指数及指数函数知识点及习题
指数及指数函数知识点总结及经典例题
高中数学必修1知识点总结—指数及指数函数1、 根式na (一般的,如果n x a =,那么x 叫做a 的n 次方根,其中*1,n n N >∈且.)35325325n n n ⎧=⎪⎨-=-⎪⎩正数的次方根是正数如当是奇数时,负数的次方根是负数如20,n a n an ⎧>±⎪⎨⎪⎩正数的次方根有个,且互为相反数如:则次方根为当是偶数时,负数没有偶次方根0的任何次方根都是0,记作0n2、nna的讨论 n nn a a =当是奇数时,;,0,0n n a a n a a a a ≥⎧==⎨-≤⎩当是偶数时, (2)分数指数幂的概念)分数指数幂的概念①正数的正分数指数幂的意义是:(0,,,mnmna a a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:11()()(0,,,m mmnnnaa m n N a a-+==>∈且1)n >.0的负分数指数幂没有意义.义. 注意口诀:底数取倒数,指数取相反数.底数取倒数,指数取相反数. (3)分数指数幂的运算性质)分数指数幂的运算性质①(0,,)rsr saa aa r s R +⋅=>∈ ②()(0,,)r s rsa a a r s R =>∈③()(0,0,)rr rab a b a b r R =>>∈一、 指数计算公式:()Q s r a ∈>,,0_____=⋅s r a a ________=sraa _____)(=s r a ______)(=r ab )1,,0_______(>∈>=*n N n m a anm,________=n na 练习 计算下列各式的值:计算下列各式的值:(1))4()3)((636131212132b a b a b a ÷- (2)()322175.003129721687064.0+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛---(3)421033)21(25.0)21()4(--⨯+-- (4)33)3(625π-+-2.已知31=+-x x ,则=+-22x x 已知23=a,513=b,则=-ba 23=____________. 3. 若21025x x =,则10x x-等于_________________【2.1.2】指数函数及其性质(4)指数函数)指数函数函数名称函数名称指数函数指数函数定义定义函数(0x y a a =>且1)a ≠叫做指数函数叫做指数函数图象图象1a >01a <<定义域定义域 R 值域值域(0,)+∞过定点过定点 图象过定点(0,1),即当0x=时,1y =.奇偶性奇偶性 非奇非偶非奇非偶单调性单调性在R 上是增函数上是增函数在R 上是减函数上是减函数函数值的函数值的 变化情况变化情况1(0)1(0)1(0)x x x a x a x a x >>==<< 1(0)1(0)1(0)x x x a x a x a x <>==>< a 变化对变化对 图象的影响图象的影响 在第一象限内,a 越大图象越高;在第二象限内,a 越大图象越低.越大图象越低.题型1、求函数经过的点 1、2)(f 1-=+x a x )10(≠>a a 且过定点______________2、函数y=4+a x -1的图象恒过定点P 的坐标是________________3.已知指数函数图像经过点)3,1(-p ,则=)3(f题型2、 图像问题1.下列说法中:下列说法中:①任取x ∈R 都有3x >2x ; ②当a >1时,任取x ∈R 都有a x >a -x ;③函数y =(3)-x 是增函数;④函数y =2|x |的最小值为1 ;⑤在同一坐标系中,y =2x 与y =2-x 的图象对称于y 轴。
高一数学上册第二章--指数函数知识点及练习题(含答案)
课时 4 指数函数一 . 指数与指数幂的运算( 1)根式的观点①假如xna, a R, x R, n 1,且 nN ,那么 x 叫做 a 的 n 次方根. 当 n 是奇数时, a 的 n 次方根用符号 na 表示;当 n 是偶数时,正数 a 的正的 n 次方根用符号na 表示,负的 n 次方根用符号na表示; 0 的 n 次方根是 0;负数 a 没有 n 次方根.②式子 n a 叫做根式,这里 n 叫做根指数, a 叫做被开方数.当n 为奇数时, a 为随意实数;当 n 为偶数时, a.③根式的性质: (na )n a ;当 n 为奇数时, n a n a ;当 n 为偶数时, n a n | a |a (a 0) .a (a 0)( 2)分数指数幂的观点mna m (a①正数的正分数指数幂的意义是:a n 0, m,n N , 且 n 1) .0 的正分数指数幂等于0.②m(1m1 ) m( a正数的负分数指数幂的意义是:a n)n n (0, m, n N , 且 n1) .0 的负分数指aa数幂没存心义. 注意口诀: 底数取倒数,指数取相反数.( 3)分数指数幂的运算性质①a r a s a r s (a 0, r , s R)② (ar) sa rs (a 0, r , s R)③(ab)ra rb r (a0,b 0, rR)二 . 指数函数及其性质( 4)指数函数函数名称指数函数定义函数 ya x (a 0 且 a1) 叫做指数函数a 1a 1yy a xya xy图象y1y1(0,1)(0,1)OxOx定义域 R值域(0,+ ∞)过定点 图象过定点(0,1 ),即当 x=0 时, y=1.奇偶性非奇非偶单一性在 R 上是增函数在 R 上是减函数函数值的 y > 1(x > 0), y=1(x=0), 0< y < 1(x < 0)y > 1(x < 0), y=1(x=0), 0< y < 1(x > 0)变化状况a 变化对在第一象限内, a 越大图象越高,越凑近 y 轴; 在第一象限内, a 越小图象越高,越凑近 y 轴; 图象影响在第二象限内,a 越大图象越低,越凑近x 轴.在第二象限内,a 越小图象越低,越凑近x 轴.三 .例题剖析1.设 a 、 b 知足 0<a<b<1,以下不等式中正确的选项是 ( C)A.a a <a bB.b a <b bC.a a <b aD.b b <a b 分析: A 、B 不切合底数在 (0,1) 之间的单一性 ; C 、 D 指数同样 , 底小值小 . 应选 C. 2.若 0<a<1,则函数 y=a x 与 y=(a-1)x 2 的图象可能是 (D )分析: 当 0<a<1 时 ,y=a x 为减函数 ,a-1<0, 因此 y=(a-1)x2张口向下 , 应选 D.3.设指数函数 f(x)=a x (a>0 且 a ≠ 1),则以下等式中不正确的选项是 ( D )A.f(x+y)=f(x)f(y)f (x)B.f(x-y)=f ( y)C.f(nx)= [ f(x) ] nD.f [ (xy) n ] =[ f(x) ] n [ f(y) ] n (n ∈ N * )分析: 易知 A 、 B 、 C 都正确 .对于 D,f [(xy)n] =a (xy)n , 而[ f(x) ] n ·[f(y) ] n =(a x ) n ·(a y ) n =a nx+ny , 一般状况下 D 不建立 .11 34.设 a= ( 3) 3,b= ( 4)4,c= ( 3) 4,则 a 、b 、 c 的大小关系是 ( B )43 2A.c<a<b3分析: a= ( )B.c<b<aC.b<a<cD.b<c<a1 111(8133( 4)3 ( 4) 4=b, b=(4) 4)4(3) 4 =c.∴ a>b>c.3 332725.设 f(x)=4 x -2x+1,则 f -1 (0)=______1____________. 分析: 令 f -1 (0)=a, 则 f(a)=0 即有 4a -2 · 2a =0.2a · (2 a -2)=0, 而 2a >0,∴ 2a =2 得 a=1.6.函数 y=a x-3 +4(a>0 且 a ≠ 1)的反函数的图象恒过定点 ______(5,3)____________.分析: 因 y=a x 的图象恒过定点 (0,1), 向右平移 3 个单位 , 向上平移 4 个单位获得 y=a x-3 +4 的图象 , 易知恒过定点 (3,5).故其反函数过定点 (5,3).10 x 10 x.证明 f(x) 在 R 上是增函数 .7.已知函数 f(x)=x10 x10x1010x102x1,设 x 1<x 2∈ R,则f(x 1)-f(x2)=10x 1 1010x 1 10x 110x 210 x 2102 x 11 102 x 21 2(102 x 1102 x2).x 110x2 10x2 102 x1 1102 x21(102 x11)(102 x 2 1)∵ y=10 x是增函数 ,∴ 10 2x 1 10 2x 2 <0.而 10 2x 1 +1>0, 102 x 2 +1>0,故当 x <x 时 ,f(x)-f(x )<0,1212即 f(x 1)<f(x 2). 因此 f(x) 是增函数 .8.若定义运算 a b=b, ab,则函数 f(x)=3 x3-x 的值域为 ( A )a, a b,A.(0,1]B. [ 1,+∞ )C.(0,+ ∞ )D.(- ∞ ,+∞ )分析: 当 3x ≥3-x , 即 x ≥ 0 时 ,f(x)=3-x∈(0,1 ] ;x-x, 即 x<0 时 ,f(x)=3x∈ (0,1).3 x , x 0, 当 3<3∴ f(x)=x值域为 (0,1).3x ,0,9.函数 y=a x 与 y=-a -x (a>0,a ≠1) 的图象 ( C )A. 对于 x 轴对称B.对于 y 轴对称C.对于原点对称D.对于直线 y=-x 对称分析: 可利用函数图象的对称性来判断两图象的关系.10.当 x ∈[ -1,1]时 ,函数 f(x)=3 x-2 的值域为 _______[ -5,1 ] ___________.3分析: f(x) 在[ -1,1 ]上单一递加 .11.设有两个命题 :(1)对于 x 的不等式 x 2+2ax+4>0对全部 x ∈ R 恒建立 ;(2) 函数 f(x)=-(5-2a) x是减函数 .若命题 (1)和 (2)中有且仅有一个是真命题 ,则实数 a 的取值范围是 _______(- ∞ ,-2)__________.分析: (1) 为真命题=(2a) 2-16<0-2<a<2. (2)为真命题 5-2a>1 a<2.若 (1) 假 (2) 真 , 则 a ∈ (- ∞ ,-2]. 若 (1) 真 (2) 假, 则 a ∈ (-2,2)∩[ 2,+ ∞]=.故 a 的取值范围为 (- ∞ ,-2).12.求函数 y=4 -x -2-x +1,x ∈[ -3,2]的最大值和最小值 .解: 设 2-x=t, 由 x ∈[ -3,2 ]得 t ∈[ 1,8 ] , 于是 y=t 2-t+1=(t-1)2+3. 当 t= 1时 ,y3 .424有最小值 这时 x=1.当 t=8 时 ,y 有最大值57.这时 x=-3.2413.已知对于 x 的方程 2a2x-2-7a x-1 +3=0 有一个根是 2,求 a 的值和方程其他的根 . 解: ∵ 2 是方程 2a2x-2-9a x-1+4=0 的根 , 将 x=2 代入方程解得 a= 1或 a=4.2(1) 当 a= 1时 , 原方程化为 2· ( 1)2x-2-9(1) x-1 +4=0.①222x-1 2令 y=( 1) , 方程①变成 2y -9y+4=0,2解得 y 1=4,y 2= 1.∴ ( 1) x-1 =42x=-1,2( 1 ) x-1 = 1x=2.22(2) 当 a=4 时 , 原方程化为 2· 42x-2 -9 · 4x-1 +4=0. ②令 t=4 x-1 , 则方程②变成 2t 2-9t+4=0. 解得 t 1=4,t 2= 1.x-12=4x=2,∴44x-1 = 1x=- 1 .22故方程此外两根是当 a= 1时 ,x=-1;1 .2当 a=4 时 ,x=-214.函数 y= (1) 3 4xx 2的单一递加区间是 ( D )3A. [ 1,2]B.[ 2,3]C.(-∞ ,2]D.[ 2,+∞ )分析: 由于 y=3x2-4x+3 , 又 y=3t 单一递加 ,t=x 2-4x+3 在 x ∈[ 2,+ ∞ ) 上递加 , 故所求的递加区间为[ 2,+ ∞ ).15.已知 f(x)=3 x-b (2≤ x ≤ 4,b 为常数 ) 的图象经过点 (2,1), 则 F(x)=f 2(x)-2f(x) 的值域为 ( B )A. [ -1,+∞ )B. [ -1,63)C.[ 0,+∞ )D.(0,63 ]分析: 由 f(2)=1, 得 32-b =1,b=2,f(x)=3 x-2.∴ F (x)= [ f(x)-1 ]2-1=(3 x-2 -1) 2-1. 令 t=3 x-2 ,2 ≤x ≤4.2∴g(t)=(t-1) - 1,t ∈[ 1,9 ].2.1 指数函数练习1.以下各式中建立的一项A . ( n)71n 7 m 7B .12 ( 3)433m3C . 4 x 3y 3( x y) 4D .393321111 1 52.化简 (a 3 b 2 )( 3a 2 b 3 ) ( a 6 b 6 ) 的结果3D . 9a 2 A . 6aB . aC . 9a3.设指数函数 f ( x)a x ( a 0, a1) ,则以下等式中不正确的选项是f (x) A . f(x+y)=f(x) ·f(y)B . f ( x y )f ( y)C . f (nx)[ f ( x)]n (nQ )D . f ( xy) n [ f ( x)] n ·[f ( y)] n1 4.函数 y (x5) 0 ( x 2)2A . { x | x 5, x 2}B . { x | x 2}C . { x | x 5}D . { x | 2 x 5或 x 5}()()()(n N )( )5.若指数函数 y a x 在 [- 1,1]上的最大值与最小值的差是1,则底数 a 等于 ()A .15 B .1 5 C .15D .5 122 226.当 a0 时,函数 y axb 和 yb ax 的图象只可能是()7.函数 f ( x)2 |x| 的值域是()A . (0,1]B . (0,1)C . (0, )D . R8.函数 f ( x)2 x 1, x 0,知足 f ( x)1的 x 的取值范围1x 2 , x()A . ( 1,1)B . ( 1, )C . { x | x 0或 x2}D . { x | x 1或 x1}9.函数 y(1) x 2x2得单一递加区间是2()A .[ 1,1]B . ( , 1]C .[2,)D .[ 1,2]2exe x210.已知 f ( x)()2 ,则以下正确的选项是A .奇函数,在 R 上为增函数B .偶函数,在 R 上为增函数C .奇函数,在 R 上为减函数D .偶函数,在 R 上为减函数11.已知函数 f (x)的定义域是(1, 2),则函数 f (2 x ) 的定义域是.12.当 a >0 且 a ≠1 时,函数 f (x)=a x -2- 3 必过定点.三、解答题:13.求函数 y1的定义域 .x5 x 1114.若 a >0, b > 0,且 a+b=c ,求证: (1) 当r >1时, a r +b r < c r ; (2) 当r < 1时, a r +b r > c r .a x 1 15.已知函数 f ( x)(a >1) .a x1( 1)判断函数 f (x) 的奇偶性;( 2)证明 f (x)在 (-∞, +∞ )上是增函数 .xa16.函数 f(x) = a (a>0 ,且 a ≠1) 在区间 [1,2] 上的最大值比最小值大2,求 a 的值.参照答案一、 DCDDD AADDA二、 11. (0,1);12. (2,- 2) ;三、 13. 解:要使函数存心义一定:x 1 0x 1x0 x 0x 1∴ 定义域为 : x xR 且 x0, x 1a rrrb r此中a1,0b114. 解:ba,c rcccc.r >1 ,a rb ra b 1,r r r当因此+b< c ;时c c c crrrrr当 r < 1 时, aba b1, 因此 a +b >c .ccc c15. 解 :(1)是奇函数 .(2) 设x <x ,则 f (x 1 )ax11 ax21 。
