速度运动学雅可比矩阵
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4章 速度运动学——雅可比矩阵
在数学上,正运动学方程在笛卡尔位置和姿态空间与关节位置空间之间定义了一个函数,速度之间的关系由这个函数的雅可比矩阵来决定。
雅可比矩阵出现在机器人操作的几乎各个方面:规划和执行光滑轨迹,决定奇异位形,执行协调的拟人动作,推导运动的动力学方程,力和力矩在末端执行器和机械臂关节之间的转换。
1.角速度:固定转轴情形
k θ
ω =(k 是沿旋转轴线方向的一个单位向量,θ 是角度θ对时间的倒数) 2.反对称矩阵
一个n n ⨯的矩阵S
被称为反对称矩阵,当且仅当0=+S S T
,我们用)3(so 表示所有
33⨯反对称矩阵组成的集合。
如果)3(so S ∈,反对称矩阵满足0=+ji ij s s 3,2,1,=j i ,所以ii S =0,S 仅包含三个独立项,并且每个33⨯的反对称矩阵具有下述形式:
⎥⎥⎥⎦
⎤
⎢⎢⎢⎣⎡---=0001
2
13
23s s s s s s S 如果T
z y x a a a a ),,(=是一个3维向量,我们将对应的反对称矩阵)(a S 定义为如下形式:
⎥⎥⎥⎦
⎤⎢⎢⎢⎣
⎡---=000
)(x
y x z
y z a a a a a a a S 反对称矩阵的性质
1))()()(b S a S b a S βαβα+=+ 向量a 、b 属于3
R ,α、β为标量
2)p a p a S ⨯=)( 向量a 、b 属于3R ,p a ⨯表示向量叉乘
3))()(Ra S R a RS T
=,左侧表示矩阵)(a S 的一个相似变换,这个公式表明:)(a S 在坐标系中经过R 旋转操作的矩阵表示与反对称矩阵)(a SR 相同,其中)(a SR 对应于向量a 被转过R 这种情形。
4)对于一个n n ⨯的反对称矩阵S ,以及任何一个向量n R X ∈,有0=SX X T
旋转矩阵的导数
)(θθ
SR R d d
= 公式表明:计算旋转矩阵的R 的导数,等同于乘以一个反对称矩阵S 的矩阵乘法操作。
3.角速度:一般情况
)())(()(t R t w S t R
= ,其中,矩阵))((t w S 是反对称矩阵,向量)(t w 为t 时刻旋转坐标系相对于固定坐标系上的点p 。 4.角速度求和
假定我们有112010...-=n n n R R R R ,则00,00)(n
n n R S R ω= ,其中 0,104
,303
,202,10
1,01,10134,30323,20212,10101,00,0......n
n n n
n n n R R R R ----+++++=+++++=ω
ω
ω
ωωωωωωωω
(0
2,1ω表示对应于1
2R 导数的角速度在坐标系0000z y x o 中的表达式) 5.移动坐标系上点的线速度
v r o Rp S o p R p
+⨯=+=+=ωω 110)( 其中,1
Rp r =是从1
o 到p 的向量在坐标系0000z y x o 的姿态中的表达式,v 是原点1o 运
动的速度。 6.雅可比矩阵的推导
当机器人运动时,关节变量i q 以及末端执行器的位置0
n o 和姿态0
n R 都将为时间的函数。
q
J =ξ 其中,ξ和J 由下式给出
⎥⎦
⎤⎢⎣⎡=00
n n v ωξ 和 ⎥⎦⎤⎢⎣⎡=w v J J J
向量ξ有时被称为体速度。矩阵J 被称为机械臂的雅可布矩阵。
角速度:
末端执行器相对于基座坐标系的总的角速度0
n ω:
011
01
01
22110
...-=-∑=+++=i i n i i n n n n
z q k R q k R q k q
ρρρρω 其中,关节i 为转动时,i ρ等于1,;而关节i 为平动时,i ρ等于0。这是因为
k R z i i 0101--=,当然,T k z )1,0,0(0
0==。
所以 )...(101-=n n w z z J ρρ
线速度:
i
n
vi q o J ∂∂=0,雅可比矩阵的第i 列可以通过下列方式生成:固定除第i 个关节之外的所有关节,同时以单位速度驱动第i 个关节。
平动关节:
1-=i v z J i
转动关节:
)(11---⨯=i n i v o o z J i
小结:
雅可比矩阵的上半部分v J 由下式给出:
)...(1n v v v J J J =
其中,矩阵的第i 列i v J 为
()
⎩
⎨
⎧-⨯=---i z i o o z J i i n i v i 对于平动关节对于转动关节111 雅可比矩阵的下半部分为
)...(1n J J J ωωω=
其中,矩阵的第i 列⎩⎨
⎧=-i
i
z J i i 对于平动关节对于转动关节0
1
ω
计算雅可比矩阵仅需知道单位向量i z 以及原点n o o ,...,1的坐标。
i z 相对于基座坐标系的坐标,可由0
i T 第3列中的3个元素给出,同时i o 由0
i T 第4列中的3个元素给出。
7.工具速度
末端执行器和工具坐标系之间的固定空间关系由下列恒定齐次变换矩阵给出:
⎥
⎦
⎤⎢⎣⎡=106
d R T tool