第十章真核生物基因的表达及其调控
真核生物基因表达的调控
二 染色质水平调控
(一)异染色质化 (二)组蛋白质修饰和非组蛋白的作用 (三)DNA酶的敏感区域 (四)核基质蛋白
三 转录水平的调控
◆许多真核生物基因编码关键代谢酶或细胞组 成成分,这些基因常在所有细胞中都处于活跃 状态。这种组成型表达的基因称为持家基因 (house keeping gene)。 ◆另一些基因的表达则因细胞或组织不同而异, 只在某些才高效表达。这类基因表达的调控通 常发特定的发育时期或细胞中生在转录水平。。
➢5′ UTR可能形成发夹或茎环二级结构,阻止核糖体 40S亚基的迁移,对翻译起始有顺式抑制作用。但若二 极结构位于AUG的近下游(最佳距离为14 bp),会使 40亚基停靠在AUG位点,增强起始反应(翻译起始因子 使二极结构解链,翻译复合体顺利通过)。
(三)mRNA的结构
➢3′端的poly A 影响mRNA的稳定性和翻译效率。
(3) 内含子切除
不同剪接方式: ◆在剪接内切核酸酶(splicing endonuclease) 的 催化下,非常精确地在内含子与外显子的交界 处进行切割,并在一种特殊的剪接连接酶 (splicing ligase)的催化下重新连接起来。 ◆某些mRNA前体的内含子是在RNA分子本 身的催化下完成所以称为RNA自剪接(selfsplicing),这种具有自动催化活性的RNA有时 也称为核酶(ribozyme)。 ◆ 在核酸蛋白质复合结构-核酸剪接体 (spliceosome)作用下完成。
(四)选择性翻译
珠蛋白是由两条α链和两条β链组成的。在二 倍体细胞中有4个α-珠蛋白基因,如果它们相同 转录和翻译的话,应是α:β=2:1,而实际上是1:1。 是转录调控还是翻译调控? 体外实验:在无细胞系统中加入等量α-mRNA、 β-mRNA、少量起始因子,合成的α-珠蛋白仅占 3%,说明β-mRNA和起始因子的亲和性远大于 α-mRNA。 当加入过量的起始因子时,α:β=1.4:1 ,接近1:1。 表明是在翻译水平上存在的差异,即和翻译起 始因子的亲和性不同。
真核生物的基因表达调控
31
• 锌指结构域The zinc finger domain
锌指结构有2种形式: C2H2 zinc finger和C4 zinc finger •C2H2 zinc finger:由12个氨基酸组成的环,通过2个半胱氨 酸(C,Cys)和2个组氨酸(H,His)残基固定,这4个残基 与Zn2+在空间上形成一个四面体结构。 一般情况下需要3个 或更多的C2H2型锌指才能与DNA结合,如在TFIIA有9个重复, 转录因子SP1有3个重复。 •C4 zinc finger: Zn2+与4个半胱氨酸(C,Cys)结合,存 在于类固醇激素受体转录因子中。
限定于结构域之内。
26
反式作用因子的结构与功能
(1)概念:为DNA结合蛋白,核内蛋白,可使邻近基因开 放(正调控)或关闭(负调控)。
(2)通用或基本转录因子—RNA聚合酶结合启动子所必需 的一组蛋白因子。如:TFⅡA、 TFⅡB、 TFⅡD、 TFⅡE 等。 (3)特异转录因子( special transcription factors)—个别 基因转录所必需的转录因子.如:OCT-2:在淋巴细胞中特 异性表达,识别Ig基因的启动子和增强子。
(2) 动态模型(dynamic model):认为转录因子与组 蛋白处于动态竞争之中,基因转录前染色质必须经 历结构上的改变,即染色质重塑。在染色质重塑过 程中,某些转录因子可以在结合DNA的同时使核小 体解体。
6
组蛋白的乙酰化-去乙酰化 蛋白的乙酰化和去乙酰化是蛋白活性调节的一种 重要的形式,通过乙酰化或去乙酰化,改变了染色质 结构或是转录因子的活性,可以调节基因转录的活性。 组蛋白的乙酰化和去乙酰化能打开或关闭某些基因, 增强或抑制某些基因的表达。 组蛋白的8个亚基上有32个潜在的乙酰化位点。组 蛋白的乙酰化过程由组蛋白乙酰转移酶催化完成。
真核生物基因表达调控
酸性激活域 (D/E-rich) 谷氨酰胺(Q)富含域 脯氨酸(P)富含域
蛋白质-蛋白质结合域 (dimerization, co-factors)
1) TF最常见的DNA binding domain
Zinc Finger
bZIP
Homeodomain
bHLH
(1) 锌指(zinc finger)
2. The pri5’ capping 3’ formation / polyA splicing
3. Mature transcripts are transported to the cytoplasm for translation
Chromatin
epigenetic control
Protein degradation RNA silencing