指数与指数函数知识点
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载指数与指数函数知识点地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容指数函数(一)整数指数幂1.整数指数幂概念:2.整数指数幂的运算性质:(1)(2)(3)其中,.3.的次方根的概念一般地,如果一个数的次方等于,那么这个数叫做的次方根,即:若,则叫做的次方根,例如:27的3次方根,的3次方根,32的5次方根,的5次方根.说明:①若是奇数,则的次方根记作;若则,若则;②若是偶数,且则的正的次方根记作,的负的次方根,记作:;(例如:8的平方根 16的4次方根)③若是偶数,且则没意义,即负数没有偶次方根;④ ∴;⑤式子叫根式,叫根指数,叫被开方数。
∴..4.的次方根的性质一般地,若是奇数,则;若是偶数,则.(二)分数指数幂1.分数指数幂:即当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式;如果幂的运算性质(2)对分数指数幂也适用,例如:若,则,,∴ .即当根式的被开方数不能被根指数整除时,根式也可以写成分数指数幂的形式。
规定:(1)正数的正分数指数幂的意义是;(2)正数的负分数指数幂的意义是.2.分数指数幂的运算性质:整数指数幂的运算性质对于分数指数幂也同样适用即说明:(1)有理数指数幂的运算性质对无理数指数幂同样适用;(2)0的正分数指数幂等于0,0的负分数指数幂没意义。
二、指数函数1.指数函数定义:一般地,函数(且)叫做指数函数,其中是自变量,函数定义域是.2.指数函数在底数及这两种情况下的图象和性质:1.1 实数指数幂及其运算(一)(一)选择题1.下列正确的是( )A.a0=1 B. C.10-1=0.1 D.2.的值为( )A.±2B.2 C.-2 D.43.的值为( )A.B.C.D.4.化简的结果是( )A.a B.C.a2 D.a35.把下列根式化成分数指数幂的形式(其中a,b>0)(1)______;(2)=______;6.______.7.化简______.8.=______(三)解答题9.计算10.计算1.2 实数指数幂及其运算(二)(一)选择题(每道题的四个选择答案中有且只有一个答案是正确的) 1.下列说法正确的是(n∈N*)( )A.正数的n次方根是正数B.负数的n次方根是负数C.0的n次方根是0 D.是无理数2.函数的定义域为( )A.R B.[0,+∞)C.(0,+∞)D.(-∞,1] 3.可以简化为( )A.B.C.D.4.化简的结果是( )A.B.x2 C.x3 D.x4(二)填空题5.________,________________________.6.________.7.计算________.8.若a+a-1=3,则a2+a-2=______.10.若求的值.1.3 指数函数(一)(一)选择题(每道题的四个选择答案中有且只有一个答案是正确的)1.一种细胞在分裂时由一个分裂成两个,两个分裂成四个,四个分裂成八个……每天分裂一次.现在将一个该细胞放入一个容器,发现经过10天就可充满整个容器,则当细胞分裂到充满容器一半时需要的天数是( ) A.5 B.9 C.6 D.82.下列函数中为指数函数的是( )A.y=2·3x B.y=-3x C.y=3-x D.y=1x3.若0.2m=3,则( )A.m>0 B.m<0 C.m=0 D.以上答案都不对4.函数f(x)=ax+1(其中a>0且a≠1)的图象一定经过点( )A.(0,1) B.(0,2) C.(0,3) D.(1,3)(二)填空题5.若函数f(x)是指数函数且f(3)=8,则f(x)=______.6.函数的定义域为______,值域为______.7.函数y=2x-1的图象一定不经过第______象限;若函数的图象不经过第一象限,则实数b的取值范围是______.8.若2m>4,则m的取值范围是______;若(0.1)t>1,则t的取值范围是______.9.指数函数y=(a2-1)x在R上是减函数,则实数a的取值范围是______.(三)解答题10.根据函数f(x)=2x的图象,画出下列函数的草图.(1)y=-2x (2)y=-2x+1 (3)y=2|x|11.求函数的定义域和值域.12.已知a>0且a≠1,函数f1(x)=,f2(x)=,若f1(x)<f2(x),求x 的取值范围.1.4 指数函数(二)(一)选择题(每道题的四个选择答案中有且只有一个答案是正确的)1.若,则x的取值范围是( )A.(-∞,-3] B.(-∞,-3) C.[-3,+∞)D.R2.已知三个数M=0.32-0.32,P=0.32-3.2,Q=3.2-0.32,则它们的大小顺序是( )A.M<P<Q B.Q<M<P C.P<Q<M D.P<M<Q3.如图是指数函数①y=ax,②y=bx,③y=cx,④y=dx的图象,则a,b,c,d与0和1的大小关系是( )A.0<a<b<1<c<d B.0<b<a<1<d<cC.1<a<b<c<d D.0<a<b<1<d<c4.函数y=2x-2-x( )A.在R上减函数B.在R上是增函数C.在(-∞,0)上是减函数,在(0,+∞)上是增函数D.无法判断其单调性(二)填空题5.函数y=3x+1-2的图象是由函数y=3x的图象沿x轴向______平移______个单位,再沿y轴向______平移______个单位得到的.6.函数f(x)=3x+5的值域是______.7.函数y=ax-1+1(其中a>0且a≠1)的图象必经过点______.8.若指数函数y=ax在区间[0,1]上的最大值和最小值的差为,则底数a =______.9.函数g(x)=x2-x的单调增区间是______,函数y=的单调增区间是______.(三)解答题10.函数f(x)是R上的奇函数,且当x≥0时,f(x)=2x-1,求x<0时函数的解析式.11.若关于x的方程|2x-1|=a有两个解,借助图象求a的取值范围.12.已知函数f(x)=22x-2x+1-3,其中x∈[0,1],求f(x)的值域.您好,欢迎您阅读我的文章,本WORD文档可编辑修改,也可以直接打印。
指数与指数函数知识点
指数与指数函数知识点一、指数运算的基本性质1.任何数的0次方等于12.非零数的负指数等于该数的倒数。
3.相同底数的指数之间的乘方运算,底数保持不变,指数相加。
4.相同指数的指数之间的乘方运算,指数保持不变,底数相乘。
二、指数运算的规律1.法则1:a的m次方乘以a的n次方,等于a的m加n次方。
2.法则2:a的m次方除以a的n次方,等于a的m减n次方。
3.法则3:(a的m次方)的n次方,等于a的m乘n次方。
4.法则4:a的m次方的p次方,等于a的m乘p次方。
5.法则5:零的任何正次方都是0,零的0次方没有意义,规定为1三、指数函数的定义与性质指数函数的定义为:y=a^x,其中a>0且a≠1,a为底数,x为指数。
指数函数可以看作是以底数为底,自变量为指数的函数。
指数函数的性质如下:1.底数a大于1时,指数函数是递增的,即自变量x的增大,函数值y也增大。
2.底数a介于0和1之间时,指数函数是递减的,即自变量x的增大,函数值y也减小。
3.指数函数的图象都经过点(0,1),即当x=0时,y=14.指数函数的图象在直线x=0和y=0上均没有交点。
5.指数函数的图象没有水平渐近线,但有一条过点(0,0)的铅直渐近线。
指数函数常见的应用有:1.在金融领域中,指数函数可以用来描述货币的增长规律,例如复利计算。
2.在自然科学领域中,指数函数可以用来描述人口增长、病原体传播等现象。
3.在电路中,指数函数可以用来描述电容、电感等元件的充放电过程。
4.在计算机领域中,指数函数可以用来描述算法的时间复杂度、空间复杂度等特性。
总结:。
指数以及指数函数的整理讲义经典-(含答案)
指数以及指数函数的整理讲义经典-(含答案)指数与指数函数⼀、指数(⼀)n 次⽅根:1的3次⽅根是( )A .2B .-2C .±2D .以上都不对 2、若4a -2+(a -4)0有意义,则实数a 的取值范围是( )A .a ≥2B .a ≥2且a ≠4C .a ≠2D .a ≠4(⼆)、 n 为奇数,a a n n = n 为偶数,??<-≥==0,0,a a a a a a n n1.下列各式正确的是( )=-3 =a =2 D .a 0=12、.(a -b )2+5(a -b )5的值是( )A .0B .2(a -b )C .0或2(a -b )D .a -b 3、若xy ≠0,那么等式 4x 2y 2=-2xy y 成⽴的条件是( )A .x >0,y >0B .x >0,y <0C .x <0,y >0D .x <0,y <0 4、求下列式⼦(1).334433)32()23()8(---+-(2)223223--+132811621258---????;;;243的结果为 A 、5B 、5C 、-5D 、-53、把下列根式写成分数指数幂的形式:(1)32ab (2)()42a -(3)3432x x x(四)、实数指数幂的运算性质(1)r a ·s r r a a += ),,0(R s r a ∈>;(2)rs s r a a =)( ),,0(R s r a ∈>;(3)sr r a a ab =)( ),,0(R s r a ∈>.1.对于a >0,b ≠0,m 、n ∈N *,以下运算中正确的是( )A .a m a n =a mnB .(a m )n =am +nC .a m b n =(ab )m +nD .(b a )m=a -m b m2、若0,x >则13111424(2x +3)(2x -3)-4x = .3.计算-13-(-78)0+[(-2)3]-43+16-+|-|12=________.题型⼀: 1、求值:(1-;(22、已知*N n ∈,化简()()()()=+++++++++----11111233221n n Λ_____。
(完整版)指数和指数函数练习题及答案
指数和指数函数一、选择题1.(36a 9)4(63a 9)4等于()(C)a 4(A)a 16(B)a b 8(D)a -b 22.若a>1,b<0,且a +a =22,则a -a 的值等于()-b b (A)6(B)±2(C)-2(D)22x 3.函数f(x)=(a -1)在R 上是减函数,则a 的取值范围是()(A)a >1(B)a <2(C)a<2(D)1<a <4.下列函数式中,满足f(x+1)=(A)21f(x)的是( )211x -x(x+1) (B)x+ (C)2(D)224x 25.下列f(x)=(1+a )⋅a -x 是()(A)奇函数(B)偶函数(C)非奇非偶函数(D)既奇且偶函数1a 1b116.已知a>b,ab ≠0下列不等式(1)a >b ,(2)2>2,(3)<,(4)a 3>b 3,(5)()<()33a b22a b 11中恒成立的有()(A)1个(B)2个(C)3个(D)4个2x -17.函数y=x 是()2+1(A)奇函数(B)偶函数(C)既奇又偶函数(D)非奇非偶函数8.函数y=1的值域是()x 2-1(A)(-∞,1)(B)(-∞,0)⋃(0,+∞)(C)(-1,+∞)(D)(-∞,-1)⋃(0,+∞)+9.下列函数中,值域为R 的是()(A)y=512-x(B)y=(1x 11-xx)(C)y=()-1(D)y=1-223e x -e -x10.函数y=的反函数是()2(A)奇函数且在R 上是减函数(B)偶函数且在R 上是减函数++(C)奇函数且在R 上是增函数(D)偶函数且在R 上是增函数11.下列关系中正确的是()++111111(A)()3<()3<()3(B)()3<()3<()3252225111111(C)()3<()3<()3(D)()3<()3<()352252221222122112212.若函数y=3+2的反函数的图像经过P 点,则P 点坐标是()(A)(2,5)(B)(1,3)(C)(5,2)(D)(3,1)x -113.函数f(x)=3+5,则f (x)的定义域是()(A)(0,+∞)(B)(5,+∞)(C)(6,+∞)(D)(-∞,+∞)x 14.若方程a -x-a=0有两个根,则a 的取值范围是()(A)(1,+∞)(B)(0,1)(C)(0,+∞)(D)φ15.已知函数f(x)=a +k,它的图像经过点(1,7),又知其反函数的图像经过点(4,0),则函数f(x)的表达式是()x x x x (A)f(x)=2+5 (B)f(x)=5+3 (C)f(x)=3+4 (D)f(x)=4+316.已知三个实数a,b=a ,c=a a x x-1a a ,其中0.9<a<1,则这三个数之间的大小关系是()(A)a<c<b (B)a<b<c (C)b<a<c (D)c<a<bx 17.已知0<a<1,b<-1,则函数y=a +b 的图像必定不经过()(A)第一象限 (B)第二象限(C)第三象限 (D)第四象限二、填空题1.若a <ax 322,则a 的取值范围是。
高中 指数与指数函数知识点+例题+练习 含答案
教学过程④负分数指数幂:a n m-=a n m1=1na m(a>0,m,n∈N,且n>1);⑤0的正分数指数幂等于0,0的负分数指数幂无意义.(2)有理数指数幂的性质①a r a s=a r+s(a>0,r,s∈Q);②(a r)s=a rs(a>0,r,s∈Q);③(ab)r=a r b r(a>0,b>0,r∈Q).3.指数函数的图象与性质y=a x a>10<a<1图象定义域R值域(0,+∞)性质过定点(0,1)当x>0时,y>1;x<0时,0<y<1当x>0时,0<y<1;x<0时,y>1在(-∞,+∞)上是增函数在(-∞,+∞)上是减函数辨析感悟1.指数幂的应用辨析(1)(4-2)4=-2.( )(2)(教材探究改编)(na n)=a.( )2.对指数函数的理解(3)函数y=3·2x是指数函数.( )(4)y=⎝⎛⎭⎪⎫1ax是R上的减函数.( )教学效果分析教学过程(5)指数函数在同一直角坐标系中的图象的相对位置与底数的大小关系如图,无论在y轴的左侧还是右侧图象从上到下相应的底数由大变小.( )(6)(2013·金华调研)已知函数f(x)=4+a x-1(a>0且a≠1)的图象恒过定点P,则点P的坐标是(1,5).( )[感悟·提升]1.“na n”与“⎝⎛⎭⎫na n”的区别当n为奇数时,或当n为偶数且a≥0时,na n=a,当n为偶数,且a<0时,na n=-a,而(na)n=a恒成立.如(1)中4-2不成立,(2)中6-22=32≠3-2. 2.两点注意一是指数函数的单调性是底数a的大小决定的,因此解题时通常对底数a按0<a<1和a>1进行分类讨论,如(4);二是指数函数在同一直角坐标系中的图象与底数的大小关系,在y轴右侧,图象从上到下相应的底数由大变小,在y轴左侧,图象从上到下相应的底数由小变大.如(5).考点一指数幂的运算【例1】(1)计算:+(-2)2;(2)若=3,求的值.规律方法进行指数幂运算时,一般化负指数为正指数,化根式为分数指数幂,化小数为分数,同时兼顾运算的顺序.需注意下列问题:(1)对于含有字母的化简求值的结果,一般用分数指数幂的形式表示;(2)应用平方差、完全平方公式及a p a-p=1(a≠0)简化运算.(2)教学效果分析教学过程考点二指数函数的图象及其应用【例2】(1)(2014·泰安一模)函数f(x)=a x-b的图象如图,其中a,b为常数,则下列结论正确的是________.①a>1,b<0;②a>1,b>0;③0<a<1,b>0;④0<a<1,b<0.(2)比较下列各式大小.①1.72.5______1.73;②0.6-1______0.62;③0.8-0.1______1.250.2;④1.70.3______0.93.1.规律方法(1)对指数型函数的图象与性质(单调性、最值、大小比较、零点等)的求解往往利用相应指数函数的图象,通过平移、对称变换得到其图象,然后数形结合使问题得解.