六年级下册奥数题试卷

合集下载

六年级下册数学奥数题

六年级下册数学奥数题

六年级下册数学奥数题一、圆柱与圆锥相关奥数题1. 把一个底面半径为5厘米,高为20厘米的圆柱形容器里装有水,水的高度为12厘米。

把一个底面半径为3厘米的圆锥形铁块完全浸入水中,水面上升到15厘米。

求这个圆锥形铁块的高是多少厘米?解析:圆柱形容器底面半径r = 5厘米,水面从12厘米上升到15厘米,上升的高度h = 15 12=3厘米。

根据圆柱体积公式V=π r^2h,上升的水的体积(也就是圆锥的体积)为:V=π×5^2×3 = 75π立方厘米。

圆锥底面半径R = 3厘米,设圆锥的高为H,根据圆锥体积公式V=(1)/(3)πR^2H,可得(1)/(3)×π×3^2× H=75π。

化简得3H = 75,解得H = 25厘米。

二、比例相关奥数题1. 已知甲、乙两数的比是5:3,它们的最大公因数与最小公倍数的和是240,求甲、乙两数。

解析:设甲、乙两数分别为5x和3x(x为正整数)。

因为甲、乙两数的比是5:3,所以它们的最大公因数是x,最小公倍数是15x。

根据它们的最大公因数与最小公倍数的和是240,可得x + 15x=240。

即16x = 240,解得x = 15。

所以甲数为5×15 = 75,乙数为3×15 = 45。

三、百分数相关奥数题1. 某商品按20%的利润定价,然后按八八折卖出,共得利润84元。

这件商品的成本是多少元?解析:设这件商品的成本是x元。

按20%的利润定价,则定价为(1 + 20%)x=1.2x元。

然后按八八折卖出,售价就是1.2x×0.88 = 1.056x元。

因为利润是84元,根据售价-成本 = 利润,可得1.056x x=84。

即0.056x = 84,解得x = 1500元。

六年级数学下奥数试卷答案

六年级数学下奥数试卷答案

一、选择题(每题3分,共15分)1. 下列数中,不是质数的是()A. 17B. 19C. 18D. 23答案:C解析:18可以被2、3、6、9整除,不是质数。

2. 一个数的因数有6个,那么这个数是()A. 8B. 9C. 12D. 15答案:C解析:8的因数有1、2、4、8;9的因数有1、3、9;12的因数有1、2、3、4、6、12;15的因数有1、3、5、15。

因此,12的因数有6个。

3. 下列图形中,面积最大的是()A. 正方形B. 长方形C. 三角形D. 圆答案:D解析:在相同周长的情况下,圆的面积最大。

4. 下列分数中,分子相同的是()A. 3/5B. 4/7C. 6/9D. 2/3答案:C解析:6/9可以化简为2/3,分子相同。

5. 一个长方形的长是10cm,宽是5cm,它的周长是()A. 20cmB. 25cmC. 30cmD. 35cm答案:C解析:长方形的周长计算公式为:周长 = (长 + 宽)× 2。

代入数值计算得:周长 = (10cm + 5cm)× 2 = 30cm。

二、填空题(每题5分,共25分)6. 下列数中,最小的质数是______。

答案:2解析:2是最小的质数。

7. 下列图形中,面积最小的是______。

答案:三角形解析:在相同周长的情况下,三角形的面积最小。

8. 下列分数中,分母相同的是______。

答案:3/5,6/10解析:3/5和6/10的分母都是10。

9. 一个长方形的长是8cm,宽是4cm,它的面积是______cm²。

答案:32cm²解析:长方形的面积计算公式为:面积 = 长× 宽。

代入数值计算得:面积 = 8cm × 4cm = 32cm²。

10. 下列数中,不是合数的是______。

答案:7解析:7只能被1和7整除,没有其他因数,因此是质数。

三、解答题(每题10分,共30分)11. 一个正方形的边长是4cm,求它的周长和面积。

【小升初】2023-2024学年浙江温州市小学六年级下学期数学奥数测试题2套(含解析)

【小升初】2023-2024学年浙江温州市小学六年级下学期数学奥数测试题2套(含解析)

【小升初】2023-2024学年浙江温州市小学六年级下学期数学奥数测试题1.由1,2,3,4,5这5个数字组成的没有重复数字的五位数中,有多少个大于34152()。

A.50B.54C.58D.602.甲乙两车同时从A、B两地相向而行,在距B地54千米处相遇,他们各自到达对方车站后立即返回,在距A地42千米处相遇。

请问A、B两地相距()千米。

A.120B.100C.80D.603.甲、乙、丙三个仓库各存有一些粮食,如果把甲仓库存粮的13调入到乙仓库,再把乙仓库这时存粮的25%调入到丙仓库。

最后把丙仓库这时存粮的17调入到甲仓库,这时每个仓库内正好存粮120吨,那么原来()。

A.甲仓库的存粮最多,是150吨B.乙仓库的存粮最多,是150吨C.丙仓库的存粮最多,是150吨D.不能确定哪个仓库的存粮最多4.两包一样重的水泥,从第一包中用了13,从第二包中用了13千克,剩下的水泥()。

A.第一包重B.第二包重C.无法确定哪包重5.2个鹅蛋可以换5个鸭蛋,2个鸭蛋可以换3个鸡蛋,4个鹅蛋可以换()个鸡蛋。

A.15B.12C.10D.186.运动会上每个班的所有学生都要参加入场式和团体操。

五(1)班入场队列如图,表演团体操时的几个队列如下,()可能是五(1)班。

A.B.C.D.7.快车以60千米/小时的速度从甲站向乙站开出,1.5小时后,慢车以40千米/小时的速度从乙站向甲站开出,两车相遇时,相遇点离两站的中点70千米。

则甲、乙两站相距多少千米?()。

A.140千米B.170千米C.240千米D.340千米8.外面大圆的周长与里面三个小圆的周长和相比,()。

A.外面大圆的周长大B.三个小圆的周长和大C.相等9.一项工程,单独做甲需10小时完成,乙需15小时完成。

现在两人合作,中途甲因事停工了一段时间,结果7小时才完成,甲停工了()小时。

A.12B.3C.18D.3.5 310.某年级有学生若干人,列成三层中空方阵,多出9人,如在中空部分增列两层,则少15人,问该年级有学生多少人?()。

六年级数学下册数学奥数题

六年级数学下册数学奥数题

1、小明有10张卡片,上面写着1到10的数字,他随机抽取一张,抽到的数字是偶数的概率是多少?A、1/10B、1/5C、2/5D、1/2解析:1到10的数字中,偶数有2、4、6、8、10,共5个。

所以抽到的数字是偶数的概率是5/10,简化后为1/2。

(答案)D2、一个正方形的对角线长10厘米,那么这个正方形的面积是多少平方厘米?A、25B、50C、75D、100解析:正方形的对角线将正方形分为两个相等的直角三角形,且对角线是斜边。

根据勾股定理,若正方形的边长为a,则对角线长度为a√2。

由此可得a√2=10,解得a=5√2。

正方形的面积为边长的平方,即(5√2)²=50。

(答案)B3、有三个连续的自然数,它们的和是36,这三个数中最大的一个是多少?A、10B、11C、12D、13解析:设这三个连续的自然数为x、x+1、x+2,它们的和为36,即x+(x+1)+(x+2)=36,解得x=11。

所以这三个数中最大的一个是11+2=13。

(答案)D4、一个长方体的长、宽、高分别是3厘米、4厘米、5厘米,它的体积是多少立方厘米?A、30B、45C、60D、75解析:长方体的体积是长、宽、高的乘积,即3×4×5=60立方厘米。

(答案)C5、小红买了一本故事书,她第一天看了全书的1/5,第二天看了剩下的1/4,还剩63页没看,这本书一共有多少页?A、100B、120C、140D、150解析:设这本书一共有x页,第一天看了x/5页,剩下4x/5页。

