圆周角和圆心角的关系公开课优秀课件
合集下载
《圆周角和圆心角的关系》圆PPT优秀课件
3-5题
• 祝你成功!
驶向胜利 的彼岸
结束寄语
下课了!
•要养成用数学的语言去说 明道理,用数学的思维去 解读世界的习惯.
梦想的力量 当我充满自信地,朝着梦想的方向迈进
并且毫不畏惧地,过着我理想中的生活 成功,会在不期然间忽然降临!
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
B
●
O
∴ ∠ABC = ∠AOC.
你能写出这个命题吗?
一条弧所对的圆周角等于它所 对的圆心角的一半.
议一议
6
圆周角和圆心角的关系
• 如果圆心不在圆周角的一边上,结果会怎样? • 3.当圆心(O)在圆周角(∠ABC)的外部时,圆周角 ∠ABC与圆心角∠AOC的大小关系会怎样? A
老师提示:能否也转化为1的情况?
A C
●
A
A C C B
●
O
B
●
O
O
B
教师提示:注意圆心与圆周角的位置关系.
议一议
4
圆周角和圆心角的关系
• 1.首先考虑一种特殊情况: • 当圆心(O)在圆周角(∠ABC)的一边(BC)上时,圆周角 A ∠ABC与圆心角∠AOC的大小关系. C ∵∠AOC是△ABO的外角, 老师期望: ∴∠AOC=∠B+∠A. 你可要理 O ∵OA=OB, 解并掌握 ∴∠A=∠B. 这个模型. B ∴∠AOC=2∠B. 一条弧所对的圆周角等于它所 即 ∠ABC = ∠AOC. 对的圆心角的一半. 你能写出这个命题吗?
想一想
2
驶向胜利 的彼岸
类比圆心角探知圆周角
【小学课件】《圆周角和圆心角的关系》圆优质PPT课件
想一想
2
驶向胜利 的彼岸
类比圆心角探知圆周角
• 在同圆或等圆中,相等的弧所对的圆心角相等. • 在同圆或等圆中,相等的弧所对的圆周角有什么关系?
A
C
●
A C
●
A
C O
O
B
●
O
BHale Waihona Puke 为了解决这个问题,我们先探究一条弧所对的圆周 角和圆心角之间有的关系.
B
议一议
3
圆周角和圆心角的关系
• 如图,观察圆周角∠ABC与圆心角∠AOC,它们的大 小有什么关系? • 说说你的想法,并与同伴交流.
猜一猜
9
驶向胜利 的彼岸
拓展 化心动为行动
1.如图,在⊙O中,∠B,∠D,∠E的大小有什么关系?为 什么? 2.想一想,等圆中也有这样的结论吗?
D B
●
O C
E
同弧或等弧所对的圆周角相等;
A
同圆或等圆中,相等的圆周角所 对的弧也相等。
驶向胜利 的彼岸
独立作业
10
驶向胜利 的彼岸
挑战自我
• 习题4.3
= 2∠COD,
1
一条弧所对的圆周角等于它所 对的圆心角的一半.
B
你能写出这个命题吗?
议一议
6
圆周角和圆心角的关系
• 如果圆心不在圆周角的一边上,结果会怎样? • 3.当圆心(O)在圆周角(∠ABC)的外部时,圆周角 ∠ABC与圆心角∠AOC的大小关系会怎样? A
老师提示:能否也转化为1的情况?
●
议一议
5
圆周角和圆心角的关系
• 如果圆心不在圆周角的一边上,结果会怎样? • 2.当圆心(O)在圆周角(∠ABC)的内部时,圆周角 ∠ABC与圆心角∠AOC的大小关系会怎样? A D
课件233圆周角和圆心角的关系.ppt
径。求证:AB ·AC = AE ·AD
分析:要证AB ·AC = AE ·AD
A
AC AD AE AB
O
△ADC∽ △ABE B
DC
或△ACE∽ △ADB E
题后思:1、证明题的思路寻找方法; 2、等积式的证明方法; 3、辅助线的思考方法。
讨论与思考 C
如图,CD是⊙O的直径,
弦AB⊥CD于E,那么你
问题讨论
问题1、如图1,⊙O中,∠C与∠D相等吗?为什么? 由此你得到什么结论? ∠C = ∠D
问题2、如图2,AB是⊙O的直径,C是⊙O上任一点, 那么你发现了些什么结论? ∠ACB =90º
问题3、如图3,△ABC中,OC是AB边上的中线,且
OC = 1 AB,那么你发现了什么样的结论?