(2)一些指数方程、不等式问题的求解,往往利用相应指数型函数图象数形结合求解.【训练2】已知实数a,b满足等式2 011a=2 012b,下列五个关系式:①0<b<a;②a<b<0;③0<a<b;④b<a<0;⑤a=b.其中不可能成立的关系式有________.教学效果分析教学过程1.判断指数函数图象的底数大小的问题,可以先通过令x=1得到底数的值再进行比较.2.对和复合函数有关的问题,要弄清复合函数由哪些基本初等函数复合而成.3.画指数函数y=a x(a>0,且a≠1)的图象,应抓住三个关键点:(1,a),(0,1),⎝⎛⎭⎪⎫-1,1a.4.熟记指数函数y=10x,y=2x,y=⎝⎛⎭⎪⎫110x,y=⎝⎛⎭⎪⎫12x在同一坐标系中图象的相对位置,由此掌握指数函数图象的位置与底数大小的关系.易错辨析2——忽略讨论及验证致误【典例】(2012·山东卷)若函数f(x)=a x(a>0,a≠1)在[-1,2]上的最大值为4,最小值为m,且函数g(x)=(1-4m)x在[0,+∞)上是增函数,则a=________.[防范错施] (1)指数函数的底数不确定时,单调性不明确,从而无法确定其最值,故应分a>1和0<a<1两种情况讨论.(2)根据函数的单调性求最值是求函数最值的常用方法之一,熟练掌握基本初等函数的单调性及复合函数的单调性是求解的基础.【自主体验】当x∈[-2,2]时,a x<2(a>0,且a≠1),则实数a的范围是________.教学效果分析课堂巩固一、填空题1.(2014·郑州模拟)在函数①f (x )=1x ;②f (x )=x 2-4x +4;③f (x )=2x ;④f (x )=中,满足“对任意的x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)<f (x 2)”的是________.2.函数y =a x -1a (a >0,a ≠1)的图象可能是________.3.a 3a ·5a 4(a >0)的值是________.4.设2a =5b =m ,且1a +1b =2,则m 等于________.5.函数y =a x -b (a >0且a ≠1)的图象经过第二、三、四象限,则a b 的取值范围为________.6.(2014·济南一模)若a =30.6,b =log 30.2,c =0.63,则a 、b 、c 的大小关系为________.7.(2014·盐城模拟)已知函数f (x )=a -x (a >0,且a ≠1),且f (-2)>f (-3),则a 的取值范围是________.8.函数f (x )=a x (a >0,a ≠1)在[1,2]中的最大值比最小值大a2,则a 的值为________.9.函数f (x )=a x -3+m (a >1)恒过点(3,10),则m =________. 10.(2014·杭州质检)已知函数f (x )=⎩⎨⎧(1-3a )x +10a ,x ≤7,a x -7,x >7是定义域上的递减函数,则实数a 的取值范围是________. 11.(2014·惠州质检)设f (x )=|3x -1|,c <b <a 且f (c )>f (a )>f (b ),则关系式3c +3a ________2(比较大小).二、解答题12.设a >0且a ≠1,函数y =a 2x +2a x -1在[-1,1]上的最大值是14,求a 的值.。
高一数学上册 指数函数知识点及练习题含答案
课时4指数函数一. 指数与指数幂的运算(1)根式的概念 ①如果,,,1nxa a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n表示;当n 是偶数时,正数a 的正的nn次方根用符号0的n 次方根是0;负数a 没有n 次方根.n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当na =;当n(0)|| (0)a a a a a ≥⎧==⎨-<⎩.(2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m naa m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义.注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质①(0,,)rs r s aa a a r s R +⋅=>∈②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r r ab a b a b r R =>>∈二.指数函数及其性质(4)指数函数a 变化对图象影响在第一象限内,a 越大图象越高,越靠近y 轴; 在第二象限内,a 越大图象越低,越靠近x 轴. 在第一象限内,a 越小图象越高,越靠近y 轴; 在第二象限内,a 越小图象越低,越靠近x 轴.三.例题分析1.设a 、b 满足0<a<b<1,下列不等式中正确的是(C) A.a a <a b B.b a <b b C.a a <b a D.b b <a b解析:A 、B 不符合底数在(0,1)之间的单调性;C 、D 指数相同,底小值小.故选C. 2.若0<a<1,则函数y=a x 与y=(a-1)x 2的图象可能是(D)解析:当0<a<1时,y=a x为减函数,a-1<0,所以y=(a-1)x 2开口向下,故选D.3.设指数函数f(x)=a x (a>0且a ≠1),则下列等式中不正确的是(D) A.f(x+y)=f(x)f(y)B.f(x-y)=)()(y f x f C.f(nx)=[f(x)]n D.f [(xy)n ]=[f(x)]n [f(y)]n (n ∈N *) 解析:易知A 、B 、C 都正确. 对于D,f [(xy)n]=a(xy)n,而[f(x)]n·[f(y)]n=(a x )n·(a y)n=anx+ny,一般情况下D 不成立.4.设a=31)43(-,b=41)34(-,c=43)23(-,则a 、b 、c 的大小关系是(B)A.c<a<bB.c<b<aC.b<a<cD.b<c<a解析:a=413131)34()34()43(>=-=b,b=434141)23()278()34(-=>=c.∴a>b>c.5.设f(x)=4x -2x+1,则f -1(0)=______1____________. 解析:令f -1(0)=a,则f(a)=0即有4a-2·2a=0.2a·(2a-2)=0,而2a>0,∴2a=2得a=1.6.函数y=a x-3+4(a>0且a ≠1)的反函数的图象恒过定点______(5,3)____________.解析:因y=a x的图象恒过定点(0,1),向右平移3个单位,向上平移4个单位得到y=a x-3+4的图象,易知恒过定点(3,5).故其反函数过定点(5,3).7.已知函数f(x)=xx xx --+-10101010.证明f(x)在R 上是增函数.证明:∵f(x)=1101101010101022+-=+---x x xx x x , 设x 1<x 2∈R ,则f(x 1)-f(x 2)=)110)(110()1010(21101101101101010101010101010212122112222111122222222++-=+--+-=+--+-----x x x x x x x x x x x x x x x x . ∵y=10x 是增函数, ∴21221010x x -<0. 而1210x +1>0,2210x +1>0, 故当x 1<x 2时,f(x 1)-f(x 2)<0, 即f(x 1)<f(x 2). 所以f(x)是增函数.8.若定义运算a ⊗b=⎩⎨⎧<≥,,,,b a a b a b 则函数f(x)=3x ⊗3-x 的值域为(A)A.(0,1]B.[1,+∞)C.(0,+∞)D.(-∞,+∞)解析:当3x ≥3-x ,即x ≥0时,f(x)=3-x ∈(0,1];当3x<3-x,即x<0时,f(x)=3x∈(0,1).∴f(x)=⎩⎨⎧<≥-,0,3,0,3x x x x 值域为(0,1).9.函数y=a x 与y=-a -x (a>0,a ≠1)的图象(C) A.关于x 轴对称B.关于y 轴对称 C.关于原点对称D.关于直线y=-x 对称解析:可利用函数图象的对称性来判断两图象的关系.10.当x ∈[-1,1]时,函数f(x)=3x -2的值域为_______[-35,1]___________. 解析:f(x)在[-1,1]上单调递增.11.设有两个命题:(1)关于x 的不等式x 2+2ax+4>0对一切x ∈R 恒成立;(2)函数f(x)=-(5-2a)x 是减函数.若命题(1)和(2)中有且仅有一个是真命题,则实数a 的取值范围是_______(-∞,-2)__________.解析:(1)为真命题⇔Δ=(2a)2-16<0⇔-2<a<2.(2)为真命题⇔5-2a>1⇔a<2.若(1)假(2)真,则a ∈(-∞,-2].若(1)真(2)假,则a ∈(-2,2)∩[2,+∞]=∅. 故a 的取值范围为(-∞,-2).12.求函数y=4-x -2-x +1,x ∈[-3,2]的最大值和最小值. 解:设2-x =t,由x ∈[-3,2]得t ∈[41,8],于是y=t 2-t+1=(t-21)2+43.当t=21时,y 有最小值43.这时x=1.当t=8时,y 有最大值57.这时x=-3. 13.已知关于x 的方程2a 2x-2-7a x-1+3=0有一个根是2,求a 的值和方程其余的根. 解:∵2是方程2a 2x-2-9a x-1+4=0的根,将x=2代入方程解得a=21或a=4. (1)当a=21时,原方程化为2·(21)2x-2-9(21)x-1+4=0.① 令y=(21)x-1,方程①变为2y 2-9y+4=0, 解得y 1=4,y 2=21.∴(21)x-1=4⇒x=-1,(21)x-1=21⇒x=2. (2)当a=4时,原方程化为2·42x-2-9·4x-1+4=0.② 令t=4x-1,则方程②变为2t 2-9t+4=0.解得t 1=4,t 2=21. ∴4x-1=4⇒x=2, 4x-1=21⇒x=-21. 故方程另外两根是当a=21时,x=-1; 当a=4时,x=-21. 14.函数y=243)31(x x -+-的单调递增区间是(D) A.[1,2]B.[2,3]C.(-∞,2]D.[2,+∞)解析:因为y=3x2-4x+3,又y=3t 单调递增,t=x 2-4x+3在x∈[2,+∞)上递增,故所求的递增区间为[2,+∞).15.已知f(x)=3x-b (2≤x ≤4,b 为常数)的图象经过点(2,1),则F(x)=f 2(x)-2f(x)的值域为(B) A.[-1,+∞)B.[-1,63) C.[0,+∞)D.(0,63]解析:由f(2)=1,得32-b =1,b=2,f(x)=3x-2. ∴F(x)=[f(x)-1]2-1=(3x-2-1)2-1. 令t=3x-2,2≤x≤4.∴g(t)=(t -1)2-1,t∈[1,9]. ∴所求值域为[-1,63].2.1指数函数练习1.下列各式中成立的一项()A .7177)(m n mn= B .31243)3(-=-C .43433)(y x y x +=+D .3339=2.化简)31()3)((656131212132b a b a b a ÷-的结果()A .a 6B .a -C .a 9-D .29a3.设指数函数)1,0()(≠>=a a a x f x ,则下列等式中不正确的是() A .f (x +y )=f(x )·f (y ) B .)()(y f x f y x f =-)( C .)()]([)(Q n x f nx f n∈=D .)()]([·)]([)(+∈=N n y f x f xy f n n n4.函数21)2()5(--+-=x x y()A .}2,5|{≠≠x x xB .}2|{>x xC .}5|{>x xD .}552|{><<x x x 或5.若指数函数x a y =在[-1,1]上的最大值与最小值的差是1,则底数a 等于 ()A .251+B .251+- C .251± D .215± 6.当a ≠0时,函数y ax b =+和y b ax =的图象只可能是 ()7.函数||2)(x x f -=的值域是()A .]1,0(B .)1,0(C .),0(+∞D .R8.函数⎪⎩⎪⎨⎧>≤-=-0,0,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围 ()A .)1,1(-B .),1(+∞-C .}20|{-<>x x x 或D .}11|{-<>x x x 或9.函数22)21(++-=x x y 得单调递增区间是 ()A .]21,1[-B .]1,(--∞C .),2[+∞D .]2,21[10.已知2)(xx e e x f --=,则下列正确的是 ()A .奇函数,在R 上为增函数B .偶函数,在R 上为增函数C .奇函数,在R 上为减函数D .偶函数,在R 上为减函数 11.已知函数f (x )的定义域是(1,2),则函数)2(x f 的定义域是. 12.当a >0且a ≠1时,函数f (x )=a x -2-3必过定点. 三、解答题:13.求函数y x x =--1511的定义域.14.若a >0,b >0,且a +b =c ,求证:(1)当r >1时,a r +b r <c r ;(2)当r <1时,a r +b r >c r .15.已知函数11)(+-=x x a a x f (a >1).(1)判断函数f (x )的奇偶性;(2)证明f (x )在(-∞,+∞)上是增函数.16.函数f(x)=a x(a>0,且a ≠1)在区间[1,2]上的最大值比最小值大,求a 的值.参考答案一、DCDDDAADDA二、11.(0,1);12.(2,-2); 三、13.解:要使函数有意义必须:∴定义域为:{}x x R x x ∈≠≠且01,14.解:rrrrr c b c a c b a ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+,其中10,10<<<<cbc a . 当r >1时,1=+<⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛c b c a c b c a rr,所以a r +b r <c r; 当r <1时,1=+>⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛c b c a c b c a rr ,所以a r +b r >c r . 15.解:(1)是奇函数.(2)设x 1<x 2,则1111)()(221121+--+-=-x x x x a a a a x f x f 。
《指数函数》经典讲义(完整版)
