第三章 力系的平衡
第三章力系的平衡静定与超静定的概念
FCy
FE
FE=250N,
[CE]
整体]
F
q FQ
Fix=0, FAx=0
A
FAx
B
C
FAy 1 1
2
2
MA=0, –F·1+FB·2–FQ·4–M+FE·8=0
FB
ME
D 2m FE
FQ=4· FB=1500N q Fiy=0, FAy+FB+FE–F–FQ=0
FAy=–250N
例4-15:三根自重不计的杆组成构件如图示,巳知:F=600N,
得: FAx= –400N,
Fiy=0, FAy–F =0
得:FAy= 1000N,
M F3 [BD]
Miz 0
空间平行力系平衡方程
Fiz 0
Mix 0 Miy 0
例3-6:三轮平板车放光滑地面上,自重为:W,货重为F, 已知:F=10kN,W=8kN,试求各轮约束力的值。
解:这是空间平行力系。
z
Mix =0,
(200–80)W–200·FA =0; FA=4.8kN,
Miy =0,
y
FC
FAx= –2.8kN。
如校核方程: MCi=0, 应满足。
例3-9:图示雨蓬结构,因雨蓬对称结构可简化为平面结构,自
重不计,已知有力F作用,试求三根支撑杆的约束力。
解: 试用三力矩方程
B
MA 0,
M C 0,
2F1 5F 0, 1m
5F F1 2
1m
F2 4F 0 A
C 1m
3
M F3 2
0 32 42
FAx
B
3m
FAy
MD
第三章力系的平衡介绍
工 程 力 学
§3-2
平面力系的平衡条件
F1 Fn F3
1、平面任意力系的平衡方程 F2 平面任意力系平衡的充要条件是: 力系的主矢和对任意点的主矩都等于零。
0 FR
第 三 章 力 系 的 平 衡
Mo 0
平面任意力系
FR ( Fx ) 2 ( Fy ) 2
M O M O (F )
2
0
F
x
0,
F
y
0,
F
z
0
即:汇交力系的平衡条件是力系中所有各力在各个坐
标轴中每一轴上的投影的代数和分别等于零。
工 程 力 学
三、空间平行力系的平衡方程
第 三 章 力 系 的 平 衡
F
z
0,
M (F ) 0, M (F ) 0
x
y
工 程 力 学
四、空间力偶系的平衡方程
第 三 章 力 系 的 平 衡
工 程 力 学
例:如图所示为一种起吊装置的结构简图。图中尺寸d , 载荷F, <FAD =60均为已知。若不计各杆自重,试求杆AF与杆AD在各 自的约束处所受的约束力。
第 三 章 力 系 的 平 衡
工 程 力 学
第 三 章 力 系 的 平 衡
工 程 力 学
例:滑轮支架系统如图所示。已知G,a,r,θ ,其余物体重 量不计,试求A和B的约束力。
工 程 力 学
3、平面汇交力系的平衡方程
F
x
0,
F
y
0
4、平面力偶系的平衡条件
第 三 章 力 系 的 平 衡
M 0
即:力偶系各力偶力偶矩的代数和等于零。
工 程 力 学
理论力学-3-力系的平衡
z
F2
O
F1
F
z
0
M F 0 M F 0
x y
自然满足,且
M F 0
z
M F 0
O
平面力系平衡方程的一般形式
于是,平面力系平衡 方程的一般形式为: z O y
Fx 0 Fy 0 M F 0 o
其中矩心 O 为力系作用面 内的任意点。
静不定次数:静不定问题中,未知量的个数与独立的平 衡方程数目之差。
多余约束:与静不定次数对应的约束,对于结构保持静 定是多余的,因而称为多余约束。 关于静不定问题的基本解法将在材料力学中介绍。
P A m a B q
解:对象:梁 受力:如图 方程:
C
b
F F
0, FAx P cosq 0, FAx P cosq # FAy FB P sin q 0 1 y 0, M A F 0, m FBa Pa bsinq 0 2
B A
FR FR
x
A
B
FR
A、B 连线不垂直于x 轴
B A
FR
x
3.3 平面力系的平衡方程 “三矩式” M A = 0, MB = 0 , MC = 0。
C B A C B A
FR FR
满足第一式? 满足第二式? 满足第三式?
