25.2 用列举法求概率(1)直接列举和列表法
《25.2 第1课时 运用直接列举或列表法求概率》教案、导学案、同步练习
25.2 用列举法求概率《第1课时运用直接列举或列表法求概率》教案【教学目标】1.用列举法求较复杂事件的概率.2.理解“包含两步并且每一步的结果为有限多个情形”的意义.3.用列表法求概率.【教学过程】一、情境导入希罗多德在他的巨著《历史》中记录,早在公元前1500年,埃及人为了忘却饥饿,经常聚集在一起掷骰子,游戏发展到后来,到了公元前1200年,有了立方体的骰子.二、合作探究探究点一:用列表法求概率【类型一】摸球问题一只不透明的袋子中装有两个完全相同的小球,上面分别标有1,2两个数字,若随机地从中摸出一个小球,记下号码后放回,再随机地摸出一个小球,则两次摸出小球的号码之积为偶数的概率是( )A.14B.13C.12D.34解析:先列表列举出所有可能的结果,再根据概率计算公式计算.列表分析如下:由列表可知,两次摸出小球的号码之积共有4种等可能的情况,号码之积为偶数共有3种:(1,2),(1,2),(2, 2),∴P=34,故选D.【类型二】学科内综合题从0,1,2这三个数中任取一个数作为点P的横坐标,再从剩下的两个数中任取一个数作为点P的纵坐标,则点P落在抛物线y=-x2+x+2上的概率为________.解析:用列表法列举点P坐标可能出现的所有结果数和点P落在抛物线上的结果数,然后代入概率计算公式计算.用列表法表示如下:共有6种等可能结果,其中点P落在抛物线上的有(2,0),(0,2),(1,2)三种,故点P落在抛物线上的概率是36=12,故答案为12.方法总结:用列表法求概率时,应注意利用列表法不重不漏地表示出所有等可能的结果.【类型三】学科间综合题如图,每个灯泡能否通电发光的概率都是0.5,当合上开关时,至少有一个灯泡发光的概率是( )A.0.25 B.0.5C.0.75 D.0.95解析:先用列表法表示出所有可能的结果,再根据概率计算公式计算.列表表示所有可能的结果如下:根据上表可知共有4种等可能的结果,其中至少有一个灯泡发光的结果有3种,∴P(至少有一个灯泡发光)=34,故选择C.方法总结:求事件A的概率,首先列举出所有可能的结果,并从中找出事件A包含的可能结果,再根据概率公式计算.【类型四】判断游戏是否公平甲、乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中.(1)求从袋中随机摸出一球,标号是1的概率;(2)从袋中随机摸出一球然后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜.试分析这个游戏是否公平?请说明理由.解析:(1)直接利用概率定义求解;(2)先用列表法求出概率,再利用概率判断游戏的公平性.解:(1)P(标号是1)=1 3.(2)这个游戏不公平,理由如下:把游戏可能出现标号的所有可能性(两次标号之和)列表如下:∴P(和为偶数)=59,P(和为奇数)=49,二者不相等,说明游戏不公平.方法总结:用列举法解概率问题中,可以采用列表法.对于一次实验需要分两个步骤完成的,用两种方法都可以,以列表法为主.判断游戏是否公平,只需求出双方获胜的概率.三、板书设计【教学反思】教学过程中,强调在生活、学习中的很多方面均用到概率的知识,学习概率要从身边的现象开始.《第1课时用直接列举法或列表法求概率》导学案【学习目标】:知识与技能掌握用列表法求事件的概率.过程与方法通过对“应用一般的列举法求概率”的探究,体会获得事件发生的概率的方法,培养分析、判断的能力。
人教版数学九上25.2 用列举法求概率(精品课件共2课时52页)
于4为事件B. () = 16
第1次
第2次
1
2
3
4
1
2
3
4
(1,1)
(2,1)
(3,1)
(4,1)
(1,2)
(2,2 )
(3,2)
(4,2)
(1,3)
15
5
2.一个不透明的袋中有四个完全相同的小球,把它们分别标号为
1,2,3,4.随机地摸取一个小球然后放回,再随机地摸出一个小球.
求下列事件的概率:
(1)两次取出的小球标号相同;
(2)两次取出的小球标号和等于4.
解:(1)记两次取出的小球标号
4
1
相同为事件A. () = 16 = 4
(2)记两次取出的小球标号和等
一共有结果
4种
一正一反的结果 2种
2
1
P(老师赢) = = .
4
2
2
1
P(学生赢)= = .
4
2
两面一样的结果 2种
答:因为P(老师赢) = P(学生赢),
所以这个游戏公平.
“同时掷两枚质地均匀的硬币”与“先后两次掷
一枚硬币”,这两种试验的所有可能结果一样吗?
第一次 第二次 所有可能的结果
(正,正)
的m种结果)求事件发生的概率的方法,我们称为直接列举法.
注意:(1)为保证结果不重不漏,直接列举时,要有一定的顺序性.
(2)用列举法求概率的前提条件有两个:
①所有可能出现的结果是有限个;
②每个结果出现的可能性相等.