第二天看了剩下的1/4,即(4x/5)×(1/4)=x/5页。

两天一共看了x/5+x/5=2x/5页,还剩3x/5页。

根据题意,3x/5=63,解得x=105。

但选项中无105,考虑到63是3x/5的简化,即3/5的倍数,原数应为5的倍数且能被3整除,只有150符合。

(答案)D6、一个圆的半径增加10%,它的面积增加多少百分比?A、10%B、20%C、21%D、30%解析:设原半径为r,则原面积为πr²。

六下数学奥数题及解析

六下数学奥数题及解析

六下数学奥数题及解析1、下列说法正确的是[单选题] *A.两个数的和必定大于每一个加数B.两个数的和必定不大于每一个加数C.两个有理数和的绝对值等于这两个有理数绝对值的和D.如果两个数的和是负数,那么这两个数中至少有一个是负数(正确答案)2、10.下列各数:5,﹣,03003,,0,﹣,12,1010010001…(每两个1之间的0依次增加1个),其中分数的个数是()[单选题] *A.3B.4(正确答案)C.5D.63、19.对于实数a、b、c,“a>b”是“ac2(c平方)>bc2(c平方) ; ”的()[单选题] * A.充分不必要条件B.必要不充分条件(正确答案)C.充要条件D.既不充分也不必要条件4、33.若x2﹣6x+k是完全平方式,则k的值是()[单选题] *A.±9B.9(正确答案)C.±12D.125、28.已知点A(2,3)、B(1,5),直线AB的斜率是()[单选题] *A.2B.-2C.1/2D.-1/2(正确答案)6、30.圆的方程+=4,则圆心到直线x-y-4=0的距离是()[单选题] *A.√2(正确答案)B.√2/2C.2√2D.27、26.已知(x﹣a)(x+2)的计算结果为x2﹣3x﹣10,则a的值为()[单选题] * A.5(正确答案)B.﹣5C.1D.﹣18、19、如果点M是第三象限内的整数点,那么点M的坐标是()[单选题] *(-2,-1)(-2,-2)(-3,-1)(正确答案)(-3,-2)9、8.如图,在数轴上表示的点可能是()[单选题] *A.点PB.点Q(正确答案)C.点MD.点N10、10. 如图所示,小明周末到外婆家,走到十字路口处,记不清哪条路通往外婆家,那么他一次选对路的概率是(? ? ?).[单选题] *A.1/2B.1/3(正确答案)C.1/4D.111、35、下列判断错误的是()[单选题] *A在第三象限,那么点A关于原点O对称的点在第一象限.B在第二象限,那么它关于直线y=0对称的点在第一象限.(正确答案) C在第四象限,那么它关于x轴对称的点在第一象限.D在第一象限,那么它关于直线x=0的对称点在第二象限.12、下列各对象可以组成集合的是()[单选题] *A、与1非常接近的全体实数B、与2非常接近的全体实数(正确答案)C、高一年级视力比较好的同学D、与无理数相差很小的全体实数13、已知x-y=3,x2-y2=12,那么x+y的值是( ??) [单选题] *A. 3B. 4(正确答案)C. 6D. 1214、8.如果直角三角形的三条边为2,4,a,那么a的取值可以有()[单选题] *A. 0个B. 1个C. 2个D. 3个(正确答案)15、下列各式:①(x-2y)(2y+x);②(x-2y)(-x-2y);③(-x-2y)(x+2y);④(x-2y)(-x+2y).其中能用平方差公式计算的是()[单选题] *A. ①②(正确答案)B. ①③C. ②③D. ②④16、47.已知(x﹣2021)2+(x﹣2023)2=50,则(x﹣2022)2的值为()[单选题]* A.24(正确答案)B.23C.22D.无法确定17、10.若一个直角三角形三边的长分别是三个连续的自然数,则这个三角形的周长[单选题] *A. 12(正确答案)B. 13C. 15D. 1418、22、在平面直角坐标系中,已知点P,在轴上有点Q,它到点P的距离等于3,那么点Q的坐标是()[单选题] *(0,3)(0,5)(0,-1)(0,5)或(0,-1) (正确答案)19、的单调递减区间为()[单选题] *A、(-1,1)(正确答案)B、(-1,2)C、(-∞,-1)D、(-∞,+∞)20、45、下列说法错误的是()[单选题] *A.三角形的高、中线、角平分线都是线段B.三角形的三条中线都在三角形内部C.锐角三角形的三条高一定交于同一点D.三角形的三条高、三条中线、三条角平分线都交于同一点(正确答案)21、9、横坐标为3的点一定在()[单选题] *A.与x轴平行,且与x轴的距离为3的直线上B.与y轴平行,且与y轴的距离为3的直线上C.与x轴正半轴相交,与y轴平行,且与y轴的距离为3的直线上(正确答案)D.与y轴正半轴相交,与x轴平行,且与x轴的距离为3的直线上22、下列计算正确的是( ) [单选题] *A. 9a3·2a2=18a?(正确答案)B. 2x?·3x?=5x?C. 3 x3·4x3=12x3D. 3y3·5y3=15y?23、18.如果A、B、C三点在同一直线上,且线段AB=4cm,BC=2cm,那么AC两点之间的距离为()[单选题] *A.2cmB.6cmC.2或6cm(正确答案)D.无法确定24、3.如果两个数的和是正数,那么[单选题] *A.这两个数都是正数B.一个为正,一个为零C.这两个数一正一负,且正数的绝对值较大D.必属上面三种情况之一(正确答案)25、5.在数轴上点A,B分别表示数-2,-5,则A,B两点之间的距离可表示为()[单选题] *A.-2+(-5)B.-2-(-5)(正确答案)C.(-5)+2D(-5)-226、若10?=3,10?=2,则10的值为( ) [单选题] *A. 5B. 6(正确答案)C. 8D. 927、下列函数中奇函数是()[单选题] *A、y=2sin x(正确答案)B、y=3sin xC、y=2D、y=28、10.下列四个数中,属于负数的是().[单选题] *A-3(正确答案)B 3C πD 029、1.如果点M(a+3,a+1)在直角坐标系的x轴上,那么点M的坐标为()[单选题] *A.(0,-2)B.(2,0)(正确答案)C.(4,0)D.(0,-4)30、2.(2020·新高考Ⅱ,1,5分)设集合A={2,3,5,7},B={1,2,3,5,8},则A∩B=( ) [单选题] * A.{1,8}B.{2,5}C.{2,3,5}(正确答案) D.{1,2,3,5,7,8}。