B A
FR
FR
A、B、C 三点不 在同一条直线上
C A
B
M (F ) 0 Fy 0
A
FQ (6 2) FP 2 FB 4 W (12 2) 0
FQ FA FP FB W 0
理论力学:第3 章 力系的平衡
力系平衡是静力学研究的主要内容之一,也是静力学最重要的内容。其中平面力系的平衡又
是重要之重要内容,平面物系的平衡又是重要之重要内容。
事实上我们已经得到力系的平衡条件(充要):
R
0,M O
0 。下面将其写成代数方程即
平衡方程,用其解决具体问题。
3.1 平面力系的平衡条件与平衡方程
受力图如图(c),列解方程:
Y 0, P cos G sin 0
P
使 P 最小,则
G sin cos
G sin cos( )
cos( ) 1,
arctan 3
3652'
Pmin
G sin
20
3 5
12kN
4
另解:(几何法) 画自行封闭的力三角形,如图(d),则
Q
G(b
e) 50b a
Hale Waihona Puke 350.0kN∴ 使起重机正常工作的平衡重为:333.3kN≤Q≤350.0kN 注:也可按临界平衡状态考虑,求 Pmin 和 Pmax。 静力学的应用:
学习静力学有何用处?——上面几个例题有所反映。
例 1:碾子问题——满足工作条件的载荷设计。
例 2:梁平衡问题——结构静态设计(一类重要工程问题)。
分由由由图图图析(((:acb)))汽:::车受平面平行力mmm系EBB(((,FFF))易) 列解000,,,方程。下shl面只给出方程:
例 4 平行力系典型题目,稳定性问题且求范围。 行动式起重机的稳定性极其重要,要求具有很好的稳定裕度,满载时不向右翻倒,空载时不 向左翻倒。已知自重 G = 500kN,最大载荷 Pmax = 210kN,各种尺寸为:轨距 b = 3m,e = 1.5m, l = 10m,a = 6m,试设计平衡重 Q,使起重机能正常工作,且轨道反力不小于 50kN。
工程力学3-力系的平衡条件和平衡方程
例1 例1 求图示刚架的约束反力。
解:以刚架为研究对象,受力如图。
F x0:F A xq b0
P a A
q
b
F y0:F A yP0
P
MA(F)0:
MA
MAPa12q b2 0
FAx
A
FAy
q
解之得:
FAx qb
FAy P
MAPa 1 2qb 2
例2 例2 求图示梁的支座反力。
解:以梁为研究对象,受力如图。
坐标,则∑Fx=0自然满足。于是平面 平行力系的平衡方程为:
O
F2
x
F y 0 ; M O ( F ) 0
平面平行力系的平衡方程也可表示为二矩式:
M A ( F ) 0 ; M B ( F ) 0
其中AB连线不能与各力的作用线平行。
[例5] 已知:塔式起重机 P=700kN, W=200kN (最大起重量), 尺寸如图。求:①保证满载和空载时不致翻倒,平衡块
解: 1.分析受力
建立Oxy坐标系。 A处约束力分量为FAx和FAy ;钢 索的拉力为FTB。
解: 2.建立平衡方程
Fx=0
MAF= 0
- F Q 2 l- F W xF T Blsi= n0
FTB= FPlxs+ iF nQ2 l= 2FlWxFQ
FAx F TBco = s0
Fy=0
F A = x 2 F W x l F Q l co= s3 3 F lW 0xF 2 Q
[例1] 已知压路机碾子重P=20kN, r=60cm, 欲拉过h=8cm的障碍物。 求:在中心作用的水平力F的大小和碾子对障碍物的压力。
解: ①选碾子为研究对象 ②取分离体画受力图
工程力学力系平衡
D
FC
l
A B
l
FP
D
第 三 种 情 形
l
C FA A l FCy l B l FP D
FCx
C
FA A
l
B
l
FP
D
第 三 种 情 形
FCy
FCx C
E
MA ( F ) = 0 : FCx l -FP 2l = 0 MC ( F ) = 0 : -FA l - FP 2l = 0 ME ( F ) = 0 : -FCy 2l -FA l = 0
A
F =0
x
l -FQ -FW x FTB lsin=0 2 l FP x+FQ 2 = 2 FW x F FTB= Q lsin l
F =0
y
FAx FTB cos=0 FQ 2 FW x FQl FW FAx= x cos30 = 3 l 2 l FAy-FQ-FP+FTB sin=0
例题
均质方板由六根杆支 撑于水平位臵,直杆 两端各用球铰链与扳 和地面连接。板重为 P,在A 处作用一水 平 力 F , 且 F=2P , 不计杆重。求各杆的 内力。
简单的刚体系统平衡问题
前面实际上已经遇到过一些简单刚体系统 的问题,只不过由于其约束与受力都比较简单, 比较容易分析和处理。 分析刚体系统平衡问题的基本原则与处理 单个刚体的平衡问题是一致的,但有其特点, 其中很重要的是要正确判断刚体系统的静定性 质,并选择合适的研究对象
平衡方程
根据平衡的充要条件
F1 M1 O
z
F2
M2
y Mn
FR =0 , MO=0
C·A上传 【理论力学】第三章 力系的平衡
FDC FDB
P
BE = CE DB = DC 则:FDB = FDC
DO DO DO ∑ Fiy FDB = 0; FDC FDA =0 DB DC DA
cm DB = 20 3, , DA = 20 5;cm
FDA
EO AO 0; ∑ Fiz = FDB 2 FDA P=0 DB DA
汇交力系
√2 FA = FC = — F = FB 力多边形自行封闭
2
r F r F
C
B
r FB
例3-2:已知物体的重量为 .求:(a)平衡时铅垂力 , - :已知物体的重量为P )平衡时铅垂力F, (b)维持平衡时 的最小值及其相应方向.不计构件自重. )维持平衡时F 的最小值及其相应方向.不计构件自重. 讨论题
3 联立求解 FDA = P = 745N , 3 FDB = FDC = 289N
避免解联立方程 改变坐标方向
立柱AB与绳 与绳BC 例3-8:起重机起吊重量 =1kN.求:立柱 与绳 ,BD,BE - :起重机起吊重量P . x' 的受力. 的受力.