一般而言的基因表达调控范畴
二、基因表达的时间性及空间性
(一)时间特异性
按功能需要,某一特定基因的表达严格按 特定的时间顺序发生,称之为基因表达的时间 特异性(temporal specificity)。
Cys-X2-4-Cys-X3-Phe-X5-Leu-X2-His-X3-His C-terminal: α-helix binding DNA
常结合GC box
(2) 碱性亮氨酸拉链 bZIP
(3) 碱性螺旋-环-螺旋bHLH
bHLH蛋白(basic Helix-Loop-Helix)
2) TF常见的trans-activation domain
– usually expressed at high level – the level of their gene expression may vary
第十章原核生物基因表达的调控
表 16-4 E.coliσ 因子识别不同保守序列的启动子 基因 分子量 70KD 32KD 24KD 54KD 28KD 功能 普遍 热休克 热休克 氮饥饿 产生鞭毛 -35 序列 TTGACA CCCTTGAA ? CTGGNA CTAAA 间隔(bp) 16~18 13~15 ? 6 15 -10 序列 TATAAT CCCGATNT ? TTGCA GCCGATAA
基本概念
1.操纵子(operon)
很多功能上相关的结构基因在染色体上串连排列,由 一个共同的控制区来操纵这些基因的转录。包含这些结构 基因和控制区的整个核苷酸序列就称为操纵子(operon)。
一个完整的操纵子主要包括启动子、操纵基因、结构 基因和终止子。
2. 阻遏物和激活物(reperssor and activator)
2. 基因表达的极性效应
•在正常情况下原核基因表达时,其转录出来的mRNA随 即进行翻译,这时整个mRNA都覆盖着核糖体, ρ因子 无法接近mRNA,而RNA聚合酶早已越过前面的基因的 依赖ρ因子的终止子,所以转录实际上并不停止,而是继 续转录后续基因。如果在某一基因的依赖于ρ的终止子之 前发生无义突变,核糖体便从无义密码子上解离下来,翻 译停止,于是ρ就可以自由进入RNA并移动,直到赶上停 留在终止子上的RNA聚合酶,结果使RNA聚合酶释放, 不能再转录下游基因。
第十章 原核生物基因 表达的调控
生物的遗传信息是以基因的形式储藏在细 胞内的DNA(或RNA)分子中的。随着个体 的发育,DNA有序地将遗传信息,通过转 录和翻译的过程转变成蛋白质,执行各种 生理生化功能,完成生命的全过程。从 DNA到蛋白质的过程,叫做基因表达 (gene expression),对这个过程的调节 就称为基因表达调控(gene regulation或 gene control)。
第十章 真核生物基因表达的调控
类型II基因转录因子与顺式元件的相互作用
转录因子的调控作用 作用于序列不同的多个DNA位点: 亲和性相近,如HAP-1可以结 合CYC1和CYC7的UAS区,但两区段无同源性; 多种蛋白因子结合同一顺式因子: Ig基因的八聚体ATCAAAT可被 Oct-1、Oct-2、OBP-100、NFIII、NF-A1、NF-A2等因子结合,CCAAT可 被C/EBP、CTF/NF1、CP1、CP2等结合,TGACTCA由Ap1, Fos, Jun的异 源二聚体结合; 识别特异性DNA序列的时序: 不同因子的有序协同作用是特异性 结合调控基因活性的基础; 磷酸化作用: 许多转录因子的磷酸化/去磷酸化直接影响其活性, 如Sp1结合DNA后才能被磷酸化,其激酶亦结合DNA后才具有活性。
第十章 真核生物基因表达的调控
真核基因表达调控的特点 活性染色质和基因的转录 转录的顺式作用元件 基因转录的反式作用调控因子 类型II基因转录因子与顺式元件的相互作用 真核基因转录的调控机制 细胞周期的调控
真核基因表达调控的特点
基因组DNA 原核生物DNA: 很少结合蛋白质,转录起始终止反应快; 真核生物DNA: 与组蛋白形成核小体(染色质)并进一步组装成染色体, 基因的转录需要染色质结构的变化; 转录和翻译 原核生物: 无核膜,转录与翻译偶联(trp操纵子衰减作用); 真核生物: 核膜分隔,核内转录及及其加工,胞质进行翻译,可影响核 内基因转录和加工; 细胞生长与分化 所有细胞含有相同的DNA,不同细胞内进行基因的 “程序化”差异表达是细胞生长分化的基础; 基因表达调控的复杂性 环境信号-原核与真核生物细胞的反应各 异,原核细胞受到的环境变化反应基本一致,真核细胞基因表达受到 调节蛋白、肽激素、信号分子等的特异性调控; 持家基因(house-keeping)-所有细胞类型都表达,时态基因-不同发育 时期表达,组织特异基因(tissue-specific)-特定组织器官表达.