指数函数讲义经典整理(含答案)一、同步知识梳理知识点1:指数函数函数(01)xy a a a =>≠且叫做指数函数,其中x 是自变量,函数的定义域是R知识点2:指数函数的图像和性质知识点3:指数函数的底数与图像的关系指数函数在同一直角坐标系中的图像的相对位置与底数大小的关系 如图所示,则01c d a b <<<<<,在y 轴右侧,图像从下到上相应的底数也由小变大, 在y 轴左侧,图像从上到下相应的底数也由小变大 即无论在y 轴左侧还是右侧,底数按逆时针方向变大在第一象限内,“底大图高”知识点4:指数式、指数函数的理解① 分数指数幂与根式或以互化,通常利用分数指数幂进行根式的运算② 根式的运算、变形、求值、化简及等式证明在数学中占有重要的地位,是研究方程、不等式和函数的基础,应引起重视③ 在有关根式、分数指数幂的变形、求值过程中,要注意运用方程的观点处理问题,通过解方程或方程组来求值④ 在理解指数函数的概念时,应抓住定义的“形式”,像1223,,21xx y y x y y =⋅===- 等函数均不符合形式()01x y a a a =>≠且,因此,它们都不是指数函数⑤ 画指数函数x y a =的图像,应抓住三个关键点:()()11,,0,1,1,a a ⎛⎫- ⎪⎝⎭二、同步题型分析题型1:指数函数的定义、解析式、定义域和值域例1:已知函数,且. (1)求m 的值;(2)判定f (x )的奇偶性;(3)判断f (x )在(0,+∞)上的单调性,并给予证明.考点:指数函数的定义、解析式、定义域和值域;函数单调性的判断与证明. 专题: 计算题. 分析:(1)欲求m 的值,只须根据f (4)=的值,当x=4时代入f (x )解一个指数方程即可;(2)求出函数的定义域x|x≠0},利用奇偶性的定义判断f (x )与f (﹣x )的关系,即可得到答案; (3)利用单调性的定义证明即可.任取0<x1<x2,只要证明f (x1)>f (x2),即可. 解答: 解:(1)因为,所以,所以m=1.(2)因为f (x )的定义域为{x|x≠0},又,所以f (x )是奇函数. (3)任取x1>x2>0,则,因为x1>x2>0,所以,所以f (x1)>f (x2),所以f(x)在(0,+∞)上为单调增函数.点评:本题主要考查了函数单调性的判断、函数奇偶性的判断,与证明及指数方程的解法.在判定函数奇偶性时,一定注意函数的定义域关于原点对称,属于基础题.例2:已知函数,(1)讨论函数的奇偶性;(2)证明:f(x)>0.考点:指数函数的定义、解析式、定义域和值域;函数奇偶性的判断;函数奇偶性的性质.专题:计算题.分析:(1)由2x﹣1≠0解得义域为{x|x≠0},关于原点对称.f(﹣x)=()(﹣x)=()x=f(x),故该函数为偶函数.(2)任取x∈{x|x≠0},当x>0时,2x>20=1且x>0,故,从而.当x<0时,﹣x>0,故f(﹣x)>0,由函数为偶函数,能证明f(x)>0在定义域上恒成立.解答:解:(1)该函数为偶函数.由2x﹣1≠0解得x≠0即义域为{x|x≠0}关于原点对称…(2分)f(﹣x)=()(﹣x)=﹣(+)x=()x=()x=()x=f(x)(6分)故该函数为偶函数.…(7分)(2)证明:任取x∈{x|x≠0}当x>0时,2x>20=1且x>0,∴2x﹣1>0,故从而…(11分)当x<0时,﹣x>0,∴f(﹣x)>0,…(12分)又因为函数为偶函数,∴f(x)=f(﹣x)>0,…(13分)∴f(x)>0在定义域上恒成立.…(14分)点评:本题考查函数的奇偶性的判断和证明f(x)>0.解题时要认真审题,注意指数函数性质的灵活运用.例3:已知函数y=ax(a>0且a≠1)在[1,2]上的最大值与最小值之和为20,记.(1)求a的值;(2)求f(x)+f(1﹣x)的值;(3)求的值.考点:指数函数的定义、解析式、定义域和值域.专题:综合题;函数的性质及应用.分析:(1)由y=ax单调得a+a2=20,由此可求a;(2)写出f(x),代入运算可得;(3)借助(2)问结论分n为奇数、偶数讨论可求;解答:解:(1)∵函数y=ax(a>0且a≠1)在[1,2]上的最大值与最小值之和为20,且y=ax单调,∴a+a2=20,得a=4,或a=﹣5(舍去);(2)由(1)知,∴====1;(3)由(2)知f(x)+f(1﹣x)=1,得n为奇数时,=×1=;n为偶数时,=+f()==;综上,=.点评:本题考查指数函数的单调性、最值等知识,属中档题.题型2:指数函数的图像变换.例1:已知函数y=|2x﹣2|(1)作出其图象;(2)由图象指出函数的单调区间;(3)由图象指出当x取何值时,函数有最值,并求出最值.考点:指数函数的图像变换.专题:综合题;函数的性质及应用.分析:(1)函数y=|2x﹣2|图象是由y=2x的图象向下平移2个单位,再将x轴下方的部分翻着到x轴上方得到.(2)结合函数的图象,可得函数的减区间和增区间.(3)数形结合可得,当x=1时,ymiin=0.解答:解:(1)函数y=|2x﹣2|图象是由y=2x的图象向下平移2个单位,再将x轴下方的部分翻着到x轴上方得到,如图所示:(2)结合函数的图象,可得函数的减区间为(﹣∞,1],增区间为(1,+∞).(3)数形结合可得,当x=1时,ymiin=0.点评:本题主要考查指数函数的图象和性质综合,体现了数形结合的数学思想,属于中档题.题型3:指数函数单调性例1:已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0(1)若a•b>0,判断函数f(x)的单调性;(2)若a=﹣3b,求f(x+1)>f(x)时的x的取值范围.考点:指数函数的单调性与特殊点;函数单调性的判断与证明;函数单调性的性质.专题:函数的性质及应用.分析:(1)分a>0,b>0和a<0,b<0两种情况讨论,运用单调性的定义可作出判断;(2)当a=﹣3b时,f(x)=﹣3b•2x+b•3x=b(3x﹣3•2x),分b>0,b<0两种情况进行讨论,整理可得指数不等式解出即可;解答:解:(1)当a>0,b>0时,任意x1,x2∈R,且x1<x2,则f(x1)﹣f(x2)=a(﹣)+b(﹣),∵<,<,a>0,b>0,∴a(﹣)<0,b(﹣)<0,∴f(x1)﹣f(x2)<0,即f(x1)<f(x2),故函数f(x)在R上是增函数;当a<0,b<0时,同理,可判断函数f(x)在R上是减函数;(2)当a=﹣3b时,f(x)=﹣3b•2x+b•3x=b(3x﹣3•2x),则f(x+1)>f(x)即化为b(3x+1﹣3•2x+1)>b(3x﹣3•2x),若b>0,则有3x+1﹣3•2x+1>3x﹣3•2x,整理得,解得x>1;若b<0,则有3x+1﹣3•2x+1<3x﹣3•2x,整理得,解得x<1;故b>0时,x的范围是x>1;当b<0时,x的范围是x<1.点评:本题考查函数单调性的判断、指数函数的单调性的应用,考查分类讨论思想,属基础题.例2:已知定义在(﹣1,1)上的奇函数f(x).在x∈(﹣1,0)时,f(x)=2x+2﹣x.(1)试求f(x)的表达式;(2)用定义证明f(x)在(﹣1,0)上是减函数;(3)若对于x∈(0,1)上的每一个值,不等式t•2x•f(x)<4x﹣1恒成立,求实数t的取值范围.考点:指数函数综合题;奇偶性与单调性的综合.专题:计算题;函数的性质及应用.分析:(1)由f(x)是定义在(﹣1,1)上的奇函数可得f(0)=0,x∈(0,1)时,f(x)=﹣f(﹣x)=﹣(2x+2﹣x);从而写出f(x)的表达式;(2)取值,作差,化简,判号,下结论五步;(3)对于x∈(0,1)上的每一个值,不等式t•2x•f(x)<4x﹣1恒成立转化为对于x∈(0,1)上的每一个值,不等式t>﹣恒成立,从而可得.解答:解:(1)∵f(x)是定义在(﹣1,1)上的奇函数,∴f(0)=0,设∈(0,1),则﹣x∈(﹣1,0),则f(x)=﹣f(﹣x)=﹣(2x+2﹣x),故f(x)=;(2)任取x1,x2∈(﹣1,0),且x1<x2,则f(x1)﹣f(x2)=+﹣(+)=,∵x1<x2<0,∴﹣<0,0<<1,故f(x1)﹣f(x2)>0,故f(x)在(﹣1,0)上是减函数;(3)由题意,t•2x•f(x)<4x﹣1可化为t•2x•(﹣(2x+2﹣x))<4x﹣1,化简可得,t>﹣,令g(x)=﹣=﹣1+,∵x∈(0,1),∴g(x)<﹣1+=0,故对于x∈(0,1)上的每一个值,不等式t•2x•f(x)<4x﹣1恒成立可化为t≥0.点评:本题考查了函数的性质的综合应用及恒成立问题的处理方法,属于难题.例3:已知函数f(x)=|2x﹣1﹣1|,(x∈R).(1)证明:函数f(x)在区间(1,+∞)上为增函数,并指出函数f(x)在区间(﹣∞,1)上的单调性;(2)若函数f(x)的图象与直线y=t有两个不同的交点A(m,t),B(n,t),其中m<n,求m+n 的取值范围.考点:指数函数综合题.专题:计算题;证明题.分析:(1)函数单调性的证明,通常依据定义,步骤为:取值,作差,变形,定号,下结论,由于与指数函数有关,求解时要利用到指数函数的单调性;(2)由(1)可知,函数的值域为(0,1),要使函数f(x)的图象与直线y=t有两个不同的交点,故有t∈(0,1)又函数f(x)的图象与直线y=t有两个不同的交点,所以A(m,t),B(n,t)分别位于直线x=1的两侧,由m<n,得m<1<n,故可以求出m+n,进而由t∈(0,1),可求m+n的取值范围.解答:解:(1)证明:任取x1∈(1,+∞),x2∈(1,+∞),且x1<x2,=,∵x1<x2,∴,∴,∴f(x1)<f(x2).所以f(x)在区间(1,+∞)上为增函数.(5分)函数f(x)在区间(﹣∞,1)上为减函数.(6分)(2)因为函数f(x)在区间(1,+∞)上为增函数,相应的函数值为(0,+∞),在区间(﹣∞,1)上为减函数,相应的函数值为(0,1),由题意函数f(x)的图象与直线y=t有两个不同的交点,故有t∈(0,1),(8分)易知A(m,t),B(n,t)分别位于直线x=1的两侧,由m<n,得m<1<n,故2m﹣1﹣1<0,2n ﹣1﹣1>0,又A,B两点的坐标满足方程t=|2x﹣1﹣1|,故得t=1﹣2m﹣1,t=2n﹣1﹣1,即m=log2(2﹣2t),n=log2(2+2t),(12分)故m+n=log2(2﹣2t)+log2(2+2t)=log2(4﹣4t2),当0<t<1时,0<4﹣4t2<4,﹣∞<log2(4﹣4t2)<2.因此,m+n的取值范围为(﹣∞,2).(17分)点评:本题的考点是指数函数综合问题,主要考查函数单调性的证明,考查函数图形的性质,有较强的综合性.依据定义,证明函数的单调性的步骤通常为:取值,作差,变形,定号,下结论三、课堂达标检测检测题1:已知函数f(x)=(其中e=2.71828…是一个无理数).(1)求函数f(x)的定义域;(2)判断奇偶性并证明之;(3)判断单调性并证明之.考点:指数函数的定义、解析式、定义域和值域;函数单调性的判断与证明;函数奇偶性的判断.专题:计算题;证明题.分析:(1)把分子整理变化成和分母相同的一部分,进行分子常数化,则变量只在分母上出现,根据分母是一个指数形式,恒大于零,得到函数的定义域是全体实数.(2)根据上一问值函数的定义域关于原点对称,从f(﹣x)入手整理,把负指数变化为正指数,就得到结果,判断函数是一个奇函数.(3)根据判断函数单调性的定义,设出两个任意的自变量,把两个自变量的函数值做差,化成分子和分母都是因式乘积的形式,根据指数函数的性质,判断差和零的关系.解答:解:f(x)==1﹣(1)∵e2x+1恒大于零,∴x∈R(2)函数是奇函数∵f(﹣x)==又由上一问知函数的定义域关于原点对称,∴f(x)为奇函数(3)是一个单调递增函数设x1,x2∈R 且x1<x2则f(x1)﹣f(x2)=1﹣=∵x1<x2,∴∴f(x1)﹣f(x2)<0即f(x1)<f(x2)∴f(x)在R是单调增函数点评:本题考查函数的定义域,考查函数的奇偶性的判断及证明.考查函数单调性的判断及证明,考查解决问题的能力,是一个综合题目.检测题2:已知函数f(x)=2ax+2(a为常数)(1)求函数f(x)的定义域.(2)若a=1,x∈(1,2],求函数f(x)的值域.(3)若f(x)为减函数,求实数a的取值范围.考点:指数函数的定义、解析式、定义域和值域;指数函数的单调性与特殊点.专题:常规题型;转化思想.分析:(1)利用指数函数的定义域来考虑.(2)利用函数f(x)在(1,2]上的单调性求函数的值域.(3)根据复合函数的单调性,函数u=ax+2必须为减函数.解答:解:(1)函数y=2ax+2对任意实数都有意义,所以定义域为实数集R.(2)因为a=1,所以f(x)=2x+2.易知此时f(x)为增函数.又因为1<x≤2,所以f(1)<f(x)≤f(2),即8<f(x)≤16.所以函数f(x)的值域为(8,16].(3)因为f(x)为减函数,而y=2u是增函数,所以函数u=ax+2必须为减函数.所以得a<0点评:本题考查指数函数的定义域、值域、单调性,复合函数的单调性,体现转化的数学思想.检测题3:设f(x)的定义域是(﹣∞,0)∪(0,+∞),且f(x)对任意不为零的实数x都满足f(﹣x)=﹣f(x).已知当x>0时(1)求当x<0时,f(x)的解析式(2)解不等式.考点:指数函数的定义、解析式、定义域和值域;函数奇偶性的性质.专题:常规题型.分析:(1)求当x<0时,f(x)的解析式,在哪个区间上求解析式,就在哪个区间上取值x,再转化到已知区间上求解析式,由f(﹣x)=﹣f(x)解出f(x)即可.(2)解不等式f(x)<﹣,分x>0和x<0两种情况,根据求得的解析式求解即可.解答:解:(1)当x<0时,﹣x>0,=又f(﹣x)=﹣f(x)所以,当x<0时,(2)x>0时,,∴化简得∴,解得1<2x<4∴0<x<2当x<0时,∴解得2x>1(舍去)或∴x<﹣2解集为{x|x<﹣2或0<x<2}点评:本题考查分段函数解析式的求法,注意在哪个区间上求解析式,就在哪个区间上取值,再转化到已知的区间上求解析式,再根据奇偶性,解出f(x)来.解不等式也要分段求解,注意x的取值范围.11。
(完整word版)指数及指数函数知识点及习题
指数及指数函数(一)指数与指数幂的运算1.根式的概念一般地,如果a x n=,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *.当n 是奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数.此时,a 的n 次方根用符号n a 表示.式子n a 叫做根式,这里n 叫做根指数,a 叫做被开方数.当n 是偶数时,正数的n 次方根有两个,这两个数互为相反数.此时,正数a 的正的n 次方根用符号n a 表示,负的n 次方根用符号-n a 表示.正的n 次方根与负的n 次方根可以合并成±n a (a >0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作00=n . 结论:当n 是奇数时,a a n n =当n 是偶数时,⎩⎨⎧<≥-==)0()0(||a a a a a a n n2.分数指数幂)1,,,0(*>∈>=n N n m a a an m nm)1,,,0(11*>∈>==-n N n m a a aanmnm nm0的正分数指数幂等于0,0的负分数指数幂没有意义 3.有理指数幂的运算性质 (1)r a ·sr r aa += ),,0(Q s r a ∈>;(2)rssr a a =)( ),,0(Q s r a ∈>; (3)srra a ab =)(),0,0(Q r b a ∈>>.(一)指数函数的概念一般地,函数)1a ,0a (a y x≠>=且叫做指数函数,其中x 是自变量,函数的定义域为R .注意:○1 指数函数的定义是一个形式定义 ○2 注意指数函数的底数的取值范围,底数为什么不能是负数、零和1.(二)指数函数的图象和性质注意内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性.指数函数的图象如右图:4图象特征函数性质1a > 1a 0<< 1a > 1a 0<<向x 、y 轴正负方向无限延伸 函数的定义域为R 图象关于原点和y 轴不对称 非奇非偶函数函数图象都在x 轴上方 函数的值域为R +函数图象都过定点(0,1) 1a 0=自左向右看, 图象逐渐上升 自左向右看, 图象逐渐下降 增函数减函数在第一象限内的图象纵坐标都大于1 在第一象限内的图象纵坐标都小于1 1a ,0x x >> 1a ,0x x <>在第二象限内的图象纵坐标都小于1 在第二象限内的图象纵坐标都大于1 1a ,0x x <<1a ,0x x ><图象上升趋势是越来越陡图象上升趋势是越来越缓函数值开始增长较慢,到了某一值后增长速度极快;函数值开始减小极快,到了某一值后减小速度较慢;利用函数的单调性,结合图象还可以看出:(1)在[a ,b]上,)1a 0a (a )x (f x≠>=且值域是)]b (f ),a (f [或)]a (f ),b (f [; (2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈; (3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =; (4)当1a >时,若21x x <,则)x (f )x (f 21<;指数与指数函数练习题一、选择题:1、化简1111132168421212121212-----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,结果是( ) A 、11321122--⎛⎫- ⎪⎝⎭B 、113212--⎛⎫- ⎪⎝⎭ C 、13212-- D 、1321122-⎛⎫- ⎪⎝⎭2、44等于( ) A 、16a B 、8a C 、4a D 、2a3、若1,0a b ><,且b b a a -+=则b b a a --的值等于( )A 、6B 、2±C 、2-D 、24、函数()2()1xf x a =-在R 上是减函数,则a 的取值范围是( )A 、1>a B 、2<a C、a <、1a <<5、下列函数式中,满足1(1)()2f x f x +=的是( )A 、 1(1)2x +B 、14x + C 、2x D 、2x -6、已知01,1a b <<<-,则函数xy a b =+的图像必定不经过( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限7、一批设备价值a 万元,由于使用磨损,每年比上一年价值降低%b ,则n 年后这批设备的价值为( )A 、(1%)na b -B 、(1%)a nb -C 、[1(%)]n a b -D 、(1%)na b -8、若103,104x y ==,则10x y -= 。
