第二章-第四节噪声控制技术——吸声
噪声控制技术—吸声隔声消声
第五次课作业
1、设在墙面与地面交线上有一声源,已知500Hz的声 功率级为85dB,同频带下的房间常数为100m2, 求距 声源5m处之声压级Lp。
2、某房间尺寸为6m*7m*3m,墙壁、天花板、和地板 在1KHz时的吸声系数分别为,,若安装一个在1KHz 倍频程内,吸声系数为的吸声贴面天花板,求该频带 在吸声处理前后的混响时间及处理后的吸声减噪量。
消声室 消声箱
吸声劈尖
四、吸声降噪计算
设吸声前的声压级为:
Lp1LW10lg4Qr2 R 41
吸声后的声压级为:
Lp2 LW10lg4Q r2 R42
则:
Lp
Lp1
Lp2
10lg
Q
4r2
Q
4r2
4 R1
4 R2
当某接受点远离声源时,即: 4 Q
R 4r 2
则:
Lp1l0g R R 1 21l0g 1 21 1 2 1
噪声控制技术—隔声
一、常用隔声评价量
1、透射系数 W t
W
2、隔声量:入射声功率级与透射声功率级之差, 也称传声损失。单位dB
ห้องสมุดไป่ตู้
R10 lgI It
20 lgP Pt 10 lg1
3、插入损失:隔声结构设置前后的声功率级 的差(IL )。
IL L W 1L W 2
二、声波透过单层匀质构件的传播 单层匀质墙的隔声频率特性曲线
✓ 薄板吸声结构的共振频率通常在801000Hz范围,吸声系数约为,一般作为 中低频范围的吸声材料。
薄板共振吸声结构的吸声系数
材料名称
材料 厚度
(cm)
空气层厚度 (cm)
125
倍频带中心频率 (Hz)
《物理性污染控制》噪声污染控制 吸声
第2章 噪声污染控制 2.2 吸声
2.2.1 吸声系数与吸声量 (3)吸声系数的测量
接近于实际声场
入射角度: ① 无规入射吸声系数αT(混响室法); ② 垂直入射吸声系数α0 (驻波管法)。
为方便使用,一般将松散的多孔吸声材料加工为板、毡或砖等形状
32
第2章 噪声污染控制 2.2 吸声
2.2.2 多孔吸声材料 多孔吸声材料结构
33
第2章 噪声污染控制 2.2 吸声
2.2.2 多孔吸声材料 (3)吸声特性与影响因素
吸声特性:1)与入射角度和频率有关。
对高频声吸收效果好,对低频声吸收效果差。
抓拍系统通过声呐采集设备对鸣笛车辆声源 进行精准定位,再通过关联的相机抓拍取证,自 动识别车牌号码,并生成违法抓拍数据。
第2章 噪声污染控制 2.1 噪声控制技术概述
2.1.3 城市环境噪声控制
噪声管理 环境噪声功能区划
(1)1989年 《中华人民共和国环境噪声污染防治条例》 (2)1996年 《中华人民共和国环境噪声污染防治法》
4
上一讲回顾:
噪声的测量:
(1) 声级计 (2) 频谱分析仪(滤波器+声级计)
5
第二章 噪声污染控制
2.1 噪声控制技术概述 2.2 吸声 2.3 消声 2.4 隔声
第2章 噪声污染控制 2.1 噪声控制技术概述
2.1.1 噪声控制基本原理与途径
声源
传播途径
受体
基本原理:
(1)在声源处抑制噪声.降低激发
在材料表面和内部有无数的微细孔隙,这些孔隙相互贯通并且 与外界相通的吸声材料称作多孔吸声材料 构造特征:固定部分在空间组成骨架,使材料具有一定的形状(筋 络),筋络间存在许多贯通的微小间隙,具有一定的通气性能。
物理性污染控制-第二章-第5节-噪声控制技术——隔声
2
m B
2
墙板面密度,kg/m2 墙板的弯曲劲度,N· m
或
墙板的厚度,m
c f c 0.551 t
m
E
墙板密度,kg/m3
(2-138)
墙板的弹性模量,N/m2
由式(2-138)可知,临界吻合频率受墙板厚度、密度、弹性影响 fc 越低; 墙板越厚, 轻而弹性模量大的隔板,常常降到听觉敏感的声频范围内,对隔声造成不
图2-34 双层墙隔声特性
(一)双层隔声墙
1.双层隔声墙的隔声原理 2.双层墙的隔声特性曲线 3.双层墙的共振频率及其隔声量的实际估算