生物化学(本科)第十章基因表达调控及其相关细胞信号转导通路随堂练习与参考答案
⽣物化学(本科)第⼗章基因表达调控及其相关细胞信号转导通路随堂练习与参考答案⽣物化学(本科)第⼗章基因表达调控及其相关细胞信号转导通路随堂练习与参考答案第⼀节概述第⼆节原核基因的转录调控第三节真核基因的转录调控第四节相关细胞信号转导通路1. (单选题)基因表达调控的基本控制点是( )A. 基因结构活化B. 转录起始C. 转录后加⼯D. 蛋⽩质翻译及翻译后加⼯E. mRNA从细胞核转运到细胞浆参考答案:B2. (单选题)分解代谢物基因激活蛋⽩(CAP)对乳糖操纵⼦表达的影响是( )A. 正性调控B. 负性调控C. 正性调控、负性调控都可能D. ⽆调控作⽤E. 可有可⽆参考答案:A3. (单选题)阻遏蛋⽩识别操纵⼦中的( )A.启动基因B.结构基因C.操纵基因D.内含于E.外显⼦参考答案:C4. (单选题)⽬前认为基因表达调控的主要环节是( )A. 翻译后加⼯B. 转录起始C. 翻译起始D. 转录后加⼯E. 基因活化A. 适应环境B. 调节代谢C. 维持⽣长D. 维持分裂E. 维持分化参考答案:A6. (单选题)⼀个操纵⼦通常含有( )A.⼀个启动序列和⼀个编码基因B.⼀个启动序列和数个编码基因C.数个启动序列和⼀个编码基因D.数个启动序列和数个编码基因E.两个启动序列和数个编码基因参考答案:B7. (单选题)对乳糖操纵⼦来说( )A. CAP是正性调节因素,阻遏蛋⽩是负性调节因素B. CAP是负性调节因素,阻遏蛋⽩是正性调节因素C. CAP和阻遏蛋⽩都是正性调节因素D. CAP和阻遏蛋⽩都是负性调节因素E. 在不同条件下,CAP和阻遏蛋⽩均显⽰正性或负性调节特点参考答案:A8. (单选题)lac阻遏蛋⽩由( )A. Z基因编码B. Y基因编码C. A基因编码D. I基因编码E. 以上都不是参考答案:D9. (单选题)基因表达产物是( )A. RNAB. DNAC. 蛋⽩质D. 酶和DNAE. ⼤多数是蛋⽩质,有些是RNAA. 作为阻遏物结合于操纵基因B. 作为辅阻遏物结合于阻遏物C. 使阻遏物变构⽽失去结合DNA的能⼒D. 抑制阻遏基因的转录E. 使RNA聚合酶变构⽽活性增加参考答案:C11. (单选题)顺式作⽤元件是指( )A. TATA box和CCAAT boxB. 基因的5’-侧翼序列C. 基因的3’-侧翼序列D. 具有转录调节功能的特异DNA序列E. 增强⼦参考答案:D12. (单选题)反式作⽤因⼦是指( )A. 具有激活功能的调节蛋⽩B. 具有抑制功能的调节蛋⽩C. 对另⼀基因具有激活功能的调节蛋⽩D. 对另⼀基因表达具有调节功能的蛋⽩E. 是特异DNA序列参考答案:D13. (单选题)启动⼦是指( )A. DNA分⼦中能转录的序列B. 与RNA聚合酶结合的DNA序列C. 与阻遏蛋⽩结合的DNA序列D. 有转录终⽌信号的DNA序列E. 与反式作⽤因⼦结合的RNA序列参考答案:B14. (单选题)增强⼦的作⽤是( )A. 促进结构基因转录B. 抑制结构基因转录C. 抑制阻遏蛋⽩D. 抑制操纵基因表达E. 抑制启动⼦A. 操纵基因结合B. 启动⼦上游的CAP位点结合C. DNA分⼦中任意⼀段序列结合D. 增强⼦结合E. 沉默⼦结合参考答案:B16. (单选题)通过胞内受体发挥作⽤的信息物质为 A.⼄酰胆碱B.γ-氨基丁酸C.胰岛素D.甲状腺素E.表⽪⽣长因⼦参考答案:D17. (单选题)细胞内传递信息的第⼆信使是A.受体B.载体C.⽆机物D.有机物E.⼩分⼦物质参考答案:E18. (单选题)下列哪项不是受体与配体结合的特点 A.⾼度专⼀性B.⾼度亲和⼒C.可饱和性D.不可逆性E. ⾮共价键结合参考答案:D19. (单选题)通过膜受体起调节作⽤的激素是A.性激素B.糖⽪质激素C.甲状腺素D.肾上腺素E.活性维⽣素D3参考答案:D20. (单选题)胞内受体的化学本质为F.糖脂参考答案:A21. (单选题)IP3与相应受体结合后,可使胞浆内哪种离⼦浓度升⾼A.K+B.Na+C.HCO3-D.Ca2+E. Mg2+参考答案:D22. (单选题)在细胞内传递激素信息的⼩分⼦物质称为 A.递质B.载体C.第⼀信使D.第⼆信使E.第三信使参考答案:D23. (多选题)真核⽣物基因结构特点是( )A.基因不连续性B.单顺反⼦C.含重复序列D.⼀个启动基因后接有⼏个编码基因E.含内含⼦参考答案:ABE24. (多选题)哪些是顺式作⽤元件? ( )A.启动⼦B.增强⼦C.内含⼦D.反应元件E.