指数函数及其性质(含知识点、例题、练习、测试)
指数函数及其性质 知识点一 指数函数及图像性质1.指数函数概念:定义:一般地,函数(0,1)x y a a a =>≠且叫做指数函数(exponential function ),其中x 是自变量,函数的定义域为R ,a 是底数.2. 指数函数的图象和性质:作图:在同一坐标系中画出下列函数图象: 1()2x y =, 2x y =图像性质总结 底数 a >1 0<a <1图象性质 函数的定义域为R ,值域为(0,+∞)函数图象过定点(0,1),即x =0时,y =1 当x >0时,恒有y >1;当x <0时,恒有0<y <1当x >0时,恒有0<y <1; 当x <0时,恒有y >1 函数在定义域R 上为增函数 函数在定义域R 上为减函数题型一 指数函数求值【例1】已知指数函数()xf x a =(a >0且a ≠1)的图象过点(3,π),求(0),(1),(3)f f f -的值.题型二 比较大小【例2】比较下列各题中的个值的大小(1)1.72.5 与 1.73( 2 )0.10.8-与0.20.8-( 3 ) 1.70.3 与 0.93.1题型三 指数函数性质【例3】求下列函数的定义域与值域:(1)442x y -= (2)||2()3x y =【过关练习】1、 函数2(33)x y a a a =-+是指数函数,则a 的值为 .2、 比较大小:0.70.90.80.8,0.8, 1.2a b c ===; 01, 2.50.4,-0.22-, 1.62.5.思考探究:在[m ,n ]上,()(01)x f x a a a =>≠且值域问题?知识点二 指数函数应用1. 指数函数的应用模型(应用题)2. 指数形式的函数定义域、值域题型 函数综合【例1】 2017年某镇工业总产值为100亿,计划今后每年平均增长率为8%, 经过x 年后的总产值为原来的多少倍? → 变式:多少年后产值能达到120亿?【例2】指数函数与函数性质综合1、已知函数[]2,1,2329∈+•-=x y xx ,求这个函数的值域;2、求函数2121x x y -=+的定义域和值域,并讨论函数的单调性、奇偶性.【过关练习】1、 一片树林中现有木材30000m 3,如果每年增长5%,经过x 年树林中有木材y m 3,写出x ,y 间的函数关系式,并利用图象求约经过多少年,木材可以增加到40000m 32. ① 求函数y =的定义域和值域.② 求下列函数的定义域、值域:21x y =+; y =110.4x y -=.【补救练习】 1、已知函数y =kx +a 的图象如图所示,则函数y =a x +k 的图象可能是( )2、比较下列各组数的大小: 13222()0.45--与() ; 0.760.75333-()与().【巩固练习】1、函数f (x )=2|x -1|的图象是( )2、下列函数中值域为正实数的是( )A .y =-5xB .y =⎝⎛⎭⎫131-x C .y =⎝⎛⎭⎫12x -1 D .y =1-2x 【拔高练习】1、当x ∈(-∞,-1]时,不等式(m 2-m )·4x -2x <0恒成立,则实数m 的取值范围是( )A .(-2,1)B .(-4,3)C .(-1,2)D .(-3,4)2、某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y =e kx +b (e =2.718…为自然对数的底数,k ,b 为常数).若该食品在0 ℃ 的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是________小时.【补救练习】 B ><【巩固练习】B B 【拔高练习】 C 24。
指数函数知识点及其习题附答案
〖〗指数函数2.1.1指数与指数幂的运算(1)根式的概念 ①若是,,,1nxa a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n当n 是偶数时,正数a 的正的n次方根用符号n次方根用符号0的n 次方根是0;负数a 没有n 次方根.n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当na =;当n 为偶数时,(0)|| (0) a a a a a ≥⎧==⎨-<⎩. (2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m naa m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 1()0,,,mm nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没成心义. 注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)rs r s aa a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈ ③()(0,0,)r r r ab a b a b r R =>>∈2.1.2指数函数及其性质(4指数函数练习1.以下各式中成立的一项( )A .7177)(m n mn =B .31243)3(-=-C .43433)(y x y x +=+D .3339=2.化简)31()3)((656131212132b a b a b a ÷-的结果( )A .a 6B .a -C .a 9-D .29a3.设指数函数)1,0()(≠>=a a a x f x ,那么以劣等式中不正确的选项是( )A .f (x +y )=f(x )·f (y )B .)()(y f x f y x f =-)( C .)()]([)(Q n x f nx f n∈=D .)()]([·)]([)(+∈=N n y f x f xy f n n n4.函数210)2()5(--+-=x x y( )A .}2,5|{≠≠x x xB .}2|{>x xC .}5|{>x xD .}552|{><<x x x 或5.假设指数函数xa y =在[-1,1]上的最大值与最小值的差是1,那么底数a 等于 ( )A .251+ B .251+- C .251± D .215± 6.当a ≠0时,函数y ax b =+和y b ax =的图象只可能是 ( )7.函数||2)(x x f -=的值域是( ) A .]1,0(B .)1,0(C .),0(+∞D .R8.函数⎪⎩⎪⎨⎧>≤-=-0,0,12)(21x x x x f x ,知足1)(>x f 的x 的取值范围( )A .)1,1(-B . ),1(+∞-C .}20|{-<>x x x 或D .}11|{-<>x x x 或 9.函数22)21(++-=x x y 得单调递增区间是( ) A .]21,1[-B .]1,(--∞C .),2[+∞D .]2,21[ 10.已知2)(xx e e x f --=,那么以下正确的选项是( )A .奇函数,在R 上为增函数B .偶函数,在R 上为增函数C .奇函数,在R 上为减函数D .偶函数,在R 上为减函数11.已知函数f (x )的概念域是(1,2),那么函数)2(x f 的概念域是 . 12.当a >0且a ≠1时,函数f (x )=a x -2-3必过定点 . 三、解答题: 13.求函数y x x =--1511的概念域.14.若a >0,b >0,且a +b =c ,求证:(1)当r >1时,a r +b r <c r ;(2)当r <1时,a r +b r >c r .15.已知函数11)(+-=x x a a x f (a >1).(1)判定函数f (x )的奇偶性;(2)证明f (x )在(-∞,+∞)上是增函数.16.函数f(x)=a x(a>0,且a ≠1)在区间[1,2]上的最大值比最小值大a 2,求a 的值.指数函数练习参考答案一、DCDDD AAD D A二、11.(0,1); 12.(2,-2); 三、13. 解:要使函数成心义必需:x x x x x -≠-≠⎧⎨⎪⎩⎪⇒≠≠⎧⎨⎩101010∴概念域为:{}x x R x x ∈≠≠且01,14. 解:rrrrr c b c a c b a ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+,其中10,10<<<<cbc a . 当r >1时,1=+<⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛c b c a c b c a rr,因此a r +b r <c r; 当r <1时,1=+>⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛c b c a c b c a rr,因此a r +b r >c r .15.解:(1)是奇函数.(2)设x 1<x 2,则1111)()(221121+--+-=-x x x x a a a a x f x f 。
指数与指数运算基础知识+经典练习题
指数与指数运算基础知识+经典练习题指数与指数运算基础知识+经典练题知识梳理:1、根式1)n次方根的定义一般地,如果$x=a^n$,那么$x$叫做$a$的$n$次方根。
当$n$为奇数时,正数的$n$次方根是一个正数,负数的$n$次方根是一个负数,这时,$a$的$n$次方根用符号$\sqrt[n]{a}$表示。
当$n$为偶数时,正数的$n$次方根有两个,这两个数互为相反数,这时正数$a$的$n$次方根用符号$\pm\sqrt[n]{a}$表示。
注:负数没有偶次方根。
任何数的任何次方根都是唯一的,记作$\sqrt[n]{a}$。
2)根式式子$\sqrt[n]{a}$叫做根式,这里$n$叫根指数,$a$叫做被开方数。
注:①$(\sqrt[n]{a})^n=a$②当$n$为奇数时,$\sqrt[n]{a^n}=a$;当$n$为偶数时,$\sqrt[n]{a^n}=|a|$,即$\sqrt[2]{a^2}=|a|$,$a>0$时,$\sqrt[2]{a^2}=a$,$a<0$时,$\sqrt[2]{a^2}=-a$。
2、分数指数幂1)正数的正分数指数幂的意义是$a^m$。
2)正数的负分数指数幂的意义是$\dfrac{1}{a^m}$。
dfrac{a^n}{a^m}=a^{n-m}$,$(a>0,m,n\in N^*,n>1)$。
dfrac{1}{a^n}=a^{-n}$。
3)$a^{\frac{m}{n}}=\sqrt[n]{a^m}$,$\dfrac{1}{a^{\frac{m}{n}}}=\sqrt[n]{\dfrac{1}{a^m}}$。
注:的正分数指数幂等于1,的负分数指数幂没有意义。
3、实数幂的运算性质1)$a^a=a$。
a^r)^s=a^{rs}$,$(a>0,r,s\in Q)$。
2)$(a^{-r})^s=\dfrac{1}{a^{rs}}$,$(a>0,r,s\in Q)$。
指数与指数函数知识点及题型归纳总结
指数与指数函数知识点及题型归纳总结知识点精讲一、指数的运算性质 当a >0,b >0时,有 (1)a m a n=am +n(m ,n ∈R );(2)mm n n a a a-=( m ,n ∈R) (3)(a m )n =a mn (m ,n ∈R );(4)(ab )m =a m b m (m ∈R );(5)pp a a-=1(p ∈Q ) (6)mm n n a a =(m ,n ∈N +)二、指数函数(1)一般地,形如y =a x (a >0且a ≠1)的函数叫做指数函数; (2)指数函数y =a x (a >0y =a x a >1 0<a <1图象(1)定义域:R (1)定义域:R 值域(2)值域:(0,+∞) (2)值域:(0,+∞) (3)过定点(0,1)(3)过定点(0,1) (4)在R 上是增函数. (4)在R 上是减函数. (5)0<y <1⇔x >0y =1⇔x =0 y >1⇔x <0(5)0<y <1⇔x <0y =1⇔x =0 y >1⇔x >0题型归纳及思路提示题型1指数运算及指数方程、指数不等式 思路提示利用指数的运算性质解题.对于形如()f x a b =,()f x a b >,()f x a b <的形式常用“化同底”转化,再利用指数函数单调性解决;或用“取对数”的方法求解.形如a 2x +B a x +C =0或a 2x +Ba x +C ≥0(≤0)的形式,可借助换元法转化二次方程或二次不等式求解. 一、指数运算例2.48化简并求值.(1)若a =2,b =4()()a a b b ab a b b+÷+--223333311的值; (2)若x x -+=11223,x x x x --+-+-33222232的值; (3)设nna --=11201420142(n ∈N +),求()n a a +21的值.分析:利用指数运算性质解题.===.当a=2,b=4,原式===12.(2)先对所给条件作等价变形:()x x x x--+=+-=-=11122222327,()()x x x x x x---+=++-=⨯=33111222213618,x2+x-2=(x+x-1)2-2=72-2=47.故x xx x--+--==+--3322223183124723.(3)因为n na--=11201420142,所以()n na-++=11222014201412,n n n nna---+--=-=111112014201420142014201422.所以)na-=12014.变式1 设2a=5b=m,且a b+=112,则m=( ).A. B. 10 C. 20 D. 100二、指数方程例2.49 解下列方程(1)9x-4⋅3x+3=0;(2)()()x x⋅=29643827;分析:对于(1)方程,将其化简为统一的底数,9x=(3x)2;对于()()x x⋅2938,对其底进行化简运算. 解析:(1)9x-4⋅3x+3=0⇒(3x)2-4⋅3x+3=0,令t=3x(t>0),则原方程变形为t2-4t+3=0,得t1=1,t2=3,即x=131或x=233,故x1=0,x2=1.故原方程的解为x1=0,x2=1.(2)由()()x x⋅=29643827,可得()x⨯=33294383即()()x=33443,所以()()x-=33344,得x=-3.故原方程的解为x=-3.变式1方程9x-6⋅3x-7=0的解是________.变式2 关于x 的方程()x aa+=-32325有负实数根,则a 的取值范围是__________. 