10=0 C .3x -y =0 D .x -3y +8=0 解析:设所求的直线方程为x a +yb=1. 所以⎩⎪⎨⎪⎧1a +3b =1,12|ab |=6,解得a =2,b =6.故所求的直线方程为3x +y -6=0.故选A.答案:A4.如果AB <0,且BC <0,那么直线Ax +By +C =0不通过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限解析:因为直线Ax +By +C =0可化为y =-A B x -C B ,又AB <0,BC <0,所以-A B >0,-C B>0,所以直线过第一、二、三象限,不过第四象限.故选D. 答案:D5.已知m ≠0,则过点(1,-1)的直线ax +3my +2a =0的斜率为( ) A .3 B .-3 C.13 D .-13解析:由题意,得a -3m +2a =0,所以a =m ,又因为m ≠0,所以直线ax +3my +2a =0的斜率k =-a 3m =-13.故选D.答案:D6.已知两条直线的方程分别为l 1:x +ay +b =0,l 2:x +cy +d =0,它们在坐标系中的位置如图所示,则( )A .b >0,d <0,a <cB .b >0,d <0,a >cC .b <0,d >0,a >cD .b <0,d >0,a <c解析:由题图可知,直线l 1的斜率-1a >0,在y 轴上的截距-ba<0,因此a <0,b <0;直线l 2的斜率-1c >0,在y 轴上的截距-d c >0,因此c <0,d >0.且l 1的斜率大于l 2的斜率,即-1a >-1c,因此a >c ,故选C.答案:C7.若方程(2m 2+m -3)x +(m 2-m )y -4m +1=0表示一条直线,则实数m 满足( )A .m ≠0 B.m ≠-32C .m ≠1 D.m ≠1且m ≠-32且m ≠0解析:∵当2m 2+m -3=0时,m =1或m =-32;当m 2-m =0时,m =0或m =1,要使方程(2m 2+m -3)x +(m 2-m )y -4m +1=0表示一条直线,则2m 2+m -3,m 2-m 不能同时为0,∴m ≠1,故选C.答案:C 二、填空题 8.经过A (1,3)和B (a,4)的直线方程为________________________________________________________________________.解析:当a =1时,直线AB 的斜率不存在,所求直线的方程为x =1;当a ≠1时,由两点式,得y -34-3=x -1a -1,即x -(a -1)y +3a -4=0.这个方程中,对a =1时方程为x =1也满足. 所以,所求的直线方程为x -(a -1)y +3a -4=0. 答案:x -(a -1)y +3a -4=09.过点(5,2),且在x 轴上的截距是在y 轴上的截距的2倍的直线方程是________________。
解析几何(二)含答案
1.双曲线 的左右顶点分别为 ,曲线 上的一点 关于 轴的对称点为 ,若直线 的斜率为 ,直线 的斜率为 ,则当 取到最小值时,双曲线离心率为( )
A. B.2C.3D.6
2.已知直线 与椭圆 恒有公共点,则实数m的取值范围()
A. B.
C. D.
3.已知抛物线C: 的焦点为F,过点F且倾斜角 的直线l与C交于A,B两点,O为坐标原点,若 的面积 ,则线段AB的中点M到y轴的距离是()
【详解】设 ,由 ,得 ,
因为 ,则由余弦定理可得
,
解得 ,
则 ,即 ①,
又 经过点 ,
所以 ②
联立①②,解得 ,则
所以 的虚轴长为
故选:C
7.D
【分析】抛物线 的准线为 ,焦点为 ,当 , , 三点共线时, 到点 的距离 与点 到抛物线的焦点距离 之和最小,从而 的最小值为 .
【详解】解:如图所示,
17.已知 , 分别是双曲线C: 的左右焦点,双曲线C的右支上一点Q满足 ,O为坐标原点,直线 与该双曲线的左支交于P点,且 ,则双曲线C的渐近线方程为______.
18.已知椭圆 的离心率为 , 分别是椭圆 的左、右焦点,点 在椭圆 上且在以 为直径的圆上.线段 与 轴交于点 , ,则椭圆 的长轴长为_____.
(1)证明:直线 的斜率为定值;
(2)在 中,记 , ,求 最大值.
22.平面直角坐标系 中,已知椭圆 ,椭圆 .设点 为椭圆 上任意一点,过点 的直线 交椭圆 于 两点,射线 交椭圆 于点 .
(1)求 的值;
(2)求 面积的最大值.
23.平面直角坐标系 中,已知椭圆 ,椭圆 .设点 为椭圆 上任意一点,过点 的直线 交椭圆 于 两点,射线 交椭圆 于点 .
解析几何答案 廖华奎 王宝富 第二章
第二章 直线与平面习题2、11、求通过两点与得直线方程。
解:直线得方向向量为,所以直线得方程为2、在给定得仿射坐标系中,求下列平面得普通方程与参数方程。
(1)过点;(2)过点与轴;(3)过点与,平行于轴;(4)过点,平行于平面。
解:(1)平面得方位向量为,所以平面得参数方程平面得普通方程为即(2)平面得方位向量为,所以平面得参数方程因为过轴,所以也可选经过得点为,那么参数方程也可以写为平面得普通方程为即(3)平面得方位向量为,所以平面得参数方程平面得普通方程为即(4)平面得方位向量平行于平面,方位向量满足,因此可以选为。
所以平面得参数方程平面得普通方程为即3、在直角坐标系中,求通过点并与平面与均垂直得平面方程。
解:平面得法向量分别就是,所求平面与均垂直,所以它得法向量与均垂直,因此平面得方程为即4、 在直角坐标系中,求经过点,垂直于平面得平面方程。
解:设平面得法向量为,则它与垂直,它又与平面得法向量,故所以所求平面得方程为 即5、 在直角坐标系中,设平面得方程为,其中。
设此平面与三坐标轴分别交于,求三角形得面积与四面体得体积。
解:由于,所以平面得三个截距分别为。
因此四面体得体积为三角形得面积 而21213111(,,0)(,0,)(,,),D D D D M M M M D A B A C BC CA AB⨯=-⨯-=u u u u u u u r u u u u u u u r 所以6、设平面与连接两点与得线段相交于点,且,证明。
证明:因为,所以由定比分点得坐标公式得到点得坐标将它们代入平面方程中得整理即得。
习题2、21、求经过点,并且通过两平面与得交线得平面方程。
解:经过交线得平面束方程为,其中不全为零。
所求平面经过点,将它代入上式得到,可以取,因此平面得方程为2、判断下列各对平面得相关位置。
(1)与;(2)与;(3)与。
解:(1)平面得法向量分别就是,它们不共线,所以两平面相交。
(2)两平面得系数之比得关系为,所以两平面重合。
高中数学必修2(人教B版)第二章平面解析几何初步2.3知识点总结含同步练习题及答案
4 时,直线与圆相切; 3 4 当 d < 2,即 m > 0 或 m < − 时,直线与圆相交; 3 4 当 d > 2,即 − < m < 0 时,直线与圆相离. 3
法二:(代数法) 将 y = mx − m − 1 代入圆的方程,化简并整理,得
(1 + m 2 )x2 − 2(m 2 + 2m + 2)x + m 2 + 4m + 4 = 0.
1. 当D 2 + E 2 − 4F > 0 时,比较方程②和圆的标准方程,可以看出②表示以(− 圆心,
1 − − − − − − − − − − − − √D 2 + E 2 − 4F 为半径长的圆; 2 D E 2. 当D 2 + E 2 − 4F = 0 时,方程②只有实数解x = − ,y = − ,它表示一个点 2 2 D E (− , − ); 2 2 3. 当D 2 + E 2 − 4F < 0 时,方程②没有实数解,它不表示任何图形.
− − − − − − − − − −− − − − −
(x − a)2 + (y − b)2 = r2 ⋯ ⋯ ①,若点M (x, y)在圆上,有上述可知,点M 的坐标适合方程 ①;反之,若点M (x, y)的坐标适合方程①,这说明点M 与圆心A 的距离为r ,即点M 在圆心为 A 半径为 r 的圆上.我们把方程①称为以A(a, b)为圆心,以 r 为半径的圆的标准方程(standard
所以 △ABC 的外接圆方程为 x 2 + y 2 − 4x − 2y − 20 = 0 . 光线从点 A(−1, 1) 发出,经过 x 轴反射到圆 C :(x − 2)2 + (y − 3)2 = 1 上,则光线经过的 最短路程是______. 解:4 . 点 A(−1, 1) 关于 x 轴的对称点为 A ′ (−1, −1) ,圆 C :(x − 2)2 + (y − 3)2 = 1 的圆心为 C (2, 3) ,半径为 1 ,所以光线经过的最短路程为
解析几何-吕林根-课后习题解答一到五
第一章矢量与坐标§1.1 矢量的概念1.以下情形中的矢量终点各构成什么图形?〔1〕把空间中一切单位矢量归结到共同的始点;〔2〕把平行于某一平面的一切单位矢量归结到共同的始点;〔3〕把平行于某一直线的一切矢量归结到共同的始点;〔4〕把平行于某一直线的一切单位矢量归结到共同的始点.解:2. 设点O是正六边形ABCDEF的中心,在矢量OA、OB、OC、OD、OE、OF、AB、BC、CD、DE、EF和FA中,哪些矢量是相等的?[解]:图1-13. 设在平面上给了一个四边形ABCD,点K、L、M、N分别是边AB、BC、CD、DA的中点,求证:KL=NM. 当ABCD是空间四边形时,这等式是否也成立?[证明]:.4. 如图1-3,设ABCD-EFGH是一个平行六面体,在以下各对矢量中,找出相等的矢量和互为相反矢量的矢量:(1) AB、CD; (2) AE、CG; (3) AC、EG;(4) AD、GF; (5) BE、CH.解:§1.2 矢量的加法1.要使以下各式成立,矢量b a ,应满足什么条件? 〔1=+ 〔2+=+ 〔3-=+ 〔4+=- 〔5= 解:§1.3 数量乘矢量1 试解以下各题.⑴ 化简)()()()(→→→→-⋅+--⋅-b a y x b a y x .⑵ 已知→→→→-+=3212e e e a ,→→→→+-=321223e e e b ,求→→+b a ,→→-b a 和→→+b a 23.⑶ 从矢量方程组⎪⎩⎪⎨⎧=-=+→→→→→→by x ay x 3243,解出矢量→x ,→y .解:2 已知四边形ABCD 中,→→→-=c a AB 2,→→→→-+=c b a CD 865,对角线→AC 、→BD 的中点分别为E 、F ,求→EF . 解:3 设→→→+=b a AB 5,→→→+-=b a BC 82,)(3→→→-=b a CD ,证明:A 、B 、D 三点共线. 解:4 在四边形ABCD中,→→→+=baAB2,→→→--=baBC4,→→→--=baCD35,证明ABCD为梯形.解:6. 设L、M、N分别是ΔABC的三边BC、CA、AB的中点,证明:三中线矢量AL, BM, CN可以构成一个三角形.7. 设L、M、N是△ABC的三边的中点,O是任意一点,证明OBOA++OC=OL+OM+ON.解:8. 如图1-5,设M是平行四边形ABCD的中心,O是任意一点,证明OA+OB+OC+OD=4OM.解:9在平行六面体ABCDEFGH〔参看第一节第4题图〕中,证明→→→→=++AGAHAFAC2.证明:.10.用矢量法证明梯形两腰中点连续平行于上、下两底边且等于它们长度和的一半.解11. 用矢量法证明,平行四边行的对角线互相平分.解12. 设点O 是平面上正多边形A 1A 2…A n 的中心,证明: 1OA +2OA +…+n OA =0.解,13.在12题的条件下,设P 是任意点,证明 证明:§1.4 矢量的线性关系与矢量的分解1.在平行四边形ABCD 中,〔1〕设对角线,,b BD a AZ ==求.,,,DA CD BC AB 解〔2〕设边BC 和CD 的中点M 和N ,且q AN P AM ==,求CD BC ,。
解析几何教程习题答案
第一章 向量代数习题1.11. 试证向量加法的结合律,即对任意向量,,a b c 成立()().a b c a b c ++=++证明:作向量,,AB a BC b CD c ===(如下图),则 ()(),a b c AB BC CD AC CD AD ++=++=+=()(),a b c AB BC CD AB BD AD ++=++=+=故()().a b c a b c ++=++2. 设,,a b c 两两不共线,试证顺次将它们的终点与始点相连而成一个三角形的充要条件是0.a b c ++=证明:必要性,设,,a b c 的终点与始点相连而成一个三角形ABC ∆,则0.a b c AB BC CA AC CA AA ++=++=+== 充分性,作向量,,AB a BC b CD c ===,由于ABCabcABCDabca b +b c +0,a b c AB BC CD AC CD AD =++=++=+=所以点A 与D 重合,即三向量,,a b c 的终点与始点相连构成一个三角形。
3. 试证三角形的三中线可以构成一个三角形。
证明:设三角形ABC ∆三边,,AB BC CA 的中点分别是,,D E F (如下图),并且记,,a AB b BC c CA ===,则根据书中例 1.1.1,三条中线表示的向量分别是111(),(),(),222CD c b AE a c BF b a =-=-=- 所以,111()()()0,222CD AE BF c b a c b a ++=-+-+-=故由上题结论得三角形的三中线,,CD AE BF 可以构成一个三角形。
4. 用向量法证明梯形两腰中点连线平行于上、下底且等于它们长度和的一半。
证明:如下图,梯形ABCD 两腰,BC AD 中点分别为,E F ,记向量,AB a FA b ==,则,DF b =而向量DC 与AB 共线且同向,所以存在实数0,λ>使得.DC AB λ=现在,FB b a =+,FC b a λ=-+由于E 是BC 的中点,所以1111()()(1)(1).2222FE FB FC b a a b a AB λλλ=+=++-=+=+且A BabcE FD C111(1)()().222FE AB AB AB AB DC λλ=+=+=+ 故梯形两腰中点连线平行于上、下底且等于它们长度和的一半。
必修二第二章解析几何练习二含答案高中数学北京海淀
第二章测评B(高考体验卷)(时间:90分钟满分:100分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2012山东高考)圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为()A.内切B.相交C.外切D.相离解析:圆O1的圆心为(-2,0),半径r1=2,圆O2的圆心为(2,1),半径r2=3,|O1O2|=√42+12=√17,因为r2-r1<|O1O2|<r1+r2,所以两圆相交.答案:B2.(2013天津高考)已知过点P(2,2)的直线与圆(x-1)2+y2=5相切,且与直线ax-y+1=0垂直,则a=()A.-12B.1C.2D.12解析:由题意知点P(2,2)在圆(x-1)2+y2=5上,设切线的斜率为k,则k·2-02-1=-1,解得k=-12,直线ax-y+1=0的斜率为a,其与切线垂直,所以-12a=-1,解得a=2,故选C.答案:C3.(2014广州高三质检)直线y=kx+1与圆x2+y2-2y=0的位置关系是()A.相交B.相切C.相离D.取决于k的值解析:注意到点(0,1)位于题中的圆内,因此直线y=kx+1与圆x2+y2-2y=0的位置关系是相交,故选A.答案:A4.(2013陕西高考)已知点M(a,b)在圆O:x2+y2=1外,则直线ax+by=1与圆O的位置关系是()A.相切B.相交C.相离D.不确定解析:因为点M(a,b)在圆x2+y2=1外,所以点M(a,b)到圆心(0,0)的距离要大于半径,即a2+b2>1,而圆心(0,0)到直线ax+by=1的距离为d=√a2+b2<1,所以直线与圆相交.答案:B5.(2012重庆高考)设A,B为直线y=x与圆x2+y2=1的两个交点,则|AB|=()A.1B.√2C.√3D.2解析:由已知条件可知直线y=x过圆x2+y2=1的圆心,所以AB为圆x2+y2=1的直径,|AB|=2,故选D.答案:D6.(2013广东高考)垂直于直线y=x+1且与圆x2+y2=1相切于第一象限的直线方程是()A.x+y-√2=0B.x+y+1=0C.x+y-1=0D.x+y+√2=0解析:由于所求切线垂直于直线y=x+1,可设所求切线方程为x+y+m=0.由圆心到切线的距离等于半径=1,解得m=±√2.得√2又由于与圆相切于第一象限,则m=-√2.答案:A7.(2012辽宁高考)将圆x2+y2-2x-4y+1=0平分的直线是()A.x+y-1=0B.x+y+3=0C.x-y+1=0D.x-y+3=0解析:圆x2+y2-2x-4y+1=0可化为标准方程(x-1)2+(y-2)2=4,要使直线平分此圆,则直线需过圆心(1,2).因此可通过代入法,看哪一条直线过圆心(1,2)即可.经检验,选项C满足条件.故选C.答案:C8.(2013安徽高考)直线x+2y-5+√5=0被圆x2+y2-2x-4y=0截得的弦长为()A.1B.2C.4D.4√6解析:由圆的一般方程可化为圆的标准方程:(x-1)2+(y-2)2=5,可知圆心坐标为(1,2),半径为√5,圆心到直线的距离为√5|=1,22由勾股定理可得弦长一半为√(√5)2-12=2.故弦长为4.答案:C9.(2012安徽高考)若直线x-y+1=0与圆(x-a)2+y2=2有公共点,则实数a的取值范围是()A.[-3,-1]B.[-1,3]C.[-3,1]D.(-∞,-3]∪[1,+∞)解析:由题意可得,圆的圆心为(a,0),半径为√2,≤√2,所以√12+(-1)即|a+1|≤2,解得-3≤a≤1.答案:C10.(2013重庆高考)已知圆C1:(x-2)2+(y-3)2=1,圆C2:(x-3)2+(y-4)2=9,M,N分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值为()A.5√2-4B.√17-1C.6-2√2D.√17解析:圆C1,C2的圆心分别为C1,C2,由题意知|PM|≥|PC1|-1,|PN|≥|PC2|-3,所以|PM|+|PN|≥|PC1|+|PC2|-4,故所求值为|PC1|+|PC2|-4的最小值.又C1关于x轴对称的点为C3(2,-3),所以|PC1|+|PC2|-4的最小值为|C3C2|-4=√(2-3)2+(-3-4)2-4=5√2-4,故选A.答案:A二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)11.(2013浙江高考)直线y=2x+3被圆x 2+y 2-6x -8y=0所截得的弦长等于 . 解析:圆的圆心为(3,4),半径是5,圆心到直线的距离d=√22+12=√5,可知弦长l=2√52-(√5)2=4√5.答案:4√512.(2013山东高考)过点(3,1)作圆(x -2)2+(y -2)2=4的弦,其中最短弦的长为 . 解析:如图,当AB 所在直线与AC 垂直时弦BD 最短,|AC|=√(3-2)2+(1-2)2=√2,|CB|=r=2,所以|BA|=√22-(√2)2=√2,所以|BD|=2√2.答案:2√213.(2011辽宁高考)已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则C 的方程为 . 解析:由题意,线段AB 中点M (3,2),k AB =-12,所以线段AB 中垂线所在直线方程为y -2=2(x -3). 由{y -2=2(x -3),y =0,得圆心(2,0).则圆C 的半径r=√(2-1)2+(0-3)2=√10. 故圆C 的方程为(x -2)2+y 2=10. 答案:(x -2)2+y 2=1014.(2010广东高考)已知圆心在x 轴上,半径为√2的圆O 位于y 轴左侧,且与直线x+y=0相切,则圆O 的方程是 .解析:设圆O 的方程为(x -a )2+y 2=2(a<0),圆心O 到直线x+y=0的距离d=√2=√2,所以a=-2.所以圆O 的方程为(x+2)2+y 2=2. 答案:(x+2)2+y 2=215.(2012天津高考)设m ,n ∪R ,若直线l :mx+ny -1=0与x 轴相交于点A ,与y 轴相交于点B ,且l 与圆x 2+y 2=4相交所得弦的长为2,O 为坐标原点,则∪AOB 面积的最小值为 . 解析:因为l 与圆相交所得弦的长为2,所以22=√4-1,所以m 2+n 2=13≥2|mn|, 所以|mn|≤16.l 与x 轴交于点A (1m ,0),与y 轴交于点B (0,1n ),所以S ∪AOB =12·|1m ||1n | =12·1|mn |≥12×6=3. 答案:3三、解答题(本大题共4小题,共25分.解答时应写出文字说明、证明过程或演算步骤)16.(6分)(2013~2014广州高一期末)分别过点P (-1,0),Q (0,2)作两条互相平行的直线,使它们在x 轴上截距之差的绝对值为1,求这两条直线的方程.解:(1)当两条直线的斜率不存在时,两条直线的方程分别为x=-1,x=0,它们在x 轴上截距之差的绝对值为1,符合题意.(2)当两条直线的斜率存在时,设其斜率为k ,则两条直线的方程分别为y=k (x+1),y -2=kx.令y=0,得x=-1与x=-2k . 由题意,得|-1+2k |=1,即k=1.所以两直线的方程分别为y=x+1,y=x+2,即x -y+1=0,x -y+2=0. 综上可知,所求的直线方程为x=-1,x=0或x -y+1=0,x -y+2=0.17.(6分)(2014山东潍坊高一月考)点A (0,2)是圆x 2+y 2=16内的定点,B ,C 是这个圆上的两个动点,若BA ∪CA ,求BC 中点M 的轨迹方程,并说明它的轨迹是什么曲线. 解:设点M (x ,y ),因为M 是弦BC 的中点,所以OM ∪BC.又因为∪BAC=90°,所以|MA|=12|BC|=|MB|. 因为|MB|2=|OB|2-|OM|2, 所以|OB|2=|MO|2+|MA|2, 即42=(x 2+y 2)+[(x -0)2+(y -2)2],化简为x 2+y 2-2y -6=0,即x 2+(y -1)2=7.所以所求轨迹为以(0,1)为圆心,√7为半径的圆.18.(6分)(2013~2014湖南长沙高一期末)已知M 为圆C :x 2+y 2-4x -14y+45=0上任意一点,点Q 的坐标为(-2,3).(1)若P (a ,a+1)在圆C 上,求线段PQ 的长及直线PQ 的斜率; (2)求|MQ|的最大值和最小值; (3)求M (m ,n ),求n -3m+2的最大值和最小值.解:(1)由点P (a ,a+1)在圆C 上,可得a 2+(a+1)2-4a -14(a+1)+45=0,所以a=4,即P (4,5).所以|PQ|=√(4+2)2+(5-3)2=2√10,k PQ =3-5-2-4=13.(2)由x 2+y 2-4x -14y+45=0可得(x -2)2+(y -7)2=8,所以圆心C 的坐标为(2,7),半径r=2√2. 可得|QC|=√(2+2)2+(7-3)2=4√2, 因此|MQ|max =|QC|+r=4√2+2√2=6√2, |MQ|min =|QC|-r=4√2-2√2=2√2. (3)分析可知,n -3m+2表示直线MQ 的斜率. 设直线MQ 的方程为y -3=k (x+2),即kx-y+2k+3=0,=k.则n-3m+2由直线MQ与圆C有交点,≤2√2,所以√k2+1可得2-√3≤k≤2+√3,的最大值为2+√3,最小值为2-√3.所以n-3m+219.(7分)(2013江苏高考改编)如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4.设圆C的半径为1,圆心在l上.(1)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线的方程;(2)若圆C上存在点M,使|MA|=2|MO|,求圆心C的横坐标a的取值范围.解:(1)由题设,圆心C是直线y=2x-4和y=x-1的交点,解得点C(3,2),于是切线的斜率必存在.设过A(0,3)的圆C的切线方程为y=kx+3,=1,由题意,得√k2+1,解得k=0或-34故所求切线方程为y=3或3x+4y-12=0.(2)因为圆心在直线y=2x-4上,所以圆C的方程为(x-a)2+[y-2(a-2)]2=1.设点M(x,y),因为|MA|=2|MO|,所以√x2+(y-3)2=2√x2+y2,化简得x2+y2+2y-3=0,即x2+(y+1)2=4,所以点M在以D(0,-1)为圆心,2为半径的圆上.由题意,点M(x,y)在圆C上,所以圆C与圆D有公共点,则|2-1|≤|CD|≤2+1,即1≤√a2+(2a-3)2≤3.整理,得-8≤5a2-12a≤0.由5a2-12a+8≥0,得a∪R;.由5a2-12a≤0,得0≤a≤125].所以点C的横坐标a的取值范围为[0,125。
新北师大版高中数学必修二第二章《解析几何初步》测试(答案解析)
一、选择题1.过平面区域20{2020x y y x y -+≥+≥++≤内一点P 作圆22:1O x y +=的两条切线,切点分别为,A B ,记APB α∠=,则当α最小时cos α的值为( )A.10B .1920C .910D .122.已知圆22:1,O x y +=点()00,P x y 在直线20x y --=上,O 为坐标原点.若圆上存在点Q 使得30OPQ ∠=,则0x 的取值范围为( ) A .[]1,1-B .[]0,1C .[]0,2D .[]22-,3.已知点(,0)A m -,(,0)B m ,R m ∈,若圆22:(3)(3)2C x y -+-=上存在点P ,满足PA PB ⊥,则m 最大值是( )A.B.C.D.4.已知点P 是直线:3420l x y +-=上的一个动点,过点P 作圆()()222:23C x y r +++=的两条切线PM ,PN ,其中M ,N 为切点,若MPN ∠的最大值为120°,则r 的值为( ) AB.C .4D .65.已知圆221:2410C x y x y ++-+=,圆222:(3)(1)1C x y -++=,则这两个圆的公切线条数为( ) A .1条B .2条C .3条D .4条6.设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则PA PB ⋅的最大值是( ) A .4B .10C .5D7.某几何体的三视图如图所示(单位:cm ),则该几何体的外接球的表面积(单位:2cm )是( )A .36πB .54πC .72πD .90π8.已知三棱柱111ABC A B C -的所有顶点都在球O 的表面上,侧棱1AA ⊥底面111A B C ,底面111A B C △是正三角形,1AB 与底面111A B C 所成的角是45°.若正三棱柱111ABC A B C -的体积是23,则球O 的表面积是( ) A .28π3B .14π3C .56π3D .7π 39.已知正三棱柱111ABC A B C -,的体积为163,底面积为43,则三棱柱111ABC A B C -的外接球表面积为( )A .1123π B .563π C .2243π D .28π10.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A .24B .30C .47D .6711.下图中小正方形的边长为1,粗线画出的是某四棱锥的三视图,则该四棱锥的体积为( )A .64B .48C .32D .1612.已知四面体ABCD 中,二面角A BC D --的大小为60,且2AB =,4CD =,120CBD ∠=,则四面体ABCD 体积的最大值是( )A 43B 23C .83D .43二、填空题13.已知直线1:220l x by ++=与直线2:210l x y -+=平行,则直线1l ,2l 之间的距离为__________.14.在平面直角坐标系xOy 中,已知圆()()221:24640C x y mx m y m ++-+-=∈R 与()21,3C -为圆心的圆相交于()11,A x y ,()22,B x y 两点,且满足22221221x x y y -=-,则实数m 的值为______.15.已知圆22C 9x y +=:,过定点(2,2)P 的动直线l 与圆C 交于,M N 两点, 则PM PN ⋅=______________.16.若直线1y kx =+与圆2240x y kx my +++-=交于M 、N 两点,且M 、N 两点关于直线0x y +=对称,则20182019k m -=______.17.过点1,12⎛⎫-⎪⎝⎭的直线l 满足原点到它的距离最大,则直线l 的一般式方程为___________.18.若点P 在直线1:30l x y ++=上,过点P 的直线2l 与曲线()22:54C x y -+=相切于点M ,则PM 的最小值为__________.19.张衡(78年~139年)是中国东汉时期伟大的天文学家、文学家、数学家、地理学家,他的数学著作有《算罔论》,他曾经得出结论:圆周率的平方除以十六等于八分之五,已知正方体的外接球与内切球上各有一个动点A ,B ,若线段AB 31,利用张衡的结论可得该正方体的内切球的表面积为___________.20.如图在菱形ABCD 中,2AB =,60A ∠=,E 为AB 中点,将AED 沿DE 折起使二面角A ED C '--的大小为90,则空间A '、C 两点的距离为________;21.二面角a αβ--的大小为135A AE a E α︒∈⊥,,,为垂足,,B BF a F β∈⊥,为垂足,2,31AE BF EF P ===,,是棱上动点,则AP PB +的最小值为_______. 22.在三棱锥D ABC -中,AD ⊥平面ABC ,3AC =,17BC =,1cos 3BAC ∠=,若三棱锥D ABC -的体积为27,则此三棱锥的外接球的表面积为______23.将底面直径为8,高为23的圆锥体石块打磨成一个圆柱,则该圆柱侧面积的最大值为______.24.若三棱锥S ABC -的底面是以AB 为斜边的等腰直角三角形,23AB =,7SA SB SC ===,则该三棱锥的外接球的表面积为__________. 三、解答题25.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,四边形ABCD 为平行四边形,1,2AB BC ==,45ABC ∠=︒,AE PC ⊥垂足为E .(Ⅰ)求证:平面AEB ⊥平面PCD ;(Ⅱ)若二面角B AE D --的大小为150︒,求侧棱PA 的长.26.已知四棱锥P ABCD -中,//AB CD ,AB AD ⊥,4AB =,22AD =,2CD =,PA ⊥平面ABCD ,4PA =.(1)设平面PAB ⋂平面PCD m =,求证:CD //m ;(2)若E 是PA 的中点,求四面体PBEC 的体积.27.如图,正四棱锥P ABCD -中,底面ABCD 的边长为4,4PD =,E 为PA 的中点.(1)求证://PC 平面EBD . (2)求三棱锥E ABD -的体积.28.如图,在四棱锥P ABCD -中,底面ABCD 为菱形,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,3BAD π∠=,E 是线段AD 的中点,连结BE .(1)求证:BE PA ⊥;(2)求二面角A PD C --的余弦值;(3)在线段PB 上是否存在点F ,使得//EF 平面PCD ?