外显⼦参考答案:ABD25. (多选题)乳糖操纵⼦中具有调控功能的基因是( )A.A基因参考答案:CD26. (多选题)下列对增强⼦特征描述中,正确的是( )A.增强⼦可远距离发挥作⽤B.增强效应的位置和⽅向⽆关C.可通过启动⼦提⾼同⼀条链上的靶基因的转录效率D.没有基因的专⼀性,可在不同的基因组合上表现增强效应E.增强⼦是具有转录调节功能的特异DNA序列参考答案:ABCE27. (多选题)以下关于cAMP对原核基因转录的调控作⽤的叙述正确的是( )A.cAMP可与分解代谢基因活化蛋⽩(CAP)结合成复合物B.cAMP-CAP复合物结合在启动⼦前⽅C.葡萄糖充⾜时,cAMP⽔平不⾼D.葡萄糖和乳糖并存时,细菌优先利⽤乳糖E.葡萄糖和乳糖并存时,细菌优先利⽤葡萄糖参考答案:ABCE28. (多选题)以下关于反式作⽤因⼦的叙述哪些是正确的? ( )A.反式作⽤因⼦是调节基因转录的⼀类蛋⽩因⼦B.转录因⼦是⼀类反式作⽤因⼦C.增强⼦结合蛋⽩属反式作⽤因⼦D.阻遏蛋⽩是⼀类负调控反式作⽤因⼦E.RNA聚合酶是反式作⽤因⼦参考答案:ABCD29. (多选题)以下关于顺式作⽤元件的叙述哪些是正确的? ( )A.顺式作⽤元件是⼀类调节基因转录的DNA元件B.增强于是⼀类顺式作⽤元件C.启动⼦中的TATA盒和GC盒都是顺式作⽤元件D.操纵基因是原核⽣物中的⼀类负调控顺式作⽤元件E.顺式作⽤元件只对基因转录起增强作⽤参考答案:ABCD30. (多选题)受体与配体结合的特点包括A.⾼度专⼀性E 特定的作⽤模式参考答案:ABCDE31. (多选题)能与GDP/GTP结合的蛋⽩质是A.G蛋⽩B.Raf蛋⽩C.Rel A蛋⽩D.Grb-2蛋⽩E.Ras蛋⽩参考答案:AE32. (多选题)与配体结合后,⾃⾝具有酪氨酸蛋⽩激酶活性的受体是A.胰岛素受体B.表⽪⽣长因⼦受体C.⾎⼩板衍⽣⽣长因⼦受体D.⽣长激素受体E.⼲扰素受体参考答案:ABC33. (多选题)胞内受体的激素结合区能A.与配体结合B.与G蛋⽩偶联C.与热休克蛋⽩结合D.使受体⼆聚体化 E.激活转录参考答案:ACDE。
真核生物基因表达的调控
真核生物基因表达的调控一、生物基因表达的调控的共性首先,我们来看看在生物基因表达调控这一过程中体现的共性和一些基本模式。
1、作用范围。
生物体内的基因分为管家基因和奢侈基因。
管家基因始终表达,奢侈基因只在需要的时候表达,但二者的表达都受到调控。
可见,调控是普遍存在的现象。
2、调控方式。
基因表达有两种调控方式,即正调控与负调控,原核生物和真核生物都离不开这两种模式。
3、调控水平。
一种基因表达的调控可以在多种层面上展开,包括DNA水平、转录水平、转录后加工水平、翻译后加工水平等。
然为节省能量起见,转录的起始阶段往往作为最佳调控位点。
二、真核生物基因表达调控的特点真核生物与原核细胞在结构上就有着诸多不同,这决定了二者在运行方面的迥异途径。
真核生物比原核生物复杂,转录与翻译不同时也不同地,基因组与染色体结构复杂,因而有着更为复杂的调控机制。
1、多层次。
真核生物的基因表达可发生在染色质水平、转录起始水平、转录后水平、翻译水平以及翻译后水平。
2、无操纵子和衰减子。
3、大多数原核生物以负调控为主,而真核生物启动子以正调控为主。
4、个体发育复杂,而受环境影响较小。
真核生物多为多细胞生物,在生长发育过程中,不仅要随细胞内外环境的变化调节基因表达,还要随发育的不同阶段表达不同基因。
前者为短期调控,后者属长期调控。
从整体上看,不可逆的长期调控影响更深远。
三、真核生物基因表达调控的机制介于真核生物表达以多层次性为最主要特点,我们可以分别从它的几个水平着眼,剖析它的调控机制。
1、染色质水平。
真核生物基因组DNA以致密的染色质形式存在,发生在染色质水平的调控也称作转录前水平的调控,产生永久性DNA序列和染色质结构的变化,往往伴随细胞分化。
染色质水平的调控包括染色质丢失、基因扩增、基因重排、染色体DNA的修饰,等等。
a.基因丢失:丢失一段DNA或整条染色体的现象。
在细胞分化过程中,可以通过丢失掉某些基因而去除这些基因的活性。
某些原生动物、线虫、昆虫和甲壳类动物在个体发育中,许多体细胞常常丢失掉整条或部分的染色体,只有将来分化产生生殖细胞的那些细胞一直保留着整套的染色体。
真核生物基因表达调控
真核生物基因表达调控第十章作业1. 简述真核生物基因表达调控的7个层次。
①染色体和染色质水平上的结构变化与基因活化②转录水平上的调控,包括基因的开与关,转录效率的高与低③RNA加工水平的调控,包括对出事转录产物的特异性剪接、修饰、编辑等。