三、指数不等式例2.50若对x ∈[1,2],不等式x m +>22恒成立,求实数m 的取值范围. 分析:利用指数函数的单调性转化不等式.解析:因为函数y =2x 是R 上的增函数,又因为x ∈[1,2],不等式x m +>22恒成立,即对∀x ∈[1,2],不等式x +m >1恒成立⇔函数y =x +m 在[1,2]上的最小值大于1,而y =x +m 在[1,2]上是增函数,其最小值是1+m ,所以1+m >1,即m >0.所以实数m 的取值范围是{m |m >0}.变式1 已知对任意x ∈R ,不等式()x mx m x x -+++>22241122恒成立,求m 的取值范围.变式2 函数()xf x x -=-21的定义域为集合A ,关于x 的不等式ax a x +<222(x ∈R)的解集为B ,求使A ∩B =A 的实数a 的取值范围.题型2 指数函数的图像及性质 思路提示解决指数函数有关问题,思路是从它们的图像与性质考虑,按照数形结合的思路分析,从图像与性质找到解题的突破口,但要注意底数对问题的影响. 一、指数函数的图像 例2.51 函数()x bf x a-=的图象如图2-14所示,其中a ,b 为常数,则下列结论中正确的是( ).A. a >1,b <0B. a >1,b >0C. 0<a <1,0<b <1D. 0<a <1,b <0 分析:考查指数函数的图象及其变换.解析:由图2-14可知0<a <1,当x =0时,b a -∈(0,1),故-b >0,得b <0,故选D. 评注:若本题中的函数变为()xf x a b =-,则答案又应是什么?由图2-14可知ƒ(x )单调递减,即0<a <1,函数y =a x 的图像向下平移得到xy a b =-的图像,故0<b <1,故选C. 变式1 若函数y =a x +b -1(a >0且a ≠1)的图像经过第二、三、四象限,则一定有( ). A. 0<a <1且b >0 B. a >1且b >0 C. 0<a <1且b <0 D. a >1且b <0 变式2 (2012四川理5)函数x y a a=-1(a >0,a ≠1)的图象可能是( ).变式3 已知实数a ,b 满足()()a b =1123,下列5个关系式:①0<b <a ,②a <b <0,③0<a <b ,④b <a <0,⑤a =b =0.其中不可能...成立的有( ). A. 1个B. 2个C. 3个D. 4个例2.52 函数ƒ(x )=x a +1(a >0且a ≠1)的图像过定点_________. 分析:指数函数的图像恒过定点(0,1),即a 0=1.解析:因为函数ƒ(x )=a x (a >0且a ≠1)的图像过定点(0,1),又函数ƒ(x )=x a +1(a >0且a ≠1)的图像是由函数ƒ(x )=a x (a >0且a ≠1)的图像向左平移一个单位得到的,故函数ƒ(x )=x a +1(a >0且a ≠1)的图像过定点(-1,1). 变式1 函数ƒ(x )=a x +1(a >0且a ≠1)的图像过定点________. 变式2 函数ƒ(x)=ax+x-2的图像过定点________.变式3 ƒ(x )=x a -1(a >0且a ≠1)的图像恒过定点A ,若点A 在直线mx +ny -1=0(m ,n >0)上,则m n+11的最小值为________.二、指数函数的性质(单调性、最值(值域))例2.53 函数ƒ(x )=a x (a >0且a ≠1)在[1,2]上的最大值比最小值大a2,则a 的值是_______. 分析:本题考查指数函数的单调性.解析:当0<a <1时,函数ƒ(x )=a x 在[1,2]上单调递减,故在[1,2]上最大值为a ,最小值为a 2,则a a a -=22,得a a =22,又0<a <1,所以a =12; 当a >1时,函数ƒ(x )=a x 在[1,2]上单调递增,故在[1,2]上最大值为a 2,最小值为a ,那么a a a -=22,得aa =232,又a >1,所以a =32. 综上所述,a 的值是12或32.评注:函数ƒ(x )=a x (a >0且a ≠1),不论0<a <1还是a >1都是单调的,故最大值和最小值在端点处取得. 所以||a a a -=22,解得a =12或a =32. 变式1 函数ƒ(x )=a x (a >0且a ≠1)在区间[a ,a +2]上的最大值是最小值的3倍,则a =_____.变式2 定义区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1,已知函数y =2|x |的定义域为[a ,b ],值域为[1,2],则区间[a ,b ]的长度的最大值与最小值的差为________.变式3 若y =3|x |(x ∈([a ,b ])的值域为[1,9],则a 2+b 2-2a 的取值范围是( ).A. [2.4]B. [4,16]D. [4,12]例2.54 函数xx y a --+=+248145(0<a <1)的单调增区间是________.分析:复合函数xx y a --+=+248145内层为二次函数,外层为指数型函数,根据复合函数单调性判定法求解.解析:因为u =-4x 2-8x +1=-4(x +1)2+5在[-1,+∞)上单调递减,在(-∞,-1]上单调递增,且y =a x (0<a <1)是减函数,所以xx y a --+=+248145(0<a <1)的单调增区间是[-1,+∞).变式1 函数()f x 1________.变式2 求函数()()()x x f x =-+11142(x ∈[-3,2])的单调区间及值域.变式3 已知0≤x ≤2,求函数x xa y a -=-⋅++1224212的最大值和最小值.变式4 设函数y =ƒ(x )在(-∞,+∞)内有定义,对于给定的正数k ,定义函数(),(),k f x f x k ⎧=⎨⎩()()f x kf x k ≤>,取函数ƒ(x )=2-|x |,当k =12时,函数ƒk (x )的单调增区间为( ). A. (-∞,0] B. [0,+∞) C. (-∞,-1] D. [1,+∞)变式5 若函数||()x y m -=+112的图像与x 轴有公共点,则m 的取值范围是________.变式6 已知函数()||x f x -=-21,x ∈R ,若方程ƒ(x )=a 有两个不同实根,则a 的取值范围是__________. 题型3 指数函数中的恒成立问题 思路提示(1)利用数形结合思想,结合指数函数图像求解.(2)分离自变量与参变量,利用等价转化思想,转化为函数的最值问题求解.例2.55 设()x x f x a =++⋅124(x ∈R),当x ∈(-∞,-1]时,ƒ(x )的图象在x 轴上方,求实数a 的取值范围. 分析:本题等价于当x ≤1时,x x a ++⋅124>0恒成立.分离自变量x 与参变量a ,转化为求解函数的最值. 解析:因为当x ∈(-∞,1]时,ƒ(x )的图像在x 轴上方,所以对于任意x ≤1,x x a ++⋅124>0恒成立,即x x a +>-214(x ≤1)恒成立.令()()()x x x x u x +=-=--2111424(x ≤1),a >u (x )max ,x ∈(-∞,1].因为()x y =12,()x y =14均是减函数,所以u (x )在(-∞,1]上单调递增,故当x =1时,max ()()u x u ==-314,故a >-34.故实数a 的取值范围为(-34,+∞).变式1 已知函数()()x x af x a a a -=--21(a >0且a ≠1). (1)判断函数ƒ(x )的奇偶性; (2)讨论函数ƒ(x )的单调性;(3)当x ∈[-1,1]时,ƒ(x )≥b 恒成立,求实数b 的取值范围. 变式2定义域为R 的函数12()2x x bf x a+-+=+是奇函数.(1) 求a,b 的值.(2) 若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围. 变式3 已知函数1()22x xf x =-,若2(2)()0tf t mf t +≥对于[1,2]t ∈恒成立,求实数m 的取值范围.最有效训练题1.函数2(33)xy a a a =-+是指数函数,则有( )A a=1或a=2B a=1C a=2D 0a >且1a ≠ 2.设0.90.48 1.512314,8,()2y y y -===,则( )A 312y y y >>B 213y y y >>C 123y y y >>D 132y y y >>3.设函数()f x 定义在实数集上,其图像关于直线x=1对称,且当1x ≥时,()31xf x =-,则有( )A 132()()()323f f f <<B 231()()()323f f f <<C 213()()()332f f f <<D 321()()()233f f f <<4. 函数()22xxf x -=-是( ) A 奇函数,在区间(0,)+∞上单调递增 B 奇函数,在区间(0,)+∞上单调递减 C 偶函数,在区间(,0)-∞上单调递增 D 偶函数,在区间(,0)-∞上单调递减.5.若关于x 的方程9(4)340xxa ++•+=有解,则实数a 的取值范围是( ) A (,8)[0,)-∞-+∞ B (,4)-∞- C [8,4)- D (,8]-∞-6.函数221(0)(1)(0)(){ax ax x a e x f x +≥-<=在R 上单调,则a 的取值范围是( )A (,(1,2]-∞B [1)[2,)-+∞C (1)D )+∞7.不等式2223330x x a a •-+-->,当01x ≤≤时,恒成立,则实数a 的取值范围为 .8. 函数1(2y =的单调递增区间是 .9.已知关于x 的方程923310x x k -⨯+-=有两个不同实数根,则实数k 的取值范围为 .10. 偶函数()f x 满足 (1)(1)f x f x -=+,且在[0,1]x ∈时,()f x x =,则关于x 的方程1()()10xf x =,在[0,2014]x ∈上的解的个数是 .11.已知函数()xf x b a =⋅(其中a,b 为常数且0,1)a a >≠的图像经过点A (1,6),B (3,24). (1)确定()f x .(2)若不等式11()()0x x m a b+-≥在(,1]x ∈-∞时恒成立,求实数m 的取值范围.12.已知函数1()(),[1,1]3x f x x =∈-,函数2()[()]2()3g x f x af x =-+的最小值为h(a). (1)求h(a);(2)是否存在实数m,n 同时满足下列条件:①3m n >>;②当h(a)的定义域为[n,m]时,值域为22[,]n m .若存在,求出m,n 的值;若不存在,说明理由.。
高一 指数与指数函数知识点+例题+练习 含答案
1.分数指数幂(1)规定:正数的正分数指数幂的意义是a m n =na m (a >0,m ,n ∈N *,且n >1);正数的负分数指数幂的意义是a -m n =1na m (a >0,m ,n ∈N *,且n >1);0的正分数指数幂等于0;0的负分数指数幂没有意义.(2)有理数指数幂的运算性质:a s a t =a s +t ,(a s )t =a st ,(ab )t =a t b t ,其中a >0,b >0,s ,t ∈Q . 2.指数函数的图象与性质y =a xa >10<a <1图象定义域 (1)R 值域(2)(0,+∞) 性质(3)过定点(0,1)(4)当x >0时,y >1;当x <0时,0<y <1 (5)当x >0时,0<y <1; 当x <0时,y >1 (6)在(-∞,+∞)上是增函数(7)在(-∞,+∞)上是减函数判断下面结论是否正确(请在括号中打“√”或“×”) (1)n a n =(na )n =a .( × )(2)分数指数幂a m n可以理解为mn 个a 相乘.( × )(3)(-1)24=(-1)12=-1.( × ) (4)函数y =a -x 是R 上的增函数.( × ) (5)函数y =21+x a (a >1)的值域是(0,+∞).( × )(6)函数y =2x-1是指数函数.( × )1.函数f (x )=a x -1 (a >0,且a ≠1)的图象经过定点坐标为__________. 答案 (1,1)解析 令x -1=0得x =1,此时y =a 0=1,所以点(1,1)与a 无关,所以函数f (x )=a x -1(a >0,且a ≠1)的图象过定点(1,1).2.函数f (x )=a x -1a(a >0,a ≠1)的图象可能是______.(填图象序号)答案 ④解析 函数f (x )的图象恒过(-1,0)点,只有图象④适合. 3.计算:3×31.5×612+lg 14-lg 25=________.答案 1解析3×31.5×612+lg 14-lg 25=312×131332×316×213-lg 4-lg 25=3-lg 100=3-2=1.4.若函数y =(a 2-1)x 在(-∞,+∞)上为减函数,则实数a 的取值范围是________________. 答案 (-2,-1)∪(1,2)解析 由y =(a 2-1)x 在(-∞,+∞)上为减函数,得0<a 2-1<1,∴1<a 2<2,即1<a <2或-2<a <-1.5.函数y =8-23-x (x ≥0)的值域是________. 答案 [0,8)解析 ∵x ≥0,∴-x ≤0,∴3-x ≤3, ∴0<23-x ≤23=8,∴0≤8-23-x <8, ∴函数y =8-23-x 的值域为[0,8).题型一 指数幂的运算例1 化简:(1)a 3b 23ab 2(a 14b 12)4a13-b13(a >0,b >0);(2)(-278)-23+(0.002)12--10(5-2)-1+(2-3)0.解 (1)原式=1122323311233a b a b ab a b -⎛⎫ ⎪⎝⎭=3111111226333+-++--a b =ab -1. (2)原式=(-278)23-+(1500)12--105-2+1=(-827)23+50012-10(5+2)+1=49+105-105-20+1=-1679. 思维升华 (1)指数幂的运算首先将根式、分数指数幂统一为分数指数幂,以便利用法则计算,还应注意:①必须同底数幂相乘,指数才能相加;②运算的先后顺序. (2)当底数是负数时,先确定符号,再把底数化为正数.(3)运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数.(1)[(0.06415)-2.5]23-3338-π0=________________________________________________________________________. (2)(14)12-·(4ab -1)3(0.1)-1·(a 3·b -3)12=________. 答案 (1)0 (2)85解析 (1)原式=253125641000-⎧⎫⎡⎤⎪⎪⎪⎪⎛⎫⎢⎥⎨⎬ ⎪⎢⎥⎝⎭⎪⎪⎣⎦⎪⎪⎩⎭-⎝⎛⎭⎫27813-1=⎣⎡⎦⎤⎝⎛⎭⎫4103152()523⨯-⨯-⎣⎡⎦⎤⎝⎛⎭⎫32313-1=52-32-1=0. (2)原式=2×432×a 32b32-10a 32b32-=85. 题型二 指数函数的图象及应用例2 (1)函数f (x )=a x-b的图象如图所示,其中a ,b 为常数,则下列结论正确的是________. ①a >1,b <0; ②a >1,b >0; ③0<a <1,b >0; ④0<a <1,b <0.(2)(2015·衡水模拟)若曲线|y |=2x +1与直线y =b 没有公共点,则b 的取值范围是________. 答案 (1)④ (2)[-1,1]解析 (1)由f (x )=a x -b 的图象可以观察出,函数f (x )=a x -b 在定义域上单调递减,所以0<a <1.函数f (x )=a x -b 的图象是在f (x )=a x 的基础上向左平移得到的,所以b <0. (2)曲线|y |=2x +1与直线y =b 的图象如图所示,由图象可知:如果|y |=2x +1与直线y =b 没有公共点,则b 应满足的条件是b ∈[-1,1].