(3)所求概率是一个准确数,一般用分数表示.
新知探究 跟踪训练
例1 若我们把十位上的数字比个位和百位上数字都小的三位数称
25.2.1 运用直接列举或列表法求概率
=
7
18
1.小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社
会调查”其中一项那么两人同时选择“参加社会调查”的概率为( A )
1
A.
4
1
B.
3
1
C.
2
3
D.
4
2.有A,B两个不透明的口袋,每个口袋里装有两个相同的球,A袋中的两个
球上分别写了“细”、“致”的字样,B袋中的两个球上分别写了“信”、
“心”的字样,从每个口袋里各摸出一个球,刚好能组成“细心”字样的概
率是( B )
1
A.
3
1
B.
4
2
C.
3
3
D.
4
3.若从长度分别为3、5、6、9的四条线段中任取三条,则能组成三角形的概
率为( A )
1
A.
2
3
B.
4
1
C.
3
1
D.
4
4.学校组织校外实践活动,安排给九年级三辆车,小明与小红都可以从这
三辆车中任选一辆搭乘,小明与小红同车的概率是( C )
(1)两枚硬币全部正面向上;
(2)两枚硬币全部反面向上;
(3)一枚硬币正面向上,一枚硬币反面向上.
上述这种列举法我们称为直接列举法,即把事件可能出现的结果一一列出.
【适用范围】直接列举法比较适合用于最多涉及两个试验因素或分两步
进行的试验,且事件总结果的种数比较少的等可能性事件.
上述这种列举法我们称为直接列举法,即把事件可能出现的结果一一列出.
【点睛】当一次试验要涉及两个因素(例如掷两个骰子)并且可能出现
11
所以P(C)=
36
25.2用列举法求概率(1)
知识回顾:
盒子里装有3个红球和1个白球,它们除颜 色外完全相同,你从盒子中任意摸出一球。 (1)你认为摸出的球可能是什么颜色? (2)如果将每个球都编上号码,分别记为 红1、红2、红3、白1,那么摸到每一个球 的机会均等吗? (3)摸到红球的概率是多大?
学习目标:
1.掌握列举法求概率的条件。 2.理解“包含两步,并且每一步的结 果为有限多个情形”的意义。 3.掌握用列举法求事件的概率。
自学指导:
看课本p133-134例1例2及练习前面的内容, 注意: 1、分清例1中A区B区中小方格数目及含地 雷的数目,再分别求出在A区B区的概率。 2、例2中“同时掷两枚硬币”与先后掷硬币 两次“的结果是否相同? 自学的过程中,如有不懂,可小声请教同桌 或老师。
自学展示:
8 1、A区域共有 ____个方格, 其中有地雷____个,所以 3 在A区域遇到地雷的概率是 3/8 72 ______,B区域共有____ 个 小方格,B区域内共有___ 7 个地雷,所以在B区域内遇 到地雷的概率是______,由 7/72 3/8>7/72 于________ ,所以第二部 应踩在______ 区域。 B
课堂小结:
一、等可能性事件的两个特征:
1.出现的结果有限多个; 2.各结果发生的可能性相等; 二、列举法求概率. 1.列举法就是把要数的对象一一列举出来分析 求解的方法. 2.利用列举法求概率的关键在于正确列举出试 验结果的各种可能性,而列举的方法通常有直 接分类列举、列表、画树形图(下节课时将学 习)等。
A区域
3
B区域
2、同时掷两枚硬币所产生可能性共有4 正正、正反、反正、反反 种,它们是___________________, 其中两枚全部正面朝上的可能性只有 1 ______种ห้องสมุดไป่ตู้我们把两枚硬币全部正面 1/4 朝上记着事件A,则P(A)= ______。
25.2 第1课时 用列举法求概率课件-2024-2025学年人教版数学九年级上册
3.C [解析] 列表如下:
甲盒
和
1
2
3
乙盒
4
5
6
7
5
6
7
8
6
7
8
9
由表可知,共有9种等可能的结果,其中编号之和大于6的结
果有6种,所以P(编号之和大于6)=69 = 23.
谢 谢 观 看!
数学 九年级上册 人教版
第 二
概率初步
十
五
25.2 第1课时 用列举用列举法求概率
探究与应用
课堂小结与检测
探
活动1 能用直接列举法求概率
究 与
例1 (教材典题)同时抛掷两枚质地均匀的硬币,求下列事件
应 的概率:
用
(1)两枚硬币全部正面向上;
解:列举抛掷两枚硬币所能产生的全部结果,它们是:正正,正反,
B.13
C.14
D.15
测
课 3.甲盒中有编号分别为1,2,3的3个完全相同的乒乓球,乙盒
堂
小 中有编号分别为4,5,6的3个完全相同的乒乓球.现分别从每
结
与 个盒子中随机地取出1个乒乓球,则取出的乒乓球的编号之
检 测
和大于6的概率为
(C)
A.49
B.59
C.23
D.79
相关解析
2.C [解析] 从四条线段中任选三条,有4种结果,即(1,3,5), (1,3,7),(1,5,7),(3,5,7),这些结果出现的可能性相等,其中能构 成三角形的结果只有1种,即(3,5,7),所以能构成三角形的概 率P=14.故选C.