④转录后加工产物在从细胞核向细胞质转运过程中所受到的调控⑤在翻译水平上的控制,即对哪一种mRNA结合核糖体进行翻译的选择以及蛋白质成量的控制⑥对蛋白质合成后选择性地被激活的控制,蛋白质和酶分子水平上的剪接等的控制⑦对mRNA选择性降解的调控2. 真核基因表达调控与原核生物相比有何异同?相同点:①与原核基因的调控一样,真核基因表达调控也有转录水平调控和转录后水平的调控,并且也以转录水平调控为最重要;②在真核结构基因的上游和下游(甚至内部)也存在着许多特异的调控成分,并依靠特异蛋白因子与这些调控成分的结合与否调控基因的转录。
不同点:①原核细胞的染色质是裸露的DNA,而真核细胞染色质则是由DNA与组蛋白紧密结合形成的核小体。
②在原核基因转录的调控中,既有激活物参与的正调控,也有阻遏物参与的负调控,二者同等重要。
③原核基因的转录和翻译通常是相互偶联的,即在转录尚未完成之前翻译便已开始。
④真核生物大都为多细胞生物,在个体发育过程中发生细胞分化后,不同细胞的功能不同,基因表达的情况也就不一样,某些基因仅特异地在某种细胞中表达,称为细胞特异性或组织特异性表达,因而具有调控这种特异性表达的机制。
3. DNA 甲基化对基因表达的调控机制。
甲基化抑制基因转录的机制:DNA甲基化会导致某些区域DNA 构象改变,包括甲基化后染色质对于核酸酶或限制性内切酶的敏感度下降,更容易与组蛋白H1相结合,DNaseⅠ超敏感位点丢失,使染色质高度螺旋化, 凝缩成团, 直接影响了转录因子与启动区DNA的结合效率的结合活性,不能启始基因转录。
DNA的甲基化不利于模板与RNA聚合酶的结合,降低了转录活性。
简述真核生物基因表达调控过程
简述真核生物基因表达调控过程真核生物基因表达调控过程是指在真核生物细胞中,如何通过一系列的调控机制,将基因中的遗传信息转化为蛋白质,以实现细胞功能的正常发挥。
基因表达调控过程可以分为转录调控和转录后调控两个阶段。
在转录调控阶段,首先是在细胞核中进行转录。
细胞核中的DNA被RNA聚合酶酶识别并解链,形成单链mRNA。
但并不是所有基因都会被转录,细胞会根据需要选择性地进行转录。
这是通过转录因子的作用来实现的。
转录因子是一类能够与DNA特定序列结合的蛋白质,它们能够促进或抑制转录的进行。
转录因子的结合位点位于启动子区域,当转录因子结合到启动子区域时,会引发一系列的反应,包括启动RNA聚合酶的活性和引导其结合到合适位置上,从而促使转录的进行。
转录因子的表达受到多种因素的调控,如细胞内的信号分子、细胞周期等。
转录后调控是指在mRNA合成后,通过一系列的调控机制来决定其在细胞中的命运。
mRNA在合成后需要经过剪接、修饰和运输等过程。
剪接是指将mRNA中的内含子去除,将外显子进行连接的过程。
通过剪接的不同方式,可以生成不同的mRNA亚型,从而在翻译过程中产生不同的蛋白质。
修饰是指在mRNA上加上帽子和尾巴等化学修饰,这些修饰可以保护mRNA不被降解,并帮助mRNA与翻译机器结合。
运输是指mRNA离开细胞核,进入到细胞质中,进一步参与翻译过程。
这个过程受到RNA结合蛋白的调控。
在翻译过程中,mRNA被核糖体识别并翻译成蛋白质。
这个过程也受到多种调控机制的影响。
一方面,mRNA上的启动子序列会影响翻译的起始位置,从而决定蛋白质的翻译起始位点。
另一方面,mRNA的稳定性也会影响翻译的效率和蛋白质的表达水平。
mRNA 的稳定性受到RNA结合蛋白和非编码RNA的调控。
总的来说,真核生物基因表达调控过程是一个复杂而精细的调控网络。
通过转录调控和转录后调控的相互作用,细胞可以根据内外环境的需要,在不同的时空位置上产生不同类型的蛋白质,以实现细胞功能的正常发挥。
分子生物学-真核生物基因表达调控
3 基因重排与交换
将一个基因从远离启动子的地方移到距它很
Hale Waihona Puke 近的位点从而启动转录,这种方式称为基因 重排。
通过基因重排调节基因活性的典型例子是免
疫球蛋白和T-细胞受体基因的表达。
V、C和J基因片段在胚胎细胞中相隔较远。编码产生免疫球蛋白的细胞发 育分化时,通过染色体内DNA重组把4个相隔较远的基因片段连接在一起, 从而产生了具有表达活性的免疫球蛋白基因。
发育早期:只有一个着丝点行使功能,
从头合成型甲基转移酶:催化未甲基化的CpG成 为mCpG
基因丢失
在细胞分化过程中,可以通过丢失掉某些基
因而去除这些基因的活性。某些原生动物、 线虫、昆虫和甲壳类动物在个体发育中,许 多体细胞常常丢失掉整条或部分的染色体, 只有将来分化产生生殖细胞的那些细胞一直 保留着整套的染色体。
一.