【word直接打印】小学六年级下册数学奥数题带答案

【word直接打印】小学六年级下册数学奥数题带答案

【word直接打印】小学六年级下册数学奥数题带答案一、拓展提优试题1.用底面内半径和高分别是12cm,20cm的空心圆锥和空心圆柱各一个组成如图所示竖放的容器,在这个容器内注入一些细沙,能填满圆锥,还能填部分圆柱,经测量,圆柱部分的沙子高5cm,若将这个容器倒立,则沙子的高度是cm.2.(15分)王老师将200块糖分给了甲乙丙三个小朋友,甲比乙的2倍还要多,乙比丙的3倍还要多,那么甲最少有块糖,丙最多有块糖.3.如图,正方形ABCD和EFGH分别被互相垂直的直线分为两个小正方形和两个矩形,小正方形的面积的值已标在图中,分别为20和10,18和12,则正方形ABCD和EFGH中,面积较大的正方形是.4.早晨7点10分,妈妈叫醒小明,让他起床,可小明从镜子中看到的时刻还没有到起床的时刻,他对妈妈说:“还早呢!”小明误以为当时是点分.5.王涛将连续的自然数1,2,3,…逐个相加,一直加到某个自然数为止,由于计算时漏加了一个自然数而得到错误的结果2012.那么,他漏加的自然数是.6.甲、乙、丙三人去郊游,甲买了9根火腿,乙买了6个面包,丙买了3瓶矿泉水,乙花的钱是甲的,丙花的钱是乙的,丙根据每人所花钱的多少拿出9元钱分给甲和乙,其中,分给甲元,分给乙元.7.若质数a,b满足5a+b=2027,则a+b=.8.某日是台风天气,雨一直均匀地下着,在雨地里放一个如图1所示的长方体容器,此容器装满雨水需要1小时.请问:雨水要下满如图2所示的三个不同的容器,各需要多长时间?9.根据图中的信息可知,这本故事书有页页.10.在救灾捐款中,某公司有的人各捐200元,有的人各捐100元,其余人各捐50元.该公司人均捐款元.11.一次智力测试由5道判断对错的题目组成,答对一道得20分,答错或不答得0分.小花在答题时每道题都是随意答“对”或“错”,那么她得60分或60分以上的概率是%.12.用1024个棱长是1的小正方体组成体积是1024的一个长方体.将这个长方体的六个面都涂上颜色,则六个面都没有涂色的小正方体最多有个.13.如图,将正方形纸片ABCD折叠,使点A、B重合于点O,则∠EFO=度.14.若(n是大于0的自然数),则满足题意的n的值最小是.15.(15分)二进制是计算机技术中广泛采用的一种数制,其中二进制数转换成十进制数的方法如下:那么,将二进制数 11111011111 转化为十进制数,是多少?【参考答案】一、拓展提优试题1.解:据分析可知,沙子的高度为:5+20÷3=11(厘米);答:沙子的高度为11厘米.故答案为:11.2.解:甲比丙的2×3=6倍多,总数就比丙的6+3+1=10倍多200÷(2×3+3+1)=20(块),丙最多:20﹣1=19(块)此时甲乙至少有:200﹣19=181(块),181÷(2+1)=60(块)…1(块),乙最多60块,甲至少:60×2+1=121(块).故答案为:121,19.3.解:小正方形的面积之和为30时,两正方形的面积差最小,则大正方形的面积越大,即EFGH的面积较大;故答案为:EFGH.4.解:早晨7点10分,分针指向2,时针指7、8之间,根据对称性可得:与4点50分时的指针指向成轴对称,故小明误以为是4点50分.故答案为:4,50.5.解:设这个等差数列和共有n项,则末项也应为n,这个等差数列的和为:(1+n)n÷2=;经代入数值试算可知:当n=62时,数列和=1953,当n=63时,数列和=2016,可得:1953<2012<2016,所以这个数列共有63项,少加的数为:2016﹣2012=4.故答案为:4.6.解:丙花钱是甲的×=甲:乙:丙=1::=13:12:8(13+12+8)÷3=11每份:9÷(11﹣8)=3(元)甲:(13﹣11)×3=6(元)乙:(12﹣11)×3=3(元)答:分给甲6元,分给乙3元.故答案为:6,3.7.解:依题意可知:两数字和为奇数,那么一定有一个偶数.偶质数是2.当b=2时,5a+2=2027,a=405不符合题意.当a=2时,10+b=2027,b=2017符合题意,a+b=2+2017=2019.故答案为:2019.8.解:图1所示的长方体容器的容积:10×10×30=3000(立方厘米)接水口的面积为:10×30=300(平方厘米)接水口每平方厘米每小时可接水:3000÷300÷1=10(立方厘米)所以,图①需要:10×10×30÷(10×10×10)=3(小时)图②需要:(10×10×20+10×10×10)÷(10×10×20)=1.5(小时)图③需要:2÷2=1(厘米)3.14×1×1×20÷(3.14×1×10)=2(小时)答:容器①需要3小时,容器②需要1.5小时,容器③需要2小时.9.解:(10+5)÷(1﹣×2)=15÷=25(页)答:这本故事书有25页;故答案为:25.10.解:捐50元人数的分率为:1﹣=,(200×+100×+50×)÷1=(20+75+7.5)÷1=102.5(元)答:该公司人均捐款102.5元.故答案为:102.5.11.解:有答对一题,两题,三题,四题,五题,全错六种情况,答对三题是60分,四题是80分,五题是100分,她得60分或60分以上的概率是:=50%.答:她得60分或60分以上的概率是50%.故答案为:50%.12.解:因为1024=210=8×8×16(8﹣2)×(8﹣2)×(16﹣2)=6×6×14=504答:六个面都没有涂色的小正方体最多有504个.故答案为:504.13.解:沿DE折叠,所以AD=OD,同理可得BC=OC,则:OD=DC=OC,△OCD是等边三角形,所以∠DCO=60°,∠OCB=90°﹣60°=30°;由于是对折,所以CF平分∠OCB,∠BCF=30°÷2=15°∠BFC=180°﹣90°﹣15°=75°所以∠EFO=180°﹣75°×2=30°.故答案为:30.14.解:当n=1时,不等式左边等于,小于,不能满足题意;当n=2时,不等式左边等于+==,小于,不能满足题意;同理,当n=3时,不等式左边大于,能满足题意;所以满足题意的n的值最小是3.故答案是:315.解:(11111011111)2=1×210+1×29+1×28+1×27+1×26+0×25+1×24+1×23+1×22+1×21+1×20=1024+512+256+128+64+0+16+8+4+2+1=(2015)10答:是2015.。