D2
C
∠ACB =90º C
O
能得到什么结论?
结论:Βιβλιοθήκη AEB(1)AE = BE,AC = BC,AD = BD D
(2)AC = BC,∠CAB = ∠ABC = ∠D,
∠ACE =∠BCE =∠DAB
(3)BC2 = AC2 = CE ·CD,AD2 = DE ·DC
BE2 = AE2 = DE ·CE
小结与作业
1、本节课我们学习了哪些知识? 2、圆周角定理及其推论的用途你都知道了吗? 3、证明题思路的寻找方法如何? 4、证明等积式的一般思路你掌握了吗?
O
C A
O
B
A
B
AO
B
图1
图2
图3
自学与思考
1、圆周角定理的推论1、2、3的内容分别是什么? 你是怎样理解这些推论的?
2、从课本例2的学习中你认为证明等积式的一般思 路是怎样的?
《圆——圆周角和圆心角的关系》数学教学PPT课件(6篇)
谢谢观看!
第三章 圆
圆周角和圆心角的关系
第1课时
第三章
第1课时
圆周角定理及其推论1
知识要点基础练
知识点1 圆周角的定义
1.如图,∠BAC是圆周角的是 ( B )
综合能力提升练
拓展探究突破练
-17-
第三章
第1课时
圆周角定理及其推论1
知识要点基础练
综合能力提升练
拓展探究突破练
-18-
知识点2 圆周角定理
-19-
第三章
第1课时
圆周角定理及其推论1
知识要点基础练
综合能力提升练
拓展探究突破练
-20-
知识点3 圆周角定理的推论1
5.(柳州中考)如图,A,B,C,D是☉O上的点,则图中与∠A相等的角是 ( D )
A.∠B
B.∠C
C.∠DEB
D.∠D
6.(赤峰中考)如图,AB是☉O的弦,OC⊥AB交☉O于点C,D是☉O上一点.若∠ADC=30°,
学生练习2 课本83页随堂练习第1题、第2题、第3题.
北京师范大学出版社 九年级 | 下册
【巩固提高】
课堂小结:
本节课学到那些知识?发现了什么?在运用所学的知识解决问题时应注意什么?
1、概念:圆周角,圆内接四边形,四边形的外接圆.
2、圆周角的定理:圆周角的度数等于它所对弧上的圆心角度数的一半;
3、圆周角定理的推论1:同弧或等弧所对的圆周角相等.
第1课时
圆周角定理及其推论1
知识要点基础练
综合能力提升练
拓展探究突破练
4.如图,A,B,C是半径为6的☉O上的三个点,且∠BAC=45°,求弦BC的长.
解:连接 OB,OC.
圆周角定理(公开课)省公开课获奖课件说课比赛一等奖课件
点E,∠ACD=60°,∠ADC=50°,求∠CEB旳
度数.
C
60°
A
E
O
B
50°
D
四、巩固新知
3.已知:BC是⊙O旳直径,A是⊙O上一点, AD⊥BC,垂足为D,AE=AB,BE交AD于点F.
(1)∠ACB与∠BAD相等吗?为何? (2)判断△FAB旳形状,并阐明理由.
( (
四、巩固新知
4.如图,AB是⊙O旳直径,D是⊙O上旳任
二、探究知识 证明猜测
我们来分析上页旳前两种情况,第三种情况请同学 们完毕证明.
(2)如图,怎样证明一条弧所正确圆周角等于它 所正确圆心角旳二分之一?