若存在,求出PFPB的值;若不存在,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】试题分析:因为OP AP ⊥,所以在Rt AOP ∆中1sin2r OP OPα==,222cos 12sin 1OP αα=-=-,因为0,2πα⎛⎫∈ ⎪⎝⎭,而函数cos y α=在0,2π⎛⎫ ⎪⎝⎭上是减函数,所以当α最小时221OP -最大,因为221OP -为增函数则此时OP 最大.根据不等式表示的可行域可知当()4,2P -时max OP ==.综上可得α最小时()max 2219(cos )111010α=-=-=.故C 正确.考点:1二倍角公式;2直线与圆相切;3函数的单调性.2.C解析:C 【分析】根据圆的切线的性质,可知当过P 点作圆的切线,切线与OP 所成角是圆上的点与OP 所成角的最大值,只需此角大于等于30即可,此时半径,切线与OP 构成直角三角形,由切线与OP 所成角大于等于30可得OP 小于等于半径的2倍,再用含0x 的式子表示OP ,即可求出0x 的取值范围.【详解】 设过P 的C 的切线切点为R ,根据圆的切线性质,有30OPR OPQ ∠∠=︒.反过来,如果30OPR ∠︒,则存在C 上点Q 使得30OPQ ∠=︒.∴若圆C 上存在点Q ,使30OPQ ∠=︒,则30OPR ∠︒||1OR =,||2OP ∴>时不成立,||2OP ∴.222222000000||(2)244OP x y x x x x =+=+-=-+200240x x ∴-,解得,0002x x ∴的取值范围是[0,2]故选:C . 【点睛】本题主要考查了直线与圆相切时切线的性质,以及一元二次不等式的解法,综合考查了学生的转化能力,计算能力.3.C解析:C 【分析】首先设点(),P x y ,利用0AP BP ⋅=,转化为m =m 的最大值. 【详解】由圆的方程可知,圆的圆心()3,3C (),P x y 则(),AP x m y =+,(),BP x m y =-,()()20AP BP x m x m y ⋅=+-+=,即222m x y m =+⇒=的几何意义可知,m 的最大值就是圆上的点到原点的距离的最大值,即圆心到原点的距离加半径,即OC r +== 故选:C 【点睛】结论点睛:与圆的几何性质有关的最值,具体结论如下:(1)设O 为圆的圆心,半径为r ,圆外一点A 到圆上的距离的最小值为AO r -,最大值为AO r -;(2)过圆内一点的最长弦为圆的直径,最短弦是以该点为中点的弦;(3)记圆的半径为r ,圆心到直线的距离为d ,直线与圆相离,则圆上的点到直线的最大距离为d r +,最小值为d r -;4.B解析:B 【分析】由切线得四边形PMCN 的性质,要使得MPN ∠最大,则PC 最小,PC 的最小值即为圆心C 到直线的距离,再由已知角的大小可求得r . 【详解】由题意,PM PN CM CN r ===,sin MC r CPM PCPC∠==,2MPN MPC ∠=∠,所以MPN ∠最大时,PC 最小.由题意知min 4PC ==,又120MPN ∠=︒,所以sin 604r=︒,r = 故选:B .【点睛】关键点点睛:本题考查直线与圆相切问题,过圆外一点P 作圆的两条切线,PM PN (,M N 是两切点),C 是圆心,则PC 是四边形PMCN 的对称轴,90PMC PNC ∠=∠=︒,P 点对圆的张角MPN ∠取得最大值时,PC 最小.5.D解析:D 【分析】根据题意,分析两圆的圆心与半径,进而分析两圆的位置关系,据此分析可得答案. 【详解】根据题意,圆221:2410C x y x y ++-+=,即22+1+24x y -=()()其圆心为12-(,),半径12r =, 圆222:(3)(1)1C x y -++=,其圆心为31-(,),半径21r =,则有12125C C r r ==>+,两圆外离,有4条公切线;故选D . 【点睛】本题考查圆与圆的位置关系以及两圆的公切线,关键是分析两圆的位置关系,属于基础题.6.C解析:C 【分析】由题意结合直线位置关系的判断可得两直线互相垂直,由直线过定点可得定点A 与定点B ,进而可得22210PA PB AB +==,再利用基本不等式,即可得解.【详解】由题意直线0x my +=过定点(0,0)A ,直线30mx y m --+=可变为(1)30m x y --+=,所以该直线过定点()1,3B ,所以2221310AB =+=,又()110m m ⨯+⨯-=,所以直线0x my +=与直线30mx y m --+=互相垂直, 所以22210PA PB AB +==,所以22102PA PB PA PB =+≥⋅即5PA PB ⋅≤,当且仅当=PA PB , 所以PA PB ⋅的最大值为5. 故选:C. 【点睛】本题考查了直线位置关系的判断及直线过定点的应用,考查了基本不等式的应用,合理转化条件是解题关键,属于中档题.7.A解析:A 【分析】由三视图知该几何体是底面为等腰直角三角形,且侧面垂直于底面的三棱锥,由题意画出图形,结合图形求出外接球的半径,再计算外接球的表面积. 【详解】解:由几何体的三视图知,该几何体是三棱锥P ABC -,底面为等腰ABC ∆, 且侧面PAB ⊥底面ABC ,如图所示;设D 为AB 的中点,又3DA DB DC DP ====,且PD ⊥平面ABC ,∴三棱锥P ABC -的外接球的球心O 在PD 上,设OP R =,则OA R =,3OD R =-,222(3)3R R ∴=-+,解得3R =,∴该几何体外接球的表面积是32436R cm ππ=.故选:A . 【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.8.A解析:A 【分析】首先得到11AB A ∠是1AB 与底面111A B C 所成的角,再通过三棱柱的体积得到三棱柱的底面等边三角形的边长,最后通过球的半径,球心到底面距离,底面外接圆半径的关系计算. 【详解】因为侧棱1AA ⊥底面111A B C ,则11AB A ∠是1AB 与底面111AB C 所成的角,则1145AB A ∠=︒.故由11111tan tan 451AA AB A A B ∠=︒==,得111AA A B =.设111AA A B a ==,则11131224ABC A B C V a a a -=⨯⨯⨯==三棱柱, 解得2a =.所以球O 的半径R ==所以球O 的表面积2228π4π4π3S R ==⨯=.故选:A . 【点睛】解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的关系和数量关系,选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的.9.A解析:A 【分析】由面积和体积可得三棱柱的底面边长和高,根据特征可知外接球的球心为上下底面中心连线的中点,再由勾股定理可得半径及球的表面积. 【详解】依题意,14AA ==,而21sin 2ABCS AB AC A AB =⨯⨯== 解得4AB =,记ABC 的中心为О,111A B C △的中心为О1,则114O A O A ==, 取1OO 的中点D ,因为AO CO =,90AOD COD ∠=∠=,由勾股定理得AD CD =,同理可得111AD BD A D B D C D ====,所以正三棱柱的外接球的球心为即D ,AD 为外接球的半径, 由正弦定理得42sin 603AB AO ==, 故2221628433A O D D O A =+=+=, 故三棱柱111ABC A B C -的外接球表面积2281124433S R πππ==⨯=, 故选:A .【点睛】本题考查了正三棱柱外接球的表面积的求法,关键点是确定球心的位置和球的半径的长度,考查了学生的空间想象力和计算能力.10.D解析:D 【分析】先找到几何体的原图,再求出几何体的高,再求几何体的体积得解. 【详解】由三视图可知几何体为图中的四棱锥1P CDD E -, 由题得22437AD =-7 所以几何体的体积为11(24)676732⋅+⋅=. 故选:D 【点睛】方法点睛:通过三视图找几何体原图常用的方法有:(1)直接法;(2)拼凑法;(3)模型法.本题利用的就是模型法.要根据已知条件灵活选择方法求解.11.C解析:C【分析】在长方体中还原三视图后,利用体积公式求体积. 【详解】根据三视图还原后可知,该四棱锥为镶嵌在长方体中的四棱锥P -ABCD (补形法) 且该长方体的长、宽、高分别为6、4、4, 故该四棱锥的体积为1(64)4323V =⨯⨯⨯=. 故选C . 【点睛】(1)根据三视图画直观图,可以按下面步骤进行:①、首先看俯视图,根据俯视图画出几何体地面的直观图 ;②、观察正视图和侧视图找到几何体前、后、左、右的高度;③、画出整体,让后再根据三视图进行调整;(2)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解.12.D解析:D 【分析】在BCD △中,利用余弦定理和基本不等式可得163BC BD ⋅≤,由三角形的面积公式可得43BCDS≤,由二面角A BC D --的大小为60,可得A 到平面BCD 的最大距离为2sin 603h ==ABCD 体积的最大值.【详解】在BCD △中,由余弦定理可得2222cos120CD BC BD BC BD =+-⋅22BC BD BC BD =++⋅因为222BC BD BC BD +≥,所以23CD BC BD ≥⋅, 所以163BC BD ⋅≤,当且仅当BC BD =时等号成立,1116sin120223BCDSBC BD =⋅≤⨯= 因为二面角A BC D --的大小为60,所以点A 到平面BCD 的最大距离为2sin 603h ==所以114333A BCD BCDV S h -=⋅≤=, 所以四面体ABCD 体积的最大值是43, 故选:D 【点睛】关键点点睛:本题解题的关键点是利用余弦定理和基本不等式、三角形面积公式求出BCD S △最大值,再由二面角求出高的最大值. 二、填空题13.【分析】利用直线平行与斜率之间的关系点到直线的距离公式即可得出【详解】解:因为直线与直线平行所以解得当时则故答案为:【点睛】熟练运用直线平行与斜率之间的关系点到直线的距离公式是解题关键【分析】利用直线平行与斜率之间的关系、点到直线的距离公式即可得出. 【详解】解:因为直线1:220l x by ++=与直线2:210l x y -+=平行, 所以22(1)b =⨯-,解得1b =-,当1b =-时,1:220l x y -+=,2:210l x y -+=,则d ==【点睛】熟练运用直线平行与斜率之间的关系、点到直线的距离公式,是解题关键.14.【分析】设线段的中点为点由可得出由圆的几何性质可得且点在连心线上可知直线经过原点可得出由此可求得实数的值【详解】圆的圆心为设线段的中点为点则所以即由于关于连心线对称则则点在直线上所以即解得故答案为: 解析:3【分析】设线段AB 的中点为点M ,由22221221x x y y -=-可得出1AB OM k k =-,由圆的几何性质可得121AB C C k k =-,且点M 在连心线12C C 上,可知直线12C C 经过原点O ,可得出12OC OC k k =,由此可求得实数m 的值.【详解】圆1C 的圆心为()1,23C m m -+,设线段AB 的中点为点M ,则1212,22x x y y M ++⎛⎫⎪⎝⎭, 22221221x x y y -=-,所以,221222121y y x x -=--,即121212121AB OMy y y y k k x x x x -+=⋅=--+, 由于A 、B 关于连心线12C C 对称,则12AB C C ⊥,则121AB C C k k =-,12OM C C k k ∴=, 点M 在直线12C C 上,12O C C ∴∈,所以,12OC OC k k =,即233m m+-=-,解得3m =.故答案为:3. 【点睛】本题考查利用圆与圆的相交弦与连心线垂直求参数,分析出12O C C ∈是解答的关键,考查计算能力,属于中等题.15.【分析】可分为直线斜率存在和不存在两种情况具体讨论当直线斜率存在时联立直线和圆结合韦达定理即可求解【详解】当直线斜率不存在时直线方程为:将代入得可设点则;当直线斜率存在时设直线方程为:联立则综上所述 解析:1-【分析】可分为直线斜率存在和不存在两种情况具体讨论,当直线斜率存在时,联立直线和圆,结合韦达定理即可求解 【详解】当直线斜率不存在时,直线方程为:2x =,将2x =代入22 9x y +=得y =点()(2,5,2,M N ,则()()5221PM PN ⋅=⨯=-;当直线斜率存在时,设直线方程为:()22y k x =-+,()()1122,,,M x y N x y联立()()()()2222221444190 229k x k k x y k y x x k ⎧⎪⇒++-+--=⎨=+=-+⎪⎩ ()212221224414191k k x x k k x x k ⎧-+=⎪+⎪⇒⎨--⎪⋅=⎪+⎩,则()()11222,2,2,2PM x y PM x y =--=--, ()()()()()()()21212122222122PM PN x x y y k x x ⋅=--+--=+--()()()()()2222212122224194411241241111k k k k k x x x x k k k k ⎡⎤---+=+-++=+-⋅+⋅=-⎢⎥+++⎢⎥⎣⎦综上所述,1PM PN ⋅=- 故答案为:1- 【点睛】本题考查由直线与圆的位置关系求解向量数量积的定值问题,解题过程中易遗漏斜率不存在的情况,考查了数形结合思想,数学运算的核心素养,属于中档题16.2【分析】由圆的方程得出圆心坐标根据圆的对称性可知直线通过圆心得出再由直线与直线相互垂直得出代入求解即可【详解】方程一定表示圆则圆心坐标为根据圆的对称性可知直线通过圆心则MN 两点关于直线对称直线与直解析:2 【分析】由圆的方程得出圆心坐标,根据圆的对称性可知直线0x y +=通过圆心,得出k m =-,再由直线1y kx =+与直线0x y +=相互垂直,得出1k =,代入20182019k m -求解即可. 【详解】22160k m ++>∴方程2240x y kx my +++-=一定表示圆则圆心坐标为,22k m ⎛⎫-- ⎪⎝⎭根据圆的对称性可知,直线0x y +=通过圆心 则022k mk m --=⇒=- M 、N 两点关于直线0x y +=对称∴直线1y kx =+与直线0x y +=相互垂直 (1)11k k ∴⨯-=-⇒=20182019201820191(1)112k m ∴-=--=+=故答案为:2 【点睛】本题主要考查了圆的对称性的应用以及由直线与圆的位置关系确定参数的范围,属于中档题.17.【分析】过作于连接可得直角三角形中从而得到当时原点到直线的距离最大利用垂直求出的斜率从而得到的方程【详解】设点过坐标系原点作于连接则为原点到直线的距离在直角三角形中为斜边所以有所以当时原点到直线的距 解析:2450x y --=【分析】过O 作OB l ⊥于B ,连接OA ,可得直角三角形AOB 中OB OA <,从而得到当OA l⊥时,原点O 到直线l 的距离最大,利用垂直,求出l 的斜率,从而得到l 的方程. 【详解】 设点1,12A ⎛⎫-⎪⎝⎭,过坐标系原点O 作OB l ⊥于B ,连接OA , 则OB 为原点O 到直线l 的距离, 在直角三角形AOB 中,OA 为斜边, 所以有OB OA <,所以当OA l ⊥时,原点O 到直线l 的距离最大, 而1212OA k -==-,所以12l k =, 所以l 的直线方程为11122y x ⎛⎫+=- ⎪⎝⎭, 整理得:2450x y --=【点睛】本题考查根据点到直线的距离求斜率,点斜式写直线方程,属于简单题.18.【分析】求出圆心坐标圆的半径结合题意利用圆的到直线的距离半径满足勾股定理求出就是最小值【详解】解:因为的圆心半径为则圆心到直线的距离为:点在直线上过点的直线与曲线只有一个公共点则的最小值:故答案为: 解析:27【分析】求出圆心坐标,圆的半径,结合题意,利用圆的到直线的距离,半径,||PM 满足勾股定理,求出||PM 就是最小值.【详解】解:因为()22:54C x y -+=的圆心(5,0),半径为2,则圆心到直线1:30l x y ++=的=P 在直线1:30l x y ++=上,过点P 的直线2l 与曲线()22:54C x y -+=只有一个公共点M ,则||PM故答案为:【点睛】本题考查点到直线的距离公式,直线与圆的位置关系,勾股定理的应用,考查计算能力,转化思想的应用,属于基础题.19.【分析】设正方体的棱长为正方体的内切球半径为正方体的外接球半径再由已知条件和球的表面积公式可得答案【详解】设正方体的棱长为正方体的内切球半径为正方体的外接球半径满足:则由题意知:则该正方体的内切球的解析:【分析】设正方体的棱长为a ,正方体的内切球半径为2a r =,正方体的外接球半径R =,再由已知条件和球的表面积公式可得答案. 【详解】设正方体的棱长为a ,正方体的内切球半径为2a r =,正方体的外接球半径R 满足:22222a R a ⎛⎫⎛⎫=+ ⎪ ⎪ ⎪⎝⎭⎝⎭,则R =.由题意知:12aR r -=-=,则2a =,R = 该正方体的内切球的表面积为4π,又因为圆周率的平方除以十六等于八分之五,即25168π=,所以π=所以内切球的表面积为故答案为: 【点睛】关键点点睛:本题考查正方体的外接球和内切球问题,考查空间几何新定义,解决本题的关键点是利用正方体的外接球半径,内切球半径和正方体面对角线的一半组成勾股定理,得出正方体内切球半径,进而得出表面积,考查学生空间想象能力和计算能力,属于中档题.20.【分析】由二面角的大小为可得平面平面得到平面由勾股定理可得答案【详解】连接所以是等边三角形所以因为为中点所以所以即所以因为平面平面平面平面所以平面平面所以所以故答案为:【点睛】对于翻折问题解题时要认解析:22. 【分析】由二面角A ED C '--的大小为90,可得平面A ED '⊥平面EDCB ,得到A E '⊥平面EDCB ,由勾股定理可得答案.【详解】连接DB CE 、,2AB AD ==,60A ∠=,所以ABD △、CBD 是等边三角形, 所以2AD BD CD ===,因为E 为AB 中点,1AE A E '==, 所以DE AB ⊥,DE A E ⊥',3DE =,30EDB ∠=,所以90EDC ∠=,即DE CD ⊥,所以222347EC ED CD =+=+=,因为平面A ED '⊥平面EDCB ,DE A E ⊥',平面A ED'平面EDCB DE =,所以A E '⊥平面EDCB ,EC ⊂平面EDCB ,所以A E EC '⊥, 所以221722A C A E EC ''=+=+=.故答案为:22.【点睛】对于翻折问题,解题时要认真分析图形,确定有关元素间的关系及翻折前后哪些量变了,哪些量没有变,根据线线、线面、面面关系正确作出判断,考查了学生的空间想象力..21.【分析】首先将二面角展平根据两点距离线段最短求最小值【详解】如图将二面角沿棱展成平角连结根据两点之间线段最短可知就是的最小值以为邻边作矩形由可知三点共线则故答案为:【点睛】思路点睛:本题考查立体几何 26【分析】首先将二面角展平,根据两点距离线段最短,求AP PB +最小值. 【详解】如图,将二面角沿棱a 展成平角,连结AB ,根据两点之间线段最短,可知AB 就是AP PB +的最小值,以,AE EF 为邻边,作矩形AEFC ,由,CF a BF a ⊥⊥可知,,C F B 三点共线, 则()222213226AB AC BC =+=++=26【点睛】思路点睛:本题考查立体几何中的折线段和的最小值,一般都是沿交线展成平面,利用折线段中,两点间距离最短求解,本题与二面角的大小无关.22.【分析】设出外接球的半径球心的外心半径r 连接过作的平行线交于连接如图所示在中运用正弦定理求得的外接圆的半径r 再利用的关系求得外接球的半径运用球的表面积公式可得答案【详解】设三棱锥外接球的半径为球心为 解析:20π【分析】设出外接球的半径R 、球心O ,ABC 的外心1O 、半径 r , 连接1AO ,过O 作的平行线OE 交AD 于 E ,连接OA ,OD ,如图所示,在ABC 中,运用正弦定理求得 ABC的外接圆的半径r ,再利用1,,R r OO 的关系求得外接球的半径,运用球的表面积公式可得答案. 【详解】设三棱锥外接球的半径为R 、球心为O ,ABC 的外心为1O 、外接圆的半径为r ,连接1AO ,过O 作平行线OE 交AD 于E ,连接OA ,OD ,如图所示,则OA OD R ==,1O A r =,OE AD ⊥,所以E 为AD 的中点.在ABC 中,由正弦定理得172sin 223BC r BAC ==∠334r =. 在ABC 中,由余弦定理2222cos BC AB AC AB AC BAC =+-⋅⋅∠,可得2117963AB AB =+-⋅⋅,得4AB =.所以1122sin 344222ABC S AB AC BAC =⋅⋅∠=⨯⨯=△ 因为11274233D ABC ABC V S AD AD -=⋅⋅=⨯=△144AD =.连接1OO ,又1//OO AD ,所以四边形1EAOO 为平行四边形, 111428EA OO AD ===,所以22221114324588R OO AO ⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭.所以该三棱锥的外接球的表面积()224π4π520πS R ===.故答案为:20π.【点睛】本题考查三棱锥的外接球,及球的表面积计算公式,解决问题的关键在于利用线面关系求得外接球的球心和球半径,属于中档题.23.【分析】欲使圆柱侧面积最大需使圆柱内接于圆锥设圆柱的高为h 底面半径为r 用r 表示h 从而求出圆柱侧面积的最大值【详解】欲使圆柱侧面积最大需使圆柱内接于圆锥;设圆柱的高为h 底面半径为r 则解得;所以;当时取 解析:43π【分析】欲使圆柱侧面积最大,需使圆柱内接于圆锥,设圆柱的高为h ,底面半径为r ,用r 表示h ,从而求出圆柱侧面积的最大值. 【详解】欲使圆柱侧面积最大,需使圆柱内接于圆锥; 设圆柱的高为h ,底面半径为r ,则23423h r -=,解得3232h r =-; 所以()232223342S rh r r r r πππ⎛⎫==-=- ⎪ ⎪⎝⎭圆柱侧; 当2r 时,S 圆柱侧取得最大值为43π 故答案为:43π.【点睛】本题考查了求圆柱侧面积的最值,考查空间想象能力,将问题转化为函数求最值,属于中档题.24.【详解】取的中点由题意可得:所以面ABC 所以球心在直线上所以得所以 解析:494π 【详解】取AB 的中点,由题意可得:2222,3,SD DC SD DC SC ==+=,所以,SD AB SD DC ⊥⊥,SD ⊥面ABC.所以球心在直线SD 上,所以()2232R R =+-,得74R =, 所以24944S R ππ==. 三、解答题25.(Ⅰ)证明见解析;(Ⅱ2【分析】(Ⅰ)推导出AB AC ⊥,CD AC ⊥,PA CD ⊥,从而CD ⊥平面PAC ,进而CD AE ⊥,AE PC ⊥,由此能证明平面AEB ⊥平面PCD .(Ⅱ)以A 为原点,以AB ,AC ,AP 所在射线分别为x ,y ,z 的正半轴,建立空间直角坐标系,利用向量法能求出侧棱PA 的长.【详解】证明:(Ⅰ)1,45AB BC ABC =∠=︒,AB AC ∴⊥ 又//AB CD ,CD AC ∴⊥,PA ⊥平面ABCD ,PA CD ∴⊥,又AC AP A =,,AC AP ⊂平面PAC , CD平面PAC , AE ⊂平面PAC ,CD AE ∴⊥, 又AE PC ⊥,PC CD C =,,PC CD ⊂平面PCD ,AE ∴⊥平面PCD ,又AE ⊂平面AEB ,∴平面AEB ⊥平面PCD .(Ⅱ)以A 为原点,以AB ,AC ,AP 所在射线分别为x ,y ,z 的正半轴,建立空间直角坐标系.设AP t =,则(0A ,0,0),(1B ,0,0),(0C ,1,0),(1,10)D -,(0P ,0,)t , AB PC ⊥,AE PC ⊥,PC ∴⊥平面ABE ,∴平面ABE 的一个法向量为(0,1,)n PC t ==-在Rt PAC △中,PA t =,1AC PC =∴=又AE PC ⊥,AE =222(0,,)11t t E t t ++ 设平面ADE 的一个法向量为(,,)m x y z =由m AD m AE ⎧⊥⎨⊥⎩,得222··0110t t y z t t x y ⎧+=⎪++⎨⎪-+=⎩,解得(1,1,)m t =- 二面角B AE D --的大小为150︒,∴22|||cos,||cos150|||||m n m n m n t 〈〉===︒+, 解得t =PA【点睛】本题考查了立体几何中的面面垂直的判定和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.26.(1)证明见解析;(2)823. 【分析】(1)先证//CD 平面PAB ,然后由线面平行性质定理可得结论;(2)由线面平行的性质,把体积利用等高进行转换PBEC C PBE D PBE V V V --==,然后由体积公式计算,【详解】(1)证明:因为//AB CD ,CD ⊄平面PAB ,AB 平面PAB ,所以//CD 平面PAB .因为CD ⊂平面PCD ,平面PAB ⋂平面PCD m =,所以//CD m .(2)解:1114222PBE PBA S S PA AB ==⨯⨯⨯=△△, ∵//CD 平面PAB ,所以,C D 两点到平面PAB 的距离相等.由条件易得DA ⊥平面PAB 且22AD =∴118242233PBEC C PBE D PBE PBE V V V S DA --===⋅=⨯⨯=△. 【点睛】 关键点点睛:本题考查证明线线平行,考查求棱锥的体积.在立体几何的证明中,注意掌握线面间关系的判定定理和性质定理,下结论时需要满足定理的所有条件,一个不缺,一一列举,然后得出结论,否则证明过程不完整.27.(1)证明见解析;(2)82. 【分析】(1)连接AC 交BD 于点O ,连接EO ,利用三角形中位线定理可得//EO PC ,再由线面平行的判定定理可得结论;(2)先证明PO ⊥面ABCD ,由E 是PA 的中点,可得E 到面ABCD 的距离12PO =,再利用棱锥的体积公式可得答案.【详解】(1)连接AC 交BD 于点O ,连接EO .四边形ABCD 为正方形,所以O 为AC 中点,又E 为PA 中点, //EO PC ∴,又EO ⊂面EBD ,PC ⊄面EBD ,//PC ∴面EBD .(2)正四棱锥P ABCD -中,PA PC =,O 是AC 的中点PO AC ∴⊥,PD PB =,O 是BD 的中点PO BD ∴⊥,又AC 与BD 在平面ABCD 内相交,所以PO ⊥面ABCDE 是PA 的中点,E ∴到面ABCD 的距离12PO =, 221822,2ABD S AB AD PO PD DO ∆=⋅⋅==-=,182323E ABD ABD PO V S -∆=⋅⋅= 【点睛】方法点睛:证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.28.(1)证明见解析;(2)7-;(3)存在;12PF PB =. 【分析】(1)首先证明BE AD ⊥,再由面面垂直的性质定理可得BE ⊥平面PAD ,即证.(2)连结PE ,以E 为坐标原点,EP ,EA ,EB 为,,x y z 轴,建立空间直角坐标系,(0,3,0)EB a =是平面PAD 的一个法向量,再求出平面PCD 的一个法向量,利用空间向量的数量积即可求解.(3)根据题意可得EF 与平面PCD 的法向量垂直,假设线段PB 上存在点F 使得//EF 平面PCD ,再利用向量的数量积即可求解.【详解】解:(1)因为四边形ABCD 为菱形,所以AB AD =.又因为3BAD π∠=,E 为AD 的中点,所以BE AD ⊥. 又因为平面PAD ⊥平面ABCD ,平面PAD平面ABCD AD =, 所以BE ⊥平面PAD .因为PA ⊂平面PAD ,所以BE PA ⊥.(2)连结PE .因为PA PD =,E 为AD 的中点,。
上海华东师范大学附属枫泾中学必修二第二章《解析几何初步》测试题(有答案解析)