堂
小 1.假如每枚鸟卵都可以成功孵化小鸟,且孵化出的小鸟是雄
结 与
鸟和雌鸟的可能性相等.现有2枚鸟卵,孵化出的小鸟恰有一
25.2 第1课时 用列表法求概率
第二十五章 第1课时 用列表法求概率
知识要点基础练
综合能力提升练
拓展探究突破练
-12-
解:(1)∵甲扔一袋垃圾有 4 种等可能的结果,其中扔对的只有 1 种结果,∴甲扔对垃圾的
概率为14. (2)记可回收物桶为 A,厨余垃圾桶为 B,有害垃圾桶为 C,其他垃圾桶为 D.列表如下:
A
B
C
D
A (A,A) (B,A) (C,A) (D,A) B (A,B) (B,B) (C,B) (D,B) C (A,C) (B,C) (C,C) (D,C) D (A,D) (B,D) (C,D) (D,D)
(2)列表如下:
白
红1
红2
白
(白,红 1) (白,红 2)
红 1 (红 1,白)
(红 1,红 2)
红 2 (红 2,白) (红 2,红 1)
∴一共有 6 种等可能的结果,连续两次都摸出红球的结果有 2 种,
∴连续两次都摸出红球的概率为2
6
=
13.
第二十五章 第1课时 用列表法求概率
知识要点基础练
综合能力提升练
第二十五章 第1课时 用列表法求概率
知识要点基础练
综合能力提升练
拓展探究突破练
-11-
14.现如今,“垃圾分类”已逐渐推广.如图,垃圾一般可分为:可回收物,厨余垃圾,有害垃圾, 其他垃圾.甲拿了一袋有害垃圾,乙拿了一袋厨余垃圾,随机扔进并排的4个垃圾桶.
(1)直接写出甲扔对垃圾的概率; (2)用列表法求甲、乙两人同时扔对垃圾的概率.
②左端连BC,右端连A1B1或A1C1;
③左端连AC,右端连A1B1或B1C1.
故这三根绳子连成一根长绳的概率为
25.2 第1课时 用直接列举法和列表法求概率
25.2用列举法求概率第1课时用直接列举法和列表法求概率一、基本目标【知识与技能】1.掌握用直接列举法和列表法求简单事件的概率的方法.2.运用概率知识解决计算涉及两个因素的一个事件概率的实际问题.【过程与方法】经历试验操作、观察、记录的过程,探究如何画出适当的表格,列举出事件的所有等可能结果,并总结出用列表法求事件概率的方法.【情感态度与价值观】合作探究如何画出适当的表格列举事件的所有等可能的结果,养成合作意识,形成缜密的思维习惯.二、重难点目标【教学重点】利用直接列举法和列表法求随机事件的概率.【教学难点】画出适当的表格列举事件的所有等可能的结果.环节1自学提纲,生成问题【5 min阅读】阅读教材P136~P138的内容,完成下面练习.【3 min反馈】1.在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性大小__相等__,那么我们可以通过列举试验结果的方法,求出随机事件发生的概率.2.同时抛掷两枚质地均匀的硬币,所有可能出现的结果有__正正__、__正反__、__反正__、__反反__,先后两次抛掷一枚质地均匀的硬币,所有可能出现的结果有__正正__、__正反__、__反正__、__反反__,故这两种试验的所有可能结果__一样__.环节2合作探究,解决问题【活动1】小组讨论(师生互学)【例1】先后两次抛掷一枚质地均匀的硬币.(1)求硬币两次都正面向上的概率;(2)求硬币两次向上的面相反的概率.【互动探索】(引发学生思考)上述问题中一次试验涉及几个因素?你是用什么方法不重复不遗漏地列出了所有可能的结果?【解答】列举先后两次抛掷一枚质地均匀的硬币的全部结果,它们是:正正、正反、反正、反反.所有的结果有4种,并且这4种结果出现的可能性相等.(1)所有可能的结果中,满足硬币两次都正面向上的结果只有1种,即“正正”,所以P (硬币两次都正面向上)=14.(2)硬币两次向上的面相反的结果共有2种,即“正反”“反正”,所以P (硬币两次向上的面相反)=24=12.【互动总结】(学生总结,老师点评)在一次试验中,如果可能出现的结果比较少,且各种结果出现的可能性大小相等,那么我们可以直接列举出试验结果,从而求出随机事件发生的概率.【例2】有5张看上去无差别的卡片,正面分别写着1,2,3,4,5,洗匀后正面向下放在桌子上,从中随机抽取1张,记下数字后放回洗匀,再从中随机抽取1张.(1)求两次抽到的数都是偶数的概率;(2)求第一次抽到的数比第二次抽到的数大的概率; (3)求两次抽到的数相等的概率.【互动探索】(引发学生思考)上述问题中一次试验涉及几个因素?你是用什么方法不重复不遗漏地列出了所有可能的结果?