3.双层墙的共振频率及其隔声量的实际估算
双层墙的共振频率
f0
(2-143)
f0 是指入射声波法向入射时的墙板共振频率
c f0 2
0
1 1 ( ) h m1 m2
41 41 45 40 33 37 38 46
— 52 47 57 44 44 45 53 42 45 49 57 17 22 35 44 28 36 39 46
46 52
54 57 64 49 54
47 53
— 56 62 48 55
43 42 45 46
50 47 49 51 53 52 35 39 43 43
刚度和阻尼控制区
质量控制区
吻合效应区
频率大于fn,共振影响消失,墙板的隔声量受墙板惯性质量影响。
墙板的面密度愈大,即质量愈大,隔声量愈高。 墙板的隔声量随着入射声 声波频率与墙板固有频率相同时,引起 波频率的增加而以每倍频 隔声量随入射声波频率的增加,而以斜率为 6dB/倍频程直线上升。 共振,隔声量最小。 随入射声波频率继续升高,隔声量反而 程6dB的斜率下降。 随着声波频率的增加,共振减弱,直至 下降,曲线上出现低谷,这是吻合效应的 消失,隔声量总趋势上升。 缘故。 共振区的大小与墙板的面密度、形状、 越过低谷后,隔声量以每倍频程 10dB 安装方式和阻尼有关。 趋势上升,接近质量控制的隔声量。 隔声构件,共振区越小越好。
噪声控制技术——吸声
式中:A ——吸声量,m2;
——某频率声波的吸声系数;
S ——吸声面积,m2。
【注】工程上通常采用吸声量评价吸声材料的 实际吸声效果。
(二) 吸声量(等效吸声面积)
总吸声量:若组成室内各壁面的材料不同,则 壁面在某频率下的总吸声量为
n
n
A Ai iSi
i1
i1
(2-109)
i 式中: Ai ——第 种材料组成的壁面的吸声量,m2;
(一)薄板共振吸声结构
(二)穿孔板共振吸声结构
(三)微穿孔板吸声结构
(二)穿孔板共振吸声结构
特征:穿孔薄板与刚性壁面之间留一定深度 的空腔所组成的吸声结构。
分类:按薄板穿孔数分为
单腔共振吸声结构 多孔穿孔板共振吸声结构
材料:轻质薄合金板、胶合板、塑料板、石膏 板等。
1.单腔共振吸声结构
【讨论】由式(2-113)知,多孔穿孔板共振吸声结构的吸
声带宽和腔深有很大关系,而腔深又影响共振频率的大小,故
需合理选择腔深。
改善多孔穿孔板共振吸声性能的措施:
龙骨
空气层
龙骨
3—阻尼材料
4—薄板
采用组合不同单元或不同腔 深的薄板结构,或直接采用 木丝板、草纸板等可吸收中、 高频声的板材,拓宽吸声频 带。
在薄板结构边缘(板-龙骨 交接处)放置能增加结构阻 尼的软材料,如泡沫塑料条、 软橡皮、海绵条、毛毡等, 增大吸声系数。
二 吸声结构
吸声处理中常采用吸声结构。 吸声结构机理:亥姆霍兹共振吸声原理。 常用的吸声结构
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
T 0.25 0.40 0.50 0.60 0.75 0.85 0.90 0.98
噪声控制技术,控制噪声的根本途径
噪声控制技术,控制噪声的根本途径噪声的传播一般有三个因素:噪声源、传播途径和接受者。
传播途径包括反射、衍射等各种形式的声波行进过程。
只有当声源、声的传播途径和接受者三个因素同时存在时,噪声才能对人造成干扰和危害。
因此,控制噪声必须考虑这三个因素。
1、声源控制技术控制噪声的根本途径是对声源进行控制。
控制声源的有效方法是降低辐射声源功率。
在工矿企业中,经常可以遇到各种类型的噪声源,他们产生噪声的机理各不相同,所采用的噪声控制技术也不相同。
2、传播途径控制技术通常由于某种技术和经济上的原因,从声源上控制噪声难以实现,这时就要从传播途径上考虑降噪措拖。
具体可采取以下方法:(1)吸声降噪吸声降噪是一种在传播途径上控制噪声强度的方法。