一、选择题1.已知半径为1的圆经过直线2110x y +-=和直线220x y --=的交点,那么其圆心到原点的距离的最大值为( ) A .4B .5C .6D .72.已知动点M 到()1,1A ,()3,3B -两点的距离相等,P 是圆()2235x y -+=上的动点,则PM 的最小值为( )A B .C .2D .23.已知点(,0)A m -,(,0)B m ,R m ∈,若圆22:(3)(3)2C x y -+-=上存在点P ,满足PA PB ⊥,则m 最大值是( )A .B .C .D .4.已知直线20x y a -+=与圆22:2O x y +=相交于A ,B 两点(O 为坐标原点),则“a =是“0OA OB ⋅=”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.已知线段AB 是圆22:4C x y +=的一条动弦,且AB =,若点P 为直线40x y +-=上的任意一点,则PA PB +的最小值为( )A .1B .1C .2D .26.数学家欧拉于1765年在他的著作《三角形的几何学》中首次提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称为三角形的欧拉线.在平面直角坐标系中作ABC ,在ABC 中,4AB AC ==,点(1,3)B -,点(4,2)C -,且其“欧拉线”与圆222(3)x y r -+=相切,则该圆的半径r 为( )A .1B C .2D .7.已知平面,αβ,直线l ,记l 与,αβ所成的角分别为1θ,2θ,若αβ⊥,则( ) A .12sin sin 1θθ+≤B .12sin sin 1θθ+≥C .122πθθ+≤D .122πθθ+≥8.大摆锤是一种大型游乐设备(如图),游客坐在圆形的座舱中,面向外,通常大摆锤以压肩作为安全束缚,配以安全带作为二次保险,座舱旋转的同时,悬挂座舱的主轴在电机的驱动下做单摆运动.假设小明坐在点A 处,“大摆锤”启动后,主轴OB 在平面α内绕点O 左右摆动,平面α与水平地面垂直,OB 摆动的过程中,点A 在平面β内绕点B 作圆周运动,并且始终保持OB β⊥,B β∈.设4OB AB =,在“大摆锤”启动后,下列结论错误的是( )A .点A 在某个定球面上运动;B .β与水平地面所成锐角记为θ,直线OB 与水平地面所成角记为δ,则θδ+为定值;C .可能在某个时刻,AB //α;D .直线OA 与平面α所成角的正弦值的最大值为1717. 9.一个底面为正三角形的棱柱的三视图如图所示,若在该棱柱内部放置一个球,则该球的最大体积为( )A .6πB .12πC .43πD .83π10.如图,在矩形ABCD 中,1AB =,3BC ,沿BD 将矩形ABCD 折叠,连接AC ,所得三棱锥A BCD -正视图和俯视图如图,则三棱锥A BCD -中AC 长为( )A .32B 3C 10D .211.在长方体1111ABCD A BC D -中,2AB =,1AD =,12AA =,点E 为11C D 的中点,则二面角11B A B E --的余弦值为( ) A .3B .3C 3D 312.在正方体1111ABCD A BC D -中,M 是棱1CC 的中点.则下列说法正确的是( ) A .异面直线AM 与BC 5B .BDM 为等腰直角三角形C .直线BM 与平面11BDD B 10D .直线1AC 与平面BDM 相交二、填空题13.已知直线1:210l x my ++=与2:310l x y --=平行,则m 的值为__________. 14.直线()10,0ax by a b +=>>与曲线222410x y x y +--+=交于A 、B ,且AB 4=,则11a b+的最小值为__________ 15.已知圆22:1O x y +=,直线:30l mx y m -=与圆O 交于A 、B 两点,1AB =,分别过A 、B 两点作直线l 的垂线交x 轴于C 、D 两点,则CD =__________. 16.在平面直角坐标系xOy 中,设直线12y x b =+与圆22640x y x +-+=相交于,A B 两点,若圆上存在一点C ,使ABC ∆为等边三角形,则所有满足题设的实数b 之和为_________.17.已知直线10ax y a ++-=与圆22:280C x y x y b +--+=,(),a b R ∈,交于A ,B 两点,若ABC 的面积的最大值为4,求此时ab =______.18.若点()1,1P 为圆()2239x y -+=的弦MN 的中点,则弦MN 所在直线方程为__________.19.已知三棱锥P ABC -的外接球O 的表面积为12π,PA ⊥平面ABC ,BA AC ⊥,2PA =,则ABC 面积的最大值为__________.20.在如图棱长为2的正方体中,点M 、N 在棱AB 、BC 上,且1AM BN ==,P 在棱1AA 上,α为过M 、N 、P 三点的平面,则下列说法正确的是__________.①存在无数个点P ,使面α与正方体的截面为五边形; ②当11A P =时,面α与正方体的截面面积为33; ③只有一个点P ,使面α与正方体的截面为四边形;④当面α交棱1CC 于点H ,则PM 、HN 、1BB 三条直线交于一点. 21.一个三棱锥的三视图如图所示,该三棱锥中最长棱的长度为_______.22.祖恒是我国南北朝时代的伟大科学家,他总结了刘徽的有关工作,提出来体积计算的原理“幂势既同,则积不容异”,称为祖恒原理,意思是底面处于同一平面上的两个同高的几何体,若在等高处 的截面面积始终相等,则它们的体积相等,利用这个原理求半球O 的体积时,需要构造一个几何体,该几何体的三视图如图所示,则该几何体的体积为_________________23.已知点O 为圆锥PO 底面的圆心,圆锥PO 的轴截面为边长为2的等边三角形PAB ,圆锥PO 的外接球的表面积为______.24.在三棱锥P ABC -中,PA ⊥平面ABC ,60BAC ∠=︒,23AB AC ==,2PA =,则三棱锥P ABC -外接球的半径为____________.三、解答题25.设某几何体的三视图如图(尺寸的长度单位为cm ),(1)用斜二测画法画出该几何体的直观图(不写画法); (2)求该几何体最长的棱长.26.如图,四棱锥P ABCD -中,2PC PD DC AD ===,底面ABCD 为矩形,平面PCD ⊥平面ABCD ,O 、E 分别是棱CD 、PA 的中点.(1)求证://OE 平面PBC ; (2)求二面角PAB C 的大小.27.如图,在矩形ABCD 中,2AB AD =,M 为DC 的中点,将ADM △沿AM 折起使平面ADM ⊥平面ABCM .(1)求证:BM AD ⊥;(2)求直线DC 与平面DAB 所成角的正弦值.28.如图,正三棱柱111ABC A B C -的棱长均为2,M 是侧棱1AA 的中点.(1)在图中作出平面ABC 与平面1MBC 的交线l (简要说明),并证明l ⊥平面11CBBC ;(2)求点C 到平面1MBC 的距离.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C【分析】设出圆的方程,求出直线交点代入圆可得圆心在以()3,4为圆心,1为半径的圆上,即可由此求出最值. 【详解】设圆的方程为()()221x a y b -+-=,联立直线方程2110220x y x y +-=⎧⎨--=⎩,解得34x y =⎧⎨=⎩,将()3,4代入圆得()()22341a b -+-=,则可得圆心(),a b 在以()3,4为圆心,1为半径的圆上,则()3,45=,则圆心(),a b 到原点的距离的最大值为516+=. 故选:C. 【点睛】关键点睛:本题考查与圆相关的距离的最值问题,解题的关键是得出圆心的轨迹是以()3,4为圆心,1为半径的圆,再求出轨迹圆的圆心到原点的距离,加上半径即可.2.A解析:A 【分析】易知M 轨迹为线段AB 的垂直平分线,由此可求得M 轨迹方程;利用点到直线距离公式求得圆心到直线距离,由d r -可求得结果. 【详解】M 到,A B 两点距离相等,M ∴点轨迹为线段AB 的垂直平分线,又311312-==---AB k ,AB 中点坐标为()1,2-, M ∴点的轨迹方程为:()221y x -=+,即240x y -+=.由圆的方程知:圆心为()3,0,半径r =∴圆心到直线240x y -+=的距离d ==minPMd r ∴=-==故选:A. 【点睛】结论点睛:直线与圆相离时,圆上的点到直线距离的最大值为d r +,最小值为d r -(d 为圆心到直线距离,r 为圆的半径).3.C解析:C 【分析】首先设点(),P x y ,利用0AP BP ⋅=,转化为m =m 的最大值. 【详解】由圆的方程可知,圆的圆心()3,3C (),P x y 则(),AP x m y =+,(),BP x m y =-,()()20AP BP x m x m y ⋅=+-+=,即222m x y m =+⇒=的几何意义可知,m 的最大值就是圆上的点到原点的距离的最大值,即圆心到原点的距离加半径,即OC r +== 故选:C 【点睛】结论点睛:与圆的几何性质有关的最值,具体结论如下:(1)设O 为圆的圆心,半径为r ,圆外一点A 到圆上的距离的最小值为AO r -,最大值为AO r -;(2)过圆内一点的最长弦为圆的直径,最短弦是以该点为中点的弦;(3)记圆的半径为r ,圆心到直线的距离为d ,直线与圆相离,则圆上的点到直线的最大距离为d r +,最小值为d r -;4.A解析:A 【分析】设()()1122,,,A x y B x y ,联立22202x y a x y -+=⎧⎨+=⎩,化为225420,y ay a -+-= 由0OA OB ⋅=12120x x y y ⇔+=,可得()21212520y y a y y a -++=,根据韦达定理解出a ,进而可得结果.【详解】设()()1122,,,A x y B x y ,联立22202x y a x y -+=⎧⎨+=⎩,化为225420,y ay a -+-= 直线20x y a -+=与圆22:2O x y +=相交于,A B 两点,(O 为坐标原点),()22162020a a ∴∆=-->,解得210a <,2121242,55a a y y y y -∴+==, 因为0OA OB ⋅=12120x x y y ⇔+=,()()1212220y a y a y y ∴--+=, ()21212520y y a y y a ∴-++=,222452055a a a a -∴⨯-⨯+=,解得a =210a <,则“a =是“0OA OB ⋅=”的充分不必要条件, 故选:A. 【点睛】本题主要考查充分条件与必要条件的定义、直线与圆的位置关系,以及平面向量数量积公式的应用,属于中档题.5.C解析:C 【分析】取AB 中点为M ,连接PM ,OM ,根据题意,求出1OM =,再由2PA PB PM +=,PM OM OP +≥,得到PA PB +取最小值,即是PM 取最小值,所以只需OP 取最小,根据点到直线距离公式,求出OP 的最小值,即可得出结果. 【详解】取AB 中点为M ,连接PM ,OM ,因为AB 是圆22:4C x y +=的一条动弦,且AB =,所以12OM ==⎝⎭,又2PA PB PM +=,PM OM OP +≥,即1PM OP ≥- 因此,PA PB +取最小值,即是PM 取最小值,所以只需OP 取最小, 又点P 为直线40x y +-=上的任意一点, 所以点O 到直线40x y +-=的距离,即是min OP ,即min OP ==因此minmin 121PMOP =-=,即minmin22PA PB PM+==.故选:C.【点睛】本题主要考查求向量模的最值问题,将其转化为直线上任意一点与圆心距离的最值问题,是解决本题的关键,属于常考题型.6.B解析:B 【分析】由等腰三角形的性质可得BC 边上的高线、垂直平分线和中线合一,其“欧拉线”为ABC 边BC 的垂直平分线,运用中点坐标公式和两直线垂直的条件,求得BC 边上的垂直平分线方程,再由直线和圆相切的条件:d r =,可得所求值. 【详解】解:在ABC 中,4AB AC ==,点(1,3)B -,点(4,2)C -, 可得BC 边上的高线、垂直平分线和中线合一, 则其“欧拉线”为ABC 边BC 的垂直平分线,可得BC 的中点为3(2,1)2,直线BC 的斜率为32114+=---, 则BC 的垂直平分线的斜率为1, 可得BC 的垂直平分线方程为1322y x -=-,即为10x y --=, 其“欧拉线”与圆222(3)x y r -+=相切, 可得圆心(3,0)到“欧拉线”的距离为22d == 即有半径2r =故选:B . 【点睛】本题考查直线方程、三角形的“欧拉线”的定义,以及直线和圆相切的条件,考查推理能力与计算能力.7.C解析:C 【分析】如图,作出1θ和2θ,再由线面角推得12sin sin 2πθθ⎛⎫≤- ⎪⎝⎭,利用三角函数的单调性判断选项. 【详解】设直线l 为直线AB ,m αβ=,AD m ⊥,BC m ⊥,连结BD ,AC ,1ABD θ=∠,2BAC θ=∠,12sin sin 2AD AC AB AB πθθ⎛⎫=≤=- ⎪⎝⎭,12,2πθθ-都是锐角, 122πθθ∴≤-,即122πθθ+≤故选:C 【点睛】关键点点睛:本题的关键是作图,并利用线段AD AC ≤,传递不等式,12sin sin 2AD AC AB AB πθθ⎛⎫=≤=- ⎪⎝⎭. 8.C解析:C 【分析】利用已知条件确定OA 是定值,即得A 选项正确;作模型的简图,即得B 正确;依题意点B 在平面α内,不可能AB //α,得C 错误;设AB a ,结合题意知ABα⊥时,直线OA与平面α所成角最大,计算此时正弦值,即得D 正确.【详解】因为点A 在平面β内绕点B 作圆周运动,并且始终保持OB β⊥,所22OA OB AB =+又因为OB ,AB 为定值,所以OA 也是定值,所以点A 在某个定球面上运动,故A 正确;作出简图如下,OB l ⊥,所以2πδθ+=,故B 正确;因为B α∈,所以不可能有AB //α,故C 不正确; 设ABa ,则4OB a =,2217OA AB OB a +=,当AB α⊥时,直线OA 与平面α所成角最大,此时直线OA 与平面α1717a=,故D 正确. 故选:C. 【点睛】本题解题关键在于认真读题、通过直观想象,以实际问题为背景构建立体几何关系,再运用立体几何知识突破难点.9.C解析:C 【分析】先由三视图计算底面正三角形内切圆的半径,内切圆的直径和三棱柱的高比较大小,确定球的半径的最大值,计算球的最大体积. 【详解】由三视图知该直三棱柱的高为4,底面正三角形的高为33半径为高的三分之一,即3r =234,所以该棱柱内部可放置球的半径的最大3343433V ππ==.故选:C 【点睛】关键点点睛:本题的第一个关键是由三视图确定底面三角形的高是33定球的最大半径.10.C解析:C 【分析】先由正视图、俯视图及题意还原三棱锥,过A 作AM ⊥BD 于点M ,连结MC ,把AC 放在直角三角形AMC 中解AC . 【详解】根据三棱锥A BCD -正视图和俯视图,还原后得到三棱锥的直观图如图示,由图可知:平面ABD ⊥平面CBD ,过A 作AM ⊥BD 于点M ,连结MC ,则AM ⊥平面CBD , ∴△MCA 为直角三角形. 过C 作CN ⊥BD 于点N ,在直角三角形ABD 中,AB =1,AD 3∴222BD AB AD =+=所以∠ABD=60°,∠ADB=30°,则在直角三角形ABM 中,AB =1,∠ABM=60°,∴13,2BM AM ==同理,在直角三角形CBD 中,13,2DN CN ==. ∴MN =BD -BM -DN =112122--=, ∴222237()122CM CN MN =+=+= 在直角三角形AMC 中,22227310()22AC CM AM ⎛⎫=+=+⎪ ⎪⎝⎭故选:C 【点睛】(1)根据三视图画直观图,可以按下面步骤进行:①、首先看俯视图,根据俯视图画出几何体地面的直观图 ;②、观察正视图和侧视图找到几何体前、后、左、右的高度;③、画出整体,让后再根据三视图进行调整.(2)立体几何中求线段长度:①、把线段放在特殊三角形中,解三角形;②、用等体积法求线段.11.C解析:C 【分析】取11A B 的中点F ,过F 作1FG A B ⊥,垂足为G ,连EG ,可证EGF ∠为二面角11B A B E --的平面角,通过计算可得结果.【详解】取11A B 的中点F ,过F 作1FG A B ⊥,垂足为G ,连EG ,因为,E F 分别为1111,C D A B 的中点,所以11//EF A D ,在长方体1111ABCD A BC D -中,因为11A D ⊥平面11ABB A ,所以EF ⊥平面11ABB A , 因为1A B ⊂平面11ABB A ,所以1EF A B ⊥,因为1FG A B ⊥,且FGEF F =,所以1A B ⊥平面EFG ,因为EG ⊂平面EFG ,所以1A B EG ⊥,所以EGF ∠为二面角11B A B E --的平面角, 因为12AB AA ==,所以14FA G π∠=,因为11A F =,所以12222FG A F ==, 在直角三角形EFG 中,221612EG EF FG =+=+=, 所以cos FGEGF EG ∠==2326=. 所以二面角11B A B E --3. 故选:C 【点睛】关键点点睛:根据二面角的定义作出其中一个平面角是解题关键.12.C解析:C 【分析】A 通过平移,找出异面直线所成角,利用直角三角形求余弦即可. B.求出三角形的三边,通过勾股定理说明是不是直角三角形.C.求出点M 到面11BB D D 的距离,再求直线BM 与平面11BDD B 所成角的正弦.D.可通过线线平行证明线面平行. 【详解】 设正方体棱长为2A. 取1BB 的中点为N ,则//BC MN ,则AM 与BC 所成角为AMN ∠ 由BC ⊥面11ABB A ,故MN ⊥面11ABB A ,故MN AN ⊥,在Rt ANM △中,5tan AMN ∠=,故2cos 3AMN ∠=B. BDM 中,5BM =,22BD =,5DM =,不满足勾股定理,不是直角三角形C. AC BD ⊥,1AC BB ⊥,故AC ⊥面11BB D D ,1//CC 面11BB D D ,故M 到面11BB D D 的距离等于C 到面11BB D D 的距离,即为122d AC ==直线BM 与平面11BDD B 所成角为θ210sin 55d BM θ===直线BM 与平面11BDD B 所成角的正弦值等于10D.如图ACBD O =OM 为1ACC △的中位线,有1//OM AC故直线1AC 与平面BDM 平行故选:C 【点睛】本题考查了空间几何体的线面位置关系判定与证明:(1)对于异面直线的判定要熟记异面直线的概念:把既不平行也不相交的两条直线称为异面直线;(2)对于线面位置关系的判定中,熟记线面平行与垂直、面面平行与垂直的定理是关键.二、填空题13.【分析】解方程即得解【详解】由题得当时两直线不重合故答案为:【点睛】结论点睛:直线和直线平行则且两直线不重合 解析:23-【分析】解方程230m ⨯⨯=(-1)-即得解. 【详解】由题得2230,3m m ⨯⨯=∴=-(-1)-. 当23m =-时,两直线不重合. 故答案为:23-. 【点睛】结论点睛:直线1111:0l a x b y c ++=和直线2222:0l a x b y c ++=平行,则12210a b a b -=且两直线不重合.14.【分析】由得可知圆心为半径为2而所以可得直线过圆心由此得所以可化为然后利用基本不等式可求得其最小值【详解】解:由得所以曲线表示圆其圆心为半径为2因为直线与曲线交于且所以直线过圆心所以所以当且仅当即时解析:3+【分析】由222410x y x y +--+=得,22(1)(2)4x y -+-=,可知圆心为(1,2),半径为2,而AB 4=,所以可得直线过圆心,由此得21a b +=,所以11a b+可化为112a b a b ⎛⎫+⋅+ ⎪⎝⎭(),然后利用基本不等式可求得其最小值 【详解】解:由222410x y x y +--+=得,22(1)(2)4x y -+-=, 所以曲线222410x y x y +--+=表示圆,其圆心为(1,2),半径为2,因为直线()10,0ax by a b +=>>与曲线222410x y x y +--+=交于A 、B ,且AB 4=,所以直线()10,0ax by a b +=>>过圆心(1,2), 所以21a b +=,所以11112a b a b a b ⎛⎫+=+⋅+ ⎪⎝⎭()2333b a a b =++≥+=+当且仅当2b aa b =,即212a b ==时,取等号故答案为:3+【点睛】此题考查的是直线与圆的位置关系,利用基本不等式求最值,属于中档题15.【分析】利用垂径定理可求得的值设则联立方程利用韦达定理可求【详解】由可得圆心半径设圆心到直线距离为则由垂径定理可得解得设联立直线与圆方程得∴∴∴故答案为:【点睛】本题考查利用垂径定理解决圆的弦长问题解析:2【分析】1AB =,利用垂径定理可求得m 的值,设()11A x y ,,()22B x y ,,则12CD x x =-=CD .【详解】由22:1O x y +=,可得圆心O ()00,,半径1R =, 设圆心到直线:0l mx y -=距离为d ,则d ==,由垂径定理可得2222AB R d ⎛⎫=+⎪⎝⎭,222112⎛⎫=+ ⎝⎪⎭, 解得213m =, 设()11A x y ,,()22B x y ,,联立直线l 与圆O 方程得221x y y mx ⎧+=⎪⎨=⎪⎩,∴()22221310m x x m +++-=,∴1213113x x -+===+,212213131301113m x x m ⨯--===++,∴12CD x x =-===. 故答案为:2. 【点睛】本题考查利用垂径定理解决圆的弦长问题,联立方程利用韦达定理求线段长度,考查运算求解能力,是中档题.16.【分析】由圆的方程可得到圆心和半径;根据等边三角形外心与重心重合可确定圆心到直线距离利用点到直线距离公式可构造方程求得所有的取值进而得到结果【详解】由得:则圆心半径的顶点都在圆上圆为的外接圆圆心到的 解析:3-【分析】由圆的方程可得到圆心和半径;根据等边三角形外心与重心重合可确定圆心到直线12y x b =+距离12d r =,利用点到直线距离公式可构造方程求得所有b 的取值,进而得到结果. 【详解】由22640x y x +-+=得:()2235x y -+=,则圆心()3,0M ,半径r =ABC ∆的顶点都在圆22640x y x +-+=上,∴圆22640x y x +-+=为ABC ∆的外接圆,∴圆心M 到12y x b =+的距离12d r ==,d ∴==, 解得:14b =-或114b =-, ∴所有满足题设的实数b 之和为111344--=-. 故答案为:3-. 【点睛】本题考查直线与圆的综合应用问题,关键是能够根据等边三角形外心即为重心的特点,得到圆心到直线距离与半径之间的比例关系,进而利用点到直线距离公式构造方程.17.【分析】当的面积最大时AC ⊥BC 由面积的最大值为4可算得b 从而得到C 到直线的距离等于2建立方程可求得a 的值从而得ab 的值【详解】解:∵圆C :x2+y2﹣2x ﹣8y+b =0即(x ﹣1)2+(y ﹣4)2 解析:154-【分析】当ABC 的面积最大时,AC ⊥BC ,由ABC 面积的最大值为4,可算得b ,从而得到C 到直线的距离等于2,建立方程可求得a 的值,从而得ab 的值. 【详解】解:∵圆C :x 2+y 2﹣2x ﹣8y +b =0,即(x ﹣1)2+(y ﹣4)2=17﹣b ; ∴圆心C (1,4),半径r 当ABC 的面积最大时,AC ⊥BC , (S △ABC )max =212r =4; ∴r 2=8,即17﹣b =8,∴b =9;直角三角形ABC 中,AC =BC =r ,∴C 到直线AB :ax +y +a ﹣1=0的距离等于d =2, ∴d =2=21a +,∴a =512-, ∴ab =154-. 故答案为:154-.【点睛】本题考查直线与圆的位置关系,考查点到直线的距离公式,数形结合的思想方法,属于中档题.18.【分析】先求出直线MN 的斜率再写出直线的点斜式方程得解【详解】∵为圆的弦的中点∴圆心与点确定的直线斜率为∴弦所在直线的斜率为2则弦所在直线的方程为即故答案为:【点睛】本题主要考查直线和圆的位置关系考 解析:210x y --=【分析】先求出直线MN 的斜率,再写出直线的点斜式方程得解. 【详解】∵()1,1P 为圆()2239x y -+=的弦MN 的中点,∴圆心与点P 确定的直线斜率为101132-=--, ∴弦MN 所在直线的斜率为2,则弦MN 所在直线的方程为()121y x -=-,即210x y --=. 故答案为:210x y --= 【点睛】本题主要考查直线和圆的位置关系,考查直线的方程的求法,意在考查学生对这些知识的理解掌握水平.19.2【分析】由球的表面积可求出半径取的中点可得设由基本不等式可得即可求出面积的最大值【详解】因为球的表面积为所以球的半径取的中点则为的外接圆圆心平面设由得因为所以当且仅当时取等因为的面积为所以面积的最解析:2 【分析】由球的表面积可求出半径3R =,取BC 的中点D ,可得1OD =,设AB x =,AC y =,由基本不等式可得4xy ≤,即可求出ABC 面积的最大值.【详解】因为球O 的表面积为12π,所以球O 的半径3R =. 取BC 的中点D ,则D 为ABC 的外接圆圆心,PA ⊥平面ABC ,112OD PA ∴==, 设AB x =,AC y =,由2222134+==+=+=x y R OC CD OD ,得228x y +=. 因为222x y xy +≥,所以4xy ≤,当且仅当2x y ==时取等. 因为ABC 的面积为1122⋅=AB AC xy ,所以ABC 面积的最大值为2. 故答案为:2.【点睛】本题考查几何体的外接球问题,解题的关键是是建立勾股关系,利用基本不等式求出4xy ≤.20.①②④【分析】让从开始逐渐向运动变化观察所得的截面从而可得正确的选项【详解】由题设可得为所在棱的中点当时如图(1)直线分别交与连接并延长于连接交于则与正方体的截面为五边形故①正确当如图(2)此时与正解析:①②④ 【分析】让P 从A 开始逐渐向1A 运动变化,观察所得的截面,从而可得正确的选项. 【详解】由题设可得,M N 为所在棱的中点.当203AP <<时,如图(1),直线MN 分别交,AD DC 与,T S ,连接TP 并延长1DD 于G , 连接GS 交1CC 于H ,则α与正方体的截面为五边形,故①正确.当11A P =,如图(2),此时α2 其面积为2362=334⨯B 正确.当,A P 重合或1,A P 重合时,如图(3),α与正方体的截面均为四边形,故③错误.如图(4),在平面α内,设PM HN S ⋂=,则S PM ∈,而PM ⊂平面11A B BA , 故S ∈平面11A B BA ,同理S ∈平面11C BBC , 故S ∈平面11A B BA ⋂平面111C B BC BB =即PM 、HN 、1BB 三条直线交于一点. 故答案为:①②④. 【点睛】思路点睛:平面的性质有3个公理及其推理,注意各个公理的作用,其中公理2可用来证明三点共线或三线共点,公理3及其推理可用来证明点共面或线共面,作截面图时用利用公理2来处理.21.【分析】由三视图还原几何体得到三棱锥P-ABC 分别计算其棱长可得答案【详解】由三视图还原几何体得到三棱锥P-ABC 可将此三棱锥放入棱长为2的正方体内如下图所示所以:BC=所以该三棱锥最长棱的长度为故 解析:23【分析】由三视图还原几何体得到三棱锥P -ABC ,分别计算其棱长,可得答案. 【详解】由三视图还原几何体得到三棱锥P -ABC ,可将此三棱锥放入棱长为2的正方体内,如下图所示,所以:2AB =,BC =2,22,23BP AC PC AP ====. 所以该三棱锥最长棱的长度为23. 故答案为:23.【点睛】方法点睛:三视图问题的常见类型及解题策略:(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.22.【分析】根据给定的几何体的三视图得到该几何体为一个圆柱挖去一个圆锥得出圆柱的底面半径和高利用圆柱和圆锥的体积以及圆的公式即可求解【详解】解:根据给定的几何体的三视图可得该几何体表示一个圆柱挖去一个圆 解析:23π 【分析】根据给定的几何体的三视图,得到该几何体为一个圆柱挖去一个圆锥,得出圆柱的底面半径和高,利用圆柱和圆锥的体积以及圆的公式,即可求解. 【详解】解:根据给定的几何体的三视图,可得该几何体表示一个圆柱挖去一个圆锥, 且底面半径1,高为1的组合体,所以几何体的体积为:2221311113πππ⨯⨯⨯=⨯-⨯.故答案为:23π.【点睛】关键点点睛:本题考查了几何体的三视图及体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线,求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解.23.【分析】由题意知圆锥的轴截面为外接球的最大截面即过球心的截面且球心在上由等边三角形性质有即求得外接球的半径为R 进而求外接球的表面积【详解】设外接球球心为连接设外接球的半径为R 依题意可得在中有即解得故 解析:163π【分析】由题意知圆锥PO 的轴截面为外接球的最大截面,即过球心的截面且球心在PO 上,由等边三角形性质有Rt AO O '△,即222O A AO O O ''=+求得外接球的半径为R ,进而求外接球的表面积. 【详解】设外接球球心为O ',连接AO ',设外接球的半径为R ,依题意可得1AO =,3PO =,在Rt AO O '△中,有222O A AO O O ''=+,即)22213R R =+,解得3R =, 故外接球的表面积为24164433S R πππ==⋅=. 故答案为:163π. 【点睛】本题考查了求圆锥体的外接球面积,由截面是等边三角形,结合等边三角形的性质求球半径,进而求外接球面积,属于基础题.24.【分析】先在等边三角形中求出外接圆半径从而可求该三棱锥的外接球的半径【详解】详解:因为所以为等边三角形所以等边外接圆的半径为如图三棱锥外接球球心为半径为设球心到平面的距离为外接圆圆心为连接则平面取中 解析:5【分析】先在等边三角形ABC 中求出23BC =,外接圆半径2r ,从而可求该三棱锥的外接球的半径. 【详解】详解:因为023,60AB AC BAC ==∠=,所以ABC 为等边三角形, 所以23BC =,等边ABC 外接圆的半径为23r,如图,三棱锥P ABC -外接球球心为O ,半径为R , 设球心O 到平面ABC 的距离为d ,ABC 外接圆圆心为'O , 连接,','AO AO OO ,则'OO ⊥平面ABC , 取PA 中点,D OP OA =,所以OD PA ⊥,又PA ⊥平面ABC ,所以//PA OO ',则四边形'ADOO 是矩形, 所以在PDO △和'OAO △中,由勾股定理可得()222222222R d R d ⎧=+⎪⎨=+-⎪⎩,解得:1,5d R ==. 故答案为:5.【点睛】本题主要考查了三棱锥外接球的表面积,其中根据几何体的结构特征和球的性质,求得三棱锥的外接球的半径是解答的关键,着重考查了空间想象能力,以及推理与运算能力.三、解答题25.(1)答案见解析;(2)4cm . 【分析】(1)直接画出三棱锥S ABC -即可;(2)作SE ⊥面ABC ,取线段AC 中点为D ,分别在等腰ABC ,Rt SEA △,Rt SEC △,Rt BDE △和Rt SEB △中,求出线段长度,得到该几何体最长的棱长.【详解】(1)(2)如下图,SE ⊥面ABC ,线段AC 中点为D 2,3,1,4,2,=1SE cm AE cm CE cm AC cm AD DC cm DE cm ======,BD AC ⊥,3BD cm =,在等腰ABC 中,222313cm AB AC ==+= 在Rt SEA △中,22222313cm SA SE AE +=+= 在Rt SEC △中,2222215cm SC SE CE =++= 在Rt BDE △中,22223110cm BE BD DE ++=SE ⊥面ABC ,SE BE ∴⊥在Rt SEB △中,22222(10)14cm SB SE BE =+=+在三梭锥S-ABC 中,SC AB AC SA SB AC <==<<, 所以最长的棱为AC ,长为4cm 【点睛】关键点点睛:本题考查几何体的三视图,以及棱锥的性质,解决本题的关键点是作出SE ⊥面ABC ,取线段AC 中点为D ,由三视图得出等腰ABC ,Rt SEA △,Rt SEC △,Rt BDE △和Rt SEB △,分别求出线段长度,得出答案,考查学生空间想象能力与计算能力,属于中档题.26.(1)证明见解析;(2)3π.【分析】(1)取PB 中点F ,连接,EF FC ,证明EFCO 是平行四边形,得线线平行后可证得线面平行;(2)取AB 中点G ,连接,,OG PG OP ,可证PGO ∠(或其补角)是二面角P AB C 的平面角.然后在PGO △中求解.【详解】(1)取PB 中点F ,连接,EF FC , 因为E 是PA 中点,∴//EF AB ,且12EF AB =, 又ABCD 是矩形,//,AB CD AB CD =,O 是CD 中点, ∴//,EF OC EF OC =,∴EFCO 是平行四边形,∴//OE CF , 而OE ⊄平面PBC ,CF ⊂平面PBC ,∴//OE 平面PBC . (2)取AB 中点G ,连接,,OG PG OP ,ABCD 是矩形,O 是CD 中点,则OG AB ⊥,又PA PC CD ==,∴PO CD ⊥, 而平面PCD ⊥平面ABCD ,平面PCD平面ABCD CD =,PO ⊂平面PCD ,∴PO ⊥平面ABCD ,∵,OG AB ⊂平面ABCD ,∴PO AB ⊥,PO OG ⊥.PO OG O =,,PO OG ⊂平面POG ,∴AB ⊥平面POG ,而PG ⊂平面POG ,∴AB PG ⊥,∴PGO ∠(或其补角)是二面角P AB C 的平面角.设1AD =,则1OG =,2CD =,3PO =, ∴3tan 31PO PGO OG ∠===,[0,]PGO π∠∈,∴3PGO π∠=.∴二面角PABC 的大小为3π.【点睛】方法点睛:本题考查证明线面平行,考查求二面角.求二面角的方法: (1)定义法:根据定义作出二面角的平面角,然后通过解三角形得解;。
新北师大版高中数学必修二第二章《解析几何初步》测试(含答案解析)(3)