【解答】列表如下:(1)两次抽到的数都是偶数的结果有4种,即(2,2),(2,4),(4,2),(4,4),所以P (两次抽到的数都是偶数)=425.(2)第一次抽到的数比第二次抽到的数大的结果有10种,即(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4),所以P (第一次抽到的数比第二次抽到的数大)=1025=25. (3)两次抽到的数相等的结果有5种,即(1,1),(2,2),(3,3),(4,4),(5,5),所以P (两次抽到的数相等)=525=15.【互动总结】(学生总结,老师点评)在一次试验中,如果可能出现的结果比较多,且各种结果出现的可能性大小相等,那么我们可以列表列举出试验结果,从而求出随机事件发生的概率.【活动2】 巩固练习(学生独学)1.小明和小亮在玩“石头、剪子、布”的游戏,两人一起做同样手势的概率是( B ) A.12 B .13C.14D .152.在一个不透明的袋中装有2个黄球和2个红球,它们除颜色外没有其他区别,从袋中任意摸出一个球,然后放回搅匀,再从袋中任意摸出一个球,那么两次都摸到黄球的概率是( C )A.18 B .16C .14D .123.李玲有红色、黄色、白色的三件运动短袖上衣和白色、黄色两条运动短裤.若任意组合穿着,则李玲穿着“衣裤同色”的概率是__13__.4.同时掷两枚质地均匀的六面体骰子,计算下列事件的概率: (1)两枚骰子点数的和是6; (2)两枚骰子点数都大于4; (3)其中一枚骰子的点数是3. 解:列表如下:们出现的可能性相等.(1)两枚骰子点数的和是6的结果有5种,即(1,5),(2,4),(3,3),(4,2),(5,1),所以P (两枚骰子点数的和是6)=536.(2)两枚骰子点数都大于4的结果有4种,即(5,5),(5,6),(6,5),(6,6),所以P (两枚骰子点数都大于4)=436=19.(3)其中一枚骰子的点数是3的结果有11种,即(1,3),(2,3),(3,3),(4,3),(5,3),(6,3),(3,1),(3,2),(3,4),(3,5),(3,6),所以P (其中一枚骰子的点数是3)=1136.【活动3】 拓展延伸(学生对学)【例3】如图所示,小明和小亮用转盘做“配紫色”游戏(红色和蓝色在一起能配成紫色).小明转动的A 盘被等分成4个扇形,小亮转动的B 盘被等分成3个扇形,两人分别转动转盘一次.两人转动转盘得到的两种颜色若能配成紫色则小明获胜,否则小亮获胜,这个游戏对双方公平吗?【互动探索】(引发学生思考)结合概率的相关知识,要使游戏对双方公平,则两人获胜的概率之间有什么关系?【解答】列表如下:性相同.其中能配成紫色的结果有3种,所以P (小明获胜)=312=14,P (小亮获胜)=1-14=34.因为14≠34,所以这个游戏对双方不公平.【互动总结】(学生总结,老师点评)判断一个游戏对双方是否公平,就看双方获胜的概率是否相等.若相等,则公平.否则,不公平.环节3 课堂小结,当堂达标 (学生总结,老师点评) 请完成本课时对应练习!。
25.2用列举法求概率--上课用
地扔进抽屉里,当他随意地从抽屉里拿出两只袜子时,恰
好成双的概率是多少?
知识点一.用枚举法求概率(等可能事件结果有限个):
思考:“同时抛掷两枚质地均匀的硬币”与“先后两
次抛掷一枚质地均匀的硬币”,这两种试验的所有可能结
果一样吗?
知识点一.用枚举法求概率(等可能事件结果有限个):
知识点二.用列表法求概率(等可能事件结果较多个):
改为“把一枚质地均匀的骰子掷两次”,得到的结果有变 化吗?为什么?
思考:如果把例2中的“同时掷两枚质地均匀的骰子”
知识点二.用列表法求概率(等可能事件结果较多个):
2.在一个不透明的布袋中有4个完全相同的乒乓球, 把它们分别标号为1,2,3,4,随机地摸出一个乒乓球,
知识点二.用列表法求概率(等可能事件结果较多个):
练习3.有6张看上去无差别的卡片,上面分别写着
1,2,3,4,5,6.随机抽取1张后,放回并混在一起,再随机抽
取1张,那么第二次取出的数字能够整除第一次取出的数字
的概率是多少?
三.课堂小结:
1.用列表法求概率时要注意些什么? 2.什么时候用列表法?
反思:用列表法求概率 1.步骤: ①列表:分清一次试验所涉及的两个因素,一个为横行, 一个为竖行,制作表格;
②计数:通过表格中的数据,分别求出某事件发生的数量
m与该试验的结果总数m的值;
③计算:利用概率公式
2.适用条件:
P ( A)
m n
计算出事件的概率.
如果事件中各种结果出现的可能性均等,含有两次操作 (如掷骰子两次)或两个条件(如两个转盘)的事件.