物体的吸声作用是普遍存在的,吸声的效果不仅与吸声材料有关,还与所选的吸声结构有关。
这种技术主要用于室内空间。
(2)消声降噪消声器是一种既能使气流通过又能有效地降低噪声的设备。
通常可用消声器降低各种空气动力设备的进出口或沿管道传递的噪声。
例如在内燃机、通风机、鼓风机、压缩机、燃气轮机以及各种高压、高气流排放的噪声控制中广泛使用消声器。
不同消声器的降噪原理不同。
常用的消声技术有阻性消声、抗性消声、损耗型消声、扩散消声等。
(3)隔声降噪:把产生噪声的机器设备封闭在一个小的空间,使它与周围环境隔开,以减少噪声对环境的影响,这种做法叫做隔声。
隔声屏障和隔声罩是主要的两种设计,其他隔声结构还有:隔声室、隔声墙、隔声幕、隔声门等。
3、城市噪声的综合防治技术城市噪声控制的综合防治可采取以下一些对策。
(1)控制城市人口严格控制城市人口密度的增长对减少城市噪声效果能起到明显的作用。
为此,可采取在大城市远郊建立卫星城的办法。
(2)合理使用土地合理使用土地是城市建设规划中减少噪声对人的干扰的有效方法,根据不同使用目的和建筑物的噪声标准,选择建筑场所和位置,从而决定学校、住宅区和工厂区的合适地址,统筹考虑,合理规划。
噪声控制技术-吸声
材料的结构
使用条件
声波频率
吸声系数 影响因素
2
5
3
ห้องสมุดไป่ตู้
4
1
材料的性质
声波入射角度
【声波频率】 同种吸声材料对不同频率的声波具有不同的吸声系数。 平均吸声系数 :工程中通常采用125Hz、250 Hz、500 Hz、1000 Hz、2000 Hz、4000 Hz六个频率的吸声系数的算术平均值表示某种材料的平均吸声系数。 通常,吸声材料 在0.2以上,理想吸声材料 在0.5以上。
一种多孔吸声材料对应存在一个最佳吸声性能的密度范围。
空腔:材料层与刚性壁之间一定距离的空气层; 吸声系数随腔深D(空气层)增加而增加; 空腔结构节省材料,比单纯增加材料厚度更经济。
3
空腔对吸声性能的影响
图 背后空气层厚度对吸声性能的影响
多孔材料的吸声系数随空气层厚度增加而增加,但增加到一定厚度后,效果不再继续明显增加。 当腔深D近似等于入射声波的1/4波长或其奇数倍时,吸声系数最大。 当腔深为1/2波长或其整倍数时,吸声系数最小。 一般推荐取腔深为5~10cm。 天花板上的腔深可视实际需要及空间大小选取较大的距离。
【入射吸声系数】工程设计中常用的吸声系数有 混响室法吸声系数(无规入射吸声系数) 驻波管法吸声系数(垂直入射吸声系数) 应用:测量材料的垂直入射吸声系数 ,按表,将 换算为无规入射吸声系数 。
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.25
0.40
0.50
0.60
(二) 吸声量(等效吸声面积)
【注】工程上通常采用吸声量评价吸声材料的实际吸声效果。
第二章 第三节噪声的评价和标准08-08-06
频率
响度级
等响曲线
L
L
讨论
响度与响度级
响度较好地表征了人对噪声主观反映的感
觉;
人可以感受到的响度有一个很大的范围; 类比声压与声压级的处理方法,用响度级
表示响度值随声压级和频率的变化关系。
讨论
响度与响度级的量化关系:
通过对许多听力正常人的测试统计,定义以响
度级为40phon的响度为参考,响度每增减一倍, 响度级就增减10phon。
53.2 10 lg[ (10
n
n 1 2
【例2-5】某工人一天工作8h,受噪声的影响状况如下:每小 时4次噪声达102dB(A),每次持续6min;1次达106dB(A), 持续时间1min,其余时间仅受背景噪声79 dBA影响。求该工 人一天接触噪声的等效声级。
解:查表2-7得 102dB(A)的段数n=5,又t5 6 4 8 192min 106dB(A)的段数n=6, 又t6 1 8 8min 79dB(A)的段数n=1, 又t1 480 192 8 280min
?