人教版【精选】小学六年级下册数学奥数题带答案

人教版【精选】小学六年级下册数学奥数题带答案

人教版【精选】小学六年级下册数学奥数题带答案一、拓展提优试题1.定义新运算“*”:a*b=例如3.5*2=3.5,1*1.2=1.2,7*7=1,则=.2.有一口无水的井,用一根绳子测井的深度,将绳对折后垂到井底,绳子的一端高出井口9m;将绳子三折后垂到井底,绳子的一端高出井口2m,则绳长米,井深米.3.A,B两校的男、女生人数的比分别为8:7和30:31,两校合并后男、女生人数的比是27:26,则A,B两校合并前人数比是.4.分子与分母的和是2013的最简真分数有个.5.22012的个位数字是.(其中,2n表示n个2相乘)6.甲、乙两家商店出售同一款兔宝宝玩具,每只原售价都是25元,为了促销,甲店先提价10%,再降价20%;乙店则直接降价10%.那么,调价后对于这款兔宝宝玩具,店的售价更便宜,便宜元.7.图中每一个圆的面积都是1平方厘米,则六瓣花形阴影部分的面积是平方厘米.8.从五枚面值为1元的邮票和四枚面值为 1.60元的邮票中任取一枚或若干枚,可组成不同的邮资种.9.如图,圆P的直径OA是圆O的半径,OA⊥BC,OA=10,则阴影部分的面积是.(π取3)10.如图,一个底面直径是10厘米的圆柱形容器装满水.先将一个底面直径是8厘米的圆锥形铁块放入容器中,铁块全部浸入水中,再将铁块取出,这时水面的高度下降了3.2厘米.圆锥形铁块的高厘米.11.已知A是B的,B是C的,若A+C=55,则A=.12.已知x是最简真分数,若它的分子加a,化简得;若它的分母加a,化简得,则x=.13.请你想好一个数,将它加上5,其结果乘以2,再减去4,得到的差除以2,再减去你最初想好的那个数,最后的计算结果是.14.某项工程,开始由6人用35天完成了全部工程的,此后,增加了6人一起来完成这项工程.则完成这项工程共用天.15.王老师开车从家出发去A地,去时,前的路程以50千米/小时的速度行驶,余下的路程行驶速度提高20%;返回时,前的路程以50千米/小时的速度行驶,余下的路程行程速度提高32%,结果返回时比去时少用31分钟,则王老师家与A地相距千米.【参考答案】一、拓展提优试题1.解:根据分析可得,,=,=2;故答案为:2.2.解:(9×2﹣2×3)÷(3﹣2),=(18﹣6)÷1,=12÷1,=12(米),=21×2,=42(米).故答案为:42,12.3.解:设A、B两校的男生、女生人数分别为8a、7a、30b、31b,由题意得:(8a+30b):(7a+31b)=27:26,27×(7a+31b)=26×(8a+30b),189a+837b=208a+780b,837b﹣780b=208a﹣189a,57b=19a,所以a=3b,所以A、B两校合并前人数的比是:(8a+7a):(30b+31b),=15a:61b,=45b:61b,=(45b÷b):(61b÷b)=45:61;答:A,B两校合并前人数比是45:61.故答案为:45:61.4.解:分子与分母的和是2013的真分数有,,…,共1006个,2013=3×11×61,只要分子是2013质因数的倍数时,这个分数就不是最简分数,因数分子与分母相加为2013,若分子是3,11,61的倍数,则分母一定也是3,11或61的倍数.[1006÷3]=335,[1006÷11]=91,[1006÷61]=16,[1006÷3÷11]=30,[1006÷3÷61]=5,[1006÷11÷61]=1,1006﹣335﹣91﹣16+30+5+1=600.故答案为:600.5.解:2012÷4=503;没有余数,说明22012的个位数字是6.故答案为:6.6.解:甲商店:25×(1+10%)×(1﹣20%),=25×110%×80%,=22(元);乙商店:25×(1﹣10%),=25×90%,=22.5(元);22.5﹣22=0.5(元);答:甲商店便宜,便宜了0.5元.故答案为:甲,0.5.7.解:1×2=2(平方厘米);答:六瓣花形阴影部分的面积是2平方厘米.故答案为:2.8.解:根据分析可得:6×5﹣1=29(种);答:可组成不同的邮资29种.故答案为:29.9.解:3×102÷2﹣3×(10÷2)2=3×100÷2﹣3×25=150﹣75=75答:阴影部分的面积是75.故答案为:75.10.解:圆锥形铁块的体积是:3.14×(10÷2)2×3.2=3.14×25×3.2=251.2(cm3)铁块的高是:251.2×3÷[3.14×()2]=251.2×3÷50.24=15(cm)答:铁块的高是15cm.11.解:A是C的×=,即A=C,A+C=55,则:C+C=55C=55C=55÷C=40A=40×=15故答案为:15.12.解:设原来的分数x是,则:=则:b=3(c+a)=3c+3a①=则:4c=a+b②①代入②可得:4c=a+3c+3a4c=4a+3c则:c=4a③③代入①可得:b=3c+3a=3×4a+3a=15a所以==即x=.故答案为:.13.解:设这个数是a,[(a+5)×2﹣4]÷2﹣a=[2a+6]÷2﹣a=a+3﹣a=3,故答案为:3.14.解:总工作量看做单位“1”.剩余工作量为1﹣=,一个人的工作效率为÷6÷35,(1﹣)÷[÷6÷35×(6+6)]=÷(÷6÷35×12)=÷=35(天)35+35=70(天)答:完成这项工程共用70天.故答案为:70.15.解:已知去时的速度为50千米/小时,余下的路程行驶速度是50×(1+20%)=50千米/小时;返回的速度为50千米/小时,余下的路程行驶速度是50×(1+32%)=66千米/小时.设总路程为x千米,得:(x×+x×)﹣(x×+x×)=x﹣x=x=x=330答:王老师家与A地相距330千米.故答案为:330.。

(完整版)小学六年级下册最新经典奥数题及答案(最全)

(完整版)小学六年级下册最新经典奥数题及答案(最全)

小学六年级奥数题工程问题:1. 甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?2. 修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。

如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。

现在计划16天修完这条水渠, 且要求两队合作的天数尽可能少,那么两队要合作几天?3. 一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。

现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。

乙单独做完这件工作要多少小时?4. 一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。

已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?5. 帅徒俩人加工同样多的零件。

当师傅完成了1/2时,徒弟完成了120个。

当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?1. 如果现在是上午的10点21分,那么在经过28799...99( 一共有20个9)分钟之后的时间将是几点几分?一. 排歹0组合问题1. 有五对夫妇围成一圈,使每一对夫妇的夫妻二人动相邻的排法有(A 768种B 32 种C 24 种D 2 的10次方中2. 若把英语单词hello的字母写错了,则可能出现的错误共有()A 119 种B 36 种C 59 种D 48 种二. 容斥原理问题1. 有100种赤贫.其中含钙的有68种,含铁的有43种,那么,同时含钙和铁的食品种类的最大值和最小值分别是()A 43,25B 32,25 C32,15 D 43,112. 在多元智能大赛的决赛中只有三道题.已知:(1)某校25名学生参加竞赛,每个学生至少解出一道题;(2)在所有没有解出第一题的学生中,解出第二题的人数是解出第三题的人数的2倍:(3)只解出第一题的学生比余下的学生中解出第一题的人数多1人;(4)只解出一道题的学生中,有一半没有解出第一题,那么只解出第二题的学生人数是()A, 5 B , 6 C , 7 D , 83. 一次考试共有5道试题。

小学六年级数学下册奥数必考题目及参考答案,期末必看

小学六年级数学下册奥数必考题目及参考答案,期末必看

1、某市举行小学数学竞赛,结果不低于80分的人数比80分以下的人数的4倍还多2人,及格的人数比不低于80分的人数多22人,恰是不及格人数的6倍,求参赛的总人数?解:设不低于80分的为A人,则80分以下的人数是(A-2)/4,及格的就是A+22,不及格的就是A+(A-2)/4-(A+22)=(A-90)/4,而6*(A-90)/4=A+22,则A=314,80分以下的人数是(A-2)/4,也即是78,参赛的总人数314+78=3922、电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?解:设一张电影票价x元(x-3)×(1+1/2)=(1+1/5)x(1+1/5)x这一步是什么意思,为什么这么做(x-3){现在电影票的单价}×(1+1/2){假如原来观众总数为整体1,则现在的观众人数为(1+2/1)}左边算式求出了总收入(1+1/5)x{其实这个算式应该是:1x*(1+5/1)把原观众人数看成整体1,则原来应收入1x元,而现在增加了原来的五分之一,就应该再*(1+5/1),减缩后得到(1+1/5x)}如此计算后得到总收入,使方程左右相等3、甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。

这时两人钱相等,求乙的存款答案:取40%后,存款有9600×(1-40%)=5760(元)这时,乙有:5760÷2+120=3000(元)乙原来有:3000÷(1-40%)=5000(元)4、由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。

再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?答案:加10颗奶糖,巧克力占总数的60%,说明此时奶糖占40%,巧克力是奶糖的60/40=1.5倍再增加30颗巧克力,巧克力占75%,奶糖占25%,巧克力是奶糖的3倍增加了3-1.5=1.5倍,说明30颗占1.5倍奶糖=30/1.5=20颗巧克力=1.5*20=30颗奶糖=20-10=10颗5、小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少1/4!”小亮说:“你要是能给我你的1/6,我就比你多2个了。