思维升华 (1)已知函数解析式判断其图象一般是取特殊点,判断所给的图象是否过这些点,若不满足则排除.(2)对于有关指数型函数的图象问题,一般是从最基本的指数函数的图象入手,通过平移、伸缩、对称变换而得到.特别地,当底数a 与1的大小关系不确定时应注意分类讨论.(3)有关指数方程、不等式问题的求解,往往利用相应的指数型函数图象,数形结合求解.(1)在同一坐标系中,函数y =2x 与y =⎝⎛⎭⎫12x的图象之间的关系,下列判断正确的是________.①关于y 轴对称; ②关于x 轴对称; ③关于原点对称;④关于直线y =x 对称.(2)已知函数f (x )=|2x -1|,a <b <c 且f (a )>f (c )>f (b ),则下列结论中,一定成立的是________. ①a <0,b <0,c <0; ②a <0,b ≥0,c >0; ③2-a <2c; ④2a +2c <2. 答案 (1)① (2)④ 解析 (1)∵y =⎝⎛⎭⎫12x=2-x , ∴它与函数y =2x 的图象关于y 轴对称. (2)作出函数f (x )=|2x -1|的图象,如图, ∵a <b <c ,且f (a )>f (c )>f (b ),结合图象知 0<f (a )<1,a <0,c >0, ∴0<2a <1.∴f (a )=|2a -1|=1-2a <1, ∴f (c )<1,∴0<c <1.∴1<2c <2,∴f (c )=|2c -1|=2c -1, 又∵f (a )>f (c ),∴1-2a >2c -1, ∴2a +2c <2.题型三 指数函数的图象和性质命题点1 比较指数式的大小例3 (1)下列各式比较大小正确的是________. ①1.72.5>1.73; ②0.6-1>0.62; ③0.8-0.1>1.250.2;④1.70.3>0.93.1.(2)设a =⎝⎛⎭⎫3525,b =⎝⎛⎭⎫2535,c =⎝⎛⎭⎫2525,则a ,b ,c 的大小关系是________. 答案 (1)②④ (2)a >c >b解析 (1)①中, ∵函数y =1.7x 在R 上是增函数, 2.5<3,∴1.72.5<1.73,错误;②中,∵y =0.6x 在R 上是减函数,-1<2, ∴0.6-1>0.62,正确;③中,∵(0.8)-1=1.25,∴问题转化为比较1.250.1与1.250.2的大小. ∵y =1.25x 在R 上是增函数,0.1<0.2, ∴1.250.1<1.250.2,即0.8-0.1<1.250.2,错误; ④中,∵1.70.3>1,0<0.93.1<1, ∴1.70.3>0.93.1,正确. (2)∵y =⎝⎛⎭⎫25x为减函数, ∴⎝⎛⎭⎫2535<⎝⎛⎭⎫2525 即b <c ,又a c =⎝⎛⎭⎫3525⎝⎛⎭⎫2525=⎝⎛⎭⎫3225>⎝⎛⎭⎫320=1, ∴a >c ,故a >c >b .命题点2 解简单的指数方程或不等式例4 设函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是__________.答案 (-3,1)解析 当a <0时,不等式f (a )<1可化为⎝⎛⎭⎫12a-7<1,即⎝⎛⎭⎫12a <8,即⎝⎛⎭⎫12a <⎝⎛⎭⎫12-3,因为0<12<1,所以a >-3,此时-3<a <0;当a ≥0时,不等式f (a )<1可化为a <1,所以0≤a <1.故a 的取值范围是(-3,1).命题点3 和指数函数有关的复合函数的性质例5 设函数f (x )=ka x -a -x (a >0且a ≠1)是定义域为R 的奇函数. (1)若f (1)>0,试求不等式f (x 2+2x )+f (x -4)>0的解集;(2)若f (1)=32,且g (x )=a 2x +a -2x -4f (x ),求g (x )在[1,+∞)上的最小值.解 因为f (x )是定义域为R 的奇函数,所以f (0)=0,所以k -1=0,即k =1,f (x )=a x -a -x . (1)因为f (1)>0,所以a -1a>0,又a >0且a ≠1,所以a >1.因为f ′(x )=a x ln a +a -x ln a =(a x +a -x )ln a >0,所以f (x )在R 上为增函数,原不等式可化为f (x 2+2x )>f (4-x ), 所以x 2+2x >4-x ,即x 2+3x -4>0, 所以x >1或x <-4.所以不等式的解集为{x |x >1或x <-4}. (2)因为f (1)=32,所以a -1a =32,即2a 2-3a -2=0,所以a =2或a =-12(舍去).所以g (x )=22x +2-2x -4(2x -2-x ) =(2x -2-x )2-4(2x -2-x )+2.令t (x )=2x -2-x (x ≥1),则t (x )在(1,+∞)为增函数(由(1)可知),即t (x )≥t (1)=32,所以原函数为ω(t )=t 2-4t +2=(t -2)2-2,所以当t =2时,ω(t )min =-2,此时x =log 2(1+2). 即g (x )在x =log 2(1+2)时取得最小值-2. 思维升华 指数函数的性质及应用问题解题策略(1)比较大小问题.常利用指数函数的单调性及中间值(0或1)法.(2)简单的指数方程或不等式的求解问题.解决此类问题应利用指数函数的单调性,要特别注意底数a 的取值范围,并在必要时进行分类讨论.(3)解决指数函数的综合问题时,要把指数函数的概念和性质同函数的其他性质(如奇偶性、周期性)相结合,同时要特别注意底数不确定时,对底数的分类讨论.(1)已知函数f (x )=2|2x -m |(m 为常数),若f (x )在区间[2,+∞)上是增函数,则m的取值范围是________.(2)函数f (x )=⎝⎛⎭⎫1422-x x 的值域为__________. 答案 (1)(-∞,4] (2)(0,4]解析 (1)令t =|2x -m |,则t =|2x -m |在区间[m 2,+∞)上单调递增,在区间(-∞,m2]上单调递减.而y =2t 为R 上的增函数,所以要使函数f (x )=2|2x -m |在[2,+∞)上单调递增,则有m2≤2,即m ≤4,所以m 的取值范围是(-∞,4].(2)令t =x 2-2x ,则有y =⎝⎛⎭⎫14t,根据二次函数的图象可求得t ≥-1,结合指数函数y =⎝⎛⎭⎫14x的图象可得0<y ≤⎝⎛⎭⎫14-1,即0<y ≤4.4.换元法在和指数函数有关的复合函数中的应用典例 (1)函数y =⎝⎛⎭⎫14x -⎝⎛⎭⎫12x +1在区间[-3,2]上的值域是________. (2)函数f (x )=2211()2-++x x 的单调减区间为_________________________.思维点拨 (1)求函数值域,可利用换元法,设t =⎝⎛⎭⎫12x,将原函数的值域转化为关于t 的二次函数的值域.(2)根据复合函数的单调性“同增异减”进行探求. 解析 (1)因为x ∈[-3,2], 所以若令t =⎝⎛⎭⎫12x ,则t ∈⎣⎡⎦⎤14,8, 故y =t 2-t +1=⎝⎛⎭⎫t -122+34. 当t =12时,y min =34;当t =8时,y max =57.故所求函数值域为⎣⎡⎦⎤34,57. (2)设u =-x 2+2x +1,∵y =⎝⎛⎭⎫12u在R 上为减函数, ∴函数f (x )=2211()2-++x x 的减区间即为函数u =-x 2+2x +1的增区间.又u =-x 2+2x +1的增区间为(-∞,1], ∴f (x )的减区间为(-∞,1]. 答案 (1)⎣⎡⎦⎤34,57 (2)(-∞,1]温馨提醒 (1)解决和指数函数有关的复合函数的单调性或值域问题时,要熟练掌握指数函数的单调性,搞清复合函数的结构,利用换元法转化为基本初等函数的单调性或值域问题;(2)换元过程中要注意“元”的取值范围的变化.[方法与技巧]1.通过指数函数图象比较底数大小的问题,可以先通过令x =1得到底数的值,再进行比较. 2.指数函数y =a x (a >0,a ≠1)的性质和a 的取值有关,一定要分清a >1与0<a <1. 3.对与复合函数有关的问题,要弄清复合函数由哪些基本初等函数复合而成. [失误与防范]1.恒成立问题一般与函数最值有关,要与方程有解区别开来. 2.复合函数的问题,一定要注意函数的定义域.3.对可化为a 2x +b ·a x +c =0或a 2x +b ·a x +c ≥0 (≤0)形式的方程或不等式,常借助换元法解决,但应注意换元后“新元”的范围.A 组 专项基础训练 (时间:40分钟)1.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x <1,f (x -2),x ≥1,则f (log 27)的值为________.答案 74解析 由于log 24<log 27<log 28,即2<log 27<3,log 27-2=log 274<1,因此f (log 27)=f (log 27-2)=f ⎝⎛⎭⎫log 274=227log 4=74. 2.已知a =22.5,b =2.50,c =(12)2.5,则a ,b ,c 的大小关系是__________.答案 a >b >c解析 a >20=1,b =1,c <(12)0=1,∴a >b >c .3.若函数f (x )=a |2x -4|(a >0,a ≠1),满足f (1)=19,则f (x )的单调递减区间是____________.答案 [2,+∞)解析 由f (1)=19得a 2=19,所以a =13或a =-13(舍去),即f (x )=(13)|2x -4|.由于y =|2x -4|在(-∞,2]上递减,在[2,+∞)上递增, 所以f (x )在(-∞,2]上递增,在[2,+∞)上递减.4.若关于x 的方程|a x -1|=2a (a >0且a ≠1)有两个不等实根,则a 的取值范围是__________. 答案 ⎝⎛⎭⎫0,12 解析 方程|a x -1|=2a (a >0且a ≠1)有两个实数根转化为函数y =|a x -1|与y =2a 有两个交点. ①当0<a <1时,如图(1),∴0<2a <1,即0<a <12.②当a >1时,如图(2),而y =2a >1不符合要求.综上,0<a <12.5.计算:⎝⎛⎭⎫3213-×⎝⎛⎭⎫-760+814×42- ⎝⎛⎭⎫-2323=________.答案 2 解析 原式=113133442222 2.331+-=⎛⎫⎛⎫⨯⨯⎪ ⎪⎝⎭⎝⎭6.已知函数y =a x +b (b >0)的图象经过点P (1,3),如图所示,则4a -1+1b 的最小值为______. 答案 92解析 由函数y =a x+b (b >0)的图象经过点P (1,3),得a +b =3,所以a -12+b 2=1,又a >1,则4a -1+1b =⎝ ⎛⎭⎪⎫4a -1+1b ⎝ ⎛⎭⎪⎫a -12+b 2=2+12+2b a -1+a -12b ≥52+22b a -1·a -12b=92,当且仅当2b a -1=a -12b ,即a =73,b =23时取等号,所以4a -1+1b 的最小值为92. 7.已知正数a 满足a 2-2a -3=0,函数f (x )=a x ,若实数m 、n 满足f (m )>f (n ),则m 、n 的大小关系为________.答案 m >n解析 ∵a 2-2a -3=0,∴a =3或a =-1(舍).函数f (x )=3x 在R 上递增,由f (m )>f (n ),得m >n . 8.已知函数f (x )=2x -12x ,函数g (x )=⎩⎪⎨⎪⎧f (x ),x ≥0,f (-x ),x <0,则函数g (x )的最小值是________. 答案 0解析 当x ≥0时,g (x )=f (x )=2x -12x 为单调增函数,所以g (x )≥g (0)=0;当x <0时,g (x )=f (-x )=2-x -12-x 为单调减函数,所以g (x )>g (0)=0,所以函数g (x )的最小值是0. 9.已知函数()43132-+=ax x f x ⎛⎫⎪⎝⎭(1)若a =-1,求f (x )的单调区间;(2)若f (x )有最大值3,求a 的值.解 (1)当a =-1时,f (x )=⎝⎛⎭⎫13-x 2-4x +3,令g (x )=-x 2-4x +3,由于g (x )在(-∞,-2]上单调递增,在(-2,+∞)上单调递减,而y =⎝⎛⎭⎫13t 在R 上单调递减,所以f (x )在(-∞,-2]上单调递减,在(-2,+∞)上单调递增,即函数f (x )的单调递增区间是(-2,+∞),单调递减区间是(-∞,-2].(2)令g (x )=ax 2-4x +3,f (x )=⎝⎛⎭⎫13g (x ),由于f (x )有最大值3,所以g (x )应有最小值-1,因此必有⎩⎨⎧ a >0,3a -4a =-1,解得a =1,即当f (x )有最大值3时,a 的值为1.10.已知函数f (x )=e x -e -x (x ∈R ,且e 为自然对数的底数).(1)判断函数f (x )的单调性与奇偶性;(2)是否存在实数t ,使不等式f (x -t )+f (x 2-t 2)≥0对一切x ∈R 都成立?若存在,求出t ;若不存在,请说明理由.解 (1)∵f (x )=e x -⎝⎛⎭⎫1e x ,∴f ′(x )=e x +⎝⎛⎭⎫1e x ,∴f ′(x )>0对任意x ∈R 都成立,∴f (x )在R 上是增函数.∴f (x )的定义域为R ,且f (-x )=e -x -e x =-f (x ),∴f (x )是奇函数.(2)存在.由(1)知f (x )在R 上是增函数和奇函数,则f (x -t )+f (x 2-t 2)≥0对一切x ∈R 都成立,⇔f (x 2-t 2)≥f (t -x )对一切x ∈R 都成立,⇔x 2-t 2≥t -x 对一切x ∈R 都成立,⇔t 2+t ≤x 2+x =⎝⎛⎭⎫x +122-14对一切x ∈R 都成立, ⇔t 2+t ≤(x 2+x )min =-14⇔t 2+t +14=⎝⎛⎭⎫t +122≤0, 又⎝⎛⎭⎫t +122≥0,∴⎝⎛⎭⎫t +122=0,∴t =-12. ∴存在t =-12,使不等式f (x -t )+f (x 2-t 2)≥0对一切x ∈R 都成立. B 组 专项能力提升(时间:20分钟)11.函数f (x )=a |x +1|(a >0,a ≠1)的值域为[1,+∞),则f (-4)与f (1)的大小关系是____________. 答案 f (-4)>f (1)解析 由题意知a >1,∴f (-4)=a 3,f (1)=a 2,由单调性知a 3>a 2,∴f (-4)>f (1).12.已知函数f (x )=x -4+9x +1,x ∈(0,4),当x =a 时,f (x )取得最小值b ,则在直角坐标系中函数g (x )=⎝⎛⎭⎫1a |x +b |的图象为________.答案 ②解析 f (x )=x -4+9x +1=x +1+9x +1-5≥29-5=1,取等号时x +1=9x +1,此时x =2.所以a =2,b =1,则g (x )=⎝⎛⎭⎫12|x +1|.g (x )的图象可以看作是y =⎝⎛⎭⎫12|x |的图象向左平移一个单位得到的,②符合要求.13.关于x 的方程⎝⎛⎭⎫32x =2+3a 5-a 有负数根,则实数a 的取值范围为__________.答案 ⎝⎛⎭⎫-23,34 解析 由题意,得x <0,所以0<⎝⎛⎭⎫32x <1,从而0<2+3a 5-a<1,解得-23<a <34. 14.当x ∈(-∞,-1]时,不等式(m 2-m )·4x -2x <0恒成立,则实数m 的取值范围是________. 答案 (-1,2) 解析 原不等式变形为m 2-m <⎝⎛⎭⎫12x ,因为函数y =⎝⎛⎭⎫12x 在(-∞,-1]上是减函数,所以⎝⎛⎭⎫12x ≥⎝⎛⎭⎫12-1=2,当x ∈(-∞,-1]时,m 2-m <⎝⎛⎭⎫12x 恒成立等价于m 2-m <2,解得-1<m <2.15.已知定义在实数集R 上的奇函数f (x )有最小正周期2,且当x ∈(0,1)时,f (x )=2x4x +1. (1)求函数f (x )在(-1,1)上的解析式;(2)判断f (x )在(0,1)上的单调性;(3)当λ取何值时,方程f (x )=λ在(-1,1)上有实数解?解 (1)∵f (x )是x ∈R 上的奇函数,∴f (0)=0.设x ∈(-1,0),则-x ∈(0,1),f (-x )=2-x4-x +1=2x4x +1=-f (x ), ∴f (x )=-2x 4x +1,∴f (x )=⎩⎪⎨⎪⎧ -2x 4x +1,x ∈(-1,0),0,x =0,2x4x +1,x ∈(0,1).(2)设0<x 1<x 2<1,f (x 1)-f (x 2)=(1222x x -)+(221221+2+2-x x x x )(41x +1)(42x +1)=(21x -22x )(1-212+x x )(41x +1)(42x +1), ∵0<x 1<x 2<1,1222,x x ∴< 120221+=,x x >∴f (x 1)-f (x 2)>0,∴f (x )在(0,1)上为减函数.(3)∵f (x )在(0,1)上为减函数,∴2141+1<f (x )<2040+1,即f (x )∈⎝⎛⎭⎫25,12. 同理,f (x )在(-1,0)上时,f (x )∈⎝⎛⎭⎫-12,-25. 又f (0)=0,当λ∈⎝⎛⎭⎫-12,-25∪⎝⎛⎭⎫25,12, 或λ=0时,方程f (x )=λ在x ∈(-1,1)上有实数解.。