响度 N 描述声音大小的主观感觉量,“宋”(sone) 定义:1000Hz纯音声压级为40dB时的响度为1 sone。
响度级 L N 定义:以频率1000Hz纯音的声压级40dB为基准音, 调节1000Hz纯音的声压级,使大量受试者判断,若 某声源的噪声听起来与该纯音一样响亮,则该噪声 的响度级就等于该纯音的声压级值。 单位:“方”(phon)。
各种不同的噪声有各自的物理特性,人对噪声
的反感程度因环境和时间不同,因而对噪声控 制的标准亦不同。要根据不同情况,拟订不同 的噪声评价量,以制订不同的噪声评价标准。
噪声控制技术——吸声幻灯片PPT
A S
式中 A ——吸声量,m2;
——某频率声波的吸声系数;
S ——吸声面积,m2。
【注】工程上通常采用吸声量评价吸声材料的 实际吸声效果。
(二) 吸声量〔等效吸声面积〕
总吸声量:假设组成室内各壁面的材料不同, 那么壁面在某频率下的总吸声量为
n
n
AAi iSi
i1
i1
A 式中
i
——第i种材料组成的壁面的吸声
量,mS2i ;
i ——第i种材料组成的壁面的面积,
一 吸声材料
(一) 吸声系数 (二) 吸声量 (三) 多孔吸声材料
多孔吸声材料
多孔吸声材料是应用最广泛的吸声材料。
最初的多孔吸声材料以麻、棉、棕丝、毛发、 甘蔗渣等天然动植物纤维为主; 目前则以玻璃棉、矿渣棉等无机纤维为主。
吸声材料可以是松散的,也可以加工成棉 絮状或粘结成毡状或板状。
(二) 多孔吸声材料
木丝板吸声材料
多孔槽型木质吸声材料
KTV软包阻燃吸声材料
木质穿孔吸声板
丝质吸声材料
混凝土复合吸声型声屏障
轻质复合吸声型声屏障
吸声门
吸声体
吸声材料构造特性
材料的孔隙率要高,一般在70%以上, 多数到达90%左右;
偏差较大,但比较接近实际情况。 在吸声减噪设计中采用。
驻波管法吸声系数(垂直入射吸声系数)
驻波管法简便、准确, 但与一般实际声场不 符。
用于测试材料的声学 性质和鉴定。
设计消声器。
驻波管法吸声系数测试仪
一 吸声材料
(一) 吸声系数 (二) 吸声量 (二) 多孔吸声材料
(二) 吸声量〔等效吸声面积〕
孔隙应该尽可能细小,且均匀分布; 微孔应该是相互贯穿,而不是封闭的; 微孔要向外敞开,使声波易于进入微孔
吸声
泡沫类吸声材料主要有脲醛泡沫塑料、氨基甲酸酯泡沫塑料、海绵乳胶、泡沫橡胶等。这类材料的特点是容 积密度小、导热系数小、质地软。其缺点是易老化、耐火性差。目前用得最多的是聚氨酯泡沫塑料。
颗粒类主要有膨胀珍珠岩、多孔陶土砖、矿渣水泥、木屑石灰水泥等。具有保温、防潮、不燃、耐热、耐腐 蚀、抗冻等优点。
谢谢观看
薄板结构
图3将薄的塑料板、金属或胶合板等材料的周边固定在框架 (龙骨)上,并将框架与刚性板壁相结合,这种由 薄板与板后的空气层构成的系统称为薄板共振吸声结构,如右图3所示。
当声波入射到薄板上时,将激起板面振动,使板发生弯曲变形,由于板和固定支点之间的摩擦,以及板本身 的内阻尼,使一部分声能转化为热能损耗,声波得到衰减。当入射声波频率f与薄板共振吸声结构的固有频率一致 时,产生共振,消耗声能最大。
不同频率的声波入射时,这种共振系统会产生不同的响应。当入射声波的频率接近系统固有的共振频率时, 系统内空气的振动很强烈,声能大量损耗,即声吸收最大。相反,当入射声波的频率远离系统固有的共振频率时, 系统内空气的振动很弱,因此吸声的作用很小。这种共振吸声结构的吸声系数随频率而变化,最高吸声系数出现 在系统的共振频率处。目前广泛使用的微穿孔板吸声结构的吸声原理也属于这种类型。
人教版八年级上册物理作业课件 第二章 声现象 第4节 噪声的危害和控制