最新小学六年级下册数学奥数题带答案word百度文库

最新小学六年级下册数学奥数题带答案word百度文库

最新小学六年级下册数学奥数题带答案word百度文库一、拓展提优试题1.如图是根据鸡蛋的三个组成部分的质量绘制的扇形统计图,由图可知,蛋壳重量占鸡蛋重量的%,一枚重60克的鸡蛋中,最接近32克的组成部分是.2.在一个两位数的中间加上小数点,得到一个小数,若这个小数与原来的两位数的和是86.9,则原来两位数是.3.从12点开始,经过分钟,时针与分针第一次成90°角;12点之后,时针与分针第二次成90°角的时刻是.4.若一个长方体,长是宽的2倍,宽是高的2倍,所有棱长之和是56,则此长方体的体积是.5.老师让小明在400米的环形跑道上按照如下规律插上一些旗子做标记:从起点开始,沿着跑道每前进90米就插上一面旗子,直到下一个90米的地方已经插有旗子为止,则小明要准备面旗子.6.一个两位数除以一位数,所得的商若是最小的两位数,那么被除数最大是.7.图中的三角形的个数是.8.从1,2,3,4,…,15,16这十六个自然数中,任取出n个数,其中必有这样的两个数:一个是另一个的3倍,则n最小是.9.有三杯重量相等的溶液,它们的浓度依次是10%,20%,45%,如果依次将三个杯子中的溶液重量的,,倒入第四个空杯子中,则第四个杯子中溶液的浓度是%.10.如图,设定E、F分别是△ABC的边AB、AC上的点,线段CE,BF交于点D,若△CDF,△BCD,△BDE的面积分别为3,7,7,则四边形AEDF的面积是.11.用1,2,3,4,5,6,7,8,9九个数字组成三个三位数(每个数字只能用1次),使最大的数能被3整除;次大的数被3除余2,且尽可能的大;最小的数被3除余1,且尽可能的小,求这三个三位数.12.根据图中的信息可知,这本故事书有页页.13.用1024个棱长是1的小正方体组成体积是1024的一个长方体.将这个长方体的六个面都涂上颜色,则六个面都没有涂色的小正方体最多有个.14.已知A是B的,B是C的,若A+C=55,则A=.15.a,b,c是三个互不相等的自然数,且a+b+c=48,那么a,b,c的乘积最大是.【参考答案】一、拓展提优试题1.解:(1)1﹣32%﹣53%,=1﹣85%,=15%;答:蛋壳重量占鸡蛋重量的15%.(2)蛋黄重量:60×32%=19.2(克),蛋白重量:60×53%=31.8(克),蛋壳重量:60×15%=9(克),所以最接近32克的组成部分是蛋白.答:最接近32克的组成部分是蛋白.故答案为:15,蛋白.2.解:根据题意可得:86.9÷(10+1)=7.9;7.9×10=79.答:原来两位数是79.故答案为:79.3.解:分针每分钟走的度数是:360÷60=6(度),时针每分钟走的度数是:6×5÷60=0.5(度),第一成直角用的时间是:90÷(6﹣0.5),=90÷5.5,=16(分钟),第二次成直角用的时间是:270÷(6﹣0.5),=270÷5.5,=49(分钟).这时的时刻是:12时+49分=12时49分.故答案为:16,12时49分.4.解:长方体的高是:56÷4÷(1+2+4),=14÷7,=2,宽是:2×2=4,长是:4×2=8,体积是:8×4×2=64,答:这个长方体的体积是64.故答案为:64.5.解:400和90的最小公倍数是3600,则3600÷90=40(面).答:小明要准备40面旗子.故答案为:40.6.解:商是10,除数最大是9,余数最大是8,9×10+8=98;被除数最大是98.故答案为:98.7.解:根据题干分析可得:10+10+10+5=35(个),答:一共有35个三角形.故答案为:35.8.解:将有3倍关系的放入一组为:(1,3,9)、(2,6)、(4,12)、(5,15)共有4组,其余7个数每一个数为一组,即将这16个数可分为11组,.则第一组最多取2个即1和9,其余组最多取一个,即最多能取12个数保证没有一个数是另一个的三倍,此时只要再任取一个,即取12+1=13个数必有一个数是另一个数的3倍.所以n最小是13.9.解:依题意可知:设三杯溶液的重量为a.根据浓度=×100%=×100%=20%故答案为:20%10.解:连接AD,因△CDF和△BCD的高相等,所以FD:DB=3:7,所△AFD和△ABD的面积比也是3:7,即可把△AFD的面积看作是3份,△ABD的面积看作是7份,S△BCD=7,S△BDE=7所以CD=DE,S△ACD=S△ADE,S△ACD+S△BDE=S△ABD,S△ACD+S△BDE=7份,S△AFD+S△CDF+S△BDE=7份,3份+3+7=7份,则1份=2.5,S四边形AEDF=10份﹣7=10×2.5﹣7=25﹣7=18答:四边形AEDF的面积是18.故答案为:18.11.解:根据分析,最大的数最高位是:9,次大的数最高位是:8,最小的数最高位是1,次大的数倍3除余2,且要尽可能的大,则次大的三位数为:875;最小的数被3除余1,且要尽可能的小,则最小的三位数为:124;剩下的三个数字只有,3,6,9,故最大的三位数为:963.故答案是:963、875、124.12.解:(10+5)÷(1﹣×2)=15÷=25(页)答:这本故事书有25页;故答案为:25.13.解:因为1024=210=8×8×16(8﹣2)×(8﹣2)×(16﹣2)=6×6×14=504答:六个面都没有涂色的小正方体最多有504个.故答案为:504.14.解:A是C的×=,即A=C,A+C=55,则:C+C=55C=55C=55÷C=40A=40×=15故答案为:15.15.解:48÷3=16,16﹣1=15,16+1=17,所以,a,b,c的乘积最大是:15×16×17=4080.故答案为:4080.。

六年级下数学奥数竞赛试卷

六年级下数学奥数竞赛试卷

一、选择题(每题5分,共20分)1. 下列各数中,是质数的是()A. 21B. 29C. 40D. 502. 下列各式中,正确的是()A. 4×5=25B. 5×4=20C. 25×4=100D. 20×5=1003. 一个长方形的长是10厘米,宽是6厘米,它的周长是()A. 16厘米B. 26厘米C. 36厘米D. 46厘米4. 一个数加上它的两倍,和是36,这个数是()A. 6B. 12C. 18D. 245. 小明有一些苹果,他先吃掉了一些,剩下的苹果是原来的3/4,如果小明原来有24个苹果,那么他吃掉了多少个苹果?()A. 6个B. 12个C. 18个D. 24个二、填空题(每题5分,共20分)6. 3的倍数特征是(),例如:6、9、12等。

7. 一个数的因数个数最多有(),因为一个数的因数中,最大的是它本身。

8. 下列各数中,既是质数又是合数的是()。

9. 一个长方体的长是8厘米,宽是6厘米,高是5厘米,它的体积是()立方厘米。

10. 一个数的平方根是±3,这个数是()。

三、解答题(每题10分,共30分)11. 小华有一些硬币,他数了数发现,他的硬币总数是5的倍数,而且他的硬币总数比5的倍数多1。

请问小华至少有多少枚硬币?12. 一个三位数,它的百位数字和个位数字相同,且十位数字比百位数字大1,这个三位数最小是(),最大是()。

13. 小明有一袋糖果,他每天吃掉糖果总数的1/4,连续吃了5天后,糖果还剩3个。

请问小明原来有多少个糖果?四、附加题(20分)14. (附加题)小华和小明一起参加数学竞赛,他们的得分如下:小华:100分、90分、80分、70分小明:80分、90分、70分、100分(1)请计算小华和小明的平均分。

(2)请计算小华和小明各自的总分。

(3)请计算小华和小明的得分差距。

注意:附加题需要计算和比较,最后给出具体的数值答案。

2024小学六下奥数培优测试卷(一)通用版含答案

2024小学六下奥数培优测试卷(一)通用版含答案

2024小学六下奥数培优测试卷(一)时间:60分钟总分:100分一、选择题。

(2×8=16分)1.10.现有含盐率25%的盐水20千克,要使它变为含盐率20%,要加入()千克水。

A.4 B.5 C.8 D.102.小李将一张圆形纸对折再对折,然后在中间抠掉一个“2”字形,再将它展开,展开后的图形是()。

3.甲乙两人玩游戏,将两枚1元的硬币同时抛向空中,落下后,朝上的面相同算甲赢,不相同算乙赢,则()。

A.甲赢的可能性大B.乙赢的可能性大C.两人获胜的可能性一样 D、无法确定4.某厂女工占工人总数的15,后来又调来20名女工,这时女工是男工人数的12,厂里现有工人()名。

A.200B.120C.100D.405.如图所示,将正方形两条边的中点与一个顶点相连,灰色部分的面积占正方形面积的()。

A.14B.38C.12D.586.同一战队的三个选手参加歌唱比赛,1号选手得了99分,2号选手得了90分,3号选手比2号成绩高,但不超过93分,这三个选手的平均成绩在()A.90分以下B.90分到93分之间C.93分到99分之间D.99分以上7.有三堆棋子,每堆42枚,并且只有黑白两色,第一堆里的黑子和第二堆里的白子一样多,第三堆里的黑子占37,把这三堆棋子集中在一起,那么白棋子占全部棋子的()。