一、选择题1.若直线y x b =+与曲线24y x =-有公共点,则b 的取值范围为( )A .[]22-,B .2,22⎡⎤-⎣⎦C .22,22-⎡⎤⎣⎦D .()2,22- 2.如图,棱长为4的正四面体ABCD ,M ,N 分别是AB ,CD 上的动点,且3MN =,则MN 中点的轨迹长度为( )A .23πB .2πC .2πD .π3.已知0a ≠,直线()240ax b y +++=与直线()230ax b y +--=互相垂直,则ab 的最大值为( )A .0B .2C .4D 24.已知圆1C :22(1)(6)25x y ++-=,圆2C :222(17)(30)x y r -+-=.若圆2C 存在一点P ,使得过点P 可作一条射线与圆1C 依次交于A 、B 两点,且满足||2||PA AB =,则半径r 的取值范围是( )A .[5,55]B .[5,50]C .[10,50]D .[10,55] 5.已知圆()()22:122C x y -++=,若直线24y kx =-上存在点P ,使得过点P 的圆C 的两条切线互相垂直,则实数k 的取值范围是( )A .23k ≤-或0k ≥B .38k ≤-C .38k ≤-或0k ≥ D .23k ≤- 6.数学家欧拉于1765年在他的著作《三角形的几何学》中首次提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称为三角形的欧拉线.在平面直角坐标系中作ABC ,在ABC 中,4AB AC ==,点(1,3)B -,点(4,2)C -,且其“欧拉线”与圆222(3)x y r -+=相切,则该圆的半径r 为( )A .1B 2C .2D .227.某几何体的三视图如图所示(单位:cm ),则该几何体的外接球的表面积(单位:2cm )是( )A .36πB .54πC .72πD .90π8.在长方体1111ABCD A BC D -中,12,3AB BC AA ===,E 是BC 的中点,则直线1ED 与直线BD 所成角的余弦值是( )A .728B .728- C .3714 D .3714- 9.如图,在三棱锥P ABC -中,AB AC ⊥,AB AP =,D 是棱BC 上一点(不含端点)且PD BD =,记DAB ∠为α,直线AB 与平面PAC 所成角为β,直线PA 与平面ABC 所成角为γ,则( )A .,γβγα≤≤B .,βαβγ≤≤C .,βαγα≤≤D .,αβγβ≤≤ 10.在下面四个正方体ABCD A B C D ''''-中,点M 、N 、P 均为所在棱的中点,过M 、N 、P 作正方体截面,则下列图形中,平面MNP 不与直线A C '垂直的是( )A .B .C .D . 11.如图,正方形ABCD 的边长为4,点E ,F 分别是AB ,B C 的中点,将ADE ,EBF △,FCD 分别沿DE ,EF ,FD 折起,使得A ,B ,C 三点重合于点A ',若点G 及四面体A DEF '的四个顶点都在同一个球面上,则以FDE 为底面的三棱锥G -DEF 的高h 的最大值为( )A .263+B .463+C .4263-D .2263- 12.如图(1),Rt ABC ,1,3,2AC AB BC ===,D 为BC 的中点,沿AD 将ACD △折起到AC D ',使得C '在平面ABD 上的射影H 落在AB 上,如图(2),则以下结论正确的是( )A .AC BD '⊥B .AD BC '⊥ C .BD C D ⊥' D .AB C D ⊥'二、填空题13.若圆222(3)(5)r x y -++=上有且只有两个点到直线432x y -=的距离为1,则半径r 的取值范围是______.14.已知圆22C 9x y +=:,过定点(2,2)P 的动直线l 与圆C 交于,M N 两点, 则PM PN ⋅=______________.15.已知直线0x y a -+=与圆心为C 的圆222440x y x y ++--=相交于,A B 两点,且AC BC ⊥,则实数a 的值为_________.16.在平面直角坐标系xoy 中,ABC ∆的坐标分别为()1,1A --,()2,0B ,()1,5C ,则BAC ∠的平分线所在直线的方程为_______17.在平面直角坐标系xOy 中,已知点()1,1P --,过点()1,1Q 作直线交圆221x y +=于A B ,两点,则PAB ∆的面积的最大值为_____________18.已知点()1,3P ,点()1,2Q -,点M 为直线10x y -+=上一动点,则PM QM +的最小值为______.19.世界四大历史博物馆之首卢浮宫博物馆始建于1204年,原是法国的王宫,是法国文艺复兴时期最珍贵的建筑物之一,以收藏丰富的古典绘画和雕刻而闻名于世,卢浮宫玻璃金字塔为正四棱锥,且该正四棱锥的高为21米,底面边长为30米,是华人建筑大师贝聿铭设计的.若玻璃金字塔五个顶点恰好在一个球面上,则该球的半径为______米.20.如图,已知一个八面体的各条棱长均为2,四边形ABCD 为正方形,给出下列说法:①该八面体的体积为83;②该八面体的外接球的表面积为8π;③E 到平面ADF 的距离为3;④EC 与BF 所成角为60°.其中正确的说法为__________.(填序号)21.如图,在直角梯形ABCD 中,//,,2,3,60AB CD AB AD CD AB ABC ⊥==∠=°,将此梯形以AD 所在直线为轴旋转一周,所得几何体的表面积是_________________.22.已知正三棱柱木块111ABC A B C -,其中2AB =,13AA =,一只蚂蚁自A 点出发经过线段1BB 上的一点M 到达点1C ,当沿蚂蚁走过的最短路径,截开木块时,两部分几何体的体积比为______.23.如图,在三棱锥A BCD -,,AB AD BC ⊥⊥平面ABD ,点E 、F (E 与A 、D 不重合)分别在棱AD 、BD 上,且EF AD ⊥.则下列结论中:正确结论的序号是______.①//EF 平面ABC ;②AD AC ⊥;③//EF CD24.正四棱台的上、下两底面边长分别是方程x 2-9x +18=0的两根,其侧面积等于两底面面积之和,则其侧面梯形的高为________.三、解答题25.如图,在四棱锥P ABCD -中,底面ABCD 是边长为1的正方形,PA ⊥底面ABCD ,PA AB =,点M 是棱PD 的中点.(1)求证://PB 平面ACM ;(2)求三棱锥P ACM -的体积.26.如图,在直三棱柱111ABC A B C -中,底面ABC 为正三角形,1AB 与1A B 交于点O ,E ,F 是棱1CC 上的两点,且满足112EF CC =.(1)证明://OF 平面ABE ;(2)当1CE C F =,且12AA AB =,求直线OF 与平面ABC 所成角的余弦值. 27.如图,平行四边形ABCD 中,45DAB ∠=,PD ⊥平面ABCD ,PA BD ⊥,BD PD =,4AB =.(1)求证:平面PBC ⊥平面PBD ;(2)若点,M N 分别是,PA PC 的中点,求三棱锥P MBN -的体积.28.如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的正方形,∠ADP =90°,PD =AD ,∠PDC =60°,E 为PD 中点.(1)求证:PB //平面ACE :(2)求四棱锥E ABCD -的体积.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】直线y x b =+与曲线24y x =-有公共点,转化为直线y x b =+与半圆()224,0x y y +=≥有交点,分析几何图形得出有交点的临界情况.【详解】 由24y x =-可得()224,0x y y +=≥,表示圆心 (0,0),2r =的半圆, 当y x b =+经过(2,0)时,此时2b =-;当y x b =+与此半圆相切时,222221(1)r b ==⇒=+-,作出半圆与直线的图象如下,由图象可知,要使直线y x b =+与曲线24y x =-则2,22b ⎡⎤∈-⎣⎦.故选:B【点睛】关键点点睛:由24y x =-y x b =+与其有公共点的临界情况,是解决问题的关键.2.D解析:D把正四面体放在正方体中,建立空间直角坐标系,利用空间两点间距离公式、中点坐标公式以及圆的标准方程进行求解即可.【详解】把正四面体ABCD 放在正方体AFCE HBGD -中,并建立如图所示的空间直角坐标系, 设该正方体的棱长为a ,因为正四面体ABCD 的棱长为422422a a a +=⇒= 因此相应点的坐标为:(0,00),(22,0,22),(22,22,0),(0,22,22)D A B C ,, 因为N 是CD 上的动点,所以设点N 的坐标为:(0,,)n n ,设AM mAB =,000(,,)M x y z ,因此有000(22,,22)(0,22,22)x y z m --=-, 因此00022,22,2222x y m z m ===,设MN 中点为(,,)P x y z ,因此有:222222222(1)2222222222x x m n y m n y m n z m n z ⎧=⎪⎧⎪=⎪⎪+⎪⎪=⇒+=⎨⎨⎪⎪-=⎪⎪⎩-+=⎪⎪⎩, 因为3MN =, 222(22)(22)(2222)3m n m n +-+--=, 化简得:22(22)(2222)1(2)m n m n -+-=,把(1)代入(2)中得:221(2)(2)4y z +=,显然 MN 中点的轨迹是圆,半径为12, 圆的周长为:122ππ⋅=.【点睛】关键点睛:利用正方体这个模型,结合解析法是解题的关键.3.B解析:B【分析】根据两直线垂直,得到关于,a b 的等式224a b +=,再利用基本不等式即可求出ab 的最大值.【详解】因为直线()240ax b y +++=与直线()230ax b y +--=互相垂直,所以2(2)(2)0a b b ++-=,即224a b +=,因为222a b ab +≥,所以24ab ≤,即2ab ≤,故选:B.【点睛】本题将两直线位置关系与基本不等式相结合进行考查,难度不大.4.A解析:A【分析】求出两个圆的圆心距,画出示意图,利用已知条件判断半径r 的取值范围即可.【详解】解:圆1C :22(1)(6)25x y ++-=的圆心为()1,6-,半径为5.圆2C :222(17)(30)x y r -+-=的圆心为()17,30,半径为r . 两个圆的圆心距为()()2217130630++-=.如图:因为||2||PA AB =,可得||AB 的最大值为直径,此时220C A =,0r >. 当半径扩大到55时,此时圆2C 上只有一点到1C 的距离为25,而且是最小值,半径再扩大,就不会满足||2||PA AB =.故选:A.本题主要考查两个圆的位置关系,直线与圆的综合应用,属于中档题.5.A解析:A【分析】直接利用直线与圆的位置关系,由于存在点P 使圆的两条切线垂直,得到四边形为正方形,进一步利用点到直线的距离公式求出k 的取值范围.【详解】解:设过点P 的圆C 的两条切线分别与圆相切于,A B ,因为过点P 的圆C 的两条切线互相垂直,所以四边形APBC 为正方形,此时正方形的对角线长为2,所以只需圆心(1,2)-到直线的距离小于等于2,≤2, 1k -, 解得23k ≤-或0k ≥, 故选:A【点睛】 此题考查直线与圆的位置关系的应用,点到直线的距离公式,考查运算能力和转化能力,属于中档题.6.B解析:B【分析】由等腰三角形的性质可得BC 边上的高线、垂直平分线和中线合一,其“欧拉线”为ABC 边BC 的垂直平分线,运用中点坐标公式和两直线垂直的条件,求得BC 边上的垂直平分线方程,再由直线和圆相切的条件:d r =,可得所求值.【详解】解:在ABC 中,4AB AC ==,点(1,3)B -,点(4,2)C -,可得BC 边上的高线、垂直平分线和中线合一,则其“欧拉线”为ABC 边BC 的垂直平分线,可得BC 的中点为3(2,1)2,直线BC 的斜率为32114+=---, 则BC 的垂直平分线的斜率为1,可得BC 的垂直平分线方程为1322y x -=-,即为10x y --=, 其“欧拉线”与圆222(3)x y r -+=相切,可得圆心(3,0)到“欧拉线”的距离为d ==即有半径2r =,故选:B . 【点睛】本题考查直线方程、三角形的“欧拉线”的定义,以及直线和圆相切的条件,考查推理能力与计算能力.7.A解析:A 【分析】由三视图知该几何体是底面为等腰直角三角形,且侧面垂直于底面的三棱锥,由题意画出图形,结合图形求出外接球的半径,再计算外接球的表面积. 【详解】解:由几何体的三视图知,该几何体是三棱锥P ABC -,底面为等腰ABC ∆, 且侧面PAB ⊥底面ABC ,如图所示;设D 为AB 的中点,又3DA DB DC DP ====,且PD ⊥平面ABC ,∴三棱锥P ABC -的外接球的球心O 在PD 上,设OP R =,则OA R =,3OD R =-,222(3)3R R ∴=-+,解得3R =,∴该几何体外接球的表面积是32436R cm ππ=.故选:A . 【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.8.C解析:C 【分析】连接11D B 、1D E 、DE ,先证明四边形11BB D D 为平行四边形,得到11//B D BD ,故异面直线1ED 与BD 所成的角即为相交直线1ED 与11D B 所成的角,由余弦定理可得答案. 【详解】连接11D B 、1D E 、DE ,因为棱11//BB DD ,11BB DD =,所以四边形11BB D D 为平行四边形,所以11//B D BD ,故异面直线1ED 与BD 所成的角即为相交直线1ED 与11D B 所成的角11B D E ∠,因为12,3AB AD AA ===,1BE CE ==,所以2211111122B D D C B C =+=,213110B E =+222415ED CE DC +=+==,所以222115914D E ED D D ==+=+, 由余弦定理得,从而22211111111137cos 2144214B D D E B E B D E B D D E +-∠===⨯⨯. 故选:C 【点睛】本题考查异面直线所成角的余弦值的求法,关键点是找到异面直线所成的角,考查空间中线线的位置关系等基础知识,考查运算求解能力,是中档题.9.A解析:A 【分析】由AB AP =,PD BD =,可得ABD △≌APD △,从而得DAB DAP α∠=∠=,而直线PA 与平面ABC 所成角为γ,由最小角定理可得γα≤,再由P ABC B PAC V V --=,PACABCSS≤,进而可比较,βγ的大小【详解】解:因为AB AP =,PD BD =,所以ABD △≌APD △, 所以DAB DAP α∠=∠=,因为直线PA 与平面ABC 所成角为γ, 所以由最小角定理可得γα≤, 因为AB AC ⊥,所以12ABCS AB AC =⋅, 因为1sin 2PACS AC AP PAC =⋅∠,AB AP =, 所以PACABCSS≤,令点P 到平面ABC 的距离为1d ,点B 到平面PAC 的距离为2d , 因为P ABC B PAC V V --=,1211,33P ABC ABC B PACPACV S d V S d --=⋅=⋅所以12d d ≤,因为直线AB 与平面PAC 所成角为β,直线PA 与平面ABC 所成角为γ, 所以21sin ,sin d d AB PAβγ== 因为AB AP =, 所以sin sin βγ≥ 因为,(0,]2πβγ∈所以βγ≥, 故选:A 【点睛】关键点点睛:此题考查直线与平面所成的角,考查推理能力,解题的关键是利用了等体积法转换,属于中档题10.A解析:A 【分析】利用线面垂直的判定定理可判断BCD 选项,利用假设法推出矛盾,可判断A 选项. 【详解】对于A 选项,连接B C ',假设A C '⊥平面MNP ,在正方体ABCD A B C D ''''-中,A B ''⊥平面BB C C '',B C '⊂平面BB C C '',A B B C '''∴⊥,所以,A B C ''为直角三角形,且A CB ''∠为锐角,因为M 、N 分别为BB '、BC 的中点,则//MN B C ',所以,MN 与A C '不垂直, 这与A C '⊥平面MNP 矛盾,故假设不成立,即A C '与平面MNP 不垂直; 对于B 选项,连接B D ''、A C '',如下图所示:因为四边形A B C D ''''为正方形,则A C B D ''''⊥,CC '⊥平面A B C D '''',B D ''⊂平面A B C D '''',CC B D '''∴⊥,A C CC C ''''=,B D ''∴⊥平面A CC '',A C '⊂平面A CC '',ACB D '''∴⊥,M 、P 分别为A B ''、A D ''的中点,则//MN B D '',可得MP A C '⊥, 同理可证A C MN '⊥,MP MN M ⋂=,A C '∴⊥平面MNP ;对于C 选项,连接C D '、A N '、CN 、A P '、PC ,取A B ''的中点E ,连接C E '、PE ,因为四边形CC D D ''为正方形,则CD C D ''⊥,A D ''⊥平面CC D D '',C D '⊂平面CC D D '',C D A D '''∴⊥,CD A D D ''''=,C D '∴⊥平面A CD '',A C '⊂平面A CD '',A C C D ''∴⊥,M 、N 分别为DD '、C D ''的中点,//MN C D '∴,A C MN '∴⊥,在正方形A B C D ''''中,E 、N 分别为A B ''、C D ''的中点,//A E C N ''∴且A E C N ''=, 所以,四边形A EC N ''为平行四边形,所以,//A N C E ''且A N C E ''=, 同理可证四边形CC EP '为平行四边形,//C E CP '∴且C E CP '=, 所以,//A N CP '且A N CP '=,所以,四边形A PCN '为平行四边形, 易得A N CN '=,所以,四边形A PCN '为菱形,所以,A C PN '⊥,MN PN N =,A C '∴⊥平面MNP ;对于D 选项,连接AC 、BD ,因为四边形ABCD 为正方形,则AC BD ⊥,AA '⊥平面ABCD ,BD ⊂平面ABCD ,AA BD '∴⊥,AC AA A '⋂=,BD ∴⊥平面AAC ', A C '⊂平面AAC',A C BD '∴⊥, M 、N 分别为CD 、BC 的中点,则//MN BD ,A C MN '∴⊥,同理可证A C MP '⊥,MN MP M ⋂=,A C '∴⊥平面MNP .故选:A. 【点睛】方法点睛:证明线面垂直的方法: 一是线面垂直的判定定理; 二是利用面面垂直的性质定理;三是平行线法(若两条平行线中一条垂直于这个平面,则另一条也垂直于这个平面),解题时,注意线线、线面与面面关系的相互转化;另外,在证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高、中线和顶角的角平分线三线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形(或给出线段长度,经计算满足勾股定理)、直角梯形等等.11.A解析:A 【分析】先求出'A FDE -外接球的半径和外接圆的半径,再利用勾股定理求出外接球的球心到外接圆的圆心的距离,可得高h 的最大值. 【详解】因为A ,B ,C 三点重合于点A ',原来A B C ∠∠∠、、都是直角,所以折起后三条棱'''A F A D A E 、、互相垂直,所以三棱锥'A FDE -可以看作一个长方体的一个角,它们有相同的外接球,外接球的直径就是长方体的体对角线,即为'2'2'22441626R AF AD AE =++=++6R =,2241625DE DF AD AE ==+=+=2222EF BE BF =+ 在DFE △中,22210cos 21022522DE EF DF DEF DE EF +-∠===⨯⨯⨯, 所以DEF ∠为锐角,所以2310sin 1cos DEF DEF ∠=-∠=, DEF 的外接圆的半径为5522sin 310DF r DEF ===∠则球心到DEF 2223R r -,以FDE 为底面的三棱锥G -DEF 的高h 的最大值为1R OO +263. 故选:A. 【点睛】本题考查了翻折问题和外接球的问题,关键点翻折前后量的变化及理解外接球和三棱锥的关系,考查了学生的空间想象力和计算能力.12.C解析:C 【分析】设AH a =,则3BH a ,由线面垂直的性质和勾股定理可求得DH a AH ==,由等腰三角形的性质可证得BD ⊥DH ,再根据线面垂直的判定和性质可得选项. 【详解】设AH a =,则3BH a ,因为'C H ⊥面ABD ,AB 面ABD ,DH ⊂面ABD ,所以'C H ⊥AB ,'C H ⊥DH ,'C H ⊥DB ,又Rt ABC ,1,3,2AC AB BC ===,D 为BC 的中点,所以'1,6C D BD B DAB π==∠=∠=,所以在'Rt AC H 中,()2''221C H AC AHa =-=-,所以在Rt C HD ’中,()2'222'211DH C D C H a a =-=--=,所以DH a AH ==,所以6ADH DAB π∠=∠=,又23ADB π∠=,所以2HDB π∠=,所以BD ⊥DH ,又'C HDH H =,所以BD ⊥面'C DH ,又'C D ⊂面'C DH ,所以BD ⊥'C D , 故选:C. 【点睛】关键点点睛:在解决折叠问题时,关键在于得出折叠的前后中,线线、线面、面面之间的位置关系的不变和变化,以及其中的边的长度、角度中的不变量和变化的量.二、填空题13.【详解】∵圆心P(3−5)到直线4x−3y=2的距离等于由|5−r|<1解得:4<r<6则半径r 的范围为(46)故答案为:(46)当时满足题意考点:1直线和圆的位置关系;2点到直线的距离 解析:46r <<【详解】∵圆心P (3,−5)到直线4x −3y =2的距离等于,由|5−r |<1,解得:4<r <6, 则半径r 的范围为(4,6). 故答案为:(4,6),当46r <<时满足题意.考点:1、直线和圆的位置关系;2、点到直线的距离.14.【分析】可分为直线斜率存在和不存在两种情况具体讨论当直线斜率存在时联立直线和圆结合韦达定理即可求解【详解】当直线斜率不存在时直线方程为:将代入得可设点则;当直线斜率存在时设直线方程为:联立则综上所述 解析:1-【分析】可分为直线斜率存在和不存在两种情况具体讨论,当直线斜率存在时,联立直线和圆,结合韦达定理即可求解 【详解】当直线斜率不存在时,直线方程为:2x =,将2x =代入22 9x y +=得5y =±点()(2,5,2,5M N -,则()()52521PM PN ⋅=⨯-=-;当直线斜率存在时,设直线方程为:()22y k x =-+,()()1122,,,M x y N x y联立()()()()2222221444190 229k x k k x y k y x x k ⎧⎪⇒++-+--=⎨=+=-+⎪⎩ ()212221224414191k k x x k k x x k ⎧-+=⎪+⎪⇒⎨--⎪⋅=⎪+⎩,则()()11222,2,2,2PM x y PM x y =--=--, ()()()()()()()21212122222122PM PN x x y y k x x ⋅=--+--=+--()()()()()2222212122224194411241241111k k k k k x x x x k k k k ⎡⎤---+=+-++=+-⋅+⋅=-⎢⎥+++⎢⎥⎣⎦综上所述,1PM PN ⋅=- 故答案为:1- 【点睛】本题考查由直线与圆的位置关系求解向量数量积的定值问题,解题过程中易遗漏斜率不存在的情况,考查了数形结合思想,数学运算的核心素养,属于中档题15.0或6【分析】计算得到圆心半径根据得到利用圆心到直线的距离公式解得答案【详解】即圆心半径故圆心到直线的距离为即故或故答案为:或【点睛】本题考查了根据直线和圆的位置关系求参数意在考查学生的计算能力和转解析:0或6 【分析】计算得到圆心()1,2C -,半径3r =,根据AC BC ⊥得到d =距离公式解得答案. 【详解】222440x y x y ++--=,即()()22129x y ++-=,圆心()1,2C -,半径3r =.AC BC ⊥,故圆心到直线的距离为d =2d ==,故6a =或0a =. 故答案为:0或6. 【点睛】本题考查了根据直线和圆的位置关系求参数,意在考查学生的计算能力和转化能力。
必修二第二章《解析几何初步》测试(含答案解析)
一、选择题1.两圆22440x y x y ++-=和22280x y x ++-=相交于两点,M N ,则线段MN 的长为A .4B C D 2.已知点(,0)A m -,(,0)B m ,R m ∈,若圆22:(3)(3)2C x y -+-=上存在点P ,满足PA PB ⊥,则m 最大值是( )A .B .C .D .3.圆224x y +=被直线2y =+截得的劣弧所对的圆心角的大小为( ) A .30 B .60︒ C .90︒ D .120︒4.直线3y x m =-+与圆221x y += 在第一象限内有两个不同的交点,则m 的取值范围是( )A .B .C .⎝⎭D .⎛ ⎝⎭5.在平面直角坐标系xOy 中,若圆()()222x a y a -+-=与圆()2268x y +-=外切,则实数a 的值为( ) A .1B .2C .3D .46.已知圆221:(1)(1)1C x y ++-=,圆2C 与圆1C 关于直线10x y --=对称,则圆2C 的方程为( )A .22(2)(2)1x y -++=B .22(2)(2)1x y ++-=C .22(2)(2)1x y -+-=D .22(2)(1)1x y -+-=7.已知m ,n 是两条直线,α,β是两个平面,则下列命题中错误的是( ) A .若m n ⊥,m α⊥,n β⊥,则αβ⊥ B .若m α⊂,//αβ,则//m βC .若m n ⊥,m α⊥,βn//,则αβ⊥D .若l αβ=,//m α,//m β,则//m l8.已知正方体1111ABCD A BC D -的棱长为2,E 为棱1AA 的中点,截面1CD E 交棱AB 于点F ,则四面体1CDFD 的外接球表面积为( ) A .394πB .414πC .12πD .434π9.在三棱柱111ABC A B C -中,90BAC ∠=︒,1BC AC ,且12AC BC =,则直线11B C 与平面1ABC 所成的角的大小为( )A .30°B .45°C .60°D .90°10.已知点A ,B ,C 在半径为5的球面上,且214AB AC ==,27BC =,P 为球面上的动点,则三棱锥P ABC -体积的最大值为( ) A .5673B .5273C .4973D .14711.如图,网格纸上小正方形的边长为1,粗实线画的是某几何体的三视图,则该几何体的体积为( )A .16B .13C .1D .212.已知三棱锥D ABC -,记二面角C AB D --的平面角是θ,直线DA 与平面ABC 所成的角是1θ,直线DA 与BC 所成的角是2θ,则( ) A .1θθ≥B .1θθ≤C .2θθ≥D .2θθ≤二、填空题13.在极坐标系中,过点22,4π⎛⎫⎪⎝⎭作圆4sin ρθ=的切线,则切线的极坐标方程是__________.14.已知圆22 : 4O x y +=,直线l 与圆O 交于P Q ,两点,()2,2A ,若2240AP AQ +=,则弦PQ 的长度的最大值为___________.15.圆22220x y x y a ++-+=截直线20x y ++=所得弦的长度为4,则实数a 的值是________.16.在平面直角坐标系xOy 中,过点(0,3)M -的直线l 与圆223x y +=交于A ,B 两点,且2MB MA =,则直线l 的方程为________.17.已知(3,1)P 为圆224x y +=上的一点,,E F 为y 轴上的两点,PEF 是以P 为顶点的等腰三角形,直线,PE PF 分别交圆于点,D C ,直线CD 交y 轴于点A ,则CAO ∠=_______.18.已知A 是直角坐标平面内一定点,点(0,0)O ,若圆22()(–12)3x y -+=上任意一点M 到定点A 与点(0,0)O 的距离之比是一个定值λ,则这个定值λ的大小是________. 19.圆锥底面半径为1,母线长为4,轴截面为PAB ,如图,从A 点拉一绳子绕圆锥侧面一周回到A 点,则最短绳长为_________.20.二面角a αβ--的大小为135A AE a E α︒∈⊥,,,为垂足,,B BF a F β∈⊥,为垂足,2,31AE BF EF P ===,,是棱上动点,则AP PB +的最小值为_______. 21.表面积为16π的球与一个正三棱柱各个面都相切,则这个正三棱柱的体积为___________.22.已知扇形的面积为56π,圆心角为6π,则由该扇形围成的圆锥的外接球的表面积为_________.23.有一个半径为4的球是用橡皮泥制作的,现要将该球所用的橡皮泥重新制作成一个圆柱和一个圆锥,使得圆柱和圆锥有相等的底面半径和相等的高,若它们的高为8,则它们的底面圆的半径是___________.24.如图,已知正四面体P ABC -的棱长为2,动点M 在四面体侧面PAC 上运动,并且总保持MB PA ⊥,则动点M 的轨迹的长度为__________.三、解答题25.在如图所示几何体中,平面PAC ⊥平面ABC ,//PM BC ,PA PC =,1AC =,22BC PM ==,5AB =34.(1)画出该几何体的主视图(正视图)并求其面积S ; (2)求出多面体PMABC 的体积V .26.如图(1)在ABC 中,AC BC =,D 、E 、F 分别是AB 、AC 、BC 边的中点,现将ACD △沿CD 翻折,使得平面ACD ⊥平面BCD .如图(2)(1)求证://AB 平面DEF ; (2)求证:BD AC ⊥.27.如图所示,已知在三棱锥A BPC -中,,AP PC AC BC ⊥⊥,M 为AB 的中点,D 为PB 的中点,且PMB △为正三角形.(Ⅰ)求证://DM 平面APC ; (Ⅱ)求证:平面ABC ⊥平面APC ;(Ⅲ)若4,20BC AB ==,求三棱锥D BCM -的体积.28.如图,在三棱锥P ABC -中,1,2,135AB AC BAC ︒=∠=,1cos,3BAP AP BC∠=-⊥.(1)若23BM MC=,求证:PM BC⊥;(2)当3AP=,且N为BC中点时,求AN与平面PBC所成角的正弦值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】求出圆心和半径以及公共弦所在的直线方程,再利用点到直线的距离公式,弦长公式,求得公共弦的长.【详解】∵两圆为x2+y2+4x﹣4y=0①,x2+y2+2x﹣8=0,②①﹣②可得:x﹣2y+4=0.∴两圆的公共弦所在直线的方程是x﹣2y+4=0,∵x2+y2+4x﹣4y=0的圆心坐标为(﹣2,2),半径为2∴圆心到公共弦的距离为2224425512--+=+∴公共弦长=()222122225555⎛⎫-=⎪⎝⎭故答案为:C【点睛】本题主要考查圆与圆的位置关系,考查两圆的公共弦长的计算,意在考查学生对这些知识的掌握水平和分析推理计算能力.2.C解析:C 【分析】首先设点(),P x y ,利用0AP BP ⋅=,转化为m =m 的最大值. 【详解】由圆的方程可知,圆的圆心()3,3C (),P x y 则(),AP x m y =+,(),BP x m y =-,()()20AP BP x m x m y ⋅=+-+=,即222m x y m =+⇒=的几何意义可知,m 的最大值就是圆上的点到原点的距离的最大值,即圆心到原点的距离加半径,即OC r +== 故选:C 【点睛】结论点睛:与圆的几何性质有关的最值,具体结论如下:(1)设O 为圆的圆心,半径为r ,圆外一点A 到圆上的距离的最小值为AO r -,最大值为AO r -;(2)过圆内一点的最长弦为圆的直径,最短弦是以该点为中点的弦;(3)记圆的半径为r ,圆心到直线的距离为d ,直线与圆相离,则圆上的点到直线的最大距离为d r +,最小值为d r -;3.D解析:D 【分析】根据题意,设直线2y =+与圆224x y +=的的交点为A 、B ,AB 的中点为点M ,分析圆的圆心与半径,求出圆心到直线的距离,即可得AOM ∠的大小,进而分析可得答案. 