微分方程与微分方程建模法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章微分方程模型
3.1微分方程与微分方程建模法
微分方程知识简介
我们要掌握常微分方程的一些基础知识,对一些可以求解的微分方程及其方 程组,要求掌握其解法,并了解一些方程的近似解法。 微分方程的体系: (1)初等积分法(一阶方程及几类可降阶为一阶的方程)
一阶线性微分方程组(常系数线性微分方程组的解法) (3)高阶线性微分方程 (高阶线性常系数微分方程解法)。其中还包括了常微分方程的基本定理
0.常数变易法: 常数变易法在上面的(1) (2) (3)三部分中都出现过,它是
由线性齐次方程(一阶或高阶)或方程组的解经常数变易后求相应的非齐次 方程或方程组的解的一种方法。
1.初等积分法:掌握变量可分离方程、齐次方程的解法,掌握线性方程的解法, 掌握全微
分方程(含积分因子)的解法,会一些一阶隐式微分方程的解法(参 数法),会几类可以降阶的高阶方程的解法(恰当导数方程)。
dx f(x)g(y);
M(x)N(y)dx P(x)Q(y)dy 0;
常数变易法:(1)线性方程,y p (x )y f (x ),
(2)伯努里方程,y p(x)y f (x)y n ,
积分因子法:化为全微分方程,按全微分方程求解。
对于一阶隐式微分方程F (x,y, y ) 0,有
参数法:(1)不含x 或y 的方程:F (x,y ) 0,F (y,y ) 0;
对于高阶方程,有
分离变量法:(1)可分离变量方程: (2)齐次方程: dy dx dy dx f(ax by C ); ux vy w
⑵可解出x或y的方程:y f(x,y),x f ( y, y );
降阶法:F(x,y(k),y(k 1), ,y(n))
F(y,y,y) 0;
恰当导数方程
一阶方程的应用问题(即建模问题)
2.一阶线性微分方程组:本部分主要内容有:一是一阶线性微分方程组的基本
理论(线性齐次、非齐次微分方程组的通解结构,刘维尔公式等),二是常系数线性微分方程组的解法(求特征根,单根与重根[待定系数法]),三是常数变易法。本部分内容与线性代数关系密切,如线性空间,向量的线性相关与线性无关,基与维数,特征方程、特征根与特征向量,矩阵的若当标准型等。
3.高阶线性微分方程:了解高阶线性微分方程的基本理论(线性齐次、非齐次
微分方程的通解结构,刘维尔公式等);
n 阶线性常系数微分方程解法:(1)求常系数齐次线性微分方程基本解组的待定指数函数法;(2)求一般非齐次线性方程解的常数变易法;(3)求特殊型非齐次常系数线性方程解的待定系数法;(4)求解初值问题的拉普拉斯变换法;(5)求二阶线性方程的幂级数解法。
4.常微分方程的基本定理:常微分方程的几何解释(线素场),初值问题解的存在与唯一性定理(条件与结论),求方程的近似解(欧拉折线法与毕卡逐次逼近法),解的延展定理与比较定理、唯一性定理证明解的存在区间(如为左右无穷大),奇解与包络线,克莱罗方程。
5.常微分方程的稳定性理论:掌握稳定性的一些基本概念,以及运用特征根法判断常系数线性方程(组)的解的稳定性,运用李雅普诺夫函数法判断一般方程(组)的解的稳定性。
6.常微分方程的定性理论:掌握定性理论的一些基本概念,运用特征根法判断奇点类型,极限环。
7.差分方程。
8.偏微分方程。
二、数学建模的微分方程方法
微分方程作为数学科学的中心学科,已经有三百多年的发展历史,其解法和理论已日臻完善,可以为分析和求得方程的解(或数值解)提供足够的方法,使得微分方程模型具有极大的普遍性、有效性和非常丰富的数学内涵。微分方程建模包括常微分方程建模、偏微分方程建模、差分方程建模及其各种类型的方程组建模。微分方程建模对于许多实际问题的解决是一种极有效的数学手段,对于现
实世界的变化,人们关注的往往是其变化速度、加速度以及所处位置随时间的发展规律,其规律一般可以用微分方程或方程组表示,微分方程建模适用的领域比
较广,利用它可建立纯数学(特别是几何)模型,物理学(如动力学、电学、核物理学等)模型,航空航天(火箭、宇宙飞船技术)模型,考古(鉴定文物年代)模型,交通(如电路信号,特别是红绿灯亮的时间)模型,生态(人口、种群数量)模型,环境(污染)模型,资源利用(人力资源、水资源、矿藏资源、运输调度、工业生产管理)模型,生物(遗传问题、神经网络问题、动植物循环系统)模型,医学(流行病、传染病问题)模型,经济(商业销售、财富分布、资本主义经济周期性危机)模型,战争(正规战、游击战)模型等。其中的连续模型适用于常微分方程和偏微分方程及其方程组建模,离散模型适用于差分方程及其方程组建模。下面,我们给出如何利用方程知识建立数学模型的几种方法。
1 •利用题目本身给出的或隐含的等量关系建立微分方程模型。这就需要我们
仔细分析题目,明确题意,找出其中的等量关系,建立数学模型。
例如在光学里面,旋转抛物面能将放在焦点处的光源经镜面反射后成为平行光线,为了证明具有这一性质的曲线只有抛物线,我们就是利用了题目中隐含的
条件一一入射角等于反射角来建立微分方程模型的[5]。又如在天文学、气象学中常用到的等角轨线,已知曲线或曲线族(C),求曲线l (等角轨线或正交轨线),使丨与
(C)中每条曲线相交成给定的角度(这是题目中明确给出的条件,即曲线的切线相交成给定的角度,这样,就在它们的导数之间建立了联系),又题目中隐
含的条件是:在I与(c)中曲线相交点处,它们的函数值相等;这样,我们只要求出已知曲线或曲线族的微分方程,根据它们之间的联系,就可以建立等角轨线的微分方程模型,从而求出等角轨线的方程[5]0
2 •从一些已知的基本定律或基本公式出发建立微分方程模型。我们要熟悉一些
常用的基本定律、基本公式。例如从几何观点看,曲线y=y(x)上某点的切线斜率即函数y=y(x)在该点的导数;力学中的牛顿第二运动定律:f=ma,其中加速度a
就是位移对时间的二阶导数,也是速度对时间的一阶导数;电学中的基尔霍夫定律等。从这些知识出发我们可以建立相应的微分方程模型。
例如在动力学中,如何保证高空跳伞者的安全问题。对于高空下落的物体,我们可以利用牛顿第二运动定律建立其微分方程模型,设物体质量为m,空气阻
力系数为k,在速度不太大的情况下,空气阻力近似与速度的平方成正比;设时
刻t时物体的下落速度为v,初始条件:v(o)0。由牛顿第二运动定律建立其微
分方程模型:
dv , 2
m mg kv
dt
求解模型可得:
^mg(exp[2^J kg] 1)
\ m
v J—
、k(exp[2t、kg] 1) 勺m
由上式可知,当t时,物体具有极限速度:
.. mg
v1 t imv \ k,