解: B点有四个未知力汇交, 点有四个未知力汇交, 点有四个未知力汇交
§3-1 汇交力系的平衡 -
汇交力系简化的结果
汇交力系平衡的充要条件: 汇交力系平衡的充要条件: 充要条件 力系的合力等于零
r FR = 0
各力全部 汇交力系平衡的几何条件 力多边形自行封闭 首尾相连 几何条件: 汇交力系平衡的几何条件: 仅适用于平 力多边形法则 解析条件: 汇交力系平衡的解析条件 平衡方程 汇交力系平衡的解析条件: 面汇交力系 几何法 空间汇交力系: 合力投影定理
工程力学第三章-力系的平衡
将上式两边向x、y、z 轴投影,可得平衡方程
F F F
可以求解3个未知量。
x y
z
0 0 0
• 2.平面汇交力系
力系的平衡
• 力偶系的平衡方程 • 1.空间力偶系
平衡的充要条件(几何条件) M Mi 0 将上式两边向x、y、z 轴投影,可得平衡方程
M M M
可以求解3个未知量。
ix iy iz
0 0 0
• 2.平面力偶系
力系的平衡
• 平衡的充要条件:力偶系中各力偶矩的代数和等于零.
m 0
i
• 任意力系的平衡方程 空间任意力系: • 平衡的充要条件:力系的主矢和对任一点的主矩均为零。
FR 0
MO 0
G3 a
e
G 3(a b) FNAb G1e G 2L 0 G 3(a b) G1e G 2L FNA 2 b
由(1)、(2)式 得:
G1 G2 L
G1e G 2L G3 ab
3
A FN A b
B FN B
(2)空载时
不翻倒条件:FNB≥0 (4) 由 mA 0 得:
FAB = 45 kN
600
y B TBC 15 15 30 TBD
0 0 0
x
C
D
150
B
300
TBD=G E
A
E
FAB G
解题技巧及说明:
1、一般地,对于只受三个力作用的物体,且角度特殊时用 几 何法(解力三角形)比较简便。 2、一般对于受多个力作用的物体,且角度不特殊或特殊, 都用解析法。 3、投影轴常选择与未知力垂直,最好使每个方程中只有一 个未知数。
理论力学3
第3章 力系的平衡
3.4 例 题 分 析
Theoretical Mechanics
返回首页
第3章 力系的平衡
3.4 例 题 分 析
例3-1 外伸梁ABC上作用有均布载荷q=10 kN/m,集中力 F=20 kN,力偶矩m=10 kNm,求A、B支座的约束力。
解:画受力图
m A F 0 FNB 4 q 4 2 m F sin 6 0
m = 0
三力平衡汇交定理 刚体受不平行的三个力作用而平衡时,此三力的作用线 必共面,且汇交于一点。
Theoretical Mechanics
返回首页
第3章 力系的平衡
3.1.5 静定问题与超静定问题
3.1 主要内容
•物体系统:由若干个物体通过适当的约束相互连 接而成的系统 。 •静定问题:单个物体或物体系未知量的数目正好 等于它的独立的平衡方程的数目。
M y F 0
Fx 0, Fy 0, Fz 0
结论:各力在三个坐标轴上投影的代数和以及 各力对此三轴之矩的代数和都必须同时等于零。
Theoretical Mechanics
返回首页
第3章 力系的平衡
1. 空间汇交力系 如果使坐标轴的原点与各力的汇交点重合,则有 Mx≡My≡Mz≡0,即空间汇交力系平衡方程为
F
F
选刚架为研究对象 画受力图
FA FD
Theoretical Mechanics
返回首页
第3章 力系的平衡
解:几何法
F
3.4 例 题 分 析
选刚架为研究对象 画受力图
FA FD FA
作力多边形,求未知量
选力比例尺F=5 kN/cm作封
第三章 力系的平衡条件
解: 取AB梁,画受力图。 梁 画受力图。
∑F =0 x
F + F cos450 = 0 Ax c
F + F sin450 −F = 0 Ay c
∑Fy =0
MA = 0 F cos450 ⋅l − F ⋅ 2l = 0 ∑ c
解得
F = 28.28kN FAx = −20kN FAy = −10kN , , C
例3 - 8
M 已知: F=20kN, q=10kN/m, = 20kN⋅m, L=1m; 已知:
求: A,B处的约束力. 处的约束力. 解: 取CD梁,画受力图. 画受力图.