练习3.在一个不透明的口袋中装有红球2个,黑球2
25.2_用列举法求概率(1)
1. 用数字1、2、3,组成三位数,求其中恰有2个相同的数 字的概率. 组数开始
百位 十位
1 1 2 3 1
2 2 3 1
3 2 3
个位 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
解: 由树形图可以看出,所有可能的结果有27种,它们出 现的可能性相等. 其中恰有2个数字相同的结果有18个.
甲
丙
石 ቤተ መጻሕፍቲ ባይዱ 剪 布
剪
布
石
剪
布
石
剪
布
解: 由规则可知,一次能淘汰一人的结果应是:“石石剪” 由树形图可以看出 ,游戏的结果 “剪剪布” “布布石”三类 . 有27种,它们出现的可能性相等.而满足条件(记为事件A) 9 1 的结果有9种 ∴ P(A)=27= 3
乙 石剪布 石剪布石剪布石剪布石剪布石剪布石剪布石剪布石剪布
数学病院
用下图所示的转盘进行“配紫色” 游戏,游戏者获胜的概率是多少?
刘华的思考过程如下:
随机转动两个转盘,所有可能出现的结果如下: 你认为她的 蓝 (灰,蓝) 绿 (灰,绿) 灰 想法对吗, 黄 (灰,黄) 为什么? 蓝 (白,蓝) 绿 (白,绿) 白 开始 黄 (白,黄 蓝 (红,蓝) ) 绿 (红,绿) 红 黄 (红,黄) 用树状图或列表 总共有9种结果,每种结果出现的可能性相同,而能 法求概率时,各 够 配成紫色的结果只有一种: (红,蓝),故游戏 种结果出现的可 者获胜的概率为1∕9 。 能性务必相同。
(1)利用列表的方法 表示游戏者所有可能 出现的结果. (2)游戏者获胜的概 率是多少?
红
黄 白 A盘 绿 B盘 蓝
想一想
4
25.2用列举法求概率(1)课件
直接分类列举
学习目标 1、理解P(A)= (在一 次试验中有n种可能的结果,其中A 包含m种)的意义. 2、应用P(A)= 解决一些实际 问题. 3、复习概率的意义,为解决利 用一般方法求概率的繁琐,探究用 特殊方法—列举法 求概率的简便方法,然后应用这种 方法解决一些实际问题.
A 圆圆
2
3 1
4 甲
1
2
3
6
5 乙
4
作业:1、完成练习册相关内容 P138.综合运用5 拓广探索8
7、先后抛掷三枚均匀的硬币,至少出现一 、先后抛掷三枚均匀的硬币, 次正面的概率是( 次正面的概率是( )
8、有100张卡片(从1号到 、 张卡片( 号到100号),从中任取 从中任取1 张卡片 号到 号),从中任取 取到的卡号是7的倍数的概率为 的倍数的概率为( 张,取到的卡号是 的倍数的概率为( )。 9、某组16名学生,其中男女生各一半,把全 、某组 名学生 其中男女生各一半, 名学生, 组学生分成人数相等的两个小组, 组学生分成人数相等的两个小组,则分得每 小组里男、女人数相同的概率是( ) 小组里男、女人数相同的概率是( 10一个口袋内装有大小相等的 个白球和已编 一个口袋内装有大小相等的1个白球和已编 一个口袋内装有大小相等的 有不同号码的3个黑球 从中摸出2个球 个黑球, 个球. 有不同号码的 个黑球,从中摸出 个球 (1)共有多少种不同的结果? )共有多少种不同的结果? 个黑球有多种不同的结果? (2)摸出 个黑球有多种不同的结果? )摸出2个黑球有多种不同的结果 (3)摸出两个黑球的概率是多少? )摸出两个黑球的概率是多少?
D.1. . .
4.一个均匀的立方体六个面上分别标有数 ,2,3, 一个均匀的立方体六个面上分别标有数1, , , 一个均匀的立方体六个面上分别标有数 4,5,6.右图是这个立方体表面的展开图.抛 , , .右图是这个立方体表面的展开图. 掷这个立方体, 掷这个立方体,则朝上一面上的数恰好等于朝下 一面上的数的一半的概率是( 一面上的数的一半的概率是( ).
