中考数学总复习全套学案.pdf
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实数的概念
一:【课前预习】 (一):【知识梳理】
1.实数的有关概念
(1)有理数: 和 统称为有理数。 (2)有理数分类
①按定义分: ②按符号分:
有理数(
)
()0()()()(
)⎧⎧⎪⎪⎨⎪⎪⎪⎨
⎩⎪⎧⎪⎨⎪⎩⎩
;有理数(
)()()
()()(
)
⎧⎧⎨⎪⎩⎪
⎪⎨⎪⎧⎪⎨⎪⎩⎩
(3)相反数:只有 不同的两个数互为相反数。若a 、b 互为相反数,则 。 (4)数轴:规定了 、 和 的直线叫做数轴。 (5)倒数:乘积 的两个数互为倒数。若a (a≠0)的倒数为1
a
.则 。 (6)绝对值:
(7)无理数: 小数叫做无理数。 (8)实数: 和 统称为实数。 (9)实数和 的点一一对应。
2.实数的分类:实数
3.科学记数法、近似数和有效数字 (1)科学记数法:把一个数记成±a×10n 的形式(其中1≤a<10,n 是整数) (2)近似数是指根据精确度取其接近准确数的值。取近似数的原则是“四舍五入”。 (3)有效数字:从左边第一个不是0的数字起,到精确到的数位止,所有的数字,都叫做这个数字的有效数字。 (二):【课前练习】
1.|-22|的值是( )
A .-2 B.2 C .4 D .-4 2.下列说法不正确的是( )
A .没有最大的有理数
B .没有最小的有理数
C .有最大的负数
D .有绝对值最小的有理数 3.在()
0222
sin 45090.2020020002273
π
−⋅⋅⋅、、、、、、这七个数中,无理数有( )
A .1个;
B .2个;
C .3个;
D .4个 4.下列命题中正确的是( )
A .有限小数是有理数
B .数轴上的点与有理数一一对应
C .无限小数是无理数
D .数轴上的点与实数一一对应
5.近似数0.030万精确到 位,有 个有效数字,用科学记数法表示为 万 二:【经典考题剖析】
1.在一条东西走向的马路旁,有青少年宫、学校、商场、医院四家公共场所.已知青少年宫在学校东300m
()(
)()()()()()()(
)()(
)()⎧⎫⎧⎧⎪⎪⎪
⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎧⎨⎪⎪⎨⎪⎪⎪⎩⎩⎭⎪
⎪⎫⎧⎪⎨⎬⎪⎩⎭⎩
零
处,商场在学校西200m 处,医院在学校东500m 处.若将马路近似地看作一条直线,以学校为原点,向东方向为正方向,用1个单位长度表示100m .(1)在数轴上表示出四家公共场所的位置;(2)列式计算青少年宫与商场之间的距离.:
2.下列各数中:-1,0,169,2π
,1.1010016
.0, ,12−, 45cos ,- 60cos , 722,2,π
−7
22
.
有理数集合{ …}; 正数集合{ …}; 整数集合{ …}; 自然数集合{ …}; 分数集合{ …}; 无理数集合{ …}; 绝对值最小的数的集合{ …};
3. 已知(x-2)2
+|y-4|+6z −=0,求xyz 的值..
4.已知a 与 b 互为相反数,c 、d 互为倒数,m 的绝对值是2求32
122()2()m m
a b cd m −+−÷ 的值 5. a 、b 在数轴上的位置如图所示,且a >b ,化简a a b b a −+−− 三:【课后训练】
2、一个数的倒数的相反数是11
5 ,则这个数是()
A .65
B .56
C .-65
D .-5
6
3、一个数的绝对值等于这个数的相反数,这样的数是( ) A .非负数 B .非正数 C .负数 D .正数
4. 数轴上的点并不都表示有理数,如图中数轴上的点P 所表示的数
是 2 ”,这种说明问题的方式体现的数学思想方法叫做( ) A .代人法B .换元法C .数形结合D .分类讨论
5. 若a 的相反数是最大的负整数,b 是绝对值最小的数,则a +b=___________.
6.已知x y y x −=−,4,3x y ==,则()3
x y +=
7.光年是天文学中的距离单位,1光年大约是9500000000000km ,用科学计数法表示 (保留三个有效数字)
8.当a 为何值时有:①23a −=;②20a −=;③23a −=−
9. 已知a 与 b 互为相反数,c 、d 互为倒数,x 的绝对值是2的相反数的负倒数,y 不能作除数,求
0b
a
2002200120001
2()2()a b cd y x
+−+
+的值. 10. (1)阅读下面材料:点 A 、B 在数轴上分别表示实数a ,b ,A 、B 两点之间的距离表示为|AB|,当A 上两点 中有一点在原点时,不妨设点A 在原点,如图1-2-4所示,|AB|=|BO|=|b|=|a -b|;当A 、B 两点都不在原点时,①如图1-2-5所示,点A 、B 都在原点的右边,|AB|=|BO|-|OA|=|b|-|a|=b -a=|a -b|; ②如图1-2-6所示,点A 、B 都在原点的左边,|AB|=|BO|-|OA|=|b|-|a|=-b -(-a)=|a -b|;③如图1-2-7所示,点A 、B 在原点的两边多边,|AB|=|BO|+|OA|=|b|+|a|=a+(-b)=|a -b|
综上,数轴上 A 、B 两点之间的距离|AB|=|a -b| (2)回答下列问题:
①数轴上表示2和5的两点之间的距离是_____,数轴上表示-2和-5的两点之间的距离是____,数轴上
表示1和-3的两点之间的距离是______.
②数轴上表示x 和-1的两点A 和B 之间的距离是________,如果 |AB|=2,那么x 为_________. ③当代数式|x+1|+|x -2|=2 取最小值时,相应的x 的取值范围是_________. 四:【课后小结】
实数的运算
一:【课前预习】 (一):【知识梳理】
1. 有理数加、减、乘、除、幂及其混合运算的运算法则
(1)有理数加法法则:
①同号两数相加,取________的符号,并把__________ ②绝对值不相等的异号两数相加,取___________的符号,并用 ____________。互为相反数的两个数相加得____。 ③一个数同0相加,__________________。
(2)有理数减法法则:减去一个数,等于加上____________。 (3)有理数乘法法则:
①两数相乘,同号_____,异号_____,并把_________。任何数同0相乘,都得________。
②几个不等于0的数相乘,积的符号由___________决定。当____________,积为负,当___________,积为正。 ③几个数相乘,有一个因数为0,积就为__________.
(4)有理数除法法则:
①除以一个数,等于_______________________.__________不能作除数。
②两数相除,同号_____,异号_____,并把_________。 0除以任何一个___________的数,都得0
(5)幂的运算法则:正数的任何次幂都是__________; 负数的_________是负数,负数的_________是正数 (6)有理数混合运算法则:
先算________,再算__________,最后算___________。如果有括号,就________。
2.实数的运算顺序:在同一个算式里,先 、 ,然后 ,最后 .有括号时,先算 里面,再算括号外。同级运算从左到右,按顺序进行。
3.运算律
(1)加法交换律:_____________。 (2)加法结合律:____________。 (3)乘法交换律:_____________。 (4)乘法结合律:____________。 (5)乘法分配律:_________________________。 4.实数的大小比较 (1)差值比较法:
a b −>0a ⇔>b ,a b −=0a b ⇔=,a b −<0a ⇔< b (2)商值比较法:
若a b 、为两正数,则a b >1a ⇔>b ;1;a
a b b
=⇔=a b <1a ⇔<b