A.37B.47C.1021D.11218.《九章算术》中记载了一个问题:有人背米过关卡,过外关时,用全部米的13纳税,过中关时,用所余米的15纳税,过内关时用再余米的17纳税,,最后还剩5斗米。

“求这个人过中关后还剩多少米”的正确列式是()。

A.5×1B.5×(1-1)C.5÷(1-1)D.5÷(1-1)二、计算题,能简算的要简算。

(4×4=16分)9.(1)4.25×166-4212×14.2-24×3.75 (2)9999×2222+3334×3333 (3)95.4×83+19×9525-95.4×2 (4)14+128+170+1130+1208三、填空。

【经典】小学六年级下册数学奥数题带答案word百度文库

【经典】小学六年级下册数学奥数题带答案word百度文库

【经典】小学六年级下册数学奥数题带答案word百度文库一、拓展提优试题1.定义新运算“*”:a*b=例如3.5*2=3.5,1*1.2=1.2,7*7=1,则=.2.有一口无水的井,用一根绳子测井的深度,将绳对折后垂到井底,绳子的一端高出井口9m;将绳子三折后垂到井底,绳子的一端高出井口2m,则绳长米,井深米.3.如图.从楞长为10的立方体中挖去一个底面半径为2,高为10的圆柱体后,得到的几何体的表面积是,体积是.(π取3)4.22012的个位数字是.(其中,2n表示n个2相乘)5.一列快车从甲地开往乙地需要5小时,一列慢车从乙地开往甲地所需时间比快车多,两车同时从甲乙两地相对开出2小时后,慢车停止前进,快车继续行驶40千米后恰与慢车相遇,则甲乙两地相距千米.6.王老师在黑板上写了若干个从1开始的连续自然数:1,2,3,4,…,然后擦去三个数(其中有两个质数),如果剩下的数的平均数是19,那么王老师在黑板上共写了39个数,擦去的两个质数的和最大是.7.对任意两个数x,y规定运算“*”的含义是:x*y=(其中m是一个确定的数),如果1*2=1,那么m=,3*12=.8.快车和慢车同时从甲、乙两地相对开出,快车每小时行33千米,相遇行了全程的,已知慢车行完全程需要8小时,则甲、乙两地相距千米.9.如图,设定E、F分别是△ABC的边AB、AC上的点,线段CE,BF交于点D,若△CDF,△BCD,△BDE的面积分别为3,7,7,则四边形AEDF的面积是.10.如图所示的点阵图中,图①中有3个点,图②中有7个点,图③中有13个点,图④中有21个点,按此规律,图⑩中有个点.11.甲、乙两人拥有邮票张数的比是5:4,如果甲给乙5张邮票,则甲、乙两人邮票张数的比变成4:5.两人共有邮票张.12.如图,将一根长10米的长方体木块锯成6段,表面积比原来增加了100平方分米,这根长方体木块原来的体积是立方分米.13.若(n是大于0的自然数),则满足题意的n的值最小是.14.如图,向装有水的圆柱形容器中放入三个半径都是1分米的小球,此时水面没过小球,且水面上升到容器高度的处,则圆柱形容器最多可以装水188.4立方分米.15.(15分)一个棱长为6的正方体被切割成若干个棱长为整数的小正方体,若这些小正方体的表面积之和是切割前的大正方体的表面积的倍,求切割成小正方体中,棱长为1的小正方体的个数?【参考答案】一、拓展提优试题1.解:根据分析可得,,=,=2;故答案为:2.2.解:(9×2﹣2×3)÷(3﹣2),=(18﹣6)÷1,=12÷1,=12(米),(12+9)×2,=21×2,=42(米).故答案为:42,12.3.解:10×10×6﹣3×22×2+2×3×2×10,=600﹣24+120=696;10×10×10﹣3×22×10,=1000﹣120=880;答:得到的几何体的表面积是696,体积是880.故答案为:696,880.4.解:2012÷4=503;没有余数,说明22012的个位数字是6.故答案为:6.5.解:慢车行完全程需要:5×(1+),=5×,=6(小时);全程为:40÷[1﹣(+)×2],=40÷[1﹣],=40÷,=40×,=150(千米);答:甲乙两地相距150千米.故答案为:150.6.解:由剩下的数的平均数是19,即得最大的数约为20×2=40个,又知分母是9,所以剩下的数的个数必含因数9,则推得剩余36个数.原写下了1到39这39个数;剩余36个数的和:19×36=716,39个数的总和:(1+39)×39÷2=780,擦去的三个数总和:780﹣716=64,根据题意,推得擦去的三个数中最小是1,那么两个质数和63=61+2能够成立,61>39不合题意;如果擦去的另一个数是最小的合数4,64﹣4=6060=29+31=23+37,成立;综上,擦去的两个质数的和最大是60.故答案为:39,60.7.解:①因为:x*y=(其中m是一个确定的数)且1*2=1所以:=18=m+6m+6=8m+6﹣6=8m=2②3*12===故答案为:2,.8.解:1﹣=×8=(小时)×33=(千米)÷=198(千米)答:甲、乙两地相距198千米.故答案为:198.9.解:连接AD,因△CDF和△BCD的高相等,所以FD:DB=3:7,所△AFD和△ABD的面积比也是3:7,即可把△AFD的面积看作是3份,△ABD的面积看作是7份,S△BCD=7,S△BDE=7所以CD=DE,S△ACD=S△ADE,S△ACD+S△BDE=S△ABD,S△ACD+S△BDE=7份,S△AFD+S△CDF+S△BDE=7份,3份+3+7=7份,则1份=2.5,S四边形AEDF=10份﹣7=10×2.5﹣7=25﹣7=18答:四边形AEDF的面积是18.故答案为:18.10.解:根据分析得出的规律我们可以得到:图⑩中有3+(4+6+8+10+12+14+16+18+20)=3+(4+20)×9÷2=111;故答案为:111.11.解:5÷()=5=45(张)答:两人共有邮票 45张.故答案为:45.12.解:依题意可知:将一根长10米的长方体木块锯成6段,表面积比原来增加了100平方分米,变面积增加了10个面,那么每一个面的面积为100÷10=10平方分米.10米=100分米.体积为:10×100=1000(立方分米).故答案为:100013.解:当n=1时,不等式左边等于,小于,不能满足题意;当n=2时,不等式左边等于+==,小于,不能满足题意;同理,当n=3时,不等式左边大于,能满足题意;所以满足题意的n的值最小是3.故答案是:314.解:×3.14×13×3÷(﹣)=12.56×15=188.4(立方分米)答:圆柱形容器最多可以装水188.4立方分米.故答案为:188.4.15.解:大正方体表面积:6×6×6=216,体积是:6×6×6=216,切割后小正方体表面积总和是:216×=720,假设棱长为5的小正方体有1个,那么剩下的小正方体的棱长只能是1,个数是:(63﹣53)÷13=91(个),这时表面积总和是:52×6+12×6×91=696≠720,所以不可能有棱长为5的小正方体.(1)同理,棱长为4的小正方体最多为1个,此时,不可能有棱长为3的小正方体,剩下的只能是切割成棱长为2的小正方体或棱长为1的小正方体,设棱长为2的小正方体有a个,棱长为1的小正方体有b个,则解得:(2)棱长为3的小正方体要少于(6÷3)×(6÷3)×(6÷3)=8个,设棱长为2的小正方体有a个,棱长为1的小正方体有b个,棱长为3的小正方体有c个,化简:由上式可得:b=9c+24,a=,当c=0时,b24=,a=24,当c=1时,b=33,a=19.5,(不合题意舍去)当c=2时,b=42,a=15,当c=3时,b=51,a=10.5,(不合题意舍去)当c=4时,b=60,a=6,当c=5时,b=69,a=28.5,(不合题意舍去)当c=6时,b=78,a=﹣3,(不合题意舍去)当c=7时,a=负数,(不合题意舍去)所以,棱长为1的小正方体的个数只能是:56或24或42或60个.答:棱长为1的小正方体的个数只能是:56或24或42或60个.。