基因丢失: 在细胞分化过程中,某些原生动物、线虫 、昆虫等体细胞通过丢失某些基因而除去 这些基因的活性。 马蛔虫:只有一对染色体,染色体上有许 多着丝点。
假基因
是基因组中因突变而失活的基因,无蛋白质产
物。
一般是启动子出现问题。
8.2 DNA水平的基因表达调控
1染色质水平的调节:“开放”型活性染色质
(activechromatin)结构对转录的影响
2基因扩增
3基因重排与交换
4
DNA甲基化与基因活性的调控
1 染色质状态对基因表达的调控
能相关的基因,这些基因成套组合称为基因家族。 如:编码组蛋白、免疫球蛋白和血红蛋白的基因都 属于基因家族 同一家族中的成员有时紧密地排列在一起,成为 一个基因簇(gene cluster) 。
1、简单多基因家族
真核生物基因表达调控
第十章真核生物基因表达调控第一节染色质结构与基因表达染色质是细胞核中基因组DNA与蛋白质构成的复合体。
染色质的基本结构单位是核小体。
10 nm粗的纤维可以进一步盘绕成30 nm粗的纤维。
在分裂期,30 nm粗纤维再折叠成具有一定形态结构的染色体。
分裂期结束后,染色体又转化为染色质。
按照功能不同,可将染色质划分为活性染色质和非活性染色质。
前者是指那些具有转录活性的染色质,而后者则用于表示缺乏转录活性的染色质。
在结构上,活性染色质和非活性染色质也有很大的差异。
具有转录活性的染色质区域为一种开放、松散的结构。
而非活性染色质呈现一种高度浓缩的形态,转录机器不能与其中的启动子结合,因而没有转录活性。
异染色质就是一种典型的非活性染色质。
一、位置效应位置效应(position effect)是指一个基因由于在基因组的位置发生改变,而发生的表达上的变化。
二、活性染色质的特征与非表达区域中核小体结构紧密、间隔规则相比,其核小体组装较为伸展或不规则。
这样的一种结构有利于转录因子的结合,以及RNA聚合酶沿模板的滑动。
在转录起始区以及某些特殊的区域,核小体的构象变化更为明显,DNase I和微球菌核酸酶等非特异性内切酶可用于检测这种变化。
三、染色质结构的调节在原核细胞中,RNA聚合酶和调节蛋白可以自由地接近DNA。
由组蛋白和基因组DNA两部分组成的染色质结构限制了转录因子对DNA的接近与结合,实际上起着阻遏转录的作用。
基因转录需要染色质发生一系列重要的变化,如染色质去凝集,核小体变成开放式的疏松结构,使转录因子等更容易接近并结合核小体DNA。
有两种方式可以显著改变DNA的易接近性:组蛋白的乙酰化和核小体重塑。
组蛋白的去乙酰化,则可以使染色质凝集,引起基因沉默。
1.组蛋白N端尾的修饰对染色质结构及基因转录的影响每种核心组蛋白包括一个~80个氨基酸残基构成的保守的区域称为组蛋白折叠域(histone fold domain)和一个突出于核小体核心之外、由20个氨基酸残基组成的N端尾。
第十章基因表达调控
2.基因表达的时间性及空间性
基 因 表 达 的 时 间 特 异 性 (temporal specificity)是指特定基因的表达严格按照 特定的时间顺序发生,以适应细胞或个 体特定分化、发育阶段的需要。故又称 为阶段特异性。
基 因 表 达 的 空 间 特 异 性 ( spatial specificity)是指多细胞生物个体在某一 特定生长发育阶段,同一基因的表达在 不同的细胞或组织器官不同,从而导致 特异性的蛋白质分布于不同的细胞或组 织器官。故又称为细胞特异性或组织特 异性。
基因转录被阻遏
三、色氨酸操纵子P271-278
• 色氨酸操纵子(trp operon):阻遏型负 调控操纵子,调控一系列用于色氨酸合 成代谢的酶蛋白的转录。
色氨酸操纵子(tryptophane operon)——合成 代谢,阻遏负调控;弱化作用。
(一)色氨酸操纵子的结构
操纵子
(二)色氨酸操纵子的作用机理
aporepressor + corepressor 遏物) 启动子失活
repressor (阻 不转录
aporepressor + operator 转录发生
启动子有活性
色氨酸操纵子 - 阻遏负调控
调节区
trpR RNA聚P合酶O
RNA聚合酶
Trp 低时
结构基因
mRNA
Trp 高时 Trp
2.弱化子及其调节作用
• attenuator: A region of DNA upstream from one or more structural genes, where premature transcription termination can occur.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
使其后的基因不能转录,甲基化可能阻
碍转录因子与DNA特定部位的结合从而