15.(2021·镇江期中)车间机床工作时发出响度达110_分__贝__(_d_B_)_的声音,波形如 图所示。某品牌降噪耳机能阻止特定频率的声音进入人耳,同时允许其他频率的 声音(如工友的指令等)进入人耳,工人在车间只要把耳机阻止声音的频率值设置 为_1_0_0_0_0_Hz即可。
16.随着生活水平的日益提高,不少场所的装修会考虑声学吸音效果。小明同 学想比较几种常见装修材料的吸音性能,他找来厚度相同的四种小块材料(聚酯棉、 软木、泡沫和海绵),进行了如图所示的实验:桌面上放一个玻璃杯,在玻璃杯下 分别放上待测试的小块材料,将悬挂在细线下的小球拉到同一高度释放去敲击玻 璃杯,仔细比较玻璃杯发出的声音大小。
13.(原创题)节日期间的烟花、爆竹响声不绝于耳,带来了喜庆同时也颇为扰 民,甚至有些爆竹声“震耳欲聋”。今年春节,郑州政府出台了城镇区域禁止燃 放烟花、爆竹的决定,让市民过一个安宁祥和的春节。这里的“震耳欲聋”是指 声音响的度_____很大;禁燃烟花、爆竹是声在源_处______来减弱噪声。
14.(2021·揭阳期中)星期天爸爸在厨房修理桌椅,不停地有敲击物体的声音发 出,为了避免干扰在房间学习的小明,爸爸采取了三种方案:①在被敲的地方垫 一块抹布;②把小明房间的门窗关严;③用耳机塞住小明耳朵。上述三种方案中, 第 一 种 是 在 _____声__源减处弱 噪 声 ; 第 二 种 是 在 ____传__播__过__程_ 减中弱 噪 声 ; 第 三 种 是 在 ___人__耳__处减弱噪声。
A.减弱飞机发动机噪声的传播 B.在人耳处减弱噪声 C.防止次声波对人耳的伤害 D.减弱飞机发动机噪声的产生
6.(2020·邵阳)为了使教室内的学生上课免受环境噪声干扰,下列方法最有效 合理的是( C )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空腔对吸声性能的影响
3 空腔对吸声性能的影响
多孔材料的吸声系数随空气层厚度的增加而增加, 但增加到一定厚度后,效果不再继续明显增加。
当腔深D近似等于入射声波的1/4波长时,吸声 系数最大。
当腔深为1/2波长或其整倍数时,吸声系数最小。 一般推荐取腔深为5~10cm。 天花板上的腔深可视实际需要及空间大小选取较
i S i ——第 种材料组成的壁面的面积,m2; i ——第 i 种材料在某频率下的吸声系数。
一 吸声材料
(一) 吸声系数 (二) 吸声量 (三) 多孔吸声材料
多孔吸声材料
多孔吸声材料是目前应用最广泛的吸声材料。
最初的多孔吸声材料以麻、棉、棕丝、毛发、甘蔗 渣等天然动植物纤维为主; 目前则以玻璃棉、矿渣棉等无机纤维为主。
以上各式中,B 为孔间距,d 为孔径。
【讨论】
穿孔面积越大,吸声的频率越高;空腔越深 或板越厚,吸声的频率越低。
工程设计中,穿孔率控制为1%~10%,最高 不超过20%,否则穿孔板就只起护面作用, 吸声性能变差。
一般板厚2~13mm,孔径为2~10mm,孔 间距为10~100mm,板后空气层厚度为6~ 100mm时,则共振频率为100~400Hz,吸 声系数为0.2~0.5。当产生共振时,吸声系 数可达0.7以上。
T
0.25 0.40 0.50 0.60 0.75 0.85 0.90 0.98
1
混响室法吸声系数(无规入射吸声系数)
在混响室中,使不同频率的声波以相等几率 从各个角度入射到材料表面,测得的吸声系 数。
测试较复杂,对仪器设备要求高,且数值往 往偏差较大,但比较接近实际情况。
在吸声减噪设计中采用。
(2-112)
式中:c ——声波速度,m/s;