∑M =0
c
l F sin 60 ⋅l −ql ⋅ − F cos300 ⋅ 2l = 0 B 2
0
解得
FB=45.77kN
∑MA = 0
F ⋅ 2a + F x ⋅ a = 0 Bx D
得
F =−F Bx
例3-19 已知: 荷载与尺寸如图; 已知: 荷载与尺寸如图; 每根杆所受力。 求: 每根杆所受力。 取整体,画受力图。 解: 取整体,画受力图。
∑F = 0 ix
F =0 Ax
F = 20kN Ay
∑MB = 0 −8FAy +5*8+10*6+10*4+10*2 = 0
q= 20kN , m
l =1 ; F = 400kN, m
解得 F = 316.4kN Ax
o F =0 FAy − P−Fcos60 = 0 ∑ y
解得 FAy =300kN
∑M
A
=0
A 解得 M = −1188kN⋅ m
M − M − F1⋅l + F cos60o ⋅l + Fsin 60o ⋅3l = 0 A
工程力学 第3章 力系的平衡
6
解 :1. 受力分析, 确定平衡对象 圆弧杆两端 A 、 B 均为铰链,中间无外力作用,因此圆弧杆为二力杆。 A 、 B 二处的 约束力 FA 和 FB 大小相等、 方向相反并且作用线与 AB 连线重合。 其受力图如图 3-6b 所示。 若 以圆弧杆作为平衡对象,不能确定未知力的数值。所以,只能以折杆 BCD 作为平衡对象。 ' 折杆 BCD , 在 B 处的约束力 FB 与圆弧杆上 B 处的约束力 FB 互为作用与反作用力, 故 二者方向相反; C 处为固定铰支座,本有一个方向待定的约束力,但由于作用在折杆上的 ' 只有一个外加力偶,因此,为保持折杆平衡,约束力 FC 和 FB 必须组成一力偶,与外加力 偶平衡。于是折杆的受力如图 3-6c 所示。 2.应用平衡方程确定约束力 根据平面力偶系平衡方程(3-10) ,对于折杆有 M + M BC = 0 (a) 其中 M BC 为力偶( FB , FC )的力偶矩代数值
图 3-8 例 3-3 图
解 :1. 选择平衡对象 本例中只有平面刚架 ABCD 一个刚体(折杆) ,因而是唯一的平衡对象。 2 受力分析 刚架 A 处为固定端约束, 又因为是平面受力, 故有 3 个同处于刚架平面内的约束力 FAx、 FAy 和 MA 。 刚架的隔离体受力图如图 3-8b 所示。 其中作用在 CD 部分的均布荷载已简化为一集中 力 ql 作用在 CD 杆的中点。 3. 建立平衡方程求解未
习 题
本章正文 返回总目录
2
第 3 章 力系的平衡
§3-1 平衡与平衡条件
3-1-1 平衡的概念
物体静止或作等速直线运动,这种状态称为平衡。平衡是运动的一种特殊情形。
平衡是相对于确定的参考系而言的。例如,地球上平衡的物体是相对于地球上固定参 考系的, 相对于太阳系的参考系则是不平衡的。 本章所讨论的平衡问题都是以地球作为固定 参考系的。 工程静力学所讨论的平衡问题,可以是单个刚体,也可能是由若干个刚体组成的系统, 这种系统称为刚体系统。 刚体或刚体系统的平衡与否,取决于作用在其上的力系。
最新完美版建筑力学第三章力系的平衡
第3章 力系的平衡\平面力系向一点的简化
目录
第3章 力系的平衡\平面力系向一点的简化
3-1-1 力的平移定理
平面力系向一点简化的理论基础是力的平移定理。 设在刚体上A点作用一个力F,现要将其平行移动到 刚体内任一点O (图a),但不能改变力对刚体的作用效应。
目录
第3章 力系的平衡\平面力系向一点的简化
根据加减平衡力系公理,可在O点加上一对平衡力F、 F,力F 和F的作用线与原力F的作用线平行,且F = F =F (图b)。 力F 和F 组成一个力偶M,其力偶矩等于原力F对O 点之矩。
b2 A y B
F
a2
a1、b1和a2、b2,线段a1b1、a2b2
a1 冠以适当的正负号称为力F在x 轴和y轴上的投影,分别记作Fx、Fy,即
Fx
b1
x
Fx=±a1b1
Fy=±a2b2
式中的正负号规定为:从a1到b1(或a2到b2)的指向与坐 标轴正向相同时取正,相反时取负。
目录
第3章 力系的平衡\平面力系向一点的简化
中心O的主矩。其大小和转向与简化中心的选择有关。 如果选取的简化中心不同,主矢不会改变,故它与 简化中心的位置无关;但力系中各力对不同简化中心的矩 一般是不相等的,因而主矩一般与简化中心的位置有关。
目录
第3章 力系的平衡\平面力系向一点的简化
3-1-3 力在坐标轴上的投影
在力F作用的平面内建立直角 坐标系Oxy。 Fy 由力F的起点A和终点B分别 向坐标轴作垂线,设垂足分别为
y
由图可知,若已知力F的大 小及力F与x、y轴正向间的夹角 分别为和,则有
b2
B
Fy
a2 A
F
第3章力系的平衡条件与平衡方程
第3章 力系的平衡条件与平衡方程3.1 平面力系的平衡条件与平衡方程3.1.1 平面一般力系的平衡条件与平衡方程如果一个平面一般力系的主矢和力系对任一点的主矩同时都等于零,物体将不会移动也不会转动,则该物体处于平衡状态。
力系平衡的充分必要条件:力系的主矢和力系对任一点的主矩都分别等于零,即 110()0i n R i n O O ii F F M M F ==⎫==⎪⎪⎬⎪==⎪⎭∑∑平衡条件的解析式:11100()0nix i niy i n O i i F F M F ===⎫=⎪⎪⎪=⎬⎪⎪=⎪⎭∑∑∑ 或 00()0x y O F F M F ⎫=⎪⎪=⎬⎪=⎪⎭∑∑∑ 平面一般力系的平衡方程该式表明,平面一般力系的平衡条件也可叙述为:力系中各力在任选的坐标轴上的投影的代数和分别等于零,以及各力对任一点的矩的代数和也等于零。