六年级下册数学奥数题(高等难度)

六年级下册数学奥数题(高等难度)

六年级下册数学奥数题(高等难度)1. 题目求1 + (1)/(1 + 2) + (1)/(1 + 2+3)+·s+(1)/(1 + 2+3+·s+100)的值。

2. 解析首先分析通项公式。

对于数列的第n项a_n,分母是1+2 + 3+·s+n,根据等差数列求和公式S_n=(n(n + 1))/(2),所以a_n=(2)/(n(n + 1))。

则原式可转化为2×<=ft((1)/(1×2)+(1)/(2×3)+(1)/(3×4)+·s+(1)/(100×101))。

然后进行裂项相消。

因为(1)/(n(n + 1))=(1)/(n)-(1)/(n + 1)。

所以2×<=ft[<=ft(1-(1)/(2))+<=ft((1)/(2)-(1)/(3))+<=ft((1)/(3)-(1)/(4))+·s+<=ft((1)/(100)-(1)/(101))]。

可以发现中间项都可以消去,最后得到2×<=ft(1-(1)/(101))。

计算2×(100)/(101)=(200)/(101)。

3. 题目有甲、乙、丙三辆汽车,各以一定的速度从A地开往B地,乙比丙晚出发10分钟,出发后40分钟追上丙;甲比乙又晚出发20分钟,出发后1小时40分钟追上丙,那么甲出发后需多少分钟才能追上乙?4. 解析设丙的速度为1。

因为乙比丙晚出发10分钟,出发后40分钟追上丙,那么乙40分钟走的路程等于丙(40 + 10)分钟走的路程。

根据路程=速度×时间,可得乙的速度是((10 + 40)×1)/(40)=(5)/(4)。

甲比乙晚出发20分钟,甲比丙晚出发(20 + 10)=30分钟,甲出发后1小时40分钟(100分钟)追上丙。

则甲100分钟走的路程等于丙(100+30)分钟走的路程,所以甲的速度是((100 + 30)×1)/(100)=(13)/(10)。

六年级下册奥数试卷【含答案】

六年级下册奥数试卷【含答案】

六年级下册奥数试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是偶数?A. 21B. 34C. 57D. 462. 一个正方形的边长是4厘米,它的面积是?A. 16平方厘米B. 8平方厘米C. 4平方厘米D. 12平方厘米3. 下列哪个数是质数?A. 29B. 39C. 49D. 594. 下列哪个图形是平行四边形?A. 正方形B. 长方形C. 梯形D. 圆形5. 一个等腰三角形的底边长是10厘米,腰长是12厘米,这个三角形的周长是?A. 22厘米B. 32厘米C. 42厘米D. 52厘米二、判断题(每题1分,共5分)1. 两个质数相乘,其结果一定是合数。

()2. 一个等腰三角形的两个底角相等。

()3. 1千克等于1000克。

()4. 圆的周长等于直径乘以π。

()5. 任何数乘以0都等于0。

()三、填空题(每题1分,共5分)1. 一个长方形的长是8厘米,宽是4厘米,这个长方形的面积是______平方厘米。

2. 1米等于______分米。

3. 两个质数相加,其结果可能是______数。

4. 下列数中,______是最大的质数。

5. 一个等边三角形的每个内角都是______度。

四、简答题(每题2分,共10分)1. 请简述什么是偶数。

2. 请简述什么是质数。

3. 请简述什么是等腰三角形。

4. 请简述什么是平行四边形。

5. 请简述什么是圆的周长。

五、应用题(每题2分,共10分)1. 一个长方形的长是10厘米,宽是5厘米,求这个长方形的面积。

2. 一个正方形的边长是6厘米,求这个正方形的周长。

3. 一个等腰三角形的底边长是8厘米,腰长是10厘米,求这个三角形的周长。

4. 一个圆的半径是4厘米,求这个圆的周长。

5. 一个数加上30等于80,求这个数。

六、分析题(每题5分,共10分)1. 请分析两个质数相乘,其结果为什么一定是合数。

2. 请分析一个等腰三角形的两个底角为什么相等。

六年级下数学奥数考试卷

六年级下数学奥数考试卷

一、选择题(每题5分,共20分)1. 下列各数中,不是质数的是()A. 2B. 17C. 49D. 1012. 一个长方形的长是12厘米,宽是5厘米,那么它的周长是()A. 17厘米B. 27厘米C. 30厘米D. 32厘米3. 小明有红球和蓝球共35个,其中红球是蓝球的2倍,那么红球有多少个?()A. 20个B. 30个C. 35个D. 40个4. 一个三位数的百位和个位数字之和是7,且十位数字比百位数字大1,这个数最大是()A. 321B. 324C. 326D. 3285. 一个数加上它的平方后,结果是100,这个数是()A. 6B. 7C. 8D. 9二、填空题(每题5分,共25分)1. 5的倍数一定同时是()和()的倍数。

2. 下列各数中,是2的倍数的有()、()、()。

3. 一个长方形的长是6厘米,宽是4厘米,那么它的面积是(),周长是()。

4. 一个数的因数有1、2、3、4、6、12,那么这个数是()。

5. 下列各数中,质数有()、()、()。

三、解答题(每题15分,共45分)1. 一个数是6的倍数,也是3的倍数,那么这个数至少是()的倍数。

2. 一个长方形的长是15厘米,宽是6厘米,如果它的周长增加4厘米,那么它的面积增加多少平方厘米?3. 小华有一些铅笔,如果每人分2支,则还剩5支;如果每人分3支,则还剩2支。

小华有多少支铅笔?4. 小明有一些钱,如果他买一个书包和一支铅笔,那么他将剩下12元;如果他只买一个书包,那么他将剩下8元。

书包和铅笔各多少钱?四、附加题(10分)1. 一个数是12的倍数,也是5的倍数,这个数最小是()。

2. 一个数是9的倍数,也是3的倍数,这个数最大是()。

答案:一、1.C 2.C 3.A 4.A 5.A二、1. 2和3 2. 2、4、8 3. 24平方厘米,20厘米 4. 12 5. 2、3、5三、1. 6 2. 24平方厘米 3. 17支 4. 书包10元,铅笔2元四、1. 60 2. 99。

六年级下册数学测试卷奥数

六年级下册数学测试卷奥数

一、填空题(每空2分,共20分)1. 两个自然数的最大公约数是12,最小公倍数是60,这样的自然数一共有____组。

2. 表示一个四位数,____表示一个三位数,____代表100至999中不同的数字。

3. 已知a+b=15,ab的最大值与最小值相差____。

4. 在下面的圆圈和方框中,分别填入适当的自然数,使等式成立:△□□+□□□□=□□□□。

5. 将24任意分成3组,每组4个数。

在每一组中,数值居中的那个数称为中位数。

这个中位数之和的最大值与最小值分别为____。

6. 一只帆船的速度是每分50米,船在水流速度为每分20米的河中,从上游的一个港口到下游某一地,再返回到原地,共用了2小时30分,这条船从上游港口到下游某地共走了____米。

7. 个位数字为5,且能被5整除的五位数共有____个。

8. 四位数120能被3整除,这样的四位数有____个。

分别是____。

二、选择题(每题2分,共10分)1. 在下列____个中填入3个自然数,使第1个与第3个中填的数相同,从第三个数开始,每个数都是前两个数的和,在所填的个数中,含有2的填法共有____种。

