轮式移动机器人课程设计【精品文档】
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏师范大学连云港校区海洋港口学院
课程设计说明书
课程名称
专业班级
学号姓名
指导教师
年月日
摘要
轮式移动机器人是机器人家族中的一个重要的分支,也是进一步扩展机器人应用领域的重要研究发展方向。自上世纪九十年代以来,人们广泛开展了对机器人移动功能的研制和开发,为适应各种工作环境的不同要求而开发出各种移动机构。其中全方位轮可以实现高精确定位、原地调整姿态和二维平面上任意连续轨迹的运动,具有一般的轮式移动机构无法取代的独特特性,对于研究移动机器人的自由行走具有重要愈义。
本文主要是介绍了技术较为成熟的麦克纳姆全方位轮的运动原理结构,分析了由四个麦克纳姆轮全方位轮组成的全向移动机构的运动协调原理。并将其运用到轮腿复合式的机器人身上,使机器人移动能力更强。设计的主要方面包括(1)移动方式的选择;(2)机器人结构的设计;(3)机器人移动原理的分析;(4)对移动机器人控制系统的简单设计。
关键词: 轮式移动机器人,轮腿复合式,四足
目录
摘要 (1)
1 移动机器人技术发展概况 (1)
1.1 机器人研究意义及应用领域 (1)
1.1.1 机器人的研究意义 (1)
1.1.2 机器人的应用领域 (2)
1.2 移动机器人的发展概况 (2)
1.2.1 移动机器人的国内发展概况 (2)
1.2.2 移动机器人的国外发展概况 (3)
2 轮式移动机器人的结构设计 (5)
2.1轮式移动机器人系统结构 (5)
2.1.1移动方式的选择 (6)
2.1.2机器人移动原理构想 (6)
2.1.3机器人轮子的选择 (7)
2.1.4机器人腿部结构的设计 (8)
2.2轮式移动机器人主要结构 (9)
3 轮式移动机器人的控制系统 (9)
3.1 控制系统硬件选型与配置 (10)
3.1.1 驱动电机的选型 (10)
3.1.2 伺服电机的选型 (11)
3.1.3 轮毂电机的选型 (11)
3.2 轮式移动机器人控制系统框架 (14)
4 结论和总结 (17)
5 致谢 (19)
参考文献 (20)
1 移动机器人技术发展概况
1.1 机器人研究意义及应用领域
随着科学技术的发展,人类的研究活动领域已由陆地扩展到海底和空间。利用移动机器人进行空间探测和开发,己成为21世纪世界各主要科技发达国家开发空间资源的主要手段之一。研究和发展月球探测移动机器人技术,对包括移动机器人在内的相关前沿技术的研究将产生巨大的推动作用。
1.1.1 机器人的研究意义
“机器人产业在二十一世纪将成为和汽车、电脑并驾齐驱的主干产业。”从庞大的工业机器人到微观的纳米机器人,从代表尖端技术的仿人型机器人到孩子们喜爱的宠物机器人,机器人正在日益走近我们的生活,成为人类最亲密的伙伴。机器人技术和产业化在中国具有一定的现实基础和广阔的市场前景。
机器人研究以科技含量高、学科跨度宽、参与面广和展示性强等特点在国际上有着很强的影响力。它涉及人工智能、图像处理、通讯传感、精密机构和自动控制等多领域的前沿研究和技术集成。目前已经形成了一个国际联盟的人工智能和机器人项目开发目标,被世界各国科研机构和众多高等院校所重视。全球化的机器人产业市场也给商家带来了丰厚的利润回报。国内的教育和科研机构也日益关注机器人事业的发展,有关科研工作在深度和规模上逐渐提高,清华大学、中国科技大学等著名高校基本形成了完整的课程体系,对推动高校的科技创新和产学研一体化产生了积极作用,也为提高我国在机器人领域的国际地位作出了积极贡献。
开展机器人研究和参与各项竞赛活动,旨在进一步加强未成年人思想道德教育,提高广大青少年的科学素养,发展自身潜能,引导更多的大中小学生关注科技、热爱科技、走进科技,涌现出更多的未来科学家和未来工程师。在积极推进基础教育和高等教育改革的过程中,渗透科学技术教育,努力培养大中小学学生的实践能力和创新精神,造就适应21 世纪全球科技、经济发展需要的新一代。
机器人研究不但能吸引一大批电子信息产业制造商、销售商、金融投资机构和技术服务机构提供产品和服务,而且还促进了知名科研机构、高等院校与高科
技企业的合作交流,共同发展。通过大赛期间举办学术研讨等活动,众多专家学者齐聚一堂,探讨我国自动化技术和信息技术的发展趋势,为推动产业发展出谋献策,领衔助跑。
1.1.2 机器人的应用领域
随着科学技术的发展,人类的研究活动领域已由陆地扩展到海底和空间。利用移动机器人进行空间探测和开发,己成为21世纪世界各主要科技发达国家开发空间资源的主要手段之一。研究和发展月球探测移动机器人技术,对包括移动机器人在内的相关前沿技术的研究将产生巨大的推动作用。
移动机器人是一种能够通过传感器感知外界环境和自身状态,实现在有障碍物的环境中面向目标的自主运动,从而完成一定作业功能的机器人系统。近年来,由于移动机器人在工业、农业、医学、航天和人类生活的各个方面显示了越来越广泛的应用前景,使得它成为了国际机器人学的研究热点。20世纪90年代以来,以研制高水平的环境信息传感器和信息处理技术,高适应性的移动机器人控制技术,真实环境下的规划技术为标志,开展了移动机器人更高层次的研究。目前,移动机器人特别是自主机器人已成为机器人技术中一个于分活跃的研究领域[1]。
1.2 移动机器人的发展概况
1.2.1 移动机器人的国内发展概况
机器人技术的发展从无到有,从低级到高级,随着科学技术的进步而不断深入发展。移动式机器人特别是自主式移动机器人已成为机器人研究领域的中心之一。
移动式机器人的研究现状主要体现在四个方面。一是机器人的体系结构。目前根据实现机器人感知、决策、行为等功能的不同分为分层递阶结构、行为系统、黑板系统三种体系结构。二是信息感知,这主要来源于传感器。目前移动式机器人主要使用的传感器有声纳、红外、激光扫描、摄像机和陀螺等,主要采用多传感器融合的技术来获得信息。三是移动机器人的控制。目前移动式机器人主要应用基于机器人几何中心或轮轴线中心的时间微分方程的运动学模型建模,应用推算航行法与外部传感器获得的信息进行融合的方式定位,利用神经网络的学习和容错能力对移动式机器人控制和基于规则的模糊控制机器人运动。四是路径规