平面汇交力系:平面汇交力系对平面内任意一点的主矩都等于零,即恒满足()0O M F ≡∑物体在平面汇交力系作用下平衡方程:00x yF F ⎫=⎪⎬=⎪⎭∑∑例题3-1 图所示为悬臂式吊车结构图。
其中AB 为吊车大梁,BC为钢索,A 处为固定铰支座,B 处为铰链约束。
已知起重电动机E 与重物的总重量为PF (因为两滑轮之间的距离很小,PF 可视为集中力作用在大梁上)梁的重力为QF 已知角度30θ=。
求:1、电动机处于任意位置时,钢索BC所受的力和支座A处的约束力;2、分析电动机处于什么位置时。
钢索受力最大,并确定其数值。
解:1、选择研究对象以大梁为研究对象,对其作受力分析,并建立图示坐标系。
建立平衡方程 取A 为矩心。
根据()0A M F =∑sin 02Q P TB lF F x F l θ-⨯-⨯+⨯=222sin 2sin30P Q P Q P TB QlF x F F x F l F x F F l l l θ⨯+⨯+===+由xF =∑cos 0Ax TB F F θ-=2()cos303()2Q P P Ax Q F F x F x F F l l =+=+由yF =∑sin 0Ay Q P TB F F F F θ---+=122[()]2Q P Ay Q P TB Q P Q P F F x F F F F F F l F l xF l =--+=--++-=-+由 2P TB QF x F F l =+ 可知当x l =时钢索受力最大, 其最大值为 22P TB Q P QF lF F F F l =+=+在平面力系的情形下,力矩中心应尽量选在两个或多个未知力的交点上,这样建立的力矩平衡方程中将不包含这些未知力;坐标系中坐标轴取向应尽量与多数未知力相垂直,从而这些未知力在这一坐标轴上的投影等于零,这样可减少力的平衡方程中未知力的数目。
理论力学:第3章 力系的平衡
1第3章 力系的平衡 3.1 主要内容空间任意力系平衡的必要和充分条件是:力系的主矢和对任一点的主矩等于零,即 0=R F 0=O M 空间力系平衡方程的基本形式 0,0,0=∑=∑=∑z y x F F F 0)(,0)(,0)(=∑=∑=∑F F F z y x M M M空间汇交力系平衡的必要和充分条件是:力系的合力 0=R F空间汇交力系平衡方程的基本形式0,0,0=∑=∑=∑z y x F F F空间力偶系平衡的必要和充分条件是:各分力偶矩矢的矢量和 0=∑i M空间力偶系平衡方程的基本形式 0)(,0)(,0)(=∑=∑=∑F F F z y x M M M平面力系平衡的必要和充分条件:力系的主矢和对于任一点的主矩都等于零,即:0=∑='F F R;0)(=∑=F O O M M 平面力系的平衡方程有三种形式:基本形式: 0)(,0,0=∑=∑=∑F M F F O y x二矩式: 0)(,0)(,0=∑=∑=∑F M F M F B A x (A 、B 连线不能与x 轴垂直)三矩式: 0)(,0)(,0=∑=∑=∑F M F M M C B A (A 、B 、C 三点不共线)平面力系有三个独立的平衡方程,可解三个未知量。
平面汇交力系平衡的必要和充分条件是合力为零,即0=∑=F F R 平衡的解析条件:各分力在两个坐标轴上投影的代数和分别等于零,即0,0=∑=∑y x F F两个独立的平衡方程,可解两个未知量。
平面力偶系平衡的必要和充分条件为:力偶系中各力偶矩的代数和等于零,即∑=0Mi一个独立的平衡方程,可解一个未知量。
3.2 基本要求1.熟练掌握力的投影,分布力系的简化、力对轴之矩等静力学基本运算。
2.能应用各种类型力系的平衡条件和平衡方程求解单个刚体和简单刚体系统的平衡问题。
对平面一般力系的平衡问题,能熟练地选取分离体和应用各种形式的平衡方程求解。
3.正确理解静定和超静定的概念,并会判断具体问题的静定性。
工程力学第3章空间力系的平衡
计算量大,需要较高的数学水平。
几何法求解空间力系平衡问题
几何法
通过几何图形来描述物体的运动状态和受力 情况,通过观察和计算几何关系得到物体的 运动轨迹和受力情况。
优点
直观易懂,适用于简单运动和受力情况。
缺点
精度低,容易受到主观因素的影响。
代数法求解空间力系平衡问题
1 2
代数法
通过代数方程来描述物体的运动状态和受力情况, 通过解代数方程得到物体的运动轨迹和受力情况。
平衡方程形式
空间力系的平衡方程为三个平衡方程,分别表示力在x、y、z轴上 的平衡。
空间力系的平衡方程应用
解决实际问题
利用空间力系的平衡方程,可以 解决实际工程中的受力分析问题, 如梁的受力分析、结构的稳定性 分析等。
简化问题
通过将复杂的问题简化为简单的 空间力系问题,可以更方便地求 解问题。
验证实验结果
优点
适用范围广,可以用于解决各种复杂问题。
3
缺点
计算量大,需要较高的数学水平。
04
空间力系平衡问题的实例分 析
平面力系的平衡问题实例分析
总结词
平面力系平衡问题实例分析主要涉及二维空间中的受力分析,通过力的合成与分解,确定物体在平面内的平衡状 态。
详细描述
在平面力系中,物体受到的力可以分解为水平和垂直方向的分力。通过分析这些分力的合成与平衡,可以确定物 体在平面内的稳定状态。例如,在桥梁设计中,需要分析桥墩受到的水平风力和垂直压力,以确保桥墩的稳定性。
平衡条件
物体在空间力系作用下,满足力矩平衡、力矢平衡和 力平衡三个条件。
空间力系的简化
01
02
03
力矩
描述力对物体转动效应的 量,由力的大小、与力臂 的乘积决定。
