三者容斥问题3个公式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
公务员行测容斥原理
容斥原理公式为:
三个集合的容斥关系公式:A∪B∪C = A+B+C - A∩B - B∩C - C∩A + A∩B∩C
某校六(1)班有学生45人,每人在暑假里都参加体育训练队,其中参加足球队的有25人,参加排球队的有22人,参加游泳队的有24人,足球、排球都参加的有12人,足球、游泳都参加的有9人,排球、游泳都参加的有8人,问:三项都参加的有多少人?答案:25+22+24-12-9-8+X=45 解得X=3
问题:某调查公司对甲乙丙三部电影的收看情况向125人进行调查,有89人看过甲电影,47人看过乙电影,63人看过丙电影,其中有24人三部电影全看过,20人一部也没看过,求只看过两部电影的人数?
为什么这道题我用容斥原理去解答得到的答案是错误的,而且和上面的例题相比较,两道题几乎一样,谁能告诉我原因?就是用容斥原理去解答错误出现在什么地方
公式一:若条件给出A∩B,A∩C,B∩C,A∩B∩C的值
对于图中的全集I来说相当于整个图中所有部分之和,即I=A∪B∪C+D(D为非A非B非C的区域),那么这里面我们算得A∪B ∪C需要把其A、B、C中重复的区域扣除,如果我们把A,B,C加在一起,其中对于A∩B(①+②)的区域是在A,B中各参与计算一次,
需要减一个A∩B,同样的道理对于A∩C(①+③),B∩C(①+④)均需要减去一个,对于重复的A∩B∩C(①)在我们把A、B、C加和时计算了三次,在减去A∩B,A∩C,B∩C均包含①区域则又减去三次,要保证没有遗漏需要在加回一次A∩B∩C,则A∪B∪
C=A+B+C-A∩B-A∩C-B∩C+A∩B∩C。
公式总结:
A∪B∪C=A+B+C-A∩B-A∩C-B∩C+A∩B∩C
I=A∪B∪C+D=A+B+C-A∩B-
A∩C-B∩C+A∩B∩C+D
公式二:若条件给出包含两种元素(②+③+④)和包含三种元素(①)的值
同样的I=A∪B∪C+D,那么这里面我们算得A∪B∪C依旧需要把其A、B、C中重复的区域扣除,那么对于包含两种元素(②+③+④)的区域,②在A、B中各加一次,重复一次;③在A、C中各加一次,重复一次;④在B,C中各加一次,重复一次,均重复一次,则需整体减去一倍的包含两种元素(②+③+④),对于重复的包含三种元素(①)在我们把A.B.C加和时计算了三次,则需要减去2倍的包含三种元素(①),即A∪B∪C=A+B+C-含有两种元素-2*含有三种元素
公式总结:
A∪B∪C=A+B+C-含有两种元素-2*含有三种元素
I=A∪B∪C+D=A+B+C-含有两种元素-2*含有三种元素+D
【例1】:某调查公司对甲、乙、丙三部电影的收看情况向135人进行调查,有89人看过甲片,有47人看过乙片,有63人看过丙片,既看过甲、乙片为30人,既看过乙、丙片为31人,既看过甲、丙片为32人,其中有24人三部电影都看过,问多少人一部也没有看过呢?
【解析】:既看过甲、乙片为30人是包含只看过甲乙还有甲乙丙三人两个部分,以M、N、W为既看过甲、乙片的人,N既看过乙、丙片的人,既看过甲、丙片的人,X为三部都看过的人数,这里面W、N、X都是有包含三者这个区域,根据把重复数的次数变为1次,或者说把重叠的面积变为一层,做到不重不漏的原则,则公式转化为I=A+B+C-(M+N+W)+X+Y,135=89+47+63-(30+31+32)+ 24+Y,Y=5人。
结论:三者容斥问题,画图之后可知,三个圆相交的地方有1层、2层、3层三种情况,当将三个集合相加的时候,2层和3层区域分别多计算一次和两次,故若想求全集,需要将重叠区域减掉,故三者容斥问题的公式为:A∪B∪C=A+B+C -A∩B-B∩C-C∩A+A∩B ∩C。