A
∵ OA=OC,
∴ ∠A=∠C.
O
又∵ ∠BOC=∠A+∠C,
∴ BAC 1 BOC. 2
B
C
二、探究知识 证明猜测
(3)如图,怎样证明一条弧所正确圆周角等于它
人教版数学九年级上 讲课内容:课本85-88页
§24.1.4 圆周角(1)
一、问题情境
图中∠ACB 旳顶点和边有哪些特点?
顶点在圆上,而且两边都和圆相交旳角 C
O
A
B
二、探究知识
请说说我们是怎样给圆心角下定义旳,试回答?
顶点在圆心旳角叫圆心角。
顶点在圆上,而且两边都和
圆相交旳角叫做圆周角.
练习一:判断下列各图中,哪些是圆周角,为何?
二、探究知识
图中∠ACB 和∠AOB 有怎样旳关系? 并证明你旳结论?
ACB 1 AOB 2
C
O
A
B
二、探究知识
(1)在圆上任取 BC,画出圆心角∠BOC 和圆周角 ∠BAC,圆心角与圆周角有几种位置关系?
《圆心角和圆周角》PPT(第1课时)
圆心角和圆周角
第1课时
-.
知识回顾 1.圆是不是中心对称图形?对称中心是什么?
(圆是中心对称图形,圆心是它的对称中心)
2.将课前准备的两个圆形纸片重合在一起,绕圆心 转动其中一个圆,你发现什么现象?
(把圆绕圆心旋转任意一个角度,所得的图形与原图形 重合,即圆有旋转不变性)
获取新知 知识点一:圆心角的概念
4.如图,已知AB、CD为⊙O的两条弦,A⌒D=B⌒C.
求证:AB=CD. 证明:连接AO,BO,CO,DO ∵A⌒D=B⌒C
∴∠AOD=∠BOC ∴∠AOD+∠BOD=∠BOC+∠BOD 即∠AOB=∠COD
∴AB=CD
C B
O.
D A
课堂小结
圆心角
概念:顶点在圆心的角
弦、弧、圆心 角的关系定理
2.下列说法中,正确的是( C ) A.弦等所对的弧相等 B.弧相等所对的弦相等 C.在同圆中,圆心角相等,所对的弦相等 D.弦相等,所对的圆心角相等
3.如图,AB,CD是⊙O的两条弦. (1)∵∠AOB=∠COD,∴____A_⌒B_=_C_⌒D_,____A_B_=_C_D. (2)∵AB=CD,∴___∠_A_O__B_=__∠_C__O_D_,___A_⌒B_=_C_⌒D___. (3)∵AB⌒=C⌒D,∴___∠_A__O_B_=__∠__C_O_D_,__A__B_=_C_D_,.
弦AB与弦A'B'有怎样的数量关系?
(同圆)由圆的旋转不变性,我们发现: A
在⊙O中,如果∠AOB= ∠A'OB', 那么,A⌒B=A⌒'B',弦AB=弦A'B'
B C
·
O
第1课时
-.
知识回顾 1.圆是不是中心对称图形?对称中心是什么?
(圆是中心对称图形,圆心是它的对称中心)
2.将课前准备的两个圆形纸片重合在一起,绕圆心 转动其中一个圆,你发现什么现象?
(把圆绕圆心旋转任意一个角度,所得的图形与原图形 重合,即圆有旋转不变性)
获取新知 知识点一:圆心角的概念
4.如图,已知AB、CD为⊙O的两条弦,A⌒D=B⌒C.
求证:AB=CD. 证明:连接AO,BO,CO,DO ∵A⌒D=B⌒C
∴∠AOD=∠BOC ∴∠AOD+∠BOD=∠BOC+∠BOD 即∠AOB=∠COD
∴AB=CD
C B
O.