第三章 力系的平衡
HOHAI UNIVERSITY ENGINEERING MECHANICS
例1: 作AB和CD示力图
HOHAI UNIVERSITY ENGINEERING MECHANICS
解: AB示力图 FAx FAy
A D C B
F
A
B F'RD FRD D
F
CD示力图
FRD D C C FRC
FRC
C
4.物体间的内约束力不应该画出。
§3-3 汇交力系的平衡
一、汇交力系平衡的充分必要条件
HOHAI UNIVERSITY ENGINEERING MECHANICS
FR F1 F2 Fn 0
二、汇交力系的平衡方程
空间汇交力系: 平面汇交力系:
FRx =Fix=0
FRy =Fiy=0
两个构件用光滑圆 柱形销钉连接起来,称 为铰链连接(铰接)
四、活动铰支座
HOHAI UNIVERSITY ENGINEERING MECHANICS
上摆
组成分析
销钉 底板 只能限制物体与支座接触处向着支承面或 离开支承面的运动。 运动分析
滚轮
受力分析
HOHAI UNIVERSITY ENGINEERING MECHANICS
(A、B的连线不垂直于x轴)
HOHAI UNIVERSITY ENGINEERING MECHANICS
连杆的约束力沿着连杆 中心线,指向不定
F'B
空间铰
HOHAI UNIVERSITY ENGINEERING MECHANICS
六、球铰
HOHAI UNIVERSITY ENGINEERING MECHANICS
第3章力系的平衡条件和平衡方程
1第3章 力系的平衡条件与平衡方程平面力系的平衡条件与平衡方程3.1.1 平面一般力系的平衡条件与平衡方程若是一个平面一般力系的主矢和力系对任一点的主矩同时都等于零,物体将不会移动也不会转动,则该物体处于平衡状态。
力系平衡的充分必要条件:力系的主矢和力系对任一点的主矩都别离等于零,即 110()0i nR i nO O ii F F M M F ==⎫==⎪⎪⎬⎪==⎪⎭∑∑平衡条件的解析式: 11100()0nix i niy i n O i i F F M F ===⎫=⎪⎪⎪=⎬⎪⎪=⎪⎭∑∑∑ 或00()0x y OF F M F ⎫=⎪⎪=⎬⎪=⎪⎭∑∑∑ 平面一般力系的平衡方程该式表明,平面一般力系的平衡条件也可叙述为:力系中各力在任选的坐标轴上的投影的代数和别离等于零,和各力对任一点的矩的代数和也等于零。
平面汇交力系:2平面汇交力系对平面内任意一点的主矩都等于零,即恒知足()0OMF ≡∑物体在平面汇交力系作用下平衡方程:00x yF F ⎫=⎪⎬=⎪⎭∑∑例题3-1 图所示为悬臂式吊车结构图。
其中AB 为吊车大梁,BC 为钢索,A 处为固定铰支座,B 处为铰链约束。
已知起重电动机E 与重物的总重量为PF (因为两滑轮之间的距离很小,PF 可视为集中力作用在大梁上)梁的重力为QF 已知角度30θ=。
求:一、电动机处于任意位置时,钢索BC 所受的力和支座A 处的约束力;二、分析电动机处于什么位置时。
钢索受力最大,并肯定其数值。
3解:一、选择研究对象以大梁为研究对象,对其作受力分析,并成立图示坐标系。
成立平衡方程取A 为矩心。
按照 ()0A M F =∑sin 02Q P TB lF F x F l θ-⨯-⨯+⨯=222sin 2sin 30P Q P Q P TB QlF x F F x F l F x F F l l l θ⨯+⨯+===+ 由xF =∑cos 0Ax TB F F θ-=2()cos303()2QP P Ax Q F F x F x F F l l =+=+由yF =∑sin 0Ay Q P TB F F F F θ---+=4122[()]2Q P Ay Q P TB Q P Q P F F x F F F F F F l F l xF l =--+=--++-=-+由 2P TB QF x F F l =+ 可知当x l =时钢索受力最大, 其最大值为 22P TB Q P QF lF F F F l =+=+在平面力系的情形下,力矩中心应尽可能选在两个或多个未知力的交点上,这样成立的力矩平衡方程中将不包括这些未知力;坐标系中坐标轴取向应尽可能与多数未知力相垂直,从而这些未知力在这一坐标轴上的投影等于零,这样可减少力的平衡方程中未知力的数量。
力系的平衡条件与平衡方程资料
X 0
可否求出T、YA、XA;
T
XA A YA
D 300
B
E
PQ
思考题2
C
(2)由下图所示的受力图,试按
mA(F) 0 mB (F) 0 mc (F ) 0
可否求出T、YA、XA。
T
XA A YA
D 300
B
E
PQ
由下图所示的受力图,可否列出下列四 思考题3 个独立的平衡方程?
YB
- 4 × 3 × 1.5 - 20 × 3 + 4 YB = 0
YB = 19.5 kN
P 1m
q
C
XA
2m
2m
A
YA
Fy = 0 YA - 20 + 19.5 = 0
XB B YB
YA = 0.5 kN
( 2 ) 取 BC 为研究对象画受力图
P 1m
XC
C
YC
XB B
YB
MC ( F ) = 0
Fy 0
FN P cos j 0 FN P cos j
考虑极限平衡状态有: F Fmax fs FN
从而得到: FT P ( fs cos j sin j). 当 FT P ( fs cos j sin j) 时, 物块才能下滑。
(3) 画受力图如右 列平衡方程
P
(c) j
解: 取起重机,画受力图.