【详解】解:根据题意,设直线2y =+与圆224x y +=的的交点为A 、B ,AB 的中点为点M ,圆224x y +=的圆心为(0,0),半径2r ,圆心到直线2y =+的距离1d ==,又由60AOM ∠=︒,则120AOB ∠=︒;故圆224x y +=被直线2y +截得的劣弧所对的圆心角的大小为120︒; 故选:D . 【点睛】本题考查直线与圆的位置关系,注意利用圆心到直线的距离分析,属于基础题.4.D解析:D 【分析】求出直线过(0,1)时m 的值,以及直线与圆相切时m 的值,即可确定出满足题意m 的范围. 【详解】 解:如图所示:当直线过(0,1)时,将(0,1)代入直线方程得:1m =;当直线与圆相切时,圆心到切线的距离d r =,即21313=⎛⎫+ ⎪ ⎪⎝⎭,解得:233m =或233m =-(舍去), 则直线与圆在第一象限内有两个不同的交点时,m 的范围为231m <<. 故选:D .【点睛】本题考查了直线与圆相交的性质,利用了数形结合的思想,熟练掌握数形结合法是解本题的关键,属于中档题.5.C解析:C 【分析】根据题意,求出两个圆的圆心以及半径,由圆与圆的位置关系可得222(6)(222)a a +-=,解可得a 的值,即可得答案.【详解】根据题意,圆22()()2x a y a -+-=的圆心为(,)a a ,半径12r 22(6)8x y +-=的圆心为(0,6),半径222r =若圆22()()2x a y a -+-=与圆22(6)8x y +-=相外切, 则有222(6)(222)a a +-=, 解可得:3a =;故选:C. 【点睛】本题考查圆与圆的位置关系,注意圆与圆外切的判断条件,属于基础题.6.A解析:A 【分析】设圆2C 的圆心为2(,)C a b ,解方程组111022111a b b a -+⎧--=⎪⎪⎨-⎪=-⎪+⎩得22a b =⎧⎨=-⎩,即得解.【详解】圆1C 的圆心为1(1,1)C -,设圆2C 的圆心为2(,)C a b ,依题意得111022111a b b a -+⎧--=⎪⎪⎨-⎪=-⎪+⎩,解得22a b =⎧⎨=-⎩,又圆2C 的半径与圆1C 的半径相等, 所以圆2C 的方程为22(2)(2)1x y -++=. 故选:A. 【点睛】本题主要考查圆的方程的求法,考查点线点对称,意在考查学生对这些知识的理解掌握水平.7.C解析:C 【分析】利用直二面角可判断A 的正误,利用面面平行或线面平行性质定理即判断定理可判断BD 的正误,从而可得正确的选项,利用反例可判断C 是错误的. 【详解】 对于A ,如图,设l αβ=,空间中取一点O (O 不在平面,αβ内,也不在直线,m n上),过O 作直线,a b ,使得,////a m b n ,且,a A b B αβ⋂=⋂=,故a b ⊥. 因为m α⊥,故a α⊥,而l α⊂,故a l ⊥,同理b l ⊥, 因为a b O ⋂=,故l ⊥平面OAB . 设平面OAB 交l 与C ,连接,AC BC ,因为,AC BC ⊂平面OAB ,故,,l AC l BC ⊥⊥所以ACB ∠为l αβ--的平面角. 因为a α⊥,AC α⊂,故OA AC ⊥,同理OB BC ⊥,而OA OB ⊥, 故在四边形OACB 中,90ACB ∠=︒即αβ⊥,故A 正确.对于B ,由面面平行的性质可得若m α⊂,//αβ,则//m β,故B 正确. 对于D ,如图,过m 作平面γ,使得a γα=,过m 作平面η,使得b ηβ⋂=,因为//m α,m γ⊂,故//a m ,同理//b m ,故//a b , 而a β⊄,b β⊂,故//a β,而a α⊂,l αβ=,故//a l ,所以//m l ,故D 正确.对于C ,在如图所示的正方体中,//AD 平面11A D CB ,1AA ⊥平面ABCD ,1AD AA ⊥,但是平面11A D CB 与平面ABCD 不垂直,故C 错误.故选:C. 【点睛】思路点睛:对于立体几何中与位置有关的命题的真假判断,一般根据性质定理和判定定理来处理,反例一般可得正方体中寻找.8.B解析:B 【分析】可证F 为AB 的中点,设1DD 的中点为G ,DFC △的外接圆的球心为1O ,四面体1CDFD 的外接球的球心为O ,连接11,,,OG OF OO A B ,利用解三角形的方法可求DFC △的外接圆的半径,从而可求四面体1CDFD 的外接球的半径.【详解】设1DD 的中点为G ,DFC △的外接圆的圆心为1O ,四面体1CDFD 的外接球的球心为O ,连接11,,,OG OF OO A B ,因为平面11//A ABB 平面11D DCC ,平面1CD E ⋂平面11A ABB EF =, 平面1CD E ⋂平面111D DCC DC =,故1//EF DC , 而11//A B D C ,故1//EF A B ,故F 为AB 的中点, 所以145DF CF ==+,故3cos 5255DFC ∠==⨯⨯,因为DFC ∠为三角形的内角,故4sin 5DFC ∠=,故DFC △的外接圆的半径为1254245⨯=,1OO ⊥平面ABCD ,1DD ⊥平面ABCD ,故11//OO DD ,在平面1GDOO 中,111,OG DD O D DD ⊥⊥,故1//OG O D ,故四边形1GDOO 为平行四边形,故1//OO GD ,1OOGD =, 所以四面体1CDFD 的外接球的半径为25411164+=, 故四面体1CDFD 的外接球表面积为41414164ππ⨯=, 故选:B.【点睛】方法点睛:三棱锥的外接球的球的半径,关键是球心位置的确定,通常利用“球心在过底面外接圆的圆心且垂直于底面的直线上”来确定. 9.A解析:A【分析】证明CBA ∠就是BC 与平面1ABC 所成的角,求出此角后,利用11//B C BC 可得结论,【详解】∵90BAC ∠=︒,12AC BC =,∴30CBA ∠=︒, ∵1BC AC ,AB AC ⊥,1BC AB B ,1,BC AB ⊂平面1ABC ,∴AC ⊥平面1ABC ,∴CBA ∠就是BC 与平面1ABC 所成的角,即BC 与平面1ABC 所成的角是30, ∵棱柱中11//B C BC ,∴11B C 与平面1ABC 所成的角的大小为30,故选:A .【点睛】思路点睛:本题考查求直线与平面所成的角,解题方法是定义法,即过直线一点作平面的垂直,得直线在平面上的射影,由直线与其射影的夹角得直线与平面所成的角,然后在直角三角形中求出此角.解题过程涉及三个步骤:一作出图形,二证明所作角是直线与平面所成的角,三是计算.10.A解析:A【分析】求出球心到平面ABC 的距离,由这个距离加上球半径得P 到平面ABC 距离的最大值,再由体积公式可得P ABC -体积的最大值.【详解】如图,M 是ABC 的外心,O 是球心,OM ⊥平面ABC ,当P 是MO 的延长线与球面交点时,P 到平面ABC 距离最大, 由214AB AC ==,27BC =,得72cos 4214ACB ∠==,则14sin ACB ∠=, 21428sin 14AB AM CB ===∠,4AM =, 2222543OM OA AM =-=-=,358PM =+=,又1114sin 214277722ABC S AC BC ACB =⋅⋅∠=⨯⨯⨯=△, 所以最大的15677783P ABC V -=⨯⨯=. 故选:A .【点睛】本题考查求三棱锥的体积,解题关键是确定三棱锥体积最大时P 点在球面上的位置,根据球的性质易得结论.当底面ABC 固定,M 是ABC 外心,当PM ⊥平面ABC ,且球心O 在线段PM 上时,P 到平面ABC 距离最大.11.B解析:B【分析】根据三视图得到直观图,根据棱锥的体积公式可得结果.【详解】由三视图可知,该几何体是长、宽、高分别为1,2,1的长方体中的三棱锥D ABC -,如图所以:所以该几何体的体积为111121323V =⨯⨯⨯⨯=. 故选:B【点睛】 关键点点睛:根据三视图还原出直观图是本题解题关键.12.A解析:A【分析】设三棱锥D -ABC 是棱长为2的正四面体,取AB 中点E ,DC 中点M ,AC 中点M ,连结DE 、CE 、MN 、EN ,过D 作DO CE ⊥,交CE 于O ,连结AO ,则DEC θ∠=,1DAO θ∠=,2MNE θ∠=,排除B ,C .当二面角C AB D --是直二面角时,2θθ≥,排除D .由此能求出结果.【详解】设三棱锥D -ABC 是棱长为2的正四面体,取AB 中点E ,DC 中点M ,AC 中点M ,连结DE 、CE 、MN 、EN ,过D 作DO ⊥CE ,交CE 于O ,连结AO ,则DEC θ∠=,1DAO θ∠=,2MNE θ∠=,413DE CE ==-2DC =, ∴1cos 3233θ==⨯⨯,22333AO CO CE ===, ∴12333cos 3AO AD θ===, 取BC 中点F ,连结DF 、AF ,则DF BC ⊥,AF BC ⊥,又DF AF F ⋂=,∴BC ⊥平面AFD ,∴BC AD ⊥,∴290θ=︒, ∴21θθθ≥≥,排除B ,C ,当二面角C AB D --是直二面角时,2θθ≥,排除D ,故选:A .【点睛】关键点点睛:将三棱锥看成特殊的正四面体,采用排除法,充分理解线线角、线面角以及面面的概念是解题的关键.二、填空题13.【解析】试题分析:点的直角坐标为将圆的方程化为直角坐标方程为化为标准式得圆心坐标为半径长为而点在圆上圆心与点之间连线平行于轴故所求的切线方程为其极坐标方程为考点:1极坐标与直角坐标之间的转化;2圆的 解析:cos 2ρθ=.【解析】试题分析:点4π⎛⎫ ⎪⎝⎭的直角坐标为()2,2,将圆4sin ρθ=的方程化为直角坐标方程为224x y y +=,化为标准式得()2224x y +-=,圆心坐标为()0,2,半径长为2,而点()2,2在圆()2224x y +-=上,圆心与点4π⎛⎫ ⎪⎝⎭之间连线平行于x 轴,故所求的切线方程为2x =,其极坐标方程为cos 2ρθ=. 考点:1.极坐标与直角坐标之间的转化;2.圆的切线方程14.【分析】取的中点为M 由可得可得M 在上当最小时弦的长才最大【详解】设为的中点即即设则得所以故答案为:【点睛】本题考查直线与圆的位置关系的综合应用考查学生的逻辑推理数形结合的思想是一道有一定难度的题解析:【分析】取PQ 的中点为M ,由2240AP AQ +=可得2216AM OM -=,可得M 在20x y ++=上,当OM 最小时,弦PQ 的长才最大.【详解】设M 为PQ 的中点,()22222(2)AP AQ AM PQ +=+,即222222AP AQ AM MQ +=+,即()2224022AM OQ OM =+-,22204AM OM =+-,2216AM OM -=.设(),M x y ,则()2222(2)(2)16x y x y -+--+=,得20x y ++=.所以min 22OM ==,max 22PQ =.故答案为:22【点睛】本题考查直线与圆的位置关系的综合应用,考查学生的逻辑推理、数形结合的思想,是一道有一定难度的题.15.-4【分析】将圆的方程化为标准方程求出圆心坐标与半径利用点到直线的距离公式算出圆心到直线的距离再根据截得弦的长度为得到关于的方程解出即可【详解】由圆可得圆心为半径直线方程为圆心到直线的距离截得弦的长 解析:-4【分析】将圆的方程化为标准方程,求出圆心坐标与半径r ,利用点到直线的距离公式,算出圆心到直线l 的距离,再根据截得弦的长度为4,得到关于a 的方程,解出即可【详解】由圆22220x y x y a ++-+=可得()()22112x y a ++-=- ∴圆心为()11-,,半径)2?2r a a =-<直线方程为20x y ++=∴圆心到直线的距离22112211d -++==+截得弦的长度为4 22222a ∴+=-,解得4a =-故答案为4-【点睛】结合弦长的长度求出圆的标准方程,只需将圆化为标准方程,然后运用弦长公式的求法求出参量即可16.【分析】根据题意知点为的中点设再由得利用韦达定理建立方程解得即可【详解】由题知点为的中点设直线设将直线带入圆的方程得则由得即所以解得故直线方程为:故答案为:【点睛】本题考查直线和圆的位置关系属于基础题 解析:33y x =±-【分析】根据题意知,点A 为MB 的中点,设()11,A x y ,()22,B x y ,再由2MB MA =得122x x =,利用韦达定理建立方程,解得即可.【详解】由题知,点A 为MB 的中点,设直线:3l y kx =-,设()11,A x y ,()22,B x y ,将直线带入圆的方程得()221660k x kx +-+=,则12261k x x k +=+,12261x x k ⋅=+, 由2MB MA =,得122x x =,即2221k x k =+,1241k x k =+, 所以,21222246111k k x x k k k ⋅=⨯=+++, 解得3k =±,故直线方程为:33y x =±-.故答案为:33y x =±-.【点睛】本题考查直线和圆的位置关系,属于基础题.17.或【分析】根据题意作出图形过点作x 轴的平行线交圆于点是的角平分线所以为弧的中点再根据中垂线结合平面几何知识求解【详解】过点作x 轴的平行线交圆于点是的角平分线所以为弧的中点所以所以如图1:所以如图2: 解析:30︒或150︒【分析】根据题意,作出图形,过点(3,1)P 作x 轴的平行线,交圆于点()3,1G - PG 是DPC ∠的角平分线,所以G 为弧 CD 的中点,再根据中垂线 OG CD ⊥,结合平面几何知识求解.【详解】过点P 作x轴的平行线,交圆于点()G PG 是DPC ∠的角平分线,所以G 为弧 CD 的中点,所以 OG CD ⊥,tan GOE ∠=60GOE ∠= ,如图1:090GOA CA ∠+∠= , 所以030CA ∠=,如图2:0150CA ∠=故答案为:30︒或150︒【点睛】本题主要考查直线与圆的位置关系以及平面几何的知识,还考查了数形结合的思想和推理论证的能力,属于中档题.18.【分析】设按距离之比为定值求出点的轨迹方程它就是方程比较后可得【详解】设则整理得:易知方程化为已知圆的一般式方程为所以解得故答案为:【点睛】本题考查平面轨迹方程解题时由点到两点距离之比为常数求出的轨【分析】设(,)A m n ,(,)M x y ,按距离之比为定值求出M 点的轨迹方程,它就是方程22()(–12)3x y -+=,比较后可得λ.【详解】设(,)A m n ,(,)M x y,则MA MO λ==,整理得:222222(1)(1)220x y mx ny m n λλ-+---++=,易知210λ-≠,方程化为2222222220111m n m n x y x y λλλ++--+=---, 已知圆22()(–12)3x y -+=的一般式方程为222420x y x y +--+=, 所以2222222124121m n m n λλλ⎧=⎪-⎪⎪=⎨-⎪⎪+=⎪-⎩,解得2545m n λ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩.【点睛】本题考查平面轨迹方程,解题时由M 点到,A O 两点距离之比为常数λ,求出M 的轨迹方程,它就是已知圆,比较系数可得结论.19.【分析】把圆锥侧面展开为一个平面图形利用平面上两点间线段最短可得【详解】由题意所以圆锥侧面展开图中心角为如图则故答案为:【点睛】关键点点睛:本题考查圆锥侧面上的最短距离问题空间几何体表面上两点间的最 解析:42 【分析】 把圆锥侧面展开为一个平面图形,利用平面上两点间线段最短可得. 【详解】由题意1,4r l ==,所以圆锥侧面展开图中心角为2142ππθ⨯==,如图,2APA π'∠=, 则2442AA '=⨯=.故答案为:42.【点睛】关键点点睛:本题考查圆锥侧面上的最短距离问题,空间几何体表面上两点间的最短距离问题的解决方法常常是把几何体的表面展开摊平为一个平面图形,利用平面上两点间线段最短求解.20.【分析】首先将二面角展平根据两点距离线段最短求最小值【详解】如图将二面角沿棱展成平角连结根据两点之间线段最短可知就是的最小值以为邻边作矩形由可知三点共线则故答案为:【点睛】思路点睛:本题考查立体几何 26【分析】首先将二面角展平,根据两点距离线段最短,求AP PB +最小值.【详解】如图,将二面角沿棱a 展成平角,连结AB ,根据两点之间线段最短,可知AB 就是AP PB +的最小值,以,AE EF 为邻边,作矩形AEFC ,由,CF a BF a ⊥⊥可知,,C F B 三点共线, 则()222213226AB AC BC =+=++= 26【点睛】思路点睛:本题考查立体几何中的折线段和的最小值,一般都是沿交线展成平面,利用折线段中,两点间距离最短求解,本题与二面角的大小无关.21.【分析】求出正三棱柱的高底面三角形的边长和高即可求出正三棱柱的体积【详解】设球的半径为r 由得则球的半径为2正三棱柱的高为正三棱柱底面正三角形的内切圆的半径是2所以正三角形的边长是高是6正三棱柱的体积 解析:483【分析】求出正三棱柱的高、底面三角形的边长和高,即可求出正三棱柱的体积.【详解】设球的半径为r ,由2416r π=π,得2r ,则球的半径为2,正三棱柱的高为24r =, 正三棱柱底面正三角形的内切圆的半径是2,所以正三角形的边长是436, 正三棱柱的体积为136432⨯⨯= 故答案为:483【点睛】本题考查正三棱柱的内切球、正三棱柱的体积,考查空间想象能力与计算能力. 22.【分析】由扇形的面积及圆心角可得扇形的半径再由扇形的弧长等于圆锥的底面周长可得底面半径再由外接球的半径与圆锥的高和底面半径的关系求出外接球的半径进而求出球的表面积【详解】设扇形的长为l 半径为R 则解得 解析:36π【分析】由扇形的面积及圆心角可得扇形的半径,再由扇形的弧长等于圆锥的底面周长可得底面半径,再由外接球的半径与圆锥的高和底面半径的关系求出外接球的半径,进而求出球的表面积.【详解】设扇形的长为l ,半径为R ,则22111222S lR R α====,解得R =l 为锥底面周长2r π,∴底面的半径r =∴5=.设外接球的半径为1R ,∴()222115R R =-+,解得13R =, ∴该外接球的表面积为21436R ππ=,故答案为:36π.【点睛】本题考查扇形的弧长与圆锥的底面周长的关系及外接球的半径和圆锥的高及底面半径的关系,和球的表面积公式的应用,属于中档题. 23.【详解】设它们的底面圆的半径为()依题意得化简得所以故答案为:解析:【详解】设它们的底面圆的半径为r (0r >). 依题意得3443V π=⨯球V V =+圆柱圆锥221(+)83r r ππ=⨯,化简得28r =,所以r =故答案为:24.【分析】取PA 的中点E 连接EBEC 推出PA ⊥平面BCE 故点M 的轨迹为线段CE 解出即可【详解】取PA 的中点E 连接EBEC 因为几何体是正四面体P ﹣ABC 所以BE ⊥PAEC ⊥PAEB∩EC =E ∴PA ⊥平面【分析】取PA 的中点E ,连接EB ,EC ,推出PA ⊥平面BCE ,故点M 的轨迹为线段CE ,解出即可.【详解】取PA 的中点E ,连接EB ,EC ,因为几何体是正四面体P ﹣ABC ,所以BE ⊥PA ,EC ⊥PA ,EB ∩EC =E ,∴PA ⊥平面BCE ,且动点M 在正四面体侧面PAC 上运动,总保持MB PA ⊥,∴点M 的轨迹为线段CE ,正四面体P ﹣ABC 的棱长为2,在等边三角形PAC 中求得CE 2=【点睛】本题考查了正四面体的性质和线面垂直与线线垂直的判定,判断轨迹是解题的关键,属于中档题.三、解答题25.(1)主视图(正视图)见解析,334S =;(2)34V =. 【分析】 (1)根据侧视图计算出PAC △的边AC 上的高,进而可作出几何体PMABC 的主视图,利用梯形的面积公式可求得几何体的主视图的面积;(2)分别取AC 、PC 的中点O 、N ,连接PO 、AN ,推导出AN ⊥平面BCPM ,计算出AN 和梯形BCPM 的面积,利用锥体的体积公式可求得多面体PMABC 的体积V .【详解】(1)在几何体PMABC 中,平面PAC ⊥平面ABC ,设PAC △的边AC 上的高为h ,则该几何体的侧视图的面积为1324AC h ⋅=,得3h =, 又因为22BC PM ==,所以,该几何体的主视图(正视图)如下图所示:由图可知,该几何体的主视图为直角梯形,其面积为()12333224S +==⨯; (2)分别取AC 、PC 的中点O 、N ,连接PO 、AN ,如下图所示:PA PC =,O 为AC 的中点,所以,PO AC ⊥,由(1)可知,3PO h ==,1122AO CO AC ===, 由勾股定理可得221PC PA AO PO ==+=,所以,PAC △为等边三角形, N 为PC 的中点,AN PC ∴⊥,且3sin 60AN AC ==. 1AC =,2BC =,5AB =222AC BC AB ∴+=,BC AC ∴⊥,平面PAC ⊥平面ABC ,平面PAC 平面ABC AC =,BC ⊂平面ABC , BC ∴⊥平面PAC ,AN 、PC ⊂平面PAC ,BC AN ∴⊥,BC PC ⊥,PC BC C =,AN ∴⊥平面BCPM ,//PM BC ,PM PC ∴⊥,所以,梯形BCPM 的面积为()322BCPM BC PM PC S +⋅==梯形, 因此,11333332BCPM V S AN =⋅=⨯=梯形. 【点睛】方法点睛:求空间几何体体积的方法如下:(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.26.(1)证明见解析;(2)证明见解析.【分析】(1)根据三角形中位线的性质,得到//EF AB ,利用线面平行的判定定理证得结果; (2)根据面面垂直的性质定理,得到BD ⊥平面ACD ,进而证得BD AC ⊥. 【详解】证明:(1)如图(2):在ABC 中,E 、F 分别是AC 、BC 中点,得//EF AB , 又AB ⊄平面DEF ,EF ⊂平面DEF ,//AB ∴平面DEF .(2)∵平面ACD ⊥平面BCD 且交线为CD ,BD CD ⊥,且BD ⊂平面BCD , ∴BD ⊥平面ACD ,又AC ⊂平面ACD∴BD AC ⊥.【点睛】方法点睛:该题考查的是有关空间关系的证明问题,解题方法如下:(1)熟练掌握线面平行的判定定理,在解题过程中,一定不要忘记线在面内、线在面外的条件;(2)根据面面垂直的条件,结合线线垂直,利用面面垂直的性质定理,得到线面垂直,进而证得线线垂直.27.(1)见详解;(2)见详解;(3)107【分析】(1)先证DM AP ∥,可证//DM 平面APC .(2)先证AP ⊥平面PBC ,得⊥AP BC ,结合AC BC ⊥可证得BC ⊥平面APC .(3)等积转换,由D BCM M DBC V V --=,可求得体积.【详解】证明:因为M 为AB 的中点,D 为PB 的中点,所以MD 是ABP △的中位线,MDAP . 又MD平面APC ,AP ⊂平面APC , 所以MD平面APC . (2)证明:因为PMB △为正三角形,D 为PB 的中点,所以MD PB ⊥. 又MD AP ,所以AP PB ⊥.又因为AP PC ⊥,PBPC P =,所以AP ⊥平面PBC . 因为BC ⊂平面PBC ,所以⊥AP BC .又因为BC AC ⊥,AC AP A ⋂=,所以BC ⊥平面APC .(3)因为AP ⊥平面PBC ,MD AP ,所以MD ⊥平面PBC ,即MD 是三棱锥M DBC -的高.因为20AB =,M 为AB 的中点,PMB △为正三角形,所以310,532PB MB MD MB ==== 由BC ⊥平面APC ,可得BC PC ⊥, 在直角三角形PCB 中,由104PB BC =,=,可得221PC =于是1114222BCD BCP S S ⨯⨯⨯=△△== 1133D BCM M DBC BCD V V S MD --⨯=△===【点睛】关键点睛:三棱锥的体积直接求不便时,常采用等积转换的方法,选择易求的底面积和高来求体积.28.(1)证明见解析;(2)7 【分析】(1)利用正余弦定理解三角形,求出222AM BM AB +=得AM BC ⊥,即可结合⊥AP BC 得出BC ⊥平面AMP ,证出PM BC ⊥;(2)过A 作AG PM ⊥,ANG ∠即AN 与平面PBC 所成角,利用余弦定理求出各边长度,即可求出.【详解】(1)1,135AB AC BAC ︒==∠=,由余弦定理可得22212152BC ⎛=+-⨯-= ⎝⎭,BC ∴=由正弦定理sin sin BC AC BAC ABC =∠∠,则可得sin 5ABC ∠=cos 5ABC ∠=23BM MC =,则可得,55BM MC ==,在ABM 中,利用余弦定理可得22211215AM =+-⨯=⎝⎭,即AM = 则满足222AM BM AB +=,AM BC ∴⊥,AP BC ⊥,AP AM A ⋂=,BC ∴⊥平面AMP ,PM ⊂平面AMP ,PM BC ∴⊥;(2)过A 作AG PM ⊥,由(1)BC ⊥平面AMP 可得平面AMP ⊥平面PBC , 且平面AMP平面PBC PM =,AG ∴⊥平面PBC ,则ANG ∠即AN 与平面PBC 所成角,1,3,cos 13AB A A P P B ∠==-=, 则由余弦定理可得222113213123PB ⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭,即23PB = BC PM ⊥,22270PM PB BM ∴=-=, 则2225cos 2PA AM PM PAM PA PM +-∠==⋅,即2sin 3PAM ∠=, 15sin 2PAM S PA AM PAM ∴=⋅⋅∠=,则152PM AG ⨯⨯=, 1414AG ∴=, 222552512cos 1214254AN AB BN AB BN ABC =+-⨯⨯⨯∠=+-⨯⨯=, 12AN ∴=, 14sin 7AG ANG AN ∴∠==. 【点睛】 关键点睛:本题考查利用线面垂直证明线线垂直,考查线面角的求解,解题的关键是正确求出图中各线段长度,会应用余弦定理求解,考查计算能力.。
最新北师大版高中数学必修二第二章《解析几何初步》测试(包含答案解析)
一、选择题1.若圆C:222430x y x y ++-+=关于直线260ax by ++=对称,则由点(,)a b 向圆所作的切线长的最小值是( ) A .2B .4C .3D .62.设两条直线的方程分别为0x y a ++=,0x y b ++=,已知,a b 是方程20x x c ++=的两个实根,且108c ≤≤,则这两条直线之间的距离的最大值和最小值分别为( )A .33, B .133, C .122, D .23, 3.圆心在x +y =0上,且与x 轴交于点A (-3,0)和B (1,0)的圆的方程为( )A .22(1)(1)5x y ++-=B .22(1)(1)x y -++=C .22(1)(1)5x y -++=D .22(1)(1)x y ++-=4.已知圆22:(2)(2)10+++=C x y ,若直线:2l y kx =-与圆交于,P Q 两点,则弦长PQ 的最小值是( )A B .4C .D .5.已知M 、N 分别是圆()()22:161C x y ++-=和圆()()22:261D x y -+-=上的两个动点,点P 在直线:l y x =上,则PM PN +的最小值是( )A .2B .10C 2D .126.已知圆221:(1)(1)1C x y ++-=,圆2C 与圆1C 关于直线10x y --=对称,则圆2C 的方程为( )A .22(2)(2)1x y -++=B .22(2)(2)1x y ++-=C .22(2)(2)1x y -+-=D .22(2)(1)1x y -+-=7.已知平面,αβ,直线l ,记l 与,αβ所成的角分别为1θ,2θ,若αβ⊥,则( ) A .12sin sin 1θθ+≤B .12sin sin 1θθ+≥C .122πθθ+≤D .122πθθ+≥8.已知AB 是平面α外的一条直线,则下列命题中真命题的个数是( ) ①在α内存在无数多条直线与直线AB 平行; ②在α内存在无数多条直线与直线AB 垂直; ③在α内存在无数多条直线与直线AB 异面; ④一定存在过AB 且与α垂直的平面β. A .1个 B .2个C .3个D .4个9.某几何体的三视图如图所示,其中网格纸的小正方形的边长是1,则该几何体外接球的体积为( )A .323πB .48πC .32327π D .643π 10.如图正三棱柱111ABC A B C -的所有棱长均相等,O 是1AA 中点,P 是ABC 所在平面内的一个动点且满足//OP 平面11A BC ,则直线OP 与平面ABC 所成角正弦值的最大值为( )A .2B .255C .3 D .27711.在下面四个正方体ABCD A B C D ''''-中,点M 、N 、P 均为所在棱的中点,过M 、N 、P 作正方体截面,则下列图形中,平面MNP 不与直线A C '垂直的是( )A .B .C .D .12.某三棱锥的三视图如图所示, 则该三棱锥的体积为( )A .16B .13C .23D .2二、填空题13.在平面直角坐标系xOy 中,设直线y =-x +2与圆x 2+y 2=r 2(r >0)交于A ,B 两点.若圆上存在一点C ,满足5344OC OA OB =+,则r 的值为________. 14.经过圆C :2220x y x ++=的圆心,且与直线320x y +-=垂直的直线方程是______. 15.已知点P 是直线l 上的一点,将直线l 绕点P 逆时针方向旋转角02παα⎛⎫<< ⎪⎝⎭,所得直线方程是20x y --=,若将它继续旋转2πα-角,所得直线方程是210x y +-=,则直线l 的方程是______.16.已知圆()2221x y +-=上一动点A ,定点()6,1B ,x 轴上一点W ,则AW BW+的最小值等于______.17.设0m >,点(4,)A m 为抛物线22(0)y px p =>上一点,F 为焦点,以A 为圆心||AF 为半径的圆C 被y 轴截得的弦长为6,则圆C 的标准方程为__________.18.函数2291041y x x x =+-+_________.19.已知直三棱柱111ABC A B C -,14AB BC AA ===,42AC =P 是上底面111 A B C 所在平面内一动点,若三棱锥P ABC -的外接球表面积恰为41π,则此时点P 构成的图形面积为________.20.如图所示,Rt A B C '''∆为水平放置的ABC ∆的直观图,其中AC B C ''''⊥,2B O O C ''''==,则ABC ∆的面积是________________.21.如图,平面四边形ABCD 中,1AB AD ==,2,3,BD CD BD CD ==⊥将其沿对角线BD 折成四面体A BCD '-,使平面A BD '⊥平面BCD ,则四面体A BCD '-的外接球的球心到平面ACD '的距离等于__________.22.已知三棱锥P ABC -的外接球O 的表面积为12π,PA ⊥平面ABC ,BA AC ⊥,2PA =,则ABC 面积的最大值为__________.23.如图,正方形BCDE 的边长为a ,已知3AB BC =,将ABE △沿边BE 折起,折起后A 点在平面BCDE 上的射影为D 点,则翻折后的几何体中有如下描述:①AB 与DE 所成角的正切值是2;②//AB CE ;③B ACE V -体积是316a ;④平面ABC ⊥平面ADC .其中正确的有______.(填写你认为正确的序号)24.如图,已知四棱锥S ABCD -的底面为等腰梯形,//AB CD ,1AD DC BC ===,2AB SA ==,且SA ⊥平面ABCD ,则四棱锥S ABCD -外接球的体积为______.三、解答题25.