D A
课堂小结
圆心角
概念:顶点在圆心的角
弦、弧、圆心 角的关系定理
2.下列说法中,正确的是( C ) A.弦等所对的弧相等 B.弧相等所对的弦相等 C.在同圆中,圆心角相等,所对的弦相等 D.弦相等,所对的圆心角相等
3.如图,AB,CD是⊙O的两条弦. (1)∵∠AOB=∠COD,∴____A_⌒B_=_C_⌒D_,____A_B_=_C_D. (2)∵AB=CD,∴___∠_A_O__B_=__∠_C__O_D_,___A_⌒B_=_C_⌒D___. (3)∵AB⌒=C⌒D,∴___∠_A__O_B_=__∠__C_O_D_,__A__B_=_C_D_,.
弦AB与弦A'B'有怎样的数量关系?
(同圆)由圆的旋转不变性,我们发现: A
在⊙O中,如果∠AOB= ∠A'OB', 那么,A⌒B=A⌒'B',弦AB=弦A'B'
B C
·
O
圆周角和圆心角的关系PPT课件(北师大版)
3.如图,经过原点O的⊙P与x,y轴分别交于A,B两点,点C是劣弧OB 上一点,则∠ACB的度数是( C ) A.80° B.100° C.90° D.无法确定
4.如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,点D在⊙O上, ∠ADC=54°,则∠BAC的度数等于_______36°
5.如图,△ABC的三个顶点在⊙O上,CD是直径,∠B=40°,则 ∠ACD的度数是_5_0_°_.
6.(202X·温州模拟)如图,AB为⊙O的直径,点C在⊙O上,延长BC至 点D,使DC=CB.延长DA与⊙O的另一个交点为E,连接AC,CE. (1)求证:∠B=∠D; (2)若AB=4,BC-AC=2,求CE的长.
解:(1)∵AB 是⊙O 的直径,∴∠ACB=90°,∴AC⊥BC.∵CD=CB, ∴AD=AB,∴∠B=∠D (2)设 BC=x,则 AC=x-2.在 Rt△ABC 中, AC2+BC2=AB2,∴(x-2)2+x2=42,解得 x1=1+ 7,x2=1- 7(舍 去).∵∠B=∠E,∴∠D=∠E,∴CD=CE.∵CD=CB,∴CE=CB =1+ 7
︵︵ 9.如图,已知∠EAD 是圆内接四边形 ABCD 的一个外角,并且BD=DC. 求证:AD 平分∠EAC.
解:∵四边形 ABCD 是圆内接四边形,∴∠EAD=∠DCB.又∵B︵D=D︵C, ∴∠DAC=∠DCB.∴∠EAD=∠DAC,∴AD 平分∠EAC
10.(202X·安徽模拟)如图,点P是等边三角形ABC外接圆⊙O上的 点.在下列判断中,不正确的是( C ) A.当弦PB最长时,△APC是等腰三角形 B.当△APC是等腰三角形时,PO⊥AC C.当PO⊥AC时,∠ACP=30° D.当∠ACP=30°时,△BPC是直角三角形
第三章 圆
4.如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,点D在⊙O上, ∠ADC=54°,则∠BAC的度数等于_______36°
5.如图,△ABC的三个顶点在⊙O上,CD是直径,∠B=40°,则 ∠ACD的度数是_5_0_°_.
6.(202X·温州模拟)如图,AB为⊙O的直径,点C在⊙O上,延长BC至 点D,使DC=CB.延长DA与⊙O的另一个交点为E,连接AC,CE. (1)求证:∠B=∠D; (2)若AB=4,BC-AC=2,求CE的长.
解:(1)∵AB 是⊙O 的直径,∴∠ACB=90°,∴AC⊥BC.∵CD=CB, ∴AD=AB,∴∠B=∠D (2)设 BC=x,则 AC=x-2.在 Rt△ABC 中, AC2+BC2=AB2,∴(x-2)2+x2=42,解得 x1=1+ 7,x2=1- 7(舍 去).∵∠B=∠E,∴∠D=∠E,∴CD=CE.∵CD=CB,∴CE=CB =1+ 7
︵︵ 9.如图,已知∠EAD 是圆内接四边形 ABCD 的一个外角,并且BD=DC. 求证:AD 平分∠EAC.