Fx 0 FAx FB 0
F y
0
FAy P1 P2 0
M A 0 FB 5 1.5 P1 3.5 P2 0
FAy 50kN FB 31kN FAx 31kN
•利用“力偶只能由力偶来平衡”的概念解题有时较方 便:
理论力学第3章力系平衡方程及应用
a
分布力(均布载荷) 合力作用线位于AB
中点。
3.1 平面力系平衡方程
a
【解】
y M=qa2 a
2qa
F3
C
FAx
A
aFAy
45
B
D
x
2a FB a
F3 2qa
MA 0
q 2 2 a q a a F B 2 a 2 q sa 4 i 3 n a 5 0
FB 2qa
Fx 0 FAx2qcao4s50 FAx qa
C
【解】 F2
构件CGB( 图b)
F2
构件AED
(图c)
C
R
D
45
FC
FD
D
G
45
F1
E
a
F1
E
a
A
B
G 图b
FBy
图c A FAx
MA
FAy
构件CD(图a )
3个未知量 B FBx
4个未知量
F'C
3个独立方程
3个独立方程
【基本思路】
C R
杆CGB受力图计算FCAED受力图
计算A处的反力(偶);CGB受力图计算
3.2 平面物体系平衡问题
q
C
B
30
FC FBy
l
l
【解】 杆CB
FBx
MB 0
FCco3s0l qll/2 0
FC
3 ql 30.5kN/m 2m 0.577kN
3
3
3.2 平面物体系平衡问题
【解】整体
FAy
l
l
l
Fx 0
MA
A
FAx
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
FR =XR i+YR j
以及 F1+F2+…+Fn=(X1i+Y1j)+(X2i+Y2j)+…+(Xni+Ynj) =(X1+X2+…+Xn)i +(Y1+Y2+…+Yn)j
i a1
b1
x
F F F Xi Yj
x
y
式中:i、j——坐标轴x、y正向的单位矢量。
目录
第三章 力系的平衡\平面力系向一点的简化 【例3.1】 试计算图示各力在x轴和y轴上的投影。已知F1= F2
=100 N,F3=150 N, F4=200 N。
目录
第三章 力系的平衡\平面力系向一点的简化
第三章 力系的平衡
第三章 力系的平衡
本章介绍平面力系向一点简化的结果,由此得到平面力系的平 衡条件和平衡方程;在介绍力在空间直角坐标轴上的投影和力对轴 之矩的基础上,直接给出空间力系的平衡方程。着重于应用平衡方 程求解力系的平衡问题。最后介绍物体的重心、形心和静矩的概念 及其计算。本章是刚体静力分析的重点。
FRd1 sin MO
因 FR sin YR ,故
d1
MO YR 0.5 m目录第三章 力系的平衡\平面力系向一点的简化
2)力系向A点简化。主矢与上面 的计算相同。主矩为
MA=∑ MA (F) = -F×3m - W1×1.5m - W2×4m = -3150 kNm
其转向如图所示。
明,线分布荷载合力的大小等于荷载图的面积,合力的作用线通过 荷载图的形心,合力的指向与分布力的指向相同。
在求解平衡问题时,线分布荷载可以用其合力来替换。
目录
第三章 力系的平衡\平面力系的平衡方程及其应用
3.2 平面力系的平衡方程及其应用
3.2.1 平面力系的平衡方程
1. 基本形式 如果平面力系的主矢和对平面内任一点的主矩均为零,则力系 平衡。反之,若平面力系平衡,则其主矢、主矩必同时为零(假如 主矢、主矩有一个不等于零,则平面力系就可以简化为合力或合力 偶,力系就不平衡)。因此,平面力系平衡的充分必要条件是力系 的主矢和对任一点的主矩都等于零,即
XR=∑X =F =350 kN YR=∑Y =-W1 -W2
= - 900 kN
主矢的大小和方向分别为
FR X 2 Y 2 965.7kN
tan
X Y
2.571 ,
68.75
因为∑X正, ∑Y为负,故主矢FR的指向如图所示。
目录
第三章 力系的平衡\平面力系向一点的简化
面力系。有时物体本身及作
用于其上的各力都对称于某
一平面,则作用于物体上的
力系就可简化为该对称平面
内的平面力系。
目录
第三章 力系的平衡\平面力系向一点的简化 如图(a)所示水坝,通常取单位长度坝段进行受力分析,并将坝
段所受的力简化为作用于坝段中央平面内的一个平面力系[(b)]。
目录
第三章 力系的平衡\平面力系向一点的简化
【解】 各力在x轴和y轴上的投影分别为
X1=F1cos 45 = 100 N×0.707=70.7 N Y1=F1cos 45 = 100 N×0.707 =70.7 N X2=-F2cos 30 =-100 N×0.866
=-86.6 N Y2=-F2cos 60 = -100 N×0.5
【例3.3】 试求图示线性分布荷载的合力及其作用线的位置。
【解】 建立图示坐标系,
离左端点O为x处的集度为
qx q0 x
l
y
作用于微段dx上的力为dF=q(x)dx。合 力FR的大小可由积分得到
O
x
FR