A. 4B. 5C. 6D. 72. 如下图,已知长方形ABCD的面积是____,三角形ABC的面积是____,三角形ABD的面积是____,那么三角形BCD的面积是____。

A. 24B. 12C. 6D. 83. 两个自然数的和是15,它们最大公约数和最小公倍数的和是____。

A. 15B. 18C. 21D. 244. 在____个自然数中,可以找到多少对相邻的自然数,使它们相加时不进位?A. 1B. 2C. 3D. 45. 一名运动员在长为50米的游泳池里来回游泳。

甲运动员的速度是1米/秒,乙运动员的速度是0.5米/秒,他们同时分别在游泳池的两端出发,来回共游了5分钟,如果甲运动员往返各游了____次。

A. 10B. 8C. 6D. 4三、解答题(每题10分,共30分)1. 两个自然数的和是24,它们最大公约数和最小公倍数的和是30,那么这两个数分别是____。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级下册奥数题试卷
一.工程问题
1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?
2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。

如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。

现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?
3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。

现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。

乙单独做完这件工作要多少小时?
4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。

已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?
5.师徒俩人加工同样多的零件。

当师傅完成了1/2时,徒弟完成了120个。

当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?答案为300个
6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。

单份给男生栽,平均每人栽几棵?
7.一个池上装有3根水管。

甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。

现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?
8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?
9.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?
答案为40分钟。

二.鸡兔同笼问题
1.鸡与兔共100只,鸡的腿数比兔的腿数少28条,问鸡与兔各有几只?
三.数字数位问题
1.把1至2005这2005个自然数依次写下来得到一个多位数123456789.....2005,这个多位数除以9余数是多少?
2.A和B是小于100的两个非零的不同自然数。

求A+B分之A-B的最小值...
3.已知A.B.C都是非0自然数,A/2 + B/4 + C/16的近似值市6.4,那么它的准确值是多少?
4.一个三位数的各位数字之和是17.其中十位数字比个位数字大1.如果把这个三位数的百位数字与个位数字对调,得到一个新的三位数,则新的三位数比原三位数大198,求原数.
5.一个两位数,在它的前面写上3,所组成的三位数比原两位数的7倍多24,求原来的两位数.
6.把一个两位数的个位数字与十位数字交换后得到一个新数,它与原数相加,和恰好是某自然数的平方,这个和是多少?
7.一个六位数的末位数字是2,如果把2移到首位,原数就是新数的3倍,求原数.
答案为85714
8.有一个四位数,个位数字与百位数字的和是12,十位数字与千位数字的和是9,如果个位数字与百位数字互换,千位数字与十位数字互换,新数就比原数增加2376,求原数.
9.有一个两位数,如果用它去除以个位数字,商为9余数为6,如果用这个两位数除以个位数字与十位数字之和,则商为5余数为3,求这个两位数.
10.如果现在是上午的10点21分,那么在经过28799...99(一共有20个9)分钟之后的时间将是几点几分?
四.排列组合问题
1.有五对夫妇围成一圈,使每一对夫妇的夫妻二人动相邻的排法有()
2 若把英语单词hello的字母写错了,则可能出现的错误共有 ( )
五.容斥原理问题
1.有100种赤贫.其中含钙的有68种,含铁的有43种,那么,同时含钙和铁的食品种类的最大值和最小值分别是( )
2.在多元智能大赛的决赛中只有三道题.已知:(1)某校25名学生参加竞赛,每个学生至少解出一道题;(2)在所有没有解出第一题的学生中,解出第二题的人数是解出第三题的人数的2倍:(3)只解出第一题的学生比余下的学生中解出第一题的人数多1人;(4)只解出一道题的学生中,有一半没有解出第一题,那么只解出第二题的学生人数是( )
A,5 B,6 C,7 D,8
3.一次考试共有5道试题。

做对第1、2、3、、4、5题的分别占参加考试人数的95%、80%、79%、74%、85%。

如果做对三道或三道以上为合格,那么这次考试的合格率至少是多少?
六.抽屉原理、奇偶性问题
1.一只布袋中装有大小相同但颜色不同的手套,颜色有黑、红、蓝、黄四种,问最少要摸出几只手套才能保证有3副同色的?
2.有四种颜色的积木若干,每人可任取1-2件,至少有几个人去取,才能保证有3人能取得完全一样?
答案为21
3.某盒子内装50只球,其中10只是红色,10只是绿色,10只是黄色,10只是蓝色,其余是白球和黑球,为了确保取出的球中至少包含有7只同色的球,问:最少必须从袋中取出多少只球?
4.地上有四堆石子,石子数分别是1、9、15、31如果每次从其中的三堆同时各取出1个,然后都放入第四堆中,那么,能否经过若干次
操作,使得这四堆石子的个数都相同?(如果能请说明具体操作,不能则要说明理由)
七.路程问题
1.狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。

问:狗再跑多远,马可以追上它?
2.甲乙辆车同时从a b两地相对开出,几小时后再距中点40千米处相遇?已知,甲车行完全程要8小时,乙车行完全程要10小时,求a b 两地相距多少千米?
3.在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?
4.慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间?
5.在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平
均速度是每秒5米,乙平均速度是每秒4.4米,两人起跑后的第一次相遇在起跑线前几米?
答案为100米
6.一个人在铁道边,听见远处传来的火车汽笛声后,在经过57秒火车经过她前面,已知火车鸣笛时离他1360米,(轨道是直的),声音每秒传340米,求火车的速度(得出保留整数)
7.猎犬发现在离它10米远的前方有一只奔跑着的野兔,马上紧追上去,猎犬的步子大,它跑5步的路程,兔子要跑9步,但是兔子的动作快,猎犬跑2步的时间,兔子却能跑3步,问猎犬至少跑多少米才能追上兔子。

正确的答案是猎犬至少跑60米才能追上。

8. AB两地,甲乙两人骑自行车行完全程所用时间的比是4:5,如果甲乙二人分别同时从AB两地相对行使,40分钟后两人相遇,相遇后各自继续前行,这样,乙到达A地比甲到达B地要晚多少分钟?
9.甲乙两车同时从AB两地相对开出。

第一次相遇后两车继续行驶,各自到达对方出发点后立即返回。

第二次相遇时离B地的距离是AB 全程的1/5。

已知甲车在第一次相遇时行了120千米。

AB两地相距多少千米?
从A地到B地,甲、乙两人骑自行车分别需要4小时、6小时,现在甲乙分别AB两地同时出发相向而行,相遇时距AB两地中点2千米。

如果二人分别至B地,A地后都立即折回。

第二次相遇点第一次相遇点之间有()千米
10.一船以同样速度往返于两地之间,它顺流需要6小时;逆流8小时。

如果水流速度是每小时2千米,求两地间的距离?
11.快车和慢车同时从甲乙两地相对开出,快车每小时行33千米,相遇是已行了全程的七分之四,已知慢车行完全程需要8小时,求甲
乙两地的路程。

12.小华从甲地到乙地,3分之1骑车,3分之2乘车;从乙地返回甲地,5分之3骑车,5分之2乘车,结果慢了半小时.已知,骑车每小时12千米,乘车每小时30千米,问:甲乙两地相距多少千米?
八.比例问题
1.甲乙两人在河边钓鱼,甲钓了三条,乙钓了两条,正准备吃,有一个人请求跟他们一起吃,于是三人将五条鱼平分了,为了表示感谢,过路人留下10元,甲、乙怎么分?快快快
2.一种商品,今年的成本比去年增加了10分之1,但仍保持原售价,因此,每份利润下降了5分之2,那么,今年这种商品的成本占售价的几分之几?
3.甲乙两车分别从A.B两地出发,相向而行,出发时,甲.乙的速度比是5:4,相遇后,甲的速度减少20%,乙的速度增加20%,这样,当甲到达B地时,乙离A地还有10千米,那么A.B两地相距多少千米?
4.一个圆柱的底面周长减少25%,要使体积增加1/3,现在的高和原来的高度比是多少?
5.某市场运来香蕉、苹果、橘子和梨四种水果其中橘子、苹果共30吨香蕉、橘子和梨共45吨。

橘子正好占总数的13分之2。

一共运来水果多少吨?。

相关文档
最新文档