影响转录。如果用基因打靶的方法除去
主要的DNA甲基化酶,小鼠的胚胎就不 能正常发育而死亡,可见DNA的甲基化 对基因表达调控是重要的。
PPT文档演模板
第十章真核生物基因的表达及其调控
• 由此可见,染色质中的基因转录前先要有一个 被激活的过程,但目前对激活机制还缺乏认识。
第十章真核生物基因的 表达及其调控
PPT文档演模板
2020/11/28
第十章真核生物基因的表达及其调控
真核生物与原核生物的调控差异
•原核生物
•真核生物
• 操纵元调控。
• 多样化调控,更为复杂。
•
• 基因组小,大肠杆菌:总长 4.6×106bp, 编码4288个基因, 每 个基因约1100bp。
• •
因转录起始及其调控所需的蛋白因子也不完全
相同,因而不同启动子序列也很不相同,要比
原核更复杂、序列也更长。真核启动子一般包
PPT文档演模板
括转录起始点及其上游约100-200bp序列,包 含有若干具有独立功能的DNA序列元件,每个 元件约长7-30bp。最常见的哺乳类RNA聚合 酶Ⅱ启动子中的元件序列见表第1十章真核生物基因的表达及其调控
①核心启动子元件(core promoter element) 指 RNA聚合酶起始转录所必需的最小的DNA序列, 包括转录起始点及其上游-25/-30bp处的 TATA盒。核心元件单独起作用时只能确定转
PPT文档演模板
第十章真核生物基因的表达及其调控
❖②上游启动子元件(upstream promoter element) 包括通常位于-70bp附近的CAAT盒和GC盒、 以及距转录起始点更远的上游元件。这些元件 与相应的蛋白因子结合能提高或改变转录效率。 不同基因具有不同的上游启动子元件,其位置 也不相同,这使得不同的基因表达分别有不同 的调控。
PPT文档演模板
第十章真核生物基因的表达及其调控
• 1.启动子
与原核启动子的含义相同,是指RNA聚合酶结 合并启动转录的DNA序列。但真核启动子间不
像原核那样有明显共同一致的序列,而且单靠 RNA聚合酶难以结合DNA而起动转录,而是需
要多种蛋白质因子的相互协调作用,不同蛋白
质因子又能与不同DNA序列相互作用,不同基
•Octamer •ATTTGCAT
•Oct-1
•76,000 •~10bp
•
•
•Oct-2
•53,000 •~20bp
•kB
•GGGACTTTCC •NFkB
•44,000 •~10bp
•ATF
PPT文档演模板
•GTGACGT
•AFT
•?
•20bp
第十章真核生物基因的表达及其调控
• 启动子中的元件可以分为两种:
•基 因 组 大 , 人 类 基 因 组 全 长 3×109 bp,编码10万个基因,其余为重复序 列 • 。
• 基因分布在同一染色体上,操 • DNA与组蛋白结合成染色质,染色质的
纵元控制。
变化调控基因表达;基因分布在不同的染
色体上,存在不同染色体间基因的调控问
题• 。
•
•
适应外界环境,操纵元调控表达。•
基因表达调控的环节。
❖ 原核基因组中除rRNA、tRNA基因有多个拷贝 外,重复序列不多。哺乳动物基因组中则存在 大量重复序列(repetitive sequences)。
PPT文档演模板
第十章真核生物基因的表达及其调控
• 从上述可见:真核基因组比原核基因组 复杂得多,至今人类对真核基因组的认 识还很有限,现在国际上制订的人基因 组研究计划(human gene project)完成,绘 出人全部基因的染色体定位图,测出人 基因组109bp全部DNA序列后,要搞清楚 人全部基因的功能及其相互关系,特别 是要明了基因表达调控的全部规律,还
PPT文档演模板
第十章真核生物基因的表达及其调控
PPT文档演模板
第十章真核生物基因的表达及其调控
• (二)真核基因的转录与染色质的结构变化 相关 。
真核基因组DNA绝大部分都在细胞核内与组蛋 白等结合成染色质,染色质的结构、染色质中 DNA和组蛋白的结构状态都影响转录,至少有 以下现象:
1.染色质结构影响基因转录
第十章真核生物基因的表达及其调控
• 3.静止子
最早在酵母中发现,以后在T淋巴细胞的T抗原 受体基因的转录和重排中证实这种负调控顺式 元件的存在。目前对这种在基因转录降低或关 闭中起作用的序列研究还不多,但从已有的例 子看到:静止子的作用可不受序列方向的影响, 也能远距离发挥作用,并可对异源基因的表达 起作用。
PPT文档演模板
第十章真核生物基因的表达及其调控
• 5. DNA碱基修饰变化:真核DNA中的胞 嘧啶约有5%被甲基化为5-甲基胞嘧啶(5 methylcytidine,m5C),而活跃转录的 DNA段落中胞嘧啶甲基化程度常较低。 这种甲基化最常发生在某些基因5′侧区的 CG序列中,实验表明这段序列甲基化可