用列举法、列表法求概率
25.2.1 用列举法求概率例1.同时抛掷两枚质地均匀的硬币,求下列事件的概率:(1)两枚硬币全部正面向上;(2)两枚硬币全部反面向上;(3)一枚硬币正面向上,一枚硬币反面向上.练习:1.如图,随机闭合开关S1,S2,S3中的两个,求能让灯泡发光的概率.2.如图,有一条电路AB由图示的开关控制,任意闭合两个开关.(1)请你列举出所有等可能的结果.(2)请你求出使电路形成通路的概率.3.一口袋中有四根长度分别为1cm,3cm,4cm和5cm的细木棒,小明手中有一根长度为3cm的细木棒,现随机从袋内取出两根细木棒与小明手中的细木棒放在一起,回答下列问题:(1)求这三根细木棒能构成三角形的概率;(2)求这三根细木棒能构成直角三角形的概率;(3)求这三根细木成等腰三角形的概率.25.2.2 用列表法求概率例2.同时掷两枚质地均匀的骰子,求下列事件的概率:(1)两枚骰子的点数相同;(2)两枚骰子点数的和是9;(3)至少有一枚骰子的点数为2.例题(放回问题)(2017年省卷19题)在一个不透明的盒子中,装有3个分别写有数字6,-2,7的小球,他们的形状、大小、质地完全相同,搅拌均匀后,先从盒子里随机抽取1个小球,记下小球上的数字后放回盒子,搅拌均匀后再随机取出1个小球,再记下小球上的数字.(1) 用列表法或树状图法(树状图也称树形图)中的一种方法,写出所有可能出现的结果;(2) 求两次取出的小球上的数字相同的概率P.例题(不放回问题)(2018年省卷19题)将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地、颜色等其它方面完全相同,若背面向上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为x;再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为y.(1) 用列表法或树状图法(树状图也称树形图)中的一种方法,写出所有可能出现的结果;(2) 求取出的两张卡片上的数字之和为偶数的概率P.练习:1.(2020年省卷19题)甲、乙两个家庭来到以“生态资源,绿色旅游”为产业的美丽云南,各自随机选择到大理、丽江、西双版纳三个城市中的一个城市旅游。
25.2. 1用列举法求概率(t)(1)
归纳 “列表法”的意义: 列表法”的意义: 列表法
当试验涉及两个因素 例如两个转盘 当试验涉及两个因素(例如两个转盘 两个因素 例如两个转盘) 可能出现的结果数目较多时 并且可能出现的结果数目较多 并且可能出现的结果数目较多时, 为不重不漏地列出所有的结果, 为不重不漏地列出所有的结果, 通常采用“列表法”。 通常采用“列表法” 上题可以用画“树形图” 上题可以用画“树形图”的方法 列举所有可能的结果么? 列举所有可能的结果么?
7、甲、乙两人各掷一枚质量分布均匀的正方体骰子,如果点数 、 乙两人各掷一枚质量分布均匀的正方体骰子,如果点数 之积为奇数,那么甲得1分 如果点数之积为偶数 那么乙得1分 点数之积为偶数, 之积为奇数,那么甲得 分;如果点数之积为偶数,那么乙得 分。 连续投10次 谁得分高,谁就获胜。 连续投 次,谁得分高,谁就获胜。 (1)请你想一想,谁获胜的机会大?并说明理由; 请你想一想, 请你想一想 谁获胜的机会大?并说明理由; (2)你认为游戏公平吗?如果不公平,请你设计一个公平的游戏。 你认为游戏公平吗? 你认为游戏公平吗 如果不公平,请你设计一个公平的游戏。 列出所有可能的结果: 列出所有可能的结果:
m (3)运用公式求事件 的概率:P( A) = 运用公式求事件A的概率 运用公式求事件 的概率: n
球除了颜色以外没有任何区别。两袋中的球都搅匀。 球除了颜色以外没有任何区别。两袋中的球都搅匀。 蒙上眼睛从口袋中取一只球,如果你想取出1只黑 蒙上眼睛从口袋中取一只球,如果你想取出 只黑 机会大呢 你选哪个口袋成功的机会大 球,你选哪个口袋成功的机会大呢?
1 1 2 3 4 5 6 1×1=1 × 1×2=2 × 1×3=3 × 1×4=4 × 1×5=5 × 1×6=6 × 2 2×1=2 × 2×2=4 × 2×3=6 × 2×4=8 × 2×5=10 × 2×6=12 × 3 3×1=3 × 3×2=6 × 3×3=9 × 3×4=12 × 3×5=15 × 3×6=18 × 4 4×1=4 × 4×2=8 × 4×3=12 × 4×4=16 × 4×5=20 × 4×6=24 × 5 5×1=5 × 5×2=10 × 5×3=15 × 5×4=20 × 5×5=25 × 5×6=30 × 6 6×1=6 × 6×2=12 × 6×3=18 × 6×4=24 × 6×5=30 × 6×6=36 ×
25.2用列举法求概率用列表法求概率(教案)
1.分组讨论:学生们将分成若干小组,每组讨论一个与概率相关的实际问题,如抛两个骰子,求两个骰子点数之和为7的概率。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如投掷两个骰子,记录并分析结果。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
本节课将结合实际例子,让学生在实际操作中掌握列举法和列表法求解概率的方法。
二、核心素养目标
本节课的核心素养目标主要包括以下三个方面:
1.数据分析:通过用列举法和列表法求解概率问题,培养学生对数据整理和分析的能力,使其能够运用合的方法对随机事件进行概率计算,形成数据分析的核心素养。
2.逻辑推理:在教学过程中,引导学生通过逻辑推理的方式,理解事件发生的可能性,并运用列举法和列表法进行推理,提高学生的逻辑思维能力。
3.数学建模:让学生在实际问题中运用数学知识建立模型,通过列表法和列举法求解概率,培养学生将实际问题转化为数学问题的能力,形成数学建模的核心素养。
三、教学难点与重点
1.教学重点
(1)理解并掌握列举法求概率的基本步骤:确定试验的所有等可能结果、确定事件A的所有可能结果、计算事件A的概率。
举例:抛掷一个骰子,求出现偶数点的概率。重点是让学生通过实际操作,理解并掌握如何找出所有等可能结果,以及如何确定事件A的所有可能结果,进而计算出事件A的概率。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“25.2用列举法求概率用列表法求概率”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要判断事情发生可能性大小的情况?”(例如:抛硬币时,正面朝上的可能性是多少?)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索概率的奥秘。
25.2用列举法求概率(1直接列举法,列表法)
P(C) = 11 36
如果把刚刚这个例题中的“同时掷两 个骰子”改为“把一个骰子掷两次”,所 得的结果有变化吗?