一副标准的三角板(如图1),ABC ∠为直角,60A ∠=︒,DEF ∠为直角,DE EF =,BC DF =,把BC 与DF 重合,拼成一个三棱锥(如图2),设M 是线段AC的中点,N 是线段BC 的中点.(1)求证:平面ABC ⊥平面EMN ; (2)设平面ABE平面MNE l =,求证://l AB .26.如图,长方体ABCD A B C D ''''-由,12AB =,10BC =,6AA '=,过A D ''作长方体的截面A D EF ''使它成为正方形.(1)求三棱柱AA F DD E ''-的外接球的表面积; (2)求 B A D EF V ''-.27.在三棱锥A BCD -中,E 、F 分别为AD 、DC 的中点,且BA BD =,平面ABD ⊥平面ADC .(1)证明://EF 平面ABC ; (2)证明:BE CD ⊥.28.如图,在三棱锥P ABC -中,1,2,135AB AC BAC ︒==∠=,1cos ,3BAP AP BC ∠=-⊥.(1)若23BM MC =,求证:PM BC ⊥; (2)当3AP =,且N 为BC 中点时,求AN 与平面PBC 所成角的正弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】试题分析:222430x y x y ++-+=即22(1)(2)2x y ++-=,由已知,直线260ax by ++=过圆心(1,2)C -,即2260,3a b b a -++==-,由平面几何知识知,为使由点(,)a b 向圆所作的切线长的最小,只需圆心(1,2)C -与直线30x y --=2123()242----=,故选B .考点:圆的几何性质,点到直线距离公式.2.C解析:C 【分析】由韦达定理求出1,a b ab c +=-=,然后求出2||()4a b a b ab -=+-两平行线间的距离范围. 【详解】由已知得两条直线的距离是2d =,因为,a b 是方程20x x c ++=的两个根,所以1,a b ab c +=-=, 则2||()4=14a b a b ab c -=+--,因为108c ≤≤,所以1222,即122d . 故选:C 【点睛】本题考查平行线间的距离公式,韦达定理和不等式,属于基础题.3.A解析:A 【分析】由题意得:圆心在直线x=-1上,又圆心在直线x+y=0上,故圆心M 的坐标为(-1,1),再由点点距得到半径. 【详解】由题意得:圆心在直线x=-1上, 又圆心在直线x+y=0上, ∴圆心M 的坐标为(-1,1),又A (-3,0),半径则圆的方程为(x+1)2+(y-1)2=5. 故选A . 【点睛】这个题目考查的是直线和圆的位置关系,一般直线和圆的题很多情况下是利用数形结合来解决的,联立的时候较少;在求圆上的点到直线或者定点的距离时,一般是转化为圆心到直线或者圆心到定点的距离,再加减半径,分别得到最大值和最小值;涉及到圆的弦长或者切线长时,经常用到垂径定理.4.D解析:D 【分析】由题意,求解圆的圆心坐标和半径,再利用圆的弦长公式,即可求解. 【详解】由题意,直线2y kx =-过定点(0,2)A -,又由圆22:(2)(2)10+++=C x y 的圆心坐标(2,2)--,半径r =,则A 点到圆心的距离可得2d ==,由圆的弦长公式,可得l ===即弦长PQ 的最小值为 D. 【点睛】本题主要考查了圆的弦长公式,圆的标准方程的应用,其中解答中求得圆的圆心坐标和半径,再利用圆的弦长公式求解是解答的关键,着重考查了推理与计算能力,属于基础题.5.C解析:C 【分析】计算圆心()1,6-关于直线:l y x =的对称点为()16,1C -,计算1C D =.【详解】圆()()22:161C x y ++-=的圆心为()1,6-,圆()()22:261D x y -+-=的圆心为()2,6,()1,6-关于直线:l y x =的对称点为()16,1C -,1C D ==,故PM PN +的最小值是1122C D r r --=.故选:C. 【点睛】本题考查了点关于直线对称,与圆相关的距离的最值,意在考查学生的计算能力和应用能力,转化能力.6.A解析:A 【分析】设圆2C 的圆心为2(,)C a b ,解方程组111022111a b b a -+⎧--=⎪⎪⎨-⎪=-⎪+⎩得22a b =⎧⎨=-⎩,即得解.【详解】圆1C 的圆心为1(1,1)C -,设圆2C 的圆心为2(,)C a b ,依题意得111022111a b b a -+⎧--=⎪⎪⎨-⎪=-⎪+⎩,解得22a b =⎧⎨=-⎩,又圆2C 的半径与圆1C 的半径相等, 所以圆2C 的方程为22(2)(2)1x y -++=. 故选:A. 【点睛】本题主要考查圆的方程的求法,考查点线点对称,意在考查学生对这些知识的理解掌握水平.7.C解析:C 【分析】如图,作出1θ和2θ,再由线面角推得12sin sin 2πθθ⎛⎫≤- ⎪⎝⎭,利用三角函数的单调性判断选项. 【详解】设直线l 为直线AB ,m αβ=,AD m ⊥,BC m ⊥,连结BD ,AC ,1ABD θ=∠,2BAC θ=∠,12sin sin 2AD AC AB AB πθθ⎛⎫=≤=- ⎪⎝⎭,12,2πθθ-都是锐角, 122πθθ∴≤-,即122πθθ+≤故选:C 【点睛】关键点点睛:本题的关键是作图,并利用线段AD AC ≤,传递不等式,12sin sin 2AD AC AB AB πθθ⎛⎫=≤=- ⎪⎝⎭. 8.C解析:C 【分析】根据线面平行,线面垂直,异面直线等有关结论和定义即可判断. 【详解】对于A ,若直线AB 与平面α相交,则在α内不存在直线与直线AB 平行,错误; 对于B ,若直线AB 与平面α相交且不垂直,设AB M α=,过平面α外直线AB 上一点P 作PC α⊥,垂足为C ,则在平面α内过点C 一定可以作一条直线CD ,使得CD CM ⊥,所以CD AB ⊥,而在平面α内,与直线CD 平行的直线有无数条,所以在α内存在无数多条直线与直线AB 垂直,若直线AB 与平面α垂直,显然在α内存在无数多条直线与直线AB 垂直,当直线AB 与平面α平行时,显然可知在α内存在无数多条直线与直线AB 垂直,正确;对于C ,若直线AB 与平面α相交,设AB M α=,根据异面直线的判定定理,在平面α内,不过点M 的直线与直线AB 异面,所以在α内存在无数多条直线与直线AB 异面,当直线AB 与平面α平行时,显然可知在α内存在无数多条直线与直线AB 异面,正确; 对于D ,若直线AB 与平面α相交且不垂直,设AB M α=,过平面α外直线AB 上一点P 作PC α⊥,垂足为C ,所以平面ABC 与平面α垂直,若直线AB 与平面α垂直,则过直线AB 的所有平面都与平面α垂直,当直线AB 与平面α平行时,在直线AB 上取一点P 作PC α⊥,垂足为C ,所以平面ABC 与平面α垂直,正确. 故真命题的个数是3个. 故选:C . 【点睛】本题主要考查线面平行,线面垂直,异面直线等有关结论和定义的理解和应用,熟记定义,定理和有关结论是解题的关键,属于中档题.9.A解析:A【分析】由三视图可知,该几何体是四棱锥,其中四棱锥底面是边长为4的正方形,将四棱锥补成棱长为4的正方体,则该几何体的外接球就是正方体的外接球,进而可得答案.【详解】由三视图可知,该几何体是如图所示的四棱锥P ABCD -,其中四棱锥底面是边长为4的正方形,四棱锥的一条侧棱与底面垂直,四棱锥的高为4,将四棱锥补成棱长为4的正方体,则该几何体的外接球就是正方体的外接球,外接球的直径2R 等于正方体的对角线长, 即24323R R =⇒=,所以该几何体外接球的体积为()34233π⨯=323π,故选:A.【点睛】方法点睛:三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状. 10.D解析:D【分析】先找到与平面11A BC 平行的平面OEFG ,确定点P 在直线FG 上,作出线面角,求出正弦,转化为求AP 的最小值.【详解】分别取1,,CC BC BA 的中点,连接,,,OE EF FG GO ,并延长FG ,如图,由中位线性质可知11//OE AC , 1//EF BC ,且OEEF E =,故平面11//A BC 平面OGFE , 又P 是ABC 所在平面内的一个动点且满足//OP 平面11A BC则点P 在直线FG 上,OA ⊥平面ABC ,OPA ∴∠是直线OP 与平面ABC 所成角,sin OA OPA OP∴∠=, OA 为定值, ∴当OP 最小时,正弦值最大, 而22OP OA AP +所以当AP 最小时,sin OPA ∠最大,故当AP FG ⊥时,sin OPA ∠最大,设棱长为2, 则1212AG =⨯=,而30GAP ∠=︒, 32AP ∴=, 又1212OA =⨯=, 222sin 773()12OA OPA OP ∴∠===+故选:D【点睛】关键点点睛:由P 是ABC 所在平面内的一个动点且满足//OP 平面11A BC ,转化为找过O 的平面与平面11A BC 平行,P 在所找平面与平面ABC 的交线上,从而容易确定出线面角,是本题解题的关键所在.11.A解析:A【分析】利用线面垂直的判定定理可判断BCD 选项,利用假设法推出矛盾,可判断A 选项.【详解】对于A 选项,连接B C ',假设A C '⊥平面MNP ,在正方体ABCD A B C D ''''-中,A B ''⊥平面BB C C '',B C '⊂平面BB C C '',A B B C '''∴⊥,所以,A B C ''为直角三角形,且A CB ''∠为锐角,因为M 、N 分别为BB '、BC 的中点,则//MN B C ',所以,MN 与A C '不垂直, 这与A C '⊥平面MNP 矛盾,故假设不成立,即A C '与平面MNP 不垂直;对于B 选项,连接B D ''、A C '',如下图所示:因为四边形A B C D ''''为正方形,则A C B D ''''⊥,CC '⊥平面A B C D '''',B D ''⊂平面A B C D '''',CC B D '''∴⊥,A C CC C ''''=,B D ''∴⊥平面A CC '',A C '⊂平面A CC '',ACB D '''∴⊥, M 、P 分别为A B ''、A D ''的中点,则//MN B D '',可得MP AC '⊥,同理可证A C MN '⊥,MP MN M ⋂=,A C '∴⊥平面MNP ;对于C 选项,连接C D '、A N '、CN 、A P '、PC ,取A B ''的中点E ,连接C E '、PE ,因为四边形CC D D ''为正方形,则CD C D ''⊥,A D ''⊥平面CC D D '',C D '⊂平面CC D D '',C D A D '''∴⊥,CD A D D ''''=,C D '∴⊥平面A CD '',A C '⊂平面A CD '',A C C D ''∴⊥, M 、N 分别为DD '、C D ''的中点,//MN C D '∴,A C MN '∴⊥,在正方形A B C D ''''中,E 、N 分别为A B ''、C D ''的中点,//A E C N ''∴且A E C N ''=, 所以,四边形A EC N ''为平行四边形,所以,//A N C E ''且A N C E ''=,同理可证四边形CC EP '为平行四边形,//C E CP '∴且C E CP '=,所以,//A N CP '且A N CP '=,所以,四边形A PCN '为平行四边形,易得A N CN '=,所以,四边形A PCN '为菱形,所以,A C PN '⊥,MN PN N =,A C '∴⊥平面MNP ;对于D 选项,连接AC 、BD ,因为四边形ABCD 为正方形,则AC BD ⊥,AA '⊥平面ABCD ,BD ⊂平面ABCD ,AA BD '∴⊥,AC AA A '⋂=,BD ∴⊥平面AAC', A C '⊂平面AAC',A C BD '∴⊥, M 、N 分别为CD 、BC 的中点,则//MN BD ,A C MN '∴⊥,同理可证A C MP '⊥,MN MP M ⋂=,A C '∴⊥平面MNP .故选:A.【点睛】方法点睛:证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中一条垂直于这个平面,则另一条也垂直于这个平面),解题时,注意线线、线面与面面关系的相互转化;另外,在证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高、中线和顶角的角平分线三线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形(或给出线段长度,经计算满足勾股定理)、直角梯形等等.12.C解析:C【分析】根据题中所给的几何体的三视图还原几何体,得到相应的三棱锥,之后利用椎体体积公式求得结果.【详解】根据题中所给的几何体的三视图还原几何体如图所示:该三棱锥满足底面BCD△是等腰三角形,且底边和底边上的高线都是2;且侧棱AD⊥底面BCD,1AD=,所以112=221=323V⨯⨯⨯⨯,故选:C.【点睛】方法点睛:该题考查的是有关根据所给几何体三视图求几何体体积的问题,解题方法如下:(1)应注意把握三个视图的尺寸关系:主视图与俯视图长应对正(简称长对正),主视图与左视图高度保持平齐(简称高平齐),左视图与俯视图宽度应相等(简称宽相等),若不按顺序放置和不全时,则应注意三个视图名称;(2)根据三视图还原几何体;(3)利用椎体体积公式求解即可.二、填空题13.【详解】即整理化简得cos∠AOB=-过点O作AB的垂线交AB于D则cos∠AOB=2cos2∠AOD-1=-得cos2∠AOD=又圆心到直线的距离为OD=所以cos2∠AOD ===所以r2=10r =【详解】22225325539OC OA OB OA 2OA OB OB 44164416⎛⎫=+=+⋅⋅+ ⎪⎝⎭ 即222225159r r r cos AOB r 16816=+∠+,整理化简得cos ∠AOB =-35,过点O 作AB 的垂线交AB 于D ,则cos ∠AOB =2cos 2∠AOD -1=-35,得cos 2∠AOD =15.又圆心到直线的距离为OD=,所以cos 2∠AOD =15=22OD r =22r ,所以r 2=10,r . 14.【分析】求出圆心坐标所求直线与垂直则点斜式写出直线方程【详解】因为所求直线与垂直则又圆心坐标所以直线方程为:即故答案为:【点睛】(1)在求直线方程时应选择适当的形式并注意各种形式的适用条件(2)对于 解析:1133y x =+ 【分析】求出圆心坐标(1,0)C -,所求直线与320x y +-=垂直,则13k =,点斜式写出直线方程. 【详解】因为所求直线与320x y +-=垂直,则13k =,又圆心坐标(1,0)C - 所以直线方程为:10(1)3y x -=+ 即1133y x =+ 故答案为:1133y x =+ 【点睛】(1)在求直线方程时,应选择适当的形式,并注意各种形式的适用条件.(2)对于点斜式、截距式方程使用时要注意分类讨论思想的运用(若采用点斜式,应先考虑斜率不存在的情况;若采用截距式,应先判断截距是否为零). 15.【分析】求出点坐标由于直线与直线垂直得出直线的斜率为再由点斜式写出直线的方程【详解】由于直线可看成直线先绕点逆时针方向旋转角再继续旋转角得到则直线与直线垂直即直线的斜率为所以直线的方程为即故答案为: 解析:230x y --=【分析】求出点P 坐标,由于直线210x y +-=与直线l 垂直,得出直线l 的斜率为12,再由点斜式写出直线l 的方程.【详解】()1,120210x x y P y -⎧⇒-⎨--=+⎩= 由于直线210x y +-=可看成直线l 先绕点P 逆时针方向旋转角α,再继续旋转2πα-角得到,则直线210x y +-=与直线l 垂直,即直线l 的斜率为12 所以直线l 的方程为11(1)2y x +=-,即230x y --= 故答案为:230x y --=【点睛】 本题主要考查了求直线的方程,涉及了求直线的交点以及直线与直线的位置关系,属于中档题. 16.【分析】根据题意画出示意图进而数形结合求解;【详解】根据题意画出圆以及点B (61)的图象如图作B 关于x 轴的对称点连接圆心与则与圆的交点A 即为的最小值为点(02)到点(6-1)的距离减圆的半径即故答案 解析:351-【分析】根据题意画出示意图,进而数形结合求解;【详解】根据题意画出圆()2221x y +-=,以及点B (6,1)的图象如图,作B 关于x 轴的对称点B ',连接圆心与B ',则与圆的交点A ,AB 即为AW BW +的最小值,AB 为点(0,2)到点B '(6,-1)的距离减圆的半径,即22(60)(12)1351AB =-+--=,故答案为:351.【点睛】考查“将军饮马”知识,数形结合的思想,画出图形,做出B 点的对称点是解决本题的突破点;17.【分析】结合已知利用垂径定理和勾股定理可求出的值进而求出的值;把代入抛物线方程求出的值可得圆心坐标和半径从而得到所求的圆的标准方程【详解】由题意可得点到轴的距离为又已知圆被轴截得的弦长为6得则所以因 解析:22(4)(4)25x y -+-=【分析】结合已知,利用垂径定理和勾股定理可求出||AF 的值,进而求出p 的值;把(4,)A m 代入抛物线方程,求出m 的值,可得圆心坐标和半径,从而得到所求的圆的标准方程.【详解】由题意可得点(4,)A m 到y 轴的距离为4,又已知圆C 被y 轴截得的弦长为6,得5AF ==, 则452p +=, 所以2p =,因为点(4,)A m 为抛物线22(0)y px p =>上一点,且0m >,所以4m ==,故圆C 的标准方程为:22(4)(4)25x y -+-=.故答案为:22(4)(4)25x y -+-=.【点睛】本题是一道关于圆和抛物线的题目,求出圆心坐标和半径是关键,考查逻辑思维能力和计算能力,属于常考题.18.【分析】将变形为设则即轴上的一动点到的距离之和作点关于轴的对称点即可求出距离和的最小值;【详解】解:设则即轴上的一动点到的距离之和作点关于轴的对称点连接则即为距离和的最小值故答案为:【点睛】本题考查【分析】将y y =,设()0,3A ,()5,4B ,(),0C x ,则y AC BC ==+即x 轴上的一动点C 到()0,3A ,()5,4B 的距离之和,作()0,3A 点关于x 轴的对称点()10,3A -,即可求出距离和的最小值;【详解】解:y ==()0,3A ,()5,4B ,(),0C x ,则y AC BC =+,即x 轴上的一动点(),0C x 到()0,3A ,()5,4B 的距离之和,作()0,3A 点关于x 轴的对称点()10,3A -,连接1BA ,则1BA 即为距离和的最小值,()22153474BA =+--=min 74y ∴= 故答案为:74【点睛】本题考查平面直角坐标系上两点间的距离公式的应用,将军饮马问题,属于中档题. 19.【分析】确定是等腰直角三角形的中点分别是和的外心由直棱柱性质得的外接球的球心在上外接球面与平面的交线是圆是以为圆心为半径的圆求出可得面积【详解】则设分别是的中点则分别是和的外心由直三棱柱的性质得平面 解析:4π【分析】确定ABC 是等腰直角三角形,11,AC AC 的中点1,D D 分别是ABC 和111A B C △的外心,由直棱柱性质得P ABC -的外接球的球心O 在1DD 上,外接球面与平面111A B C 的交线是圆,是以1D 为圆心,1D P 为半径的圆,求出1PD 可得面积.【详解】4,42AB BC AC ===90ABC ∠=︒,设1,D D 分别是11,AC AC 的中点,则1,D D 分别是ABC 和111A B C △的外心,由直三棱柱的性质得1DD ⊥平面ABC , 所以P ABC -的外接球的球心O 在1DD 上,如图,24()41OA ππ=,则412OP OA ==,2222413(22)22OD OA AD ⎛⎫=-=-= ⎪ ⎪⎝⎭, 所以11135422OD DD OD AA OD =-=-=-=, 222211415222PD OP OD ⎛⎫⎛⎫=-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭, P ABC -的外接球面与平面111A B C 的交线是圆,是以1D 为圆心,1D P 为半径的圆, 其面积为224S ππ=⨯=.故答案为:4π.【点睛】关键点点睛:本题考查立体几何中动点轨迹问题的求解,重点考查了几何体的外接球的有关问题的求解,关键是根据外接球的性质确定球心位置,结合勾股定理得出动点所满足的具体条件,结论:三棱锥的外接球的球心在过各面外心且与此面垂直的直线上. 20.【分析】根据直观图和原图的之间的关系由直观图画法规则将还原为如图所示是一个等腰三角形直接求解其面积即可【详解】由直观图画法规则将还原为如图所示是一个等腰三角形则有所以故答案为:【点睛】关键点点睛:根 解析:82【分析】根据直观图和原图的之间的关系,由直观图画法规则将Rt A B C '''还原为ABC ,如图所示,ABC 是一个等腰三角形,直接求解其面积即可.【详解】由直观图画法规则将Rt A B C '''还原为ABC ,如图所示,ABC 是一个等腰三角形,则有2BO OC B O O C ''''====,242AO A O ''==所以114428222ABC S BC AO =⋅=⨯⨯= 故答案为:82【点睛】关键点点睛:根据斜二测画法的规则,可得出三角形的直观图,并求出对应边长,根据面积公式求解.21.【分析】取的中点为可证明为四面体外接球的球心利用等体积可得答案【详解】取的中点为连接因为平面平面平面平面平面故平面因为平面故因为故故又故平面因为平面故而为的中点故又所以故为四面体外接球的球心设球心到 解析:12【分析】取BC 的中点为M ,可证明M 为四面体A BCD '-外接球的球心,利用等体积可得答案.【详解】取BC 的中点为M ,连接,A M DM ',因为平面A BD '⊥平面BCD ,BD CD ⊥,平面A BD '平面BCD BD =, CD ⊂平面BCD ,故CD ⊥平面A BD ',因为BA '⊂平面A BD ',故CD BA '⊥,因为1A B A D ''==,2BD =,故222BD A B A D ''=+,故''⊥BA A D ,又A D DC D '⋂=,故'⊥BA 平面ACD ',因为A C '⊂平面ACD ',故A D A C ''⊥,而M 为BC 的中点,故MA MB MC '==,又BD DC ⊥,所以MD MB =,故M 为四面体A BCD '-外接球的球心.设球心M 到平面ACD '的距离为h ,因为2B A CD M A CD V V ''--=,所以11233A CD A CD S A B S h '''=⨯,即12h =. 故答案为:12. 【点睛】 本题考查四面体的外接球,此类问题一般是先确定球心的位置,再把球的半径放置在可解的平面图形中处理,如果球心的位置不易确定,则可以通过补体的方法来处理. 22.2【分析】由球的表面积可求出半径取的中点可得设由基本不等式可得即可求出面积的最大值【详解】因为球的表面积为所以球的半径取的中点则为的外接圆圆心平面设由得因为所以当且仅当时取等因为的面积为所以面积的最 解析:2【分析】由球的表面积可求出半径3R =,取BC 的中点D ,可得1OD =,设AB x =,AC y =,由基本不等式可得4xy ≤,即可求出ABC 面积的最大值.【详解】因为球O 的表面积为12π,所以球O 的半径3R =.取BC 的中点D ,则D 为ABC 的外接圆圆心,PA ⊥平面ABC ,112OD PA ∴==, 设AB x =,AC y =,由2222134+==+=+=x y R OC CD OD ,得228x y +=. 因为222x y xy +≥,所以4xy ≤,当且仅当2x y ==时取等.因为ABC 的面积为1122⋅=AB AC xy ,所以ABC 面积的最大值为2. 故答案为:2.【点睛】本题考查几何体的外接球问题,解题的关键是是建立勾股关系,利用基本不等式求出4xy ≤.23.①③④【分析】作出折叠后的几何体的直观图由题中条件得到是异面直线与所成的角求出其正切可判断①正确;根据线面垂直的的判定定理先证明平面可判断②错;根据等体积法由体积公式求出可判断③正确;根据面面垂直的解析:①③④【分析】作出折叠后的几何体的直观图,由题中条件,得到ABC ∠是异面直线AB 与DE 所成的角,求出其正切,可判断①正确;根据线面垂直的的判定定理,先证明CE ⊥平面ABD ,可判断②错;根据等体积法,由体积公式求出B ACE V -,可判断③正确;根据面面垂直的判定定理,可判断④正确.【详解】作出折叠后的几何体直观图如图所示:由题意,3AB a =,BE a =,∴2AE a =; ∴22AD AE DE a =-=,222AC CD AD a ∴+,∵//BC DE ,∴ABC ∠是异面直线AB 与DE 所成的角, 在Rt ABC 中, tan 2AC ABC BC ∠==①正确; 连结BD ,CE ,则CE BD ⊥,又AD ⊥平面BCDE ,CE ⊂平面BCDE ,∴CE AD ⊥,又BD AD D ,BD ⊂平面ABD ,AD ⊂平面ABD ,∴CE ⊥平面ABD ,又AB平面ABD , ∴CE AB ⊥.故②错误.三棱锥B ACE -的体积2311113326B ACE A BCE BCE V V S AD a a a --===⨯⨯=⋅⨯. 故③正确. ∵AD ⊥平面BCDE ,BC ⊂平面BCDE ,∴BC AD ⊥,又BC CD ⊥,CDAD D =,CD ⊂平面ADC ,AD ⊂平面ADC , ∴BC ⊥平面ADC ,∵BC ⊂平面ABC ,∴ABC ⊥平面ADC .故④正确.故答案为:①③④.思路点睛:判断空间中线线、线面、面面位置关系时,一般根据相关概念,结合线面平行、垂直的判定定理及性质,以及面面平行、垂直的判定定理及性质,根据题中条件,进行判断或证明. 24.【分析】取AB 中点连接根据平行四边形性质可得为等腰梯形ABCD 的外心取SB 中点O 连接则可得O 是四棱锥的外接球球心在中求得r=OA 即可求得体积【详解】取AB 中点连接则所以四边形为平行四边形所以同理所以 解析:82π 【分析】取AB 中点1O ,连接11,OC O D ,根据平行四边形性质,可得1O 为等腰梯形ABCD 的外心,取SB 中点O ,连接1,,,OA OC OD OO ,则可得O 是四棱锥S ABCD -的外接球球心,在Rt SAB 中,求得r=OA ,即可求得体积.【详解】取AB 中点1O ,连接11,OC O D ,则1//CD O A ,所以四边形1ADCO 为平行四边形,所以1=1CO ,同理1=1O D ,所以1111=O A O B OC O D ==,即1O 为等腰梯形ABCD 的外心, 取SB 中点O ,连接1,,,OA OC OD OO ,则1//OO SA ,因为SA ⊥平面ABCD ,所以1OO ⊥平面ABCD ,又2AB SA ==,所以=OA OB OC OD ==,又SA AB ⊥,所以OA OS =,即O 是四棱锥S ABCD -的外接球球心,在Rt SAB 中,2AB SA ==,所以122OA SB == 所以3482(2)3V ππ=⨯=, 82π.解决外接球的问题时,难点在于找到球心,可求得两个相交平面的外接圆圆心,自圆心做面的垂线,垂线交点即为球心,考查空间想象,数学运算的能力,属中档题.三、解答题25.(1)证明见解析(2)证明见解析【分析】(1)只要证明MN BC ⊥,EN BC ⊥,即得;(2)由(1)知MN ∥AB ,可得//AB 平面MNE ,又平面ABE ∩平面MNE =l ,利用线面平行推导出线线平行即可.【详解】证明:(1)设BC 的中点为N ,连结MN ,EN ,如图,因为M 是AC 的中点,N 是BC 的中点,所以MN ∥AB ,因为AB ⊥BC ,所以MN ⊥BC ,因为BE ⊥EC ,BE =EC ,N 是BC 的中点,所以EN ⊥BC ,又MN ⊥BC ,MN ∩EN =N ,MN ⊂平面EMN ,EN ⊂平面EMN ,所以BC ⊥平面EMN ,又因为BC ⊂平面ABC ,所以平面ABC ⊥平面EMN证明:(2)由(1)知MN ∥AB ,AB ⊄平面EMN , MN ⊂平面EMN ,所以//AB 平面MNE ,又AB 平面ABE ,且平面ABE ∩平面MNE =l ,所以l ∥AB.【点睛】关键点点睛:利用线线平行可判定线面平行,根据线面平行的性质定理可得线线平行,注意图中没有平面ABE ∩平面MNE =l ,但利用性质定理即可证明.26.(1)200π(2)80【分析】(1)根据直三棱柱底面为为直角三角形可得外接球球心的位置,利用勾股定理求半径,即可求解;(2)根据等体积法及几何体的割补法可转化为求三棱锥A BEF V '-即可.【详解】(1)因为截面A D EF ''为正方形,所以10A F BC A D '==='',在Rt A AF '△中,222AA AF A F ''+=,即222610AF +=,解得8AF =,在直三棱柱AA F DD E ''-中,底面Rt A AF '△的外接圆半径为1110522A F '=⨯=, 直三棱柱AA F DD E ''-的外接球球心到面A AF '的距离为11052⨯=, 设三棱柱的外接球半径为R ,则R == 24200S R ππ∴==(2)因为22B A EF A B B A D EF EF V V V ''-'--'==,在长方体中AA '⊥平面BEF ,所以三棱锥A BEF '-的高为6AA '=,所以B A D EF V ''-111226332BEF S A A EF BF ⎛⎫'=⨯⨯⨯=⨯⨯⨯⨯⨯ ⎪⎝⎭△ 11210468032=⨯⨯⨯⨯⨯=. 【点睛】关键点点睛:根据直三棱柱外接球的的性质可知球心到底面的距离为高的一半,求出底面外接圆的半径即可利用勾股定理求解即可,利用分割法可把四棱锥转化为三棱锥求体积即可.27.(1)证明见解析;(2)证明见解析.【分析】(1)利用中位线的性质可得出//EF AC ,再利用线面平行的判定定理可证得结论成立; (2)利用面面垂直的性质定理可得出BE⊥平面ACD ,进而可证得BE CD ⊥.【详解】(1)在ADC 中,E 、F 分别是AD 、DC 的中点,//EF AC ∴. EF ⊄平面ABC ,AC ⊂平面ABC ,//EF ∴平面ABC ;(2)在ABD △中,BA BD =,E 为AD 的中点,BE AD ∴⊥, 又平面ABD ⊥平面ADC ,平面ABD ⋂平面ADC AD =,BE ⊂平面ABD , BE ∴⊥平面ADC .CD ⊂平面ADC ,BE CD ∴⊥.。
空间解析几何第二章作业答案
第二章 向量代数参考答案6.(1)a b ⊥ ; (2)a b 与同向 ; (3),,2a b ππ⎛⎤<>∈ ⎥⎝⎦;(4),0,2a b π⎡⎫<>∈⎪⎢⎣⎭; (5),a b 反向,且 ||||a b ≥ ; (6),a b 反向12.解: 1360cos 31291=⨯⨯⨯++==o 760cos 31291=⨯⨯⨯-+==o15.求证:由三角形两边中点做成的线段(中位线)平行于第三边且等于第三边的一半。
证明:由题意可知BC BA AC =+,21)(21=+=+= 故BC DE BC DE 21//=且得证。
17.证明三角形的三条中线共点。
证明:设两中线AM 和BM 交于点G ,只要证第三条中线CP 通过点G ,也就是证C ,G ,P三点共线,或证//CG CPCG AG AC =-()12(1)AM AC AB AC AC λλλλ=-=+-++22(1)2(1)AB AC λλλλ+=-++又()1CG CB BG AB AC BN μμ=+=-++()1AB AC AN AB μμ=-+-+1()12AB AC AC AB μμ=-+-+1112(1)AB AC μμμμ⎛⎫⎛⎫=-+- ⎪ ⎪++⎝⎭⎝⎭//AB AC ,所以比较上面两式得12(1)1212(1)2(1)λμλμλμλμ⎧=-⎪++⎪⎨+⎪-=-⎪++⎩ 于是得2λμ==所以1233CG AB AC =- 而12CP AP AC AB AC =-=-从而有23CG CP =,所以//CG CP 因此三点C ,G ,P 共线,即三直线共点。