第十章真核生物基因的表达及其调控
❖ 3.转录活跃的区域也常缺乏核小体的结构。这 些都表明核小体结构影响基因转录。
❖ 4.转录活跃区域对核酸酶作用敏感度增加。活 跃进行转录的染色质区域受DNase Ⅰ消化常出 现100-200bp的DNA片段,且长短不均一,说 明其DNA受组蛋白掩盖的结构有变化,出现了 对DNase Ⅰ高敏感点(hypersensitive site)。这种 高敏感点常出现在转录基因的5′侧区(5′ flanking region)、3′末端或在基因上,多在调控蛋白结 合位点的附近,分析该区域核小体的结构发生 变化,可能有利于调控蛋白 结合而促进转录。
PPT文档演模板
第十章真核生物基因的表达及其调控
• 2.增强子
是一种能够提高转录效率的顺式调控元件,最 早是在SV40病毒中发现的长约200bp的一段 DNA,可使旁侧的基因转录提高100倍,其后 在多种真核生物,甚至在原核生物中都发现了 增强子。增强子通常占100-200bp长度,也和 启动子一样由若干组件构成,基本核心组件常 为8-12bp,可以单拷贝或多拷贝串连形式存 在。增强子的作用有以下特点
•哺乳类RNA聚合酶Ⅱ启动子中的元件序列
•元件名称 •共同序列
•名称
•结合的蛋白因子 •分子量 •结合DNA长度
•TATAbox •TATAAAA
•TBP
•30,000 105,000 •~20bp
•CAAT box •GGCCAATCT •CTF/NF1 •60,000 •~22bp
PPT文档演模板
第十章真核生物基因的表达及其调控
❖ ①增强子提高同一条DNA链上基因转录效率, 可以远距离作用,通常可距离1-4kb、个别情 况下离开所调控的基因30kb仍能发挥作用,而 且在基因的上游或下游都能起作用。
❖ ②增强子作用与其序列的正反方向无关,将增 强子方向倒置依然能起作用。而将启动子倒就 不能起作用,可见增强子与启动子是很不相同 的。
PPT文档演模板
第十章真核生物基因的表达及其调控
• (二)反式作用因子(trans acting factors)
由不同染色体上基因座位编码的、能直接或间接地识 别或结合在各顺式作用元件8一12bP核心序列上并参与 调控靶基因转录效率的这些结合蛋白.称作反式作用 因子(trans—acting factor)。它们在转录调节中具有特殊 的重要性。这类DNA结合蛋白有多种.能特异性识别 这类蛋白的序列也有多种.正是不同的DNA结合蛋白 与不同识别序列之间在空间结构上的相互作用,以及 蛋白质与蛋白质之间的相互作用,构成了复杂的基因 转录调控机制的基础。 研究得较多的反式作用因子有 Spl、CTF、Ap—t、 Ap—2、 oct—1、oct—2等。
(三)真核基因表达以正性调控为主:真核RNA 聚合酶对启动子的亲和力很低,基本上不依靠 自身来起始转录,需要依赖多种激活蛋白的协 同作用。真核基因调控中虽然也发现有负性调 控元件,但其存在并不普遍;真核基因转录表 达的调控蛋白也有起阻遏和激活作用或兼有两 种作用者,但总的是以激活蛋白的作用为主。 即多数真核基因在没有调控蛋白作用时是不转 录的,需要表达时就要有激活的蛋白质来促进 转录。换言之:真核基因表达以正性调控为主 导。
因协调表达要比原核生物复杂得多。
PPT文档演模板
第十章真核生物基因的表达及其调控
❖ 原核基因组的大部分序列都为基因编码,而核 酸杂交等实验表明:哺乳类基因组中仅约10% 的序列为蛋白质、rRNA、tRNA等编码,其余 约90%的序列功能至今还不清楚。
❖ 原核生物的基因为蛋白质编码的序列绝大多数 是连续的,而真核生物为蛋白质编码的基因绝 大多数是不连续的,即有外显子(exon)和内含 子(intron),转录后需经剪接(splicing)去除内含 子,才能翻译获得完整的蛋白质,这就增加了
PPT文档演模板
第十章真核生物基因的表达及其调控
❖ ④增强子的作用机理虽然还不明确,但与其他 顺式调控元件一样,必须与特定的蛋白质因结 合后才能发挥增强转录的作用。增强子一般具 有组织或细胞特异性,许多增强子只在某些细 胞或组织中表现活性,是由这些细胞或组织中 具有的特异性蛋白质因子所决定的。
PPT文档演模板
PPT文档演模板
第十章真核生物基因的表达及其调控
• 二、真核基因表达调控的特点
与原核生物比较它具有一些明显的特点: (一)
基因表达是基因经过转录、翻译、产生有生物 活性的蛋白质的整个过程。同原核生物一样, 转录依然是真核生物基因表达调控的主要环节。 但真核基因转录发生在细胞核(线粒体基因的转 录在线粒体内),翻译则多在胞浆,两个过程是 分开的,因此其调控增加了更多的环节和复杂 性,转录后的调控占有了更多的分量。