解:∵四边形 ABCD 是圆内接四边形,∴∠EAD=∠DCB.又∵B︵D=D︵C, ∴∠DAC=∠DCB.∴∠EAD=∠DAC,∴AD 平分∠EAC
10.(202X·安徽模拟)如图,点P是等边三角形ABC外接圆⊙O上的 点.在下列判断中,不正确的是( C ) A.当弦PB最长时,△APC是等腰三角形 B.当△APC是等腰三角形时,PO⊥AC C.当PO⊥AC时,∠ACP=30° D.当∠ACP=30°时,△BPC是直角三角形
第三章 圆
圆周角和圆心角的关系ppt课件
50°,则∠EBC+∠ADC 的度数为 _______.
-18-
3.4 圆周角和圆心角的关系
解析:如解析图,连接 AB,DE,则∠ABE=∠ADE. ∵ 所对的圆心角的度数为 50°,∴∠ABE= ∠ADE =25°. ∵ 点 A,B,C,D 在 ⊙O 上 ,∴四边形 ABCD 是圆内接四边形, ∴∠ABC+∠ADC=180°, ∴∠ABE+∠EBC+∠ADC=180°, ∴∠EBC+∠ADC=180°-∠ABE=180°-25°=155°. 答案:155° 题型解法:本题考查了圆周角定理和圆内接四边形的 性质,作出辅助线构建圆内接四边形是解题的关键.
-10-
3.4 圆周角和圆心角的关系
■考点四 圆内接四边形
定义
四边形的四个顶点都在同一个圆上,这个四边形叫做圆内接四边形,这个 圆叫做四边形的外接圆
推论 圆内接四边形的对角互补
拓展 圆内接四边形的任何外角等于内对角
注意 并不是所有的四边形都存在外接圆,只有对角互补的四边形才存在外接圆
-11-
3.4 圆周角和圆心角的关系
A. 20° B. 40°
C. 50° D. 70°
-7-
3.4 圆周角和圆心角的关系
3. 如图,已知△ABC 的三个顶点都在同一圆上,且 AC=6,BC=8,AB=10, 则该圆的半径长是 ________.
(第 3 题图)
(第 4 题图)
4. 如图,AB=BC,∠ABC =120°,AD 为 ⊙O 的直径 ,AD=6,那么 AB 的
值为 ______.
-8-
3.4 圆周角和圆心角的关系
5. 如图,AB=AC,AB 是直径,求证:BC=2DE. (第 5 题图)
-18-
3.4 圆周角和圆心角的关系
解析:如解析图,连接 AB,DE,则∠ABE=∠ADE. ∵ 所对的圆心角的度数为 50°,∴∠ABE= ∠ADE =25°. ∵ 点 A,B,C,D 在 ⊙O 上 ,∴四边形 ABCD 是圆内接四边形, ∴∠ABC+∠ADC=180°, ∴∠ABE+∠EBC+∠ADC=180°, ∴∠EBC+∠ADC=180°-∠ABE=180°-25°=155°. 答案:155° 题型解法:本题考查了圆周角定理和圆内接四边形的 性质,作出辅助线构建圆内接四边形是解题的关键.
-10-
3.4 圆周角和圆心角的关系
■考点四 圆内接四边形
定义
四边形的四个顶点都在同一个圆上,这个四边形叫做圆内接四边形,这个 圆叫做四边形的外接圆
推论 圆内接四边形的对角互补
拓展 圆内接四边形的任何外角等于内对角
注意 并不是所有的四边形都存在外接圆,只有对角互补的四边形才存在外接圆
-11-
3.4 圆周角和圆心角的关系
A. 20° B. 40°
C. 50° D. 70°
-7-
3.4 圆周角和圆心角的关系
3. 如图,已知△ABC 的三个顶点都在同一圆上,且 AC=6,BC=8,AB=10, 则该圆的半径长是 ________.
(第 3 题图)
(第 4 题图)
4. 如图,AB=BC,∠ABC =120°,AD 为 ⊙O 的直径 ,AD=6,那么 AB 的
值为 ______.