18.已知向量32132132126,,32e e e c e e e b e e e a +-=++=+-=其中321,,e e e 不共面,求++,+-。
解:12312312313236242a b c e e e e e e e e e e e +-=-++++-+-=-+1231231231232362644a b c e e e e e e e e e e e e -+=-+---+-+=-+19. 已知向量313221,,e e e e e e +=+=+=求---,,并判断是否共面?为什么? 解:132132, , a b e e b c e e c a e e -=--=--=- 假设存在μλ,使)()a c c b b a -=-=-μλ(解得1,1-=-=μλ 所以存在唯一的μλ,,故a c c b b a ---,,三个向量共面。
解析几何答案廖华奎王宝富第二章
第二章 直线与平面习题1.求通过两点(2,3,4)A 和(5,2,1)B -的直线方程。
解:直线的方向向量为(3,1,5)AB =--,所以直线的方程为234.315x y z ---==-- 2.在给定的仿射坐标系中,求下列平面的普通方程和参数方程。
(1)过点(1,2,0),(2,1,4),(3,1,5)----; (2)过点(3,12)-和z 轴;(3)过点(2,0,1)-和(1,3,4)-,平行于y 轴; (4)过点(1,5,4)--,平行于平面3250x y -+=。
解:(1)平面的方位向量为12(1,3,4),(4,1,5)v v =--=--,所以平面的参数方程14,23,45.x y z λμλμλμ=--+⎧⎪=--⎨⎪=-⎩平面的普通方程为121340,415x y z+---=--即19111330.x y z ++-= (2)平面的方位向量为12(3,1,2),(0,0,1)v v =-=,所以平面的参数方程33,1,22.x y z λλλμ=+⎧⎪=+⎨⎪=--+⎩因为过z 轴,所以也可选经过的点为(0,0,0),那么参数方程也可以写为 3,,2.x y z λλλμ=⎧⎪=⎨⎪=-+⎩平面的普通方程为3120,01x y z-=即30.x y -= (3)平面的方位向量为12(3,3,5),(0,1,0)v v =-=,所以平面的参数方程23,3,15.x y z λλμλ=-⎧⎪=+⎨⎪=-+⎩平面的普通方程为213350,01x y z -+-=即5370.x z +-=(4)平面的方位向量平行于平面3250x y -+=,方位向量(,,)X Y Z 满足320X Y -=,因此可以选为12(2,3,0),(0,0,1)v v ==。
所以平面的参数方程12,53,4.x y z λλμ=-+⎧⎪=-+⎨⎪=+⎩平面的普通方程为1542300,01x y z ++-=即3270.x y --=3.在直角坐标系中,求通过点(1,0,2)-并与平面1:220x y z ∏+--=和2:30x y z ∏---=均垂直的平面方程。
解析几何解答题条件的转化策略学生版答案
解析几何解答题条件的转化策略例1.【解析】由题意知(2,0)C -,1(1,0)F -设000(,)(22)B x y x -<<,则2200143x y +=,因为10000(1,)(2,)BF BC x y x y •=---•---u u u r u u u r 222000001233504x x y x x =+++=++> 所以(0,)2B π∠∈,所以点B 不在以1F C 为直径的圆上,即不存在直线l ,使得点B 在以线段1F C 为直径的圆上.练习1.(1)【解析】直线与椭圆方程联立得22630x x ++=,设()11,A x y ,()22,B x y ,则123x x +=-,1232x x =,∵1(2,0)F -,∵()1112,F A x y =+u u u r ,()1222,F B x y =+u u u r,∵()()()()()11121212121212224333F A F B x x y y x x x x x x ⋅=+++=++++++u u u r u u u r()1212443373(3)70332x x x x =+++=⨯+⨯-+=,∵1(2,0)F -点在以线段AB 为直径的圆上. (2)设():2AM y k x =+ 联立AM 与椭圆方程可得:消去y 可得:()2222431616120k x k x k +++-=,2211221612684343A k k x x x k k --∴=⇒=++ ,11212243k y kx k k ∴=+=+,即2226812,4343k k M k k ⎛⎫- ⎪++⎝⎭. 设()04,P y ,因为P 在直线AM 上,所以()0426y k k =+=,即()4,6P k ,()22216122,6,,4343k k BP k BM k k ⎛⎫-∴== ⎪++⎝⎭u u u r u u u u r ,2222232124060434343k k k BP BM k k k k -∴⋅=+⋅=>+++u u u r u u u u r , MBP ∴∠为锐角, MBN ∴∠为钝角 B ∴在以MN 为直径的圆内.例2.【解析】设T 点的坐标为(3-,m ),则直线TF 的斜率()32TF m k m -==----.当0m ≠时,直线PQ 的斜率1PQ k m=,直线PQ 的方程是2x my =-. 当0m =时,直线PQ 的方程是2x =-,也符合2x my =-的形式.设()()1122,,,P x y Q x y ,将直线PQ 的方程与椭圆C 的方程联立,得222162x my x y =-⎧⎪⎨+=⎪⎩. 消去x ,得()223420m y my +--=.其判别式()221683m m ∆=++>0 所以12243m y y m +=+,12223y y m -=+,()121221243x x m y y m -+=+-=+.因为四边形OPTQ 是平行四边形,所以OP QT =u u u v u u u v ,即()()1122,3,x y x m y =---.所以122122123343x x m m y y m m -⎧+==-⎪⎪+⎨⎪+==⎪+⎩.解得1m =±.(另解:因为四边形OPTQ 是平行四边形,所以OP OQ OT +=u u u r u u u r u u u r ,所以有122122123343x x m m y y m m -⎧+==-⎪⎪+⎨⎪+==⎪+⎩,解得1m =±.)此时四边形OPTQ 的面积21222142222423233OPTQ OPQm S S OF y y m m -⎛⎫==⨯⋅⋅-=-⋅= ⎪++⎝⎭. 例3.【解析】(1)设直线:l y kx b =+(0,0)k b ≠≠,11(,)A x y ,22(,)B x y ,(,)M M M x y .将y kx b =+代入2229x y m +=得2222(9)20k x kbx b m +++-=,故12229M x x kbx k +==-+,299M M b y kx b k =+=+.于是直线OM 的斜率9M OM My k x k ==-,即9OM k k ⋅=-.所以直线OM 的斜率与l 的斜率的乘积为定值.(2)四边形OAPB 能为平行四边形.因为直线l 过点(,)3mm ,所以l 不过原点且与C 有两个交点的充要条件是0k >,3k ≠.由(1)得OM 的方程为9y x k =-.设点P 的横坐标为P x .由2229,9,y x k x y m ⎧=-⎪⎨⎪+=⎩得2222981P k m x k =+,即239P x k =+.将点(,)3m m 的坐标代入直线l 的方程得(3)3m k b -=,因此2(3)3(9)M mk k x k -=+.四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即2P M x x =.于是239k =+2(3)23(9)mk k k -⨯+.解得147k =-,247k =+.因为0,3i i k k >≠,1i =,2,所以当l 的斜率为47-或47+时,四边形OAPB 为平行四边形.练习 2.【解析】当直线PN 的斜率k 不存在时,则需M 为左顶点或右顶点,即坐标为(22,0)或(22,0)-,则PN 方程为: 2x =或2x =-,从而有23PN =,所以1123222622S PN OM =⋅=⨯⨯=. 当直线PN 的斜率k 存在时,设直线PN 方程为:()0y kx m m =+≠, ()11P x y ,, ()22N x y ,.将PN 的方程代入C 整理得:()222124280k xkmx m +++-=,所以122412kmx x k -+=+,21222812m x x k-⋅=+,()121222212m y y k x x m k +=++=+,由OM OP ON =+u u u u r u u u r u u u r 得: 22421212km m M k k -⎛⎫ ⎪++⎝⎭,,将M 点坐标代入椭圆方程得2212m k =+.点O 到直线PN 的距离21m d k=+, 2121PN k x x =+-2221212121683226S d PN m x x k x x k m =⋅=⋅-=+⋅-=-+=.综上,平行四边形OPMN 的面积S 为定值26.例4.【解析】由题意知0k ≠,直线l 与椭圆方程联立,整理得224(13)36150k x kx +++= ,()()2222364413151636105k k k ∆⋅+⋅-=-=>,则2512k >∵.设1122(,),(,)M x y N x y ,则121222915,134(13)k x x x x k k +=-=++, 121223()313y y k x x k+=++=+, 设MN 中点为H ,所以2293,2626k H k k⎛⎫- ⎪++⎝⎭,若存在菱形则AH MN ⊥,则AH MN ⊥,又直线,AM MN 斜率均存在,所以1AH MN k k ⋅=-. 于是AH MNk k ⋅= 22312619026k k k k ++⋅=---+, 解得6k =±,满足0∆>.故存在k 使得以,AM AN 为邻边的平行四边形可以是菱形,k 值为6±.练习3.【解析】()21,0F ,设点()11,A x y 、()22,B x y ,直线l 的方程为()1y k x =-, 当0k =时,直线l 与x 轴重合,此时,P 、M 、N 三点共线,不合乎题意,则0k ≠,直线与椭圆方程联立,消去y ,化简得()22224384120k x k x k +-+-=,则2122843k x x k +=+,212241243k x x k -=+, ()12122y y k x x +=+-,()()()11221212,,2,PM PN x m y x m y x x m y y +=-+-=+-+u u u u v u u u v,()()2121,MN x x k x x =--u u u u v,根据菱形对角线相互垂直的性质可得()0PM PN MN +⋅=u u u u v u u u v u u u u v ,()121220x x m k y y ∴+-++=,即()()22121220k x x k m ++--=,即()22228122043k k k m k +--=+,整理得222110,34344k m k k⎛⎫==∈ ⎪+⎝⎭+.综上所述,在x 轴上存在点(),0P m 使得以PM 、PN 为邻边的平行四边形是菱形,且实数m 的取值范围是10,4⎛⎫ ⎪⎝⎭.例5.【解析】将y x m =+代入221205x y +=并整理得22584200x mx m ++-=,()()228204200m m ∆=-->,求得55m >>-.设直线MA ,MB 斜率分别为1k 和2k ,只要证120k k +=即可. 设()11,A x y ,()22,B x y ,则1285m x x +=-,124205m x x -=, ∵()()()()()()1221121112121414114444y x y x y y k k x x x x --+----+=+=----()()()()()()122112141444x m x x m x x x +--++--=--()()()()()()()()()()212121212242085812581554444m m m m x x m x x m x x x x -----+-+--===----,可得120k k +=,因此MA ,MB 与x 轴所围成的三角形为等腰三角形. 例6.【解析】直线:l y kx =与曲线C 交于,P Q 两点, 可知0k ≠,设11(,)P x y联立22143y kx x y =⎧⎪⎨+=⎪⎩,消y 得22(34)12k x += 解得212221212341234x k k y k ⎧=⎪⎪+⎨⎪=⎪+⎩OP ===PQR ∆Q 是以PQ 为底的等腰三角形,RO PQ ∴⊥ 1RO PQ k k ∴=-g 则1ROk k =-,直线OR 1y x k =-与椭圆联立,同理可得:||OR == 1||||2RPQS PQ OR ∆∴=gg 122=g2=2RPQS ∆∴===247==≥=,当且仅当221k k =,即1k =±时取等号,min 24()7RPQ S ∆∴=. 练习4.【解析】设直线,MA MB 的斜率分别为12,k k ,()()1122,,,A x y B x y ,1:2l y x m =+,直线l 与椭圆方程联立得222240x mx m ++-=,122x x m +=-,21224x x m =-,因为12121211,22y y k k x x --==--,所以()()()()()()1221121212121212112222y x y x y y k k x x x x --+----+=+=----()()()()1221121112122222x m x x m x x x ⎛⎫⎛⎫+--++-- ⎪ ⎪⎝⎭⎝⎭=--()()()()()12121224122x x m x x m x x +-+--=-- ()()2212242444022m m m m x x --+-+==--.则120k k +=,所以直线MA ,MB 与x 轴总围成等腰三角形.例7.【解析】法一:因为PM 平分12F PF ∠,所以1122||||||||PF MF PF MF ==,则112||||||PF PF PF =+,所以1||4PF ==22<<3322m -<<.法二:由题意可知,1212cos ||||||||PF PM PF PM PF PM PF PM θ••==u u u r u u u u r u u u u r u u u u r u u u r u u u u r u u u u r u u u u r ,即1212||||PF PM PF PM PF PF ••=u u u r u u u u r u u u u r u u u u r u u u r u u u u r , 设00P(,)x y ,其中204x ≠,将向量坐标代入并化简得23000m(416)312x x x -=-,因为204x ≠,所以034m x =而0(2,2)x ∈-,所以33(,)22m ∈-. 法三:设()00,P x y ,则1PF:(0000y x x y -=,2PF:(0000y x x y -=====,034=m x ,又因为022x -<<,所以3322-<<m ,即为m 的取值范围. 练习5.【解析】(1)把点1,2P ⎛⎫ ⎪ ⎪⎝⎭代入E 中,得2211+12ab =,又2c a =,∵2212b a =,解得22a =,21b =,∵椭圆E 的方程为2212x y +=.(2)设过A 斜率为()0k k ≠的直线为1y kx =+,代入椭圆方程22220x y +-=得()222140kx kx ++=∵,则2421B k x k =-+,∵0B AB =+=, 在直线31y x =-+上取一点1,03Q ⎛⎫⎪⎝⎭,则Q 到直线1y kx =+,点Q 到直线11y x k =-+的距离=,解得2k =或12-.代入∵得AB =,AC =∵ABC ∆的面积12S AB AC =⨯=140227=. 由∵得87,99B ⎛⎫--⎪⎝⎭,41,33C ⎛⎫⎪⎝⎭.∵BC 的方程为114323y x ⎛⎫-=- ⎪⎝⎭,即3620x y --=. 例8.【解析】法一:(因求证直线PB 恒过定点,故从直线PB 入手)设()11,P x y ,()22,B x y ,则()11,A x y -,可设直线PB 的方程为y kx m =+,与椭圆方程联立整理得()222214280k x kmx m +++-=,0∆>,2121222428,2121km m x x x x k k --+==++,AF FB k k =Q ,∵121222y y x x =--,整理得,()()1212240kx x m k x x m +-+-=, ∵()2222842402121m kmk m k m k k --⋅+-⋅-=++,解得4m k =-,∵直线PB 的方程为:()44y kx k k x =-=-, 直线PB 恒过定点()4,0.法二(从直线l 入手)设直线l 方程为2x my =+,()11,A x y ,()22,B x y ,则()11,P x y -,直线l 与椭圆方程联立整理得22(2)440m y my ++-=,0∆>,12122244,22m y y y y m m --+==++,直线PB 的方程为211121()y y y y x x x x ++=--,由对称性知直线PB 定点在x 轴上,令0y =,得到121121()y x x x x y y -=++122121x y x y y y +=+122121(2)(2)my y my y y y +++=+12122122()my y y y y y ++=+12122122()my y y y y y ++=+122122y ym y y =⋅++4224m m-=⋅+-4=,故直线PB 恒过定点()4,0.例9.【解析】(从直线AB 入手)由题意设直线AB 的方程为()0y kx m k =+≠,与椭圆方程联立,消去y 得,()2222220k x kmx m +++-=,∵0∆>,即222m k -< ∵,且12222km x x k +=-+,212222m x x k -⋅=+,∵线段AB 中点的横坐标022km x k =-+,纵坐标00222m y kx m k =+=+,AB 的中点222,22km m M k k ⎛⎫- ⎪++⎝⎭. 将中点坐标代入直线l 112y x k ⎛⎫=-+ ⎪⎝⎭可得,222k m k+=-∵, 由∵,∵可得,223k >,∵,k ⎛⎫∈-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭. 练习6.【解析】12(2,0),(2,0)F F -,所以直线1AF 的方程为3(2)4y x =+,即3460x y -+=.直线2AF 的方程为2x =.由点A 在椭圆E 上的位置知,直线l 的斜率为正数.设(,)P x y 为l 上任一点,则34625x y x -+=-.若346510x y x -+=-,得280x y +-=.(因其斜率为负,舍去),于是,由346105x y x -+=-,得210x y --=,所以直线l 的方程为210x y --=.假设存在1122(,),(,)M x y N x y 关于直线l 对称,则12MN k =-.设直线MN 的方程为12y x m =-+,将其代入椭圆方程得22120x mx m -+-=,0∆>解得(4,4)m ∈-.21212,12x x m x x m +==-,于是121213()222y y x x m m +=-++=,则MN 的中点坐标P 3(,)24m m ,则点P 在直线:21l y x =+上,则314m m =-,解得4m =,不满足0∆>,故不存在满足题设条件的相异两点. 例10.【解析】易知()2,0F -,()3,0M -,设直线l 的方程为3x my =-,设()()1122,,,A x y B x y ,则()11,C x y -,l 与椭圆方程联立得()223630m y my +-+=.()22361230m m ∆=-+>,解得:m >或m <, 1212223,633y y y y m m m +=⋅=++. 法一:故21122121121222(222))2(BF CF x y y x y k k x x x x y y y --=-=+++++++ 12112221(3)(3)(2)(2)22y y y my y my x x ++++--=+121221()2(2)(2)my y x x y y -=+++222132330(62)(2)m x mm x m ⋅++==++-,即BF CF k k =,又因为直线,BF CF 有共同点F ,故,,C F B 三点共线.法二:2211(2,),(2,)FB x y FC x y =+=+-u u u r u u u r,则2112(2)()(2)x y x y +⋅--+⋅2112(1)()(1)my y my y =-⋅---⋅12122()my y y y =-++22320363mm m m =-⋅+=++.则//FB FC u u u r u u u r ,故,,C F B 三点共线. 练习7.【解析】1(2,0)A -,2(2,0)A ,设1(M x ,1)y ,2(N x ,2)y .直线1A P 的方程为(2)6my x =+,代入椭圆方程可得:2222(9)44360m x m x m +++-=,则21243962m x m --⋅=+可得2121829m x m -=+,代入直线1A P 方程可得1269m y m =+, 同理可得222221m x m -=+,2221m y m -=+,∴2293(9m QM m -=+u u u u r ,26)9m m +,223(1m QN m -=+u u u r ,22)1m m -+,Q 222222932369119m m m mm m m m ---=++++g g ,∴//QM QN u u u u r u u u r ,M ∴,N ,Q 三点共线. 例11.【解析】设1(B x ,1)y ,2(C x ,2)y ,又Q 椭圆的右焦点为2(2,0)F ,由重心坐标公式得1212023403x x y y ++⎧=⎪⎪⎨++⎪=⎪⎩,∴12123222x x y y +⎧=⎪⎪⎨+⎪=-⎪⎩,即弦BC 的中点为(3,2)-,又Q221122221201612016x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,1212121216()()20()()0x x x x y y y y ∴+-++-=, 即12121623()202(2)()0x x y y ⨯⨯-+⨯⨯--=,∴1212966805y y x x -==-,即65BC k =;∴直线BC 的方程65280x y --=.(另解:设出直线BC 的方程,与椭圆联立,利用韦达定理也可求出直线方程.)例12.【解析】(02)(20)B F ,,,,∵1BF k =-.∵BF l ⊥,可设直线l 的方程为y x m =+,设()()1122M x y N x y ,,,,直线l 与椭圆方程联立得2234280x mx m ++-=.由()222(4)12289680m m m ∆=--=->,得212m <,,则2121242833m m x x x x -+=-=,,由F 为垂心知BN MF ⊥,即0BN FM =u u u r u u u u r g .即121212220y y x x y x +--=,()()()121212220x m x m x x x m x ∴+++-+-=,即()212122(2)20x x m x x m m +-++-=,222842(2)2033m mm m m --⋅+-⋅+-=,∵28321603m m m +-=∴=-,或2m =.又2m =时,直线l 过B 点,不合要求,∵83m =-,故存在直线8:3l y x =-满足题设条件.例13.【解析】将直线1(0)2y x m m =+<代入椭圆方程得222240x mx m ++-=,2244(24)0m m ∆=-->,20m ∴-<<,设1(A x ,1)y ,2(B x ,2)y ,则122x x m +=-,21224x x m =-.设直线MA ,MB 的斜率分别为1k ,2k ,MAB ∆的内心是I ,则1212121122y y k k x x --+=+-- 22111211(1)(2)(1)(2)22(2)(2)x m x m x x x x +-+----+=-212112(2)()44(2)(2)x x m x x m x x -+-+=--+,将韦达定理代入上式得120k k +=,则MA ,MB 关于y 轴对称,即AMB ∴∠的平分线MI 垂直于x 轴,MAB ∴∆的内心的横坐标是2.练习8.【解析】(1)(0,1)A ,(1,0)F ,则1AF K =-,直线l 的斜率为1,设直线:l y x m =+,1(B x ,1)y ,2(C x ,2)y .将l 与椭圆方程联立得2234220x mx m ++-=,则1243x x m +=-,212223m x x -=;由已知BF AC ⊥,则0BF AC =u u u r u u u rg ,即121212x x y y x y +=+,把1122,y x m y x m =+=+代入,得212122(1)()0x x m x x m m +-++-=,∴2340m m +-=,解得43m =-,或1m =(直线过点A ,不合题意,舍去),故l 的方程为43y x =-. (2)设P 点坐标为0(x ,00)(0)y y >,而G 为∵12PF F 的重心,故00(,0)303x y c c G -+++,即00(,)33x yG .设12PF F ∆的内切圆半径为r ,12120121211||||(||||||)22PF F S F F y PF PF F F r ==++V g g ,于是0112||(22)22c y a c r =+g g g , 又2a =,1c =,00y >,则013r y =,从而I 点纵坐标与G 点纵坐标都为03y ,从而12//IG F F .。
2021_2022学年新教材高中数学第二章平面解析几何2.4曲线与方程课后练习含解析新人教B版选择性
第二章平面解析几何2.4曲线与方程课后篇巩固提升必备知识根底练1.如下方程中表示一样曲线的一对方程是()=1A.x=√y与y=x2B.y=x与xylg x与y=lg√x D.y=x与x2-y2=0C.y=122.方程x2+y2=1(xy<0)的曲线形状是()x2+y2=1(xy<0)表示以原点为圆心,1为半径的圆在第二、四象限的局部.3.0≤α<2π,点P(cos α,sin α)在曲线(x-2)2+y2=3上,如此α的值为()A .π3B .5π3C .π3或5π3D .π3或π6(cos α-2)2+sin 2α=3,得cos α=12.又0≤α<2π,∴α=π3或5π3.4.设线段AB 的两个端点A ,B 分别在x 轴、y 轴上滑动,且|AB|=5,OM ⃗⃗⃗⃗⃗⃗ =35OA ⃗⃗⃗⃗⃗ +25OB ⃗⃗⃗⃗⃗ ,如此点M 的轨迹方程为 ()A.x 29+y 24=1B.y 29+x 24=1 C.x 225+y 29=1D.y 225+x 29=1M (x ,y ),A (x 0,0),B (0,y 0),由OM ⃗⃗⃗⃗⃗⃗ =35OA ⃗⃗⃗⃗⃗ +25OB ⃗⃗⃗⃗⃗ ,得(x ,y )=35(x 0,0)+25(0,y 0), 由{x =35x 0,y =25y 0,解得{x 0=53x,y 0=52y,由|AB|=5,得(53x)2+(52y)2=25,化简得x 29+y 24=1. 5.点A (a ,2)既是曲线y=mx 2上的点,也是直线x-y=0上的点,如此m=.A 既在曲线y=mx 2上,也在直线x-y=0上,如此{2=ma 2,a -2=0,∴{a =2,m =12.6.在平面直角坐标系xOy 中,假如定点A (1,2)与动点P (x ,y )满足向量OP ⃗⃗⃗⃗⃗ 在向量OA ⃗⃗⃗⃗⃗ 上的投影为-√5,如此点P 的轨迹方程是.2y+5=0解析由OP ⃗⃗⃗⃗⃗ ·OA ⃗⃗⃗⃗⃗⃗ |OA⃗⃗⃗⃗⃗⃗ |=-√5,知√5=-√5,即x+2y+5=0.7.动点P 与平面上两定点A (-√2,0),B (√2,0)连线的斜率的积为定值-12,如此动点P 的轨迹方程为.2+2y 2-2=0(x ≠±√2)P (x ,y ),由题意知,x ≠±√2,k AP =x+√2,BP =x -√2,由条件知k AP ·k BP =-12,所以x+√2x -√2=-12,整理得x 2+2y 2-2=0(x ≠±√2).8.假如直线x+y-m=0被曲线y=x 2所截得的线段长为3√2,求m 的值.x+y-m=0与曲线y=x 2相交于A (x 1,y 1),B (x 2,y 2)两点,联立直线与曲线方程,得{x +y-m =0,y =x 2.①②将②代入①,得x 2+x-m=0, 所以{x 1+x 2=-1,x 1x 2=-m,所以|AB|=√(x1-x2)2+(y1-y2)2=√1+(-1)2·|x1-x2|=√2·√(x1+x2)2-4x1x2=√2·√1+4m=3√2,所以√1+4m=3,所以m的值为2.关键能力提升练9.方程(x-y)2+(xy-1)2=0表示的曲线是()A.一条直线和一条双曲线B.两条双曲线C.两个点D.以上答案都不对x-y)2+(xy-1)2=0,即{x-y=0,xy-1=0.故{x=1,y=1或{x=-1,y=-1.10.(多项选择)给出如下结论,其中错误的答案是()A.方程yx-2=1表示斜率为1,在y轴上截距为-2的直线B.到x轴距离为2的点的轨迹方程为y=-2C.方程|x-3|+(y2-9)2=0表示两个点D.到两坐标轴距离之和为a(a>0)的点M的轨迹方程为x+y=a(a>0)A,方程yx-2=1表示斜率为1,在y轴上的截距为-2的直线且去掉点(2,0),所以A错误;对于B,到x轴距离为2的点的轨迹方程为y=-2或y=2,所以B错误;对于C,方程|x-3|+(y2-9)2=0表示(3,-3),(3,3)两个点,所以C正确;对于D,轨迹方程应为|x|+|y|=a(a>0),所以D错误.11.在直角坐标平面内,点A,B的坐标分别为(-1,0),(1,0),如此满足tan∠PAB·tan∠PBA=m(m为非零常数)的点P的轨迹方程是()A.x2-y2m =1(y≠0)B.x2-y2m=1C.x2+y2m =1(y≠0)D.x2+y2m=1P(x,y),由题意,得yx+1·yx-1=-m(m≠0),化简可得x2+y2m=1(y≠0).12.直线y=kx+1与y=2kx-3(k为常数,且k≠0)交点的轨迹方程是.5(x≠0)1与y=2kx-3联立,消去k,得y=5.由y=kx+1=5,得kx=4.∵k≠0,∴x≠0.故所求的轨迹方程为y=5(x≠0).13.A(-2,0),B(1,0)两点,动点P不在x轴上,且满足∠APO=∠BPO,其中O为原点,如此点P的轨迹方程是.x-2)2+y2=4(y≠0)|PA|=2|PB|,设P(x,y),如此√(x+2)2+y2=2√(x-1)2+y2,整理得(x-2)2+y2=4(y≠0).14.P为圆(x+2)2+y2=1上的动点,O为坐标原点,M为线段OP的中点,求点M的轨迹方程,并指出轨迹曲线的形状.M(x,y),P(x1,y1).∵M为线段OP的中点,∴{x=x12,y=y12,即{x1=2x,y1=2y,即P(2x,2y).将P(2x,2y)代入圆的方程(x+2)2+y2=1,可得(2x+2)2+(2y)2=1,即(x+1)2+y2=14,此方程为点M的轨迹方程.∴点M的轨迹曲线是以(-1,0)为圆心,12为半径的圆.15.坐标平面上动点M (x ,y )与两个定点P (26,1),Q (2,1),且|MP|=5|MQ|.(1)求点M 的轨迹方程,并指出轨迹曲线的形状;(2)记(1)中轨迹曲线为C ,过点N (-2,3)的直线l 被C 所截得的线段长度为8,求直线l 的方程.由题意,得|MP||MQ|=5,即√(x -26)2+(y -1)2√(x -2)2+(y -1)2=5,化简,得x 2+y 2-2x-2y-23=0,所以点M 的轨迹方程是(x-1)2+(y-1)2=25.轨迹曲线是以(1,1)为圆心,以5为半径的圆.(2)当直线l 的斜率不存在时,l :x=-2,此时所截得的线段长度为2√52-32=8,所以l :x=-2符合题意.当直线l 的斜率存在时,设过点N (-2,3)的直线l 的方程为y-3=k (x+2),即kx-y+2k+3=0.圆心(1,1)到l 的距离d=√k 2+1.由题意,得(√k 2+1)2+42=52,解得k=512.所以直线l 的方程为512x-y+236=0,即5x-12y+46=0.综上,直线l 的方程为x=-2或5x-12y+46=0.学科素养拔高练16.在△ABC 中,A (2,0),B (-2,0),G ,M 为平面上的两点且满足GA ⃗⃗⃗⃗⃗ +GB ⃗⃗⃗⃗⃗ +GC ⃗⃗⃗⃗⃗ =0,|MA ⃗⃗⃗⃗⃗⃗ |=|MB ⃗⃗⃗⃗⃗⃗ |=|MC ⃗⃗⃗⃗⃗⃗ |,GM ⃗⃗⃗⃗⃗⃗ ∥AB⃗⃗⃗⃗⃗ ,如此顶点C 的轨迹方程为.+y 212=1(y ≠0)C (x ,y )(y ≠0),如此由GA ⃗⃗⃗⃗⃗ +GB⃗⃗⃗⃗⃗ +GC ⃗⃗⃗⃗⃗ =0, 即G 为△ABC 的重心,得G (x 3,y3).又|MA ⃗⃗⃗⃗⃗⃗ |=|MB ⃗⃗⃗⃗⃗⃗ |=|MC⃗⃗⃗⃗⃗⃗ |, 即M 为△ABC 的外心,所以点M 在y 轴上,又GM ⃗⃗⃗⃗⃗⃗ ∥AB ⃗⃗⃗⃗⃗ ,如此有M (0,y3). 由|MC ⃗⃗⃗⃗⃗⃗ |=|MA ⃗⃗⃗⃗⃗⃗ |,得x 2+(y -y 3)2=4+y29,化简得x 24+y 212=1,y ≠0.17.直角坐标平面上点Q (2,0)和圆O :x 2+y 2=1,动点M 到圆O 的切线长与|MQ|的比等于常数λ(λ>0),求动点M 的轨迹方程,并指出轨迹曲线的形状.,设直线MN 切圆于N 点,如此动点M 组成的集合是P={M||MN|=λ|MQ|}(λ>0).因为圆的半径|ON|=1,所以|MN|2=|MO|2-|ON|2=|MO|2-1.设点M 的坐标为(x ,y ),如此λ2[(x-2)2+y 2]=x 2+y 2-1,整理,得(λ2-1)(x 2+y 2)-4λ2x+(1+4λ2)=0,当λ=1时,方程化为x=54,它表示一条直线;当λ≠1时,方程化为(x -2λ2λ2-1)2+y 2=1+3λ2(λ2-1)2,它表示圆心为(2λ2λ2-1,0),半径为√1+3λ2|λ2-1|的圆.。