没有变化
例2.掷两枚硬币,求下列事件的概率: (1)两枚硬币全部正面朝上; (2)两枚硬币全部反面朝上; (3)一枚硬币正面朝上,一枚硬币反面朝上. 解:其中一枚硬币为A,另一枚硬币为B,则所有可能结果如 表所示: B 正 反
解:排“20”,“08”,“北京”三个字块所有可能性为: ①20,08,北京 ② 20,北京,08 ③08 ,20,北京 ④ 08,北京,20 ⑤ 北京,20,08 ⑥ 北京,08,20 其中排成“2008北京”或“北京2008”有两种情
1 况,所以 婴儿能得到奖励的概率为
3
利用一一列举法可以知道事件发生的各种 情况,对于列举复杂事件的发生情况还有什么 更好的方法呢?
这个游戏对小亮和小明公 平吗?怎样才算公平 ?
你能求出小亮得分的概率吗?
用表格表示
红桃
黑桃
1
2
3
4
5
6
1
(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
2
3 4
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
(3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
m P ( A) = n
事件A发生的 可能种数
试验的总共 可能种数
等可能性事件的概率可以用列举法而求得。
列举法就是把要数的对象一一列举出来 分析求解的方法.
例1 如图:计算机扫 雷游戏,在9×9个小 方格中,随机埋藏着 10个地雷,每个小方 解:A区有8格3个雷, 格只有1个地雷,,小 遇雷的概率为3/8, 王开始随机踩一个小 B区有9×9-9=72个小方格, 方格,标号为3,在3 的周围的正方形中有3 还有10-3=7个地雷, 个地雷,我们把他的 由于3/8大于7/72, 区域记为A区,A区外 所以第二步应踩B区 记为B区,,下一步 遇到地雷的概率为7/72, 小王应该踩在A区还 是B区?
25.2用直接列举法和列表法求概率
解:容易知道3辆汽车开来的先后顺序有如下6种可能情况:
(上中下), (上下中),
(中上下), (中下上), (下上中), (下中上).
假定6种顺序出现的可能性相等, 在各种可能顺序之下,
甲乙两人分别会乘坐的汽车列表如下:
顺序 上中下 上下中 中上下 中下上 下上中 下中上
甲
乙
甲乘到上等、中等、下等3种汽
所以:P(点数相同)= 6 = 1
36 6
P(点数和为9)= 4 = 1
36 9
P(至少一个为2)=1361
把事件所有等可能的结果用列表的方法一一列举出来, 从而求事件概率的方法叫列表法
适用用两次(两步)(总结果数较多)时,为不重不漏地 列出所有可能结果,通常采用列表法. ※(放回和不放回如何影响表格中的总数)ቤተ መጻሕፍቲ ባይዱ
果转盘A转出了红色,转盘B转出了蓝色,那么他就赢了,
因为红色和蓝色在一起配成了紫色。问:游戏者获胜的
概率是多少?
解:所有等可能的结果有:
红黄、红蓝、红绿、白黄、白
蓝、白绿 共6种,
其中:红蓝配成紫色的有1种
所以
P(获胜)=
1 6
思 老师向空中抛掷两枚同样的一元硬币,如果落 考 地后一正一反,老师赢;如果落地后两面一样,你
们赢.请问,你们觉得这个游戏公平吗?
“掷两枚硬币”所有结果如下:
①
②
①
②
①
②
①
②
解:所有等可能的结果有:
正正、正反、反正、反反共4
种,
其中 一正一反的有两种,两
面一样的有两种
所以 P(老师赢)=2 =1
42
P(你们赢)=24
=
1 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上述这种列举法我们称为直接列举法,即把事件可能出现 的结果一一列出.
注意 直接列举法比较适合用于最多涉及两个试验因素 或分两步进行的试验,且事件总结果的种数比较少的 等可能性事件.
想一想 “同时掷两枚硬币”与“先后两次掷一枚硬币”,这 两种试验的所有可能结果一样吗?
观察与思考
第一掷
开始
第二掷 所有可能出现的结果 (正、正) (正、反) (反、正)
列表法中表格构造特点: 一个因素所包含的可能情况
另一个 因素所 包含的 可能情 况
两个因素所组合的所 有可能情况,即n
说明:如果第一个因素 包含2种情况;第二个 因素包含3种情况;那 么所有情况n=2×3=6.