-8-
3.4 圆周角和圆心角的关系
5. 如图,AB=AC,AB 是直径,求证:BC=2DE. (第 5 题图)
圆周角和圆心角的关系(第2课时)同步课件
核心知识点二: 圆内接四边形及其性质
(1)如图,A,B,C,D是⊙O上的四点,AC为⊙O的直径,
请问∠BAD与∠BCD之间有什么关系?为什么?
A
解:∠BAD与∠BCD互补.
D
∵AC为直径,
∴∠ABC=90°,∠ADC=90°.
∵∠ABC+∠BCD+∠ADC+∠BAD=360°,
B
∴∠BAD+∠BCD=180°.
∴∠BAD与∠BCD互补.
O
C
探究新知
自主合作,探究新知
(2)若C点的位置产生了变化,∠BAD与∠BCD之间的关系
还成立吗?为什么?
解:∠BAD与∠BCD的关系仍然成立.
D
A
如图8,连接OB,OD.
∵ ∠2=2∠BAD,∠1=2∠BCD,
C
1
O 2
(圆周角的度数等于它所对弧上圆心角的一半),
∵∠1+∠2=360°,
解:∵四边形ABCD是圆内接四边形,
E
∴∠ADC+∠CBA=180°(圆内接四边形的对角互补).
∵∠EDC+∠ADC=180°,
D
∠EBF+∠ABE=180°,
∴∠EDC+∠EBF=180°.
C
O
∵∠EDC=∠F+∠A,∠EBF=∠E+∠A,
∴∠F+∠A+∠E+∠A=180°.
∴∠A=40°.
A
B
F
圆内接四边形的对角互补.
D
D
A
A
C
O
O
B
C
B
几何语言:
∵四边形ABCD为圆内接四边形,
(1)如图,A,B,C,D是⊙O上的四点,AC为⊙O的直径,
请问∠BAD与∠BCD之间有什么关系?为什么?
A
解:∠BAD与∠BCD互补.
D
∵AC为直径,
∴∠ABC=90°,∠ADC=90°.
∵∠ABC+∠BCD+∠ADC+∠BAD=360°,
B
∴∠BAD+∠BCD=180°.
∴∠BAD与∠BCD互补.
O
C
探究新知
自主合作,探究新知
(2)若C点的位置产生了变化,∠BAD与∠BCD之间的关系
还成立吗?为什么?
解:∠BAD与∠BCD的关系仍然成立.
D
A
如图8,连接OB,OD.
∵ ∠2=2∠BAD,∠1=2∠BCD,
C
1
O 2
(圆周角的度数等于它所对弧上圆心角的一半),
∵∠1+∠2=360°,
解:∵四边形ABCD是圆内接四边形,
E
∴∠ADC+∠CBA=180°(圆内接四边形的对角互补).
∵∠EDC+∠ADC=180°,
D
∠EBF+∠ABE=180°,
∴∠EDC+∠EBF=180°.
C
O
∵∠EDC=∠F+∠A,∠EBF=∠E+∠A,
∴∠F+∠A+∠E+∠A=180°.
∴∠A=40°.
A
B
F
圆内接四边形的对角互补.
D
D
A
A
C
O
O
B
C
B
几何语言:
∵四边形ABCD为圆内接四边形,
最新北师大版九年级数学下册《圆周角和圆心角的关系》优质教学课件
证明:连接BD.
AB = AD,BAD = 60, B
O
△ABD是等边三角形, ABD = 60.
C
D
ACD = ABD = 60.
证明:
四边形ABCD是圆内接四边形,
BCD BAD =180.
又∵BAD = 60,
BCD =120. AB = AD,
B
ACB = ACD. ACD = 1 BCD = 60.
2.与圆周角有关的问题:弦的 条件需转化成弧的条件。
A O
C
D
1.要理解好圆周角定理的推论. 2.构造直径所对的圆周角是圆中的常用方法.引辅助线的 方法: (1)构造直径上的圆周角. (2)构造同弧所对的圆周角. 3.要多观察图形,善于识别圆周角与圆心角,构造同弧所 对的圆周角也是常用方法之一.