l
dF
l qxdx
0
xC
l q0 xdx q0l
0l
2
FR dx l
平面力偶系MO1、MO2、…、MOn可以合成为一个力 偶,其矩MO为
M O M O1 M O 2 M O n M O F
即MO等于各附加力偶的矩的代数和,也就是等于原力系中各力对简化中心O 之矩的代数和。MO称为该力系对简化中心O的主矩。它的大小和转向与简化中心 的选择有关。
此力系最终可简化为一个合
力,合力作用线与x轴的交点到A
点的距离为
d2
MA YR
3.5 m
显然,合力作用线仍通过B点。
由上面的例题可见,力系无论向哪一点简化,其最终简化结果
总是相同的。这是因为一个给定的力系对物体的效应是唯一的,不
会因计算途径的不同而改变。
目录
第三章 力系的平衡\平面力系向一点的简化
设在刚体上作用一个平面力系F1、F2、…、 Fn ,各力的作用点分别为A1、A2、…、An[图 (a)]。在平面内任意取一点O,称为简化中心。
利用力的平移定理,将各力都向O点平移, 得到一个汇交于O点的平面汇交力 系 F1、 F2、 、Fn 。和一个附加的平面力偶系 MO1、MO2、…、MOn[图(b)]。这些附加力 偶的矩分别等于原力系中的各力对O点之矩, 即
比较后得到
X X
R
1
Y Y
R
1
Y
2
X 2
Y
n
X
n
Y
X
即主矢在某轴上的投影等于力系中各力在同轴上投影的代数和。
目录
第三章 力系的平衡\平面力系向一点的简化
求得主矢在坐标轴上的投影后,可得主矢的大小及方向分别为
FR
X
2
Y
2
tan Y
根据加减平衡力系公理,可在O点加上一对平衡力F、F,力F 和F的作用线与原力F的作用线平行,且F =F =F[图(b)]。
力F 和F 组成一个力偶M,其力偶矩等于原力F对O点之矩。
即
M M O(F ) Fd
目录
第三章 力系的平衡\平面力系向一点的简化
根据力的平移定理,也可以将同一平面内的一个力和一个力偶 合成为一个力,合成的过程就是上述的逆过程
a2
X=±a1b1 Y=±a2b2
a1 X b1
x
式中的正负号规定为:从a1到b1(或a2到b2)的指向与坐标轴正向相同时取正, 相反时取负。
由图可知,若已知力F的大小及力F与x、y轴正向间的夹角分别为和,则有
X F cos
Y
F
cos
目录
第三章 力系的平衡\平面力系向一点的简化
重力和静水压力简化到中央平面内,得到力W1、W2和F(如图)。 已知W1=600 kN,W2=300 kN,F=350 kN,试求此力系分别向O点和 A点简化的结果。如能进一步简化为一个合力,再求合力作用线的 位置。
目录
第三章 力系的平衡\平面力系向一点的简化
【解】1)力系向O点简化。力系
的主矢FR在x、y轴上的投影分别为
q0
A x
应用合力矩定理,有
MO FR xC FR
l
xdF
0
l x·q0 xdx q0l 2
0l
3
故合力FR的作用线离O点距离为
xC
q0l 2 3FR
q0l 2 3 q0l
2l 3
2
合力FR的方向与分布荷载的方向相同。
目录
第三章 力系的平衡\平面力系向一点的简化 表示分布荷载分布情况的图形称为荷载图。上面的计算结果表
3.1.1 力的平移定理
作用于刚体上的力,可平行移动到刚体内任一指定点,但必须 同时在该力与指定点所决定的平面内附加一力偶,此附加力偶的矩 等于原力对指定点之矩。
平面一般力系向一点简化的理论基础是力的平移定理。
目录
第三章 力系的平衡\平面力系向一点的简化
设在刚体上A点作用一个力F,现要将其平行移动到刚体内任 一点O[图(a)],但不能改变力对刚体的作用效应。
即力在某轴上的投影等于力的大小乘以力与该轴正向间夹角的余弦。
当、为钝角时,为了计算简便,往往先根据力与某轴所夹的锐角
来计算力在该轴上投影的绝对值,再由观察来确定投影的正负号。
反之,若已知力F在直角坐标轴上的投影为X、Y,则可求出力F 的大小及方向,即
F X2 Y2
tan Y
X
力系的主矩为
MO=∑ MO (F) = -F×3m+W1×1.5m - W2×1m = -450kNm
负号表示主矩MO为顺时针转向。 根据力的平移定理,本问题中
主矢FR与主矩MO还可进一步简化
为一个合力FR,其大小、方向与主
矢FR相同。设合力FR的作用线与x
轴的交点B到O点的距离为d1,由合 力矩定理有
目录
第三章 力系的平衡\平面力系向一点的简化
3.1.3 力在坐标轴上的投影
在力F作用的平面内建立直角坐标系Oxy。
y
B
由力F的起点A和终点B分别向坐标轴作垂线, b2
设垂足分别为a1、b1和a2、b2,
线段a1b1、a2b2冠以适当的正负号称为力F 在x轴和y轴上的投影,分别记作X、Y,即
Y
A
目录
第三章 力系的平衡\平面力系向一点的简化
应该指出,力在坐标轴上的投
y
影与力沿坐标轴的分力是两个不同 b2
B
的概念。力的投影是代数量,而力 的分力是矢量。
Fy
A
在直角坐标系中,力在轴上的 a2
投影和力沿该轴的分力的大小相等,