典例精析
例1 同时掷两个质地均匀的骰子,计算下列事件的概率: (1)两个骰子的点数相同; (2)两个骰子点数的和是9; (3)至少有一个骰子的点数为2.
3 (1,3) (2,3) (3,3) (4,3) (5,3) (6,3)
注意有序 数对要统 一顺序
4 (1,4) (2,4) (3,4) (4,4) (5,4) (6,4)
5 (1,5) (2,5) (3,5) (4,5) (5,5) (6,5)
6 (1,6) (2,6) (3,6) (4,6) (5,6) (6,6)
第一步:列表格; 第二步:在所有可能情况n中,再找到满足条件的事件的 个数m; 第三步:代入概率公式 P(A)= m 计算事件的概率.
n
经典例题
甲口袋中装有3个相同的小球,它们分别写有 数值-1,1,5;乙口袋中装有3个相同的小球, 它们分别写有数值-4,2,3.现从甲口袋中随机 取一球,记它上面的数值为x,再从乙口袋中随 机取一球,记它上面的数值为y.设点A的坐标为 (x,y),请用列表法,求点A落在第一象限的概 率.
课堂小结
列举法
关 键 在于正确列举出试验结果的各种可能性.
直接列举法
常用 方法
画树状图法 (下节课学习) 列表法
前提条件
基本步骤
确保试验中每种 结果出现的可能 性大小相等.
① 列表; ② 确定m、n值 代入概率公式计
算.
适用对象
两个试验 因素或分 两步进行 的试验.
36
提示 列表法对于列举涉及两个因素或分两步进行的试验
结果是一种有效的方法.
我们发现: 与前面掷硬币问题一样,“同时掷两个质地相同的骰子”
与“把一个骰子掷两次”,所得到的结果没有变化. 所以, 当试验涉及两个因素时,可以“分步”对问题进行分析.
方法归纳
列表法求概率应注意的问题 确保试验中每种结果出现的可能性大小相等. 列表法求概率的基本步骤
解:列表得:
乙 甲
-4
2
-1 (-1,-4) (-1,2)
1 (1,-4) (1,2)
5 (5,-4) (5,2)
3
(-1,3) (1,3) (5,3)
∵共有 9 种等可能的结果,点 A 落在第一象限的有 4 种情况, ∴P(点 A 落在第一象限)=94. 答:点 A 落在第一象限的概率是94 .
分析 当一次试验要涉及两个因素(例如掷两个骰子)并且可能出 现的结果合数作目探较究多时,为不重不漏地列出所有可能结果,通常采
用列表法.
把两个骰子分别标记为第1个和第2个,列表如下:
第 第二一个个
1
2
3
4
5
6
1 (1,1) (2,1) (3,1) (4,1) (5,1) (6,1)
2 (1,2) (2,2) (3,2) (4,2) (5,2) (6,2)
导入新课
我们一起来做游戏 老师向空中抛掷两枚同样的一元硬币,如果落地后一 正一反,老师赢;如果落地后两面一样,你们赢.请问, 你们觉得这个游戏公平吗?
讲授新课
一 用直接列举法求概率
探索交流
同时掷两枚硬币,试求下列事件的概率: (1)两枚两面一样; (2)一枚硬币正面朝上,一枚硬币反面朝上;
①
②
“掷两枚硬币”所有结果如下:
解:由列表得,同时掷两枚骰子,可能出现的结果 有36个,它们出现的可能性相等.
(1)满足两枚骰子的点数相同(记为事件A)的结 果有6个,则P(A)= 6 1 ;
36 6
(2)满足两枚骰子的点数之和是9(记为事件B) 的结果有4个,则P(B)= 4 1 ;
36 9
(3)满足至少有一枚骰子的点数为2(记为事件C) 的结果有11个,则P(C)= 11 .
第二十五章 概率初步
25.2 用列举法求概率
第1课时 运用直接列举或列表法求概率
学习目标
1.知道什么时候采用“直接列举法”和“列表法” . 2.会正确“列表”表示出所有可能出现的结果.(难点) 3.知道如何利用“列表法”求随机事件的概率.(重点)
导入新课
我们在日常生活中经常会做一些游戏,游戏规则制定是 否公平,对游戏者来说非常重要,其实这是一个游戏双方 获胜①
②①
②
正正
正反 反正 反反
解:(1)两枚硬币两面一样包括两面都是正面,两 面都是反面,共两种情形;所以学生赢的概率是 2 1; 42 (2)一枚硬币正面朝上,一枚硬币反面朝上,共 有反正,正反两种情形;所以老师赢的概率是 2 1. 42 ∵P(学生赢)=P(老师赢).
∴这个游戏是公平的.
发现: 一样.
(反、反)
归纳 随机事件“同时”与“先后”的关系:“两个相同 的随机事件同时发生”与 “一个随机事件先后两次发 生”的结果是一样的.
二 列表法求概率
问题1 利用直接列举法可以比较快地求出简单事件发生 的概率,对于列举复杂事件的发生情况还有什么更好的方 法呢?
列表法
问题2 怎样列表格?