同弧或等弧所对的圆周角相等
教师寄语
我们一生中要认识许多人,组建许多 集体,在集体生活中,我们要学会理解和 宽容,关爱和担当,才能被赋予更大的责 任,从而拥有更多发展的机会,更好的参 与社会、国家的建设,让我们与集体共同
感谢各位聆听
B、60°;
P
C、90°;
D、45°
3、如图,∠A=50°, ∠ABC=60 °
BD是⊙O的直径,则∠AEB等于( B)
A、70°;
B、110°;
C、90°;
D、120°
B
4、如图,△ABC的顶点A、B、C
都在⊙O上,∠C=30 °,AB=2,
则⊙O的半径是 2 。
解:连接OA、OB
∵∠C=30 ° ,∴∠AOB=60 °
B C
A
O
D
EF
1.掌握圆周角定理几个推论的内容,会熟练运 用推论解决问题. 2.培养学生观察、分析及理解问题的能力. 3.在学生自主探索推论的过程中,经历猜想、 推理、验证等环节,获得正确的学习方式.
圆周角和圆心角的关系-圆PPT精品教学课件
= 2∠COD,
1
一条弧所对的圆周角等于它所 对的圆心角的一半.
B
你能写出这个命题吗?
议一议
6
圆周角和圆心角的关系
• 如果圆心不在圆周角的一边上,结果会怎样? • 3.当圆心(O)在圆周角(∠ABC)的外部时,圆周角 ∠ABC与圆心角∠AOC的大小关系会怎样? A
老师提示:能否也转化为1的情况?
A O B
∠AOC.
C
●
A
A
C
●
C
B
●
O
O
B
老师提示:圆周角定理是承上启下的知识点,要予以重视.
随堂练习
8
驶向胜利 的彼岸
思考与巩固
解: ∠A B 25°.
A
●
• 1.如图,在⊙O中,∠BOC=50°,求∠A的大小. =
C
●
∠BOC =
A O
O
B
D
C
2.如图(2),在⊙O中,∠BAC=50°, 求∠C的大小.
C
过点B作直径BD.由1可得:
∠ABD =
1 ∠AOD,∠CBD 2
B
●
O
∴
1 ∠ABC = ∠AOC. 2
= 2∠COD, 一条弧所对的圆周角等于它所 对的圆心角的一半.
1
你能写出这个命题吗?
议一议
7
圆周角定理
驶向胜利 的彼岸
• 综上所述,圆周角∠ABC与圆心角∠AOC的大小关系是 • : 圆周角定理 一条弧所对的圆周角等于它所对的圆心 角的一半. 即 ∠ABC =
A C
●
A
A C C B
●
O
B
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C
O
解:连接OA、OB
∵∠C=30 ° ,∴∠AOB=60 ° A
又∵OA=OB ,∴△AOB是等边三角形
B
∴OA=OB=AB=2,即半径为2。
2021/2/3
12
O
C
AD B
变式:
5.若OA//BC, ∠C= 25°, 则
∠ADB=__7_5_°___
2021/2/3
13
7.如图,OA,OB,OC都是⊙O的半径,∠ AOB=2∠ BOC, ∠ ACB与∠ BAC的大小有什么关系?为什么?