—S —小孔截面积,m2;
—F —每一共振单元所分占薄板的面积,m2;
—h —空腔深度,m;
—l K —小孔有效颈长,m;
—P—穿孔率, = P / 。S F
穿孔率
正方形排列:
P
4
d B
2
三角形排列:
P
2 3
d 2 B
平行狭缝: P d B
1-刚性壁面
龙骨
空气层
龙骨
入射声波
3—阻尼材料 图2-17 薄板共振吸声结构示意图
4—薄板
薄金属板、胶合板、 硬质纤维板、石膏板等
薄板共振吸声结构的共振频率
f0
600 MD
(2-110)
式中:M ——板的面密度,kg/m2M,mt,其中m为板密
度,kg/m3,t为板厚,m;
D ——板后空气层厚度,㎝。
错误认识二:内部存在大量孔洞(单个闭合、互不连通) 的材料,如聚苯、聚乙烯、闭孔聚氨脂等,具有良好的吸声 性能。
3 空腔对吸声性能的影响
0.6
图2-16 背后空气层厚度对吸声性能的影响
空腔:材料层与刚性壁之间一定距离的空气层; 吸声系数随腔深D(空气层)增加而增加; 空腔结构节省材料,比单纯增加材料厚度更经济。
通风管道和消声器内 气流易吹散多孔材料, 吸声效果下降。 飞散的材料会堵塞管 道,损坏风机叶片。 应根据气流速度大小 选择一层或多层不同 的护面层。
第二章 噪声污染及其控制
第四节 噪声控制技术——吸声 一 吸声材料 二 吸声结构 三 室内吸声降噪
二 吸声结构
吸声处理中常采用吸声结构。 吸声结构机理:亥姆霍兹共振吸声原理 常用的吸声结构
一般多孔吸声材料的孔隙率>50%。
孔隙率增大,密度减小,反之密度增大。
一种多孔吸声材料对应存在一个最佳吸声性能 的密度范围。
【讨论】密度太大或太小都会影响材料的吸声性能。
若厚度不变,增大多孔吸声材料密度,可提高低、中 频的吸声系数,但比增大厚度所引起的变化小,且高 频吸收会有所下降。
错误认识一:表面粗糙的材料,如拉毛水泥等,具有良好 的吸声性能。
吸声系数 影响因素
3 使用条件
声波频率 5
4 声入射角度
【声波频率】
同种吸声材料对不同频率的声波具有不同的吸声系 数。
平均吸声系数: 工程中通常采用125Hz、250 Hz、 500Hz、1000Hz、2000Hz、4000Hz六个频率的吸声系 数的算术平均值表示某种材料的平均吸声系数。
通常,吸声材料 在0.2以上,理想吸声材料 在 0.5以上。
当入射声波的频率与共振器的固有频率相同时,发生
共振,空气柱运动加剧,振幅和振速达最大,阻尼也
最大,消耗声能最多,吸声性能最好。
单腔共振体的共振频率 改变孔颈尺寸或空腔体积,
f0
c
2
可得不同共振频率的共振器,
S 而与小孔和空腔的形状无关。
VlK
(2-121)
式中 — c —声波速度,m/s; S ——小孔截面积,m2;
又称“亥姆霍兹”共振吸声器或单腔共振吸声器
结构:
封闭空腔壁上开一个小孔与
≈
外部空气相通; 腔体中空气具有弹性,相当
于弹簧;
孔颈中空气柱具有一定质量,
相当于质量块。
入射声波
原理:入射图声2-波18激单发腔孔共振颈吸声中结空构示气意柱图 往复运动,与颈壁
摩擦,部分声能转化为热能而耗损,达到吸声目的。
(一)薄板共振吸声结构
(二)穿孔板共振吸声结构
(三)微穿孔板吸声结构
(一)薄板共振吸声结构
机理:声波入射引起薄板振动,薄板振动克服自身阻尼和
板-框架间的摩擦力,使部分声能转化为热能而耗损。当入 射声波的频率与振动系统的固有频率相同时,发生共振,薄 板弯曲变形最大,振动最剧烈,声能消耗最多。
结构
——某频率声波的吸声系数;
S ——吸声面积,m2。
【注】工程上通常采用吸声量评价吸声材料的 实际吸声效果。
(二) 吸声量(等效吸声面积)