高中数学第二章平面解析几何2.6.2双曲线的几何性质课后练习含解析新人教B版选择性必修第一册
第二章平面解析几何2.6双曲线及其方程2.6.2双曲线的几何性质课后篇巩固提升必备知识基础练1.若双曲线x2-y2k=1的一条渐近线的斜率是-2,则实数k的值为()A.4B.14C.-4D.-14x2-y2k=1的一条渐近线的斜率是-2,可得√k=2,解得k=4.2.双曲线C:x2a2−y2b2=1(a>0,b>0)的一条渐近线的倾斜角为50°,则C的离心率为()A.2sin 40°B.2cos 40°C.1°D.1cos50°C:x 2a2−y2b2=1(a>0,b>0)的渐近线方程为y=±bax,由双曲线的一条渐近线的倾斜角为50°,得ba =tan50°=sin50°cos50°,则b2a2=c2-a2a2=e2-1=sin250°cos250°,得e2=1+sin250°cos250°=1cos250°,∴e=1cos50°.3.渐近线方程为x±y=0的双曲线的离心率是()A.√22B.1C.√2D.2x±y=0的双曲线,可得a=b,所以c=√2a.则该双曲线的离心率为e=ca=√2.4.(多选)已知双曲线C:x2a2−y2b2=1(a>0,b>0)与直线y=kx交于A,B两点,点P(x0,y0)为C上任意一点,且直线PA,PB的斜率分别为k PA,k PB,且k PA·k PB=94,则下列结论正确的是()A.双曲线的渐近线方程为y=±32xB.双曲线的渐近线方程为y=±52xC.双曲线的离心率为√132 D.双曲线的离心率为134A (x ,y ),B (-x ,-y ),有x 2a2−y 2b 2=1. 又∵x 02a 2−y 02b 2=1,两式相减得x 02-x 2a 2=y 02-y 2b 2,即x 02-x 2y 02-y 2=a 2b 2. 又∵k PA ·k PB =(y 0-y )(x 0-x )·(y 0+y )(x 0+x )=94,∴b 2a 2=94,∴b a=32,∴双曲线的渐近线方程为y=±32x ,故选项A 正确;又∵b 2a2=c 2-a 2a 2=e 2-1=94,∴e=√132,故选项C 正确.5.我们把方程分别为x 2a2−y 2b2=1和y 2b2−x 2a 2=1的双曲线称为共轭双曲线,则共轭双曲线有相同的( )A.离心率B.渐近线C.焦点D.顶点共轭双曲线x 2a2−y 2b2=1和y 2b2−x 2a 2=1的c=√a 2+b 2,设a>0,b>0,可得它们的焦点分别为(±c ,0),(0,±c ), 渐近线方程均为y=±bax ,离心率分别为ca和cb,它们的顶点分别为(±a ,0),(0,±b ).6.(2021全国乙,理13)已知双曲线C :x 2m -y 2=1(m>0)的一条渐近线为√3x+my=0,则C 的焦距为 .由双曲线方程可知其渐近线方程为√m±y=0,即y=±√mx ,得-√3m=-√m,解得m=3.可得C 的焦距为2√m +1=4. 7.双曲线C :x 2a2−y 2b 2=1(a>0,b>0)的左、右焦点为F 1,F 2,以坐标原点O 为圆心,以c 为半径作圆A ,圆A与双曲线C 的一个交点为P ,若三角形F 1PF 2的面积为a 2,则C 的离心率为 . √2P 为右支上一点,设|PF 1|=m ,|PF 2|=n ,由双曲线的定义可得m-n=2a ,由题意可得△PF1F2为直角三角形,且∠F1PF2=90°,可得m2+n2=4c2,且12mn=a2,由(m-n)2=m2+n2-2mn=4c2-4a2=4a2,即为c=√2a,可得e=ba=√2.8.求适合下列条件的双曲线的标准方程.(1)两顶点间的距离是6,两焦点所连线段被两顶点和中心四等分;(2)渐近线方程为2x±3y=0,且两顶点间的距离是6.由两顶点间的距离是6,得2a=6,即a=3.由两焦点所连线段被两顶点和中心四等分可得2c=4a=12,即c=6,于是有b2=c2-a2=62-32=27.由于焦点所在的坐标轴不确定,故所求双曲线的标准方程为x 29−y227=1或y29−x227=1.(2)设双曲线方程为4x2-9y2=λ(λ≠0),即x 2λ4−y2λ9=1(λ≠0),由题意得a=3.当λ>0时,λ4=9,λ=36,双曲线方程为x29−y24=1;当λ<0时,-λ9=9,λ=-81,双曲线方程为y29−x2814=1.故所求双曲线的标准方程为x29−y24=1或y29−x2814=1.9.过双曲线C:x2a2−y2b2=1(a>0,b>0)的右焦点作一条与其渐近线平行的直线,交C于点P.若点P的横坐标为2a,求C的离心率.,与渐近线平行的直线l的斜率为ba ,又直线l过右焦点F(c,0),则直线l的方程为y=ba(x-c).因为点P的横坐标为2a,代入双曲线方程得4a 2a2−y2b2=1,化简得y=-√3b或y=√3b(点P在x轴下方,故舍去),故点P的坐标为(2a,-√3b),代入直线方程得-√3b=ba (2a-c),化简可得离心率e=ca=2+√3.关键能力提升练10.如图,中心均为原点O 的双曲线与椭圆有公共焦点,M ,N 是双曲线的两顶点,若M ,O ,N 将椭圆的长轴四等分,则双曲线与椭圆的离心率的比值是( )A.3B.2C.√3D.√2设椭圆与双曲线的标准方程分别为x 2a 2+y 2b 2=1(a>b>0),x 2m 2−y 2n 2=1(m>0,n>0),因为它们共焦点,所以设它们的半焦距均为c ,所以椭圆与双曲线的离心率分别为e 1=ca,e 2=cm ,由点M ,O ,N 将椭圆长轴四等分可知m=a-m ,即2m=a ,所以e 2e 1=c m c a=am =2.11.(2019全国Ⅲ,理10)双曲线C :x 24−y 22=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点.若|PO|=|PF|,则△PFO 的面积为( ) A.3√24B.3√22C.2√2D.3√2a=2,b=√2,则c=√a 2+b 2=√6,∴F (√6,0).∵|PO|=|PF|,∴x P =√62.又P 在C 的一条渐近线上,不妨设在渐近线y=√22x 上,∴y P =√22×√62=√32. ∴S △PFO =12|OF|·|y P |=12×√6×√32=3√24.故选A .12.(多选)已知双曲线C 过点(3,√2)且渐近线方程为y=±√33x ,则下列结论正确的是( ) A.C 的方程为x 23-y 2=1 B.C 的离心率为√3C.曲线y=e x-2-1经过C 的一个焦点D.直线x-√2y-1=0与C 有两个公共点x 轴上,可设双曲线C 的方程为x 2a 2−y 2b 2=1,根据条件可知ba=√33,所以方程可化为x 23b2−y 2b2=1,将点(3,√2)代入得b 2=1,所以a 2=3,所以双曲线C 的方程为x 23-y 2=1;若焦点在y 轴上,可设双曲线C 的方程为y 2a 2−x 2b 2=1,根据条件可知ab=√33,所以方程可化为y 2a2−x 23a 2=1,将点(3,√2)代入得a 2=-1(舍去).综上C 的方程为x 23-y 2=1,故A 正确;离心率e=c a =√a 2+b 2a 2=√3+13=2√33,故B 错误;双曲线C 的焦点为(2,0),(-2,0),将x=2代入得y=e 0-1=0,所以C 正确;联立{x 23-y 2=1,x -√2y -1=0,整理得y 2-2√2y+2=0,则Δ=8-8=0,故只有一个公共点,故D 错误.13.设双曲线x 2a2−y 2b 2=1(a>0,b>0)的左、右焦点分别为F 1,F 2,过F 1的直线分别交双曲线的左、右两支于M ,N.若以MN 为直径的圆经过右焦点F 2,且|MF 2|=|NF 2|,则双曲线的离心率为( ) A.√6 B.√5 C.√3 D.√2MN 为直径的圆经过右焦点F 2,则MF 2⃗⃗⃗⃗⃗⃗⃗⃗ ·NF 2⃗⃗⃗⃗⃗⃗⃗ =0,又|MF 2|=|NF 2|, 可得△MNF 2为等腰直角三角形, 设|MF 2|=|NF 2|=m ,则|MN|=√2m , 由|MF 2|-|MF 1|=2a ,|NF 1|-|NF 2|=2a , 两式相加可得|NF 1|-|MF 1|=|MN|=4a , 即有m=2√2a.过F 2作MN 的垂线交于点H ,则|F 2H|=2a.在直角三角形HF 1F 2中可得4c 2=4a 2+(2a+2√2a-2a )2, 化为c 2=3a 2,即e=ca =√3.14.已知双曲线C :x 2a2−y 2b 2=1(a>0,b>0)的离心率为2,左焦点为F 1,点Q (0,√3c )(c 为半焦距),P 是双曲线C 的右支上的动点,且|PF 1|+|PQ|的最小值为6,则双曲线C 的方程为 .2-y 23=1F 2,则|PF 1|-|PF 2|=2a ,所以|PF 1|+|PQ|=2a+|PF 2|+|PQ|,而|PF 2|+|PQ|的最小值为|QF 2|=√c 2+(√3c )2=2c ,所以|PF 1|+|PQ|的最小值为2a+2c=6, 又ca =2,解得a=1,c=2,于是b 2=3,故双曲线方程为x 2-y 23=1.15.已知双曲线C :x 2a2−y 2b 2=1(a>0,b>0)的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点,若F 1A ⃗⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ ,F 1B ⃗⃗⃗⃗⃗⃗⃗ ·F 2B ⃗⃗⃗⃗⃗⃗⃗ =0,则双曲线C 的渐近线方程为 .±√3x,∵F 1A ⃗⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ ,F 1B ⃗⃗⃗⃗⃗⃗⃗ ·F 2B ⃗⃗⃗⃗⃗⃗⃗ =0,∴OA 为Rt △F 1F 2B 的中位线,∴OA ⊥F 1B. 又∵OA 所在直线斜率为-ba ,∴F 1B 所在直线方程为y=ab (x+c ),联立{y =ab (x +c ),y =b a x ,解得B (a 2cb 2-a 2,abc b 2-a 2), 则|OB|2=a 4c 2(a 2-b 2)2+a 2b 2c 2(a 2-b 2)2=c 2,整理得b 2=3a 2,∴ba =√3,∴双曲线C 的渐近线方程为y=±√3x.16.已知双曲线C 的焦点F (√3,0),双曲线C 上一点P 到F 的最短距离为√3−√2. (1)求双曲线的标准方程和渐近线方程;(2)已知点M (0,1),设P 是双曲线C 上的点,Q 是P 关于原点的对称点.设λ=MP⃗⃗⃗⃗⃗⃗ ·MQ ⃗⃗⃗⃗⃗⃗ ,求λ的取值范围.∵双曲线C 的焦点F (√3,0),双曲线C 上一点P 到F 的最短距离为√3−√2,可设双曲线的方程为x 2a2−y 2b 2=1,∴c=√3,c-a=√3−√2,∴a=√2, ∴b 2=c 2-a 2=(√3)2-(√2)2=1,则双曲线的方程为x 22-y 2=1, 令x 22-y 2=0,则y=±√22x ,即渐近线方程为y=±√22x.(2)设P 的坐标为(x 0,y 0),则Q 的坐标为(-x 0,-y 0),∴λ=MP ⃗⃗⃗⃗⃗⃗ ·MQ ⃗⃗⃗⃗⃗⃗ =(x 0,y 0-1)·(-x 0,-y 0-1)=-x 02−y 02+1=-32x 02+2.∵|x 0|≥√2,∴λ的取值范围是(-∞,-1].学科素养拔高练17.求适合下列条件的双曲线的离心率: (1)双曲线的渐近线方程为y=±32x ; (2)双曲线x 2a2−y 2b 2=1(0<a<b )的半焦距为c ,直线l 过(a ,0),(0,b )两点,且原点到直线l 的距离为√34c.若焦点在x 轴上,则ba =32,故e=√b 2a 2+1=√132. 若焦点在y 轴上,则ab =32,即ba =23, 故e=√b 2a 2+1=√133. 综上所述,双曲线的离心率为√132或√133. (2)依题意,得直线l :bx+ay-ab=0.由原点到l 的距离为√34c ,得√a 2+b 2=√34c ,即ab=√34c 2,∴16a 2b 2=3(a 2+b 2)2,即3b 4-10a 2b 2+3a 4=0,∴3(b 2a 2)2-10×b 2a 2+3=0.解得b 2a 2=13或b 2a 2=3.∵0<a<b ,∴b 2a 2=3.∴e=√1+b 2a 2=2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章解析几何条件转化【例1】.(1)原曲线方程可化简得:2218852x y m m +=--由题意可得:8852805802m m mm ⎧>⎪--⎪⎪>⎨-⎪⎪>⎪-⎩,解得:752m <<(2)由已知直线代入椭圆方程化简得:22(21)16240kx kx +++=,2=32(23)k ∆-,解得:232k >由韦达定理得:21621M N k x x k +=+①,22421M N x x k =+,②设(,4)N N N x k x +,(,4)M M M x kx +,(1)G G x ,MB 方程为:62M M kx y x x +=-,则316M M x G kx ⎛⎫ ⎪+⎝⎭,,∴316M M x AG x k ⎛⎫=- ⎪+⎝⎭ ,,()2N N AN x x k =+ ,,欲证A G N ,,三点共线,只需证AG ,AN 共线即3(2)6M N N M x x k x x k +=-+成立,化简得:(3)6()M N M N k k x x x x +=-+将①②代入易知等式成立,则A G N ,,三点共线得证。
【例2】【解法1】本题主要考查双曲线的标准方程、圆的切线方程等基础知识,考查曲线和方程的关系等解析几何的基本思想方法,考查推理、运算能力.(Ⅰ)由题意,得2333a cc a⎧=⎪⎪⎨⎪=⎪⎩,解得1,3a c ==,∴2222b c a =-=,∴所求双曲线C 的方程为2212y x -=.(Ⅱ)点()()0000,0P x y x y ≠在圆222x y +=上,圆在点()00,P x y 处的切线方程为()0000x y y x x y -=--,化简得002x x y y +=.由2200122y x x x y y ⎧-=⎪⎨⎪+=⎩及22002x y +=得()222000344820x x x x x --+-=,∵切线l 与双曲线C 交于不同的两点A 、B ,且2002x <<,∴20340x -≠,且()()22200016434820x x x ∆=--->,设A 、B 两点的坐标分别为()()1122,,,x y x y ,则20012122200482,3434x x x x x x x x -+==--,∵cos OA OB AOB OA OB ⋅∠=⋅ ,且()()121212010220122OA OB x x y y x x x x x x y ⋅=+=+-- ,()212012012201422x x x x x x x x x ⎡⎤=+-++⎣⎦-()222200002222000082828143423434x x x x x x x x ⎡⎤--⎢⎥=+-+----⎢⎥⎣⎦22002200828203434x x x x --==-=--.∴AOB ∠的大小为90︒.【解法2】(Ⅰ)同解法1.(Ⅱ)点()()0000,0P x y x y ≠在圆222x y +=上,圆在点()00,P x y 处的切线方程为()0000x y y x x y -=--,化简得002x x y y +=.由2200122y x x x y y ⎧-=⎪⎨⎪+=⎩及22002x y +=得()222000344820xx x x x --+-=①()222000348820xy y x x ---+=②∵切线l 与双曲线C 交于不同的两点A 、B ,且2002x <<,∴20340x -≠,设A 、B 两点的坐标分别为()()1122,,,x y x y ,则2200121222008228,3434x x x x y y x x --==--,∴12120OA OB x x y y ⋅=+= ,∴AOB ∠的大小为90︒.(∵22002x y +=且000x y ≠,∴220002,02x y <<<<,从而当20340x -≠时,方程①和方程②的判别式均大于零).【练1】解:(Ⅰ)依题意,2c =,1b =,所以223a b c =+=.故椭圆C 的方程为2213x y +=.……………4分(Ⅱ)①当直线l 的斜率不存在时,由221,13x x y =⎧⎪⎨+=⎪⎩解得61,3x y ==±.不妨设6(1,)3A ,6(1,)3B -,因为136********k k -++=+=,又1322k k k +=,所以21k =,所以,m n 的关系式为213n m -=-,即10m n --=.………7分②当直线l 的斜率存在时,设直线l 的方程为(1)y k x =-.将(1)y k x =-代入2213x y +=整理化简得,2222(31)6330k x k x k +-+-=.设11(,)A x y ,22(,)B x y ,则2122631k x x k +=+,21223331k x x k -=+.………9分又11(1)y k x =-,22(1)y k x =-.所以12122113121222(2)(3)(2)(3)33(3)(3)y y y x y x k k x x x x ----+--+=+=----12211212[2(1)](3)[2(1)](3)3()9k x x k x x x x x x ---+---=-++121212122(42)()6123()9kx x k x x k x x x x -++++=-++222222223362(42)6123131336393131k k k k k k k k k k k -⨯-+⨯++++=--⨯+++222(126) 2.126k k +==+………12分所以222k =,所以2213n k m -==-,所以,m n 的关系式为10m n --=.………13分综上所述,,m n 的关系式为10m n --=.………14分【练2】(Ⅰ)解:由222222519a b b e a a -===-,得23b a =.………………2分依题意△12MB B 是等腰直角三角形,从而2b =,故3a =.………………4分所以椭圆C 的方程是22194x y +=.………………5分(Ⅱ)解:设11(,)A x y ,22(,)B x y ,直线AB 的方程为2x my =+.将直线AB 的方程与椭圆C 的方程联立,消去x得22(49)16200m y my ++-=.………………7分所以1221649m y y m -+=+,1222049y y m -=+.………………8分若PF 平分APB ∠,则直线PA ,PB 的倾斜角互补,所以0=+PB P A k k .………………9分设(,0)P a ,则有12120y y x a x a+=--.将112x my =+,222x my =+代入上式,整理得1212122(2)()(2)(2)my y a y y my a my a +-+=+-+-,所以12122(2)()0my y a y y +-+=.……………12分将1221649m y y m -+=+,1222049y y m -=+代入上式,整理得(29)0a m -+⋅=.………13分由于上式对任意实数m 都成立,所以92a =.综上,存在定点9(,0)2P ,使PM 平分APB ∠.………………14分【练3】如下图19所以m=-k ,所以直线l:y=kx-k 过(1,0)【练4】【练5】解.(Ⅰ)由椭圆定义可知,点P 的轨迹C 是以(30)-,,(30),为焦点,长半轴长为2的椭圆.……………………………………………………………………………3分故曲线C 的方程为2214x y +=.…………………………………………………5分(Ⅱ)存在△AOB 面积的最大值.…………………………………………………6分因为直线l 过点(1,0)E -,可设直线l 的方程为1x my =-或0y =(舍).则221,4 1.x y x my ⎧+=⎪⎨⎪=-⎩整理得22(4)230m y my +--=.…………………………………7分由22(2)12(4)0m m ∆=++>.设1122()()A x y B x y ,,,.解得212234m m y m ++=+,222234m m y m -+=+.则221243||4m y y m +-=+.因为1212AOB S OE y y ∆=⋅-22222321433m m m m +==++++.………………………10分设1()g t t t =+,23t m =+,3t ≥.则()g t 在区间[3,)+∞上为增函数.所以43()3g t ≥.所以32AOB S ∆≤,当且仅当0m =时取等号,即max 3()2AOB S ∆=.所以AOB S ∆的最大值为32.………………………………………………………………13分【练6】(Ⅰ)设椭圆C 的方程为22221x y a b+=()0a b >>,半焦距为c .依题意12c e a ==,由右焦点到右顶点的距离为1,得1a c -=.解得1c =,2a =.所以2223b a c =-=.所以椭圆C 的标准方程是22143x y +=.……………4分(Ⅱ)解:存在直线l ,使得22OA OB OA OB +=- 成立.理由如下:由22,1,43y kx m x y =+⎧⎪⎨+=⎪⎩得222(34)84120k x kmx m +++-=.222(8)4(34)(412)0km k m ∆=-+->,化简得2234k m +>.设1122(,),(,)A x y B x y ,则122834km x x k+=-+,212241234m x x k -=+.若22OA OB OA OB +=- 成立,即2222OA OB OA OB +=- ,等价于0OA OB ⋅= .所以12120x x y y +=.1212()()0x x kx m kx m +++=,221212(1)()0k x x km x x m ++++=,222224128(1)03434m km k km m k k -+⋅-⋅+=++,化简得,2271212m k =+.将227112k m =-代入2234k m +>中,22734(1)12m m +->,解得,234m >.又由227121212m k =+≥,2127m ≥,从而2127m ≥,2217m ≥或2217m ≤-.所以实数m 的取值范围是22(,21][21,)77-∞-+∞ .……………14分【练7】解:(Ⅰ)由题意得223=21314c a a b ⎧⎪⎪⎨⎪+=⎪⎩,解得=2a ,1b =.所以椭圆C 的方程是2214x y +=.…………………………4分(Ⅱ)以线段PQ 为直径的圆过x 轴上的定点.由22(1)14y k x x y =-⎧⎪⎨+=⎪⎩得2222(14)8440k x k x k +-+-=.设1122(,),(,)A x y B x y ,则有2122814k x x k +=+,21224414k x x k -=+.又因为点M 是椭圆C 的右顶点,所以点(2,0)M .由题意可知直线AM 的方程为11(2)2y y x x =--,故点112(0,)2y P x --.直线BM 的方程为22(2)2y y x x =--,故点222(0,)2y Q x --.若以线段PQ 为直径的圆过x 轴上的定点0(,0)N x ,则等价于0PN QN ⋅=uuu r uuu r恒成立.又因为1012(,)2y PN x x =-uuu r ,222(,)2y QN x x =-uuu r ,所以221212001212224022(2)(2)y y y y PN QN x x x x x x ⋅=+⋅=+=----uuu r uuu r 恒成立.又因为121212(2)(2)2()4x x x x x x --=-++2222448241414k k k k -=-+++22414k k =+,212121212(1)(1)[()1]y y k x k x k x x x x =--=-++22222448(1)1414k k k k k -=-+++22314k k -=+,所以2222212000212212414304(2)(2)14k y y k x x x k x x k -++=+=-=--+.解得03x =±.故以线段PQ 为直径的圆过x 轴上的定点(3,0)±.…………………14分【练8】解:(Ⅰ)由题意知:1c =.根据椭圆的定义得:22222(11)()22a =--++,即2a =.……………………………………3分所以2211b =-=.所以椭圆C 的标准方程为2212x y +=.……………………………………4分(Ⅱ)假设在x 轴上存在点(,0)Q m ,使得716QA QB ⋅=- 恒成立.当直线l 的斜率为0时,(2,0),(2,0)A B -.则7(2,0)(2,0)16m m -×--=-.解得54m =±.……………………………………6分当直线l 的斜率不存在时,22(1,),(1,)22A B -.由于52527(1,)(1,)424216+×+-¹-,所以54m ¹-.下面证明54m =时,716QA QB ⋅=- 恒成立.……………………………………8分显然直线l 的斜率为0时,716QA QB ⋅=- .当直线l 的斜率不为0时,设直线l 的方程为:1x ty =+,()()1122,,,A x y B x y .由221,21x y x ty ìïï+=ïíïï=+ïî可得:22(2)210t y ty ++-=.显然0∆>.1221222,21.2t y y t y y t ìïï+=-ïï+ïíïï=-ïï+ïî……………………………………10分因为111x ty =+,221x ty =+,所以112212125511(,)(,)()()4444x y x y ty ty y y -×-=--+2121211(1)()416t y y t y y =+-++2221121(1)24216t t t t t =-+++++22222172(2)1616t t t --+=+=-+.综上所述:在x 轴上存在点5(,0)4Q ,使得716QA QB ⋅=- 恒成立.……………………………………13分【例3】.⑴椭圆的标准方程为:22142x y +=,2a =,2b =,则2c =,离心率22c e a ==;⑵直线AB 与圆222x y +=相切.证明如下:法一:设点A B ,的坐标分别为()()002x y t ,,,,其中00x ≠.因为OA OB ⊥,所以0OA OB ⋅= ,即0020tx y +=,解得002yt x =-.当0x t =时,202t y =-,代入椭圆C 的方程,得2t =±,故直线AB 的方程为2x =±.圆心O 到直线AB 的距离2d =.此时直线AB 与圆222x y +=相切.当0x t ≠时,直线AB 的方程为()0022y y x t x t--=--,即()()0000220y x x t y x ty ---+-=.圆心O 到直线AB 的距离()()00220022x ty d y x t -=-+-.又220024x y +=,02y t x =-,故22000024222000002202422481642y x x x x d yx x x y xx++===+++++.此时直线AB 与圆222x y +=相切.法二:由题意知,直线OA 的斜率存在,设为k ,则直线OA 的方程为y kx =,OA OB ⊥,①当0k =时,()20A ±,,易知()02B ,,此时直线AB 的方程为2x y +=或2x y -+=,原点到直线AB 的距离为2,此时直线AB 与圆222x y +=相切;②当0k ≠时,直线OB 的方程为1y x k=-,联立2224y kx x y =⎧⎨+=⎩得点A 的坐标22221212k k k ⎛⎫, ⎪++⎝⎭或22221212k k k ⎛⎫-,- ⎪++⎝⎭;联立12y x k y ⎧=-⎪⎨⎪=⎩得点B 的坐标()22k -,,由点A 的坐标的对称性知,无妨取点A 22221212k kk ⎛⎫, ⎪++⎝⎭进行计算,于是直线AB 的方程为:()()22222212122222112212kk k ky x k x k k kkk--++-=+=+++++,即()()22212112220k k x k k y k -+-++++=,原点到直线AB 的距离()()2222222212112k d k k kk +==-++++,此时直线AB 与圆222x y +=相切。