2021/2/3
4
如图,连接BO并延长,与圆相交于点D。(此时我们得
到与图①同样的情形)
A
C
A
C
D
O
O
B
B
①
2021/2/3
5
如图,连接BO并延长,与相交于点D。(此时我们得到与图①同 样的情形)
A
C
A
C
D
O
O
B
B
①
2021/2/3
6
圆周角定理
圆周角定理:
一条弧所对的圆周角等于它所对的圆心角的
D
110°
2021/2/3
16
M
O
A
C
B
如图,∠AOC=100°,∠ABC=1_3_0_°____
2021/2/3
17
自学检测: D
1.求圆中角X的度数
C 120°
O
.O
C
.O
A
B
70° x
X B
A
C
A
B
2.如图,圆心角∠AOB=100°,则∠ACB=_1_3_0。°
3、 如图,在直径为AB的半圆中,O为 圆心,C、D为半圆上的两点, ∠COD=500,则∠CAD=__2_5_º_____
答:∠ACB=2∠BAC
O
C
A
B
画图:圆和其任意一条直径及其所对的圆 周角,你能得出什么结论。。。。
P81 2021/2/3
14
• 推论2 直径所对的圆周角是直角; • 90 °的圆周角所对的弦是直径。
P82 议一议
2021/2/3
15
A
O B
C
如图,∠BAD=70°,则 ∠BCD=_______
一半. 即 ∠ABC = 1 ∠AOC.
A C
A2
C
A C
●O
●O
●O
B
B B
2021/2/3
7
下面的说法正确吗?说说你的看法
1、圆周角的度数是圆心角的一半 ( × ) 2、相等的圆周角所对的弧也相等 ( × )
2021/2/3
8
学以致用你能行
•1.如图,在⊙O中,若
∠A=25°,∠BOC= B
2021/2/3
18
自学检测:
4、判断
(1)、顶点在圆上的角叫圆周角。× (2)、圆周角的度数等于所对弧的度数的一半√。
5、半径为R的圆中,有一弦分圆 周成1:4两部分,则弦所对的圆 周角的度数是 36º或14。4°
.
O
D
6 、如图,已知圆心角
O
∠AOB=100°,求圆周角 ∠ACB=1_3_0__º_、∠ADB=5_0__º___ 。 2021/2/3
O
A
B
2021/2/3
21
内容小结:
(1)一个概念(圆周角)
(2)一个定理:圆周角定理
(3)二个推论 1.圆周角的度数等于它所对的弧度 数的一半。 2.圆内接四边形对角互补。
(4)两种思想方法:1. 由特殊到一般 2. 分类讨论
2021/2/3
22
2021/2/3
2
圆心与圆周角的位置关系:
A O
B
C
A O B
C
点O在∠BAC的一边上 点O在∠BAC内部
A O
C B
点O在∠BAC外部
2021/2/3
3
3.当圆心(O)在圆周角(∠ABC)的外部时,圆周角 ∠ABC与圆心角∠AOC的大小关系会怎样?
老师提示:能否也转化为1的情况?
A C
●O B
A
C
B 19
基础练习:
7.如图,以⊙O的半径OA为直径作⊙O1, ⊙O的弦AD交⊙O1于C,则 (1)OC与AD的位置关系是OC垂直平分AD; (2)OC与BD的位置关系是 平行 ;
(3)若OC=2cm,则BD= 4 cm。
D
C
A O1 O
B
2021/2/3
20
已知⊙O中弦AB等于半径,弦AB所 对的圆心角的度数为 6,0°圆周角 的度数为 30 °或 150。°
50°。
C
●O A
2021/2/3
9
2.如图,∠A是圆O的圆周角, ∠A=46°,则∠OBC= 44°。
2021/2/3
10
3.如图,∠B=30°,∠C=20° ,则
∠A= 50°
A
O
B
C
2021/2/3
11
4、如图,△ABC的顶点A、B、C
都在⊙O上,∠C=30 °,AB=2,
则⊙O的半径是 2 。
九年级数学(下) 第三章 圆
3.3
圆周角和圆心角 的关系(课时2)
学有所思、思有所疑、疑有所问、问有所悟,
学思疑问才会感悟生活的乐趣、数学学习的快乐!
2021/2/3
1
一、复习 1.什么是圆周角? 顶点在圆上ห้องสมุดไป่ตู้两边与圆相交的角叫做圆周角.
2.填空: ⑴一条弧所对的_圆__周__角__ 等于它所对的 __圆__心__角___度数的一半. ⑵一条弧所对的圆心角等于它所度对数的圆的一周半角的 __2_倍____.