指数函数和对数函数复习(有详细知识点和习题详解)
指数函数和对数函数复习(有详细知识点和习题详解)一、指数的性质一)整数指数幂整数指数幂的概念是指:a的n次方等于a乘以a的n-1次方,其中a不等于0,n为正整数。
另外,a的-n次方等于1除以a的n次方,其中a不等于0,n为正整数。
整数指数幂的运算性质包括:(1)a的m次方乘以a的n次方等于a的m+n次方;(2)a的n次方的m次方等于a的mn次方;(3)a乘以b的n次方等于a的n次方乘以b的n次方。
其中,a除以a的n次方等于a的n-1次方,a的m-n次方等于a的m除以a的n次方,an次方根的概念是指,如果一个数的n次方等于a,那么这个数叫做a的n次方根,记作x=√a。
例如,27的3次方根等于3,-27的3次方根等于-3,32的5次方根等于2,-32的5次方根等于-2.a的n次方根的性质包括:如果n是奇数,则a的n次方根等于a;如果n是偶数且a大于等于0,则a的正的n次方根等于a,a的负的n次方根等于负的a;如果n是偶数且a小于0,则a的n次方根没有意义,即负数没有偶次方根。
二)例题分析例1:求下列各式的值:(1)3的-8次方;(2)(-10)的2次方;(3)4的(3-π)次方;(4)(a-b)的2次方,其中a大于b。
例2:已知a小于b且n大于1,n为正整数,化简n[(a-b)/(a+b)]。
例3:计算:7+40+7-40.例4:求值:(59/24)+(59-45)/24 + 25×(5-2)/24.解:略。
二)分数指数幂1.分数指数幂当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式,例如:$5\sqrt[10]{a^5}=a^{\frac{1}{2}}$,$3\sqrt[12]{a^3}=a^{\frac{1}{4}}$。
当根式的被开方数不能被根指数整除时,根式也可以写成分数指数幂的形式,例如:$\sqrt[4]{a^5}=a^{\frac{5}{4}}$。
规定:1)正数的正分数指数幂的意义是$a^{\frac{p}{q}}=\sqrt[q]{a^p}$。
指数函数知识点及其习题(附答案)
指数函数知识点及其习题(附答案)〖2.1〗指数函数2.1.1指数与指数幂的运算(1)根式的概念①如果,,,1nxa a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次⽅根.当n 是奇数时,a 的n 次当n 是偶数时,正数a 的正的n负的n次⽅根⽤符号表⽰;0的n 次⽅根是0;负数a 没有n 次⽅根.n 叫做根指数,a 叫做被开⽅数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a≥.n a =;当na =;当n(0)|| (0)a a a a a ≥?==?-①正数的正分数指数幂的意义是:0,,,m naa m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:1()0,,,mm nn a的负分数指数幂没有意义.注意⼝诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)r s r s a a a a r s R +?=>∈②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r r ab a b a b r R =>>∈2.1.2指数函数及其性质2.1指数函数练习1.下列各式中成⽴的⼀项()A .7177)(m n mn =B .31243)3(-=-C .43433)(y x y x +=+D .3339=2.化简)31()3)((656131212132b a b a b a ÷-的结果A .a 6B .a -C .a 9-D .29a3.设指数函数)1,0()(≠>=a a a x f x ,则下列等式中不正确的是()A .f (x +y )=f(x )·f (y )B .)()(y f x f y x f =-)( C .)()]([)(Q n x f nx f n∈=D .)()]([·)]([)(+∈=N n y f x f xy f nnn4.函数210)2()5(--+-=x x y()A .}2,5|{≠≠x x xB .}2|{>x xC .}5|{>x xD .}552|{><a y =在[-1,1]上的最⼤值与最⼩值的差是1,则底数a 等于()A .251+ B .25251± D .215± 6.当a ≠0时,函数y ax b =+和y b ax =的图象只可能是()7.函数||2)(x x f -=的值域是() A .]1,0(B .)1,0(C .),0(+∞D .R8.函数>≤-=-0,0,12)(21x x x x f x ,满⾜1)(>x f 的x 的取值范围()A .)1,1(-B . ),1(+∞-C .}20|{-<>x x x 或D .}11|{-<>x x x 或 9.函数22)21(++-=x x y 得单调递增区间是() A .]21,1[-B .]1,(--∞C .),2[+∞D .]2,21[10.已知2)(xx e e x f --=,则下列正确的是()B .偶函数,在R 上为增函数C .奇函数,在R 上为减函数D .偶函数,在R 上为减函数11.已知函数f (x )的定义域是(1,2),则函数)2(x f 的定义域是 . 12.当a >0且a ≠1时,函数f (x )=a x -2-3必过定点 .三、解答题: 13.求函数y x x =--1511的定义域.14.若a >0,b >0,且a +b =c ,求证:(1)当r >1时,a r +b r <c r ;(2)当r <1时,a r +b r >c r .15.已知函数11)(+-=x x a a x f (a >1).(1)判断函数f (x )的奇偶性;(2)证明f (x )在(-∞,+∞)上是增函数.16.函数f(x)=a x(a>0,且a ≠1)在区间[1,2]上的最⼤值⽐最⼩值⼤a 2,求a 的值.2.1指数函数练习参考答案⼀、DCDDD AAD D A⼆、11.(0,1); 12.(2,-2);三、13.解:要使函数有意义必须:x x x x x -≠-≠≠≠101010∴定义域为:{}x x R x x ∈≠≠且01,14.解:rrrrr c b c a c b a ??+=+,其中10,10<<<<c a . 当r >1时,1=++? c b c a c b c a rr,所以a r +b r <c r;当r <1时,1=+>??+ c b c a c b c a rr,所以a r +b r >c r .15.解:(1)是奇函数.(2)设x 1<x 2,则1111)()(221121+--+-=-x x x x a a a a x f x f 。
指数函数知识点总结及练习
指数函数知识点总结及练习 1.指数函数的定义:设 0>a ,1≠a ,x 是任意实数,我们称()x y f x a ==,以a 为底数的指数函数。
2. 指数函数的图形﹕设0>a ,0≠a ,x a x f y ==)(,则(1)当1>a 时 (2)当10<<a 时3. 由图形可以得知﹕ (1)图形必过点)1,0(且渐近线为x 轴.(2)对于任意实数x ﹐恒使得x a 大于0﹐故图形必在x 轴上方.(3)①当1>a 时﹐则)(x f y =为严格递增函数.②当10<<a 时﹐则)(x f y =为严格递减函数.4. 图形与图形的对称及平移﹕原函数 变换 新函数()x f x a = 对称y 轴 ()y f x =-对称x 轴 ()y f x -=对称原点 ()y f x -=-沿x 轴方向移动h 单位 ()y f x h =-沿y 轴方向移动k 单位 ()y k f x -=x【练习题】用描点的方式作出x y 2=的图形.例2:(讲义1-11老师讲解3)(1)试作出x y 2=之图形.(2)利用上式之图形作出下列各函数图形①2x y -= ②2x y =-③ 2xy = ④42x y =⨯x y【练习题】(讲义1-11学生练习3) (1)试作出x y 3=之图形.(2)利用上式之图形作出下列各函数图形①x y 3-= ②x y -=3③ x y 3= ④13+=x y例2:解下面两个方程式:(1)()327323=+x . (2)03349=+⋅-x xx, 则x的范围为何?例5:若0--x224>x, 则x的范围为何?【练习题】若0⋅-x+3349>。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
指数及指数函数
1、指数与指数幂的运算 (1)根式的概念
①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.
当n 是奇数时,a 的n
当n 是偶数时,正数a 的正的n n 次方根用符号 0的n 次方根是0;负数a 没有n 次方根.
根式,这里n 叫做根指数,a 叫做被开方数. 当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥. ③根式的性质:
n a =;
当n a =;
当n 为偶数时,
(0)
|| (0) a a a a a ≥⎧==⎨
-<⎩
. (2)分数指数幂的概念
①正数的正分数指数幂是:0,,,m n
a a m n N +=>∈且1)n >.
②正数的负分数指数幂是: 1()0,,,m
m n n a
a m n N a -+==>∈且1)n >. 0的正分数指数幂等于0, 0的负分数指数幂没有意义. (3)分数指数幂的运算性质
①(0,,)r s r s a a a a r s R +⋅=>∈ ②r a ÷s a =r s a -()0,,a r s R >∈; ③()r
s a =rs a ()0,,a r s R >∈;
④()r
ab =r r a b ⋅()0,0,a b r R >>∈; 2、指数函数及其性质
定义
函数(0x y a a =>且1)a ≠叫做指数函数
图象
1a > 01a <<
定义域 R
值域 (0,+∞)
过定点 图象过定点(0,1),即当x=0时,y=1.
奇偶性 非奇非偶
单调性
在R 上是增函数
在R 上是减函数
函数值的 变化情况
y >1(x >0), y=1(x=0), 0<y <1(x <0)
y >1(x <0), y=1(x=0), 0<y <1(x >0)
a 变化对
图象的影 响 在第一象限内,a 越大图象越高,越靠近y 轴;
在第二象限内,a 越大图象越低,越靠近x 轴.
在第一象限内,a 越小图象越高,越靠近y 轴;
在第二象限内,a 越小图象越低,越靠近x 轴.
例题讲解 一、指数
1、化简[32
)5(-]4
3的结果为 ( ) A .5 B .5 C .-5
D .-5
2、211
5
113
3
662
2
1()(3)()=3
a b a b a b -÷__________.
二、指数函数
3、已知指数函数图像经过点)3,1(-p ,则=)3(f 4
x
a y =x
y
(0,1)
O
1
y =x a y =x
y
(0,1)
O
1
y =
5.
6、若21(5)2x f x -=-,则(125)f = . 三、指数函数的图像问题
7、若函数(1)(0,1)x y a b a a =-+>≠的图像经过第一、三、四象限,则一定有( ) A .01>>b a 且 B .010<<<b a 且
C .010><<b a 且
D .11>>b a 且
8、函数()2()1x
f x a =-在R 上是减函数,则a 的取值范围是( ) A 、1>a B 、2<a C 、2a < D 、12a <<9、当a ≠0时,函数y ax b =+和y b ax =的图象只可能是
( )
四、定义域与值域问题 10、求下列函数的定义域和值域 (1)x x
y 212+= (2)222)31(-=x y (4)2
221++-⎪
⎭
⎫
⎝⎛=x x y (5)1
121+-⎪
⎭
⎫
⎝⎛=x x y
11、下列函数中,值域为()+∞,0的函数是( )
x
y A 23.= 12.-=x
y B 12.+=x
y C x
y D -⎪
⎭
⎫
⎝⎛=221.
12、设集合2{|3,},{|1,}x S y y x R T y y x x R ==∈==-∈,则S T 是 ( )
A 、∅
B 、T
C 、S
D 、有限集 13、若函数()1222
-=--a
ax x
x f 的定义域为R ,则实数a 的取值范围 .
14、若函数0322≤--x x ,求函数x x y 4222⋅-=+的最大值和最小值.
五、比较大小问题
15、设.)3
2
(,)32(2.15.1-==b a 那么实数a 、b 与1的大小关系正确的是 ( )
A. 1<<a b
B. 1<<b a
C. a b <<1
D. b a <<1
16、比较大小32
21)(,32
51)(,31
2
1)(
六、定点问题
17、函数)10(33≠>+=-a a a y x 且的图象恒过定点___________. 七、单调性问题
18、函数x
x y 2221-⎪
⎭
⎫
⎝⎛=的单调增区间为_____________
19、函数)10()(≠>=a a a x f x 且在区间]2,1[上的最大值比最小值大2
a
,则=a ________ 20、函数1
)1(222
)(+--=x a x x f 在区间),5[+∞上是增函数,则实数a 的取值范围是 ( )
A. [6,+)∞
B. ),6(+∞
C. ]6,(-∞
D. )6,(-∞
21、设01a <<,解关于x 的不等式2
2
232
223
x x x
x a a -++->.
22、已知函数225
13x x y ++⎛⎫
= ⎪
⎝⎭,求其单调区间及值域.
八、函数的奇偶性问题
23、函数21
21
x x y -=+是( )
A 、奇函数
B 、偶函数
C 、既奇又偶函数
D 、非奇非偶函数
24、2()1()(0)21x F x f x x ⎛
⎫=+⋅≠ ⎪-⎝⎭
是偶函数,且()f x 不恒等于零,则()f x ( )
A 、是奇函数
B 、可能是奇函数,也可能是偶函数
C 、是偶函数
D 、不是奇函数,也不是偶函数 25、若函数1
41
)(++
=x
a x f 是奇函数,则=a _________ 26、如果函数)(x f 在区间[]
a a 24,2--上是偶函数,则a =_________。