总吸声量:若组成室内各壁面的材料不同,则 壁面在某频率下的总吸声量为
n
n
A Ai iSi
i1
i1
(2-109)
i 式中: A i ——第 种材料组成的壁面的吸声量,m2;
大家好
第二章 噪声污染及其控制
第一节 概述 第二节 声学基础 第三节 噪声的评价和标准 第四节 噪声控制技术——吸声 第五节 噪声控制技术——隔声 第六节 噪声控制技术——消声 第七节 有源噪声控制简介
第二章 噪声污染及其控制
第四节 噪声控制技术——吸声
吸声降噪是控制室内噪声常用的技术措施。 通过吸声材料和吸声结构来降低噪声的技
【讨论】
M 增大或 D增加,共振频率下降。
通常取薄板厚度3~6mm,空气层厚度3~10mm, 共振频率多在80~300Hz之间,故一般用于低频吸声。
吸声频率范围窄,吸声系数不高,约为0.2~0.5。
改善薄板共振吸声性能的措施:
在空腔中,沿框架四周放 置多孔吸声材料,如矿棉、 玻璃棉等。
1-刚性壁面
简称穿孔板共振吸声结构。 结构:薄板上按一定排列钻很多小孔或狭缝,将穿
孔板固定在框架上,框架安装在刚性壁上,板后留 有一定厚度的空气层。实际是由多个单腔(孔)共 振器并联而成。
刚性壁
空气层
框架
小孔或狭缝
图2-19 穿孔板共振吸声结构
多孔穿孔板共振吸声结构的共振频率
f02c
S c
FhlK 2
P hlK
大的距离。
4 护面层对吸声性能的影响
实际使用中,为便于固定和美观,往往要对 疏松材质的多孔材料作护面处理。
护面层的要求:
良好的透气性。 微穿孔护面板穿孔率应大于20%,否则会影响高
频吸声效果。 透气性较好的纺织品对吸声特性几乎没有影响。 对成型多孔材料板表面粉饰时,应采用水质涂料
喷涂,不宜用油漆涂刷,以防止涂料封闭孔隙。
驻波管法吸声系数(垂直入射吸声系数)
驻波管法简便、精确,但与一般实际声场 不符。
用于测试材料的声学性质和鉴定。 设计消声器。
一 吸声材料
(一) 吸声系数 (二) 吸声量 (二) 多孔吸声材料
(二) 吸声量(等效吸声面积)
定义:吸声系数与吸声面积的乘积
AS
(2-108)
式中:A ——吸声量,m2;
(一)薄板共振吸声结构
(二)穿孔板共振吸声结构
(三)微穿孔板吸声结构
(二)穿孔板共振吸声结构
特征:穿孔薄板与刚性壁面之间留一定深度 的空腔所组成的吸声结构。
分类:按薄板穿孔数分为
单腔共振吸声结构 多孔穿孔板共振吸声结构
材料:轻质薄合金板、胶合板、塑料板、石膏 板等。
1.单腔共振吸声结构
2.吸声特性及影响因素
特性:高频声吸收效果好,低频声吸收效 果差。 原因:低频声波激发微孔内空气与筋络的 相对运动少, 摩擦损小, 因而声能损失 少,而高频声容易使振动加快,从而消耗 声能较多。所以多孔吸收材料常用于高、 中频噪声的吸收。
吸声性能的影响因素
孔隙率与密度
2
厚度 1
吸声性能 影响因素
—V —空腔体积,m3;
若小孔为圆形则有
—l K —小孔有效颈长,m,
lK
l dl0.8d 4
式中 l ——颈的实际长度(即板厚度),m;
——d 颈口的直径,m。
空腔内壁贴多孔材料时,有
lK l 1.2d
【讨论】单腔共振吸声结构使用很少, 是其他穿孔板共振吸声结构的基础。
2.多孔穿孔板共振吸声结构
理论证明,若吸声材料层背后 为刚性壁面,最佳吸声频率出 现在材料的厚度等于该频率声 波波长的1/4处。使用中,考虑 经济及制作的方便,对于中、 高频噪声,一般可采用2~5cm 厚的成形吸声板;对低频吸声 要求较高时,则采用厚度为5~ 10cm的吸声板。
2 孔隙率与密度
孔隙率:材料内部的孔洞体积占材料总体积的 百分比。