导数综合题题根之二:不对称问题(极值点偏移)
导数中极值点偏移问题
极值点的“偏移”问题一、极值点“偏移”图示(左右对称,无偏移,如二次函数;若f(x1)=f(x2),则x1+x2=2x0)(左陡右缓,极值点向左偏移;若f(x1)=f(x2),则x1+x2>2x0)(左缓右陡,极值点向右偏移;若f(x1)=f(x2),则x1+x2<2x0)二、极值点偏移问题的结论不一定总是x1+x2>(<)2x0,也可能是x1x2>(<)x20.三、解题策略:对称化构造法;双变元不等式问题解法一【例1】已知函数f(x)=x e-x 如果x1≠x2,且f(x1)=f(x2),证明:x1+x2>2.1.设函数f(x)=(x−2)e x+a(x−1)2有两个零点.(1)求a的取值范围;(2)设x1,x2是f(x)的两个零点,证明:x1+x2<2.2.设函数 f(x)=ln x−ax(a>0),且实数m使得方程f(x)=m有两个不等实根x1,x2,其中x1<x2.求证:(1)0<x1<1a<x2;(2)x1+x22>1a.3.设函数f(x)=ln xx,且实数m使得方程f(x)=m有两个不等实根x1,x2,其中x1<x2.求证:(1)0<x1<e<x2;(2)x1+x22>e;(3)1x1+1x2>2ⅇ.4.已知函数f(x)=e x-ax有两个不同的零点x1,x2,其极值点为x0. (1)求a的取值范围;(2)求证:x1+x2<2x0;(3)求证:x1+x2>2;(4)求证:x1x2<1.5. 设函数f(x)=e x−ax,其中a>e,(1)求证:函数f(x)有且仅有两个零点x1,x2,且0<x1<1<x2;(2)对于(1)中的x1,x2,求证:f′(x1)+f′(x2)>0.6.已知函数f(x)=x ln x-x,两相异正实数x1,x2满足f(x1)=f(x2).求证:x1+x2>2.总结:用对称化构造的方法解决极值点偏移问题分为以下三步:(1)求导,获得f(x)的单调性,极值情况,作出f(x)的图象,由f(x1)=f(x2)得x1,x2的取值范围(数形结合);(2)构造辅助函数,对结论x1+x2>(<)2x00,构造F(x)=f(x)-f(2x0-x);对结论x1x2>(<)x20,构造F(x)=f(x)-f⎝⎛⎭⎫x20x,求导,限定范围(x1或x2的范围),判定符号,获得不等式;(3)代入x1(或x2),利用f(x1)=f(x2)及f(x)的单调性证明最终结论.双变元不等式问题解法二【例2】(2020·重庆调研二)已知函数f(x)=x ln x,g(x)=12mx2+x.设F(x)=f(x)-g(x),已知F(x)在(0,+∞)上存在两个极值点x1,x2,且x1<x2,求证:x1x2>e2(其中e为自然对数的底数).1.设A(x1,y1),B(x2,y2)是函数f(x)=ax2+(1−2a)x−ln x图像 C上不同两点,M为线段AB的中点,过M作x轴的垂线交曲线C于N点.试问:曲线C在点N处的切线是否平行于直线AB?2.设函数f(x)=x2−(a−2)x−a ln x,a>0.若方程f(x)=m有两个不等实根x1,x2,求证:f′(x1+x22)>0.3.设函数f(x)=x ln x,且实数m使得方程f(x)=m有两个不等实根x1,x2,求证:x1x2<1ⅇ2.4.设函数f(x)=ln xx,且实数m使得方程f(x)=m有两个不等实根x1,x2,求证:f′(x1)+f′(x2)>0. 5.设函数f(x)=e x−ax+a有两个零点x1,x2,求证:x1x2<x1+x2.6. 已知函数f(x)=ln x和g(x)=ax,若存在两个实数x1,x2,且x1≠x2,满足f(x1)=g(x1),f(x2)=g(x2),求证:x1x2>e2.。
专题20 极值点偏移问题(解析版)
专题20极值点偏移问题1.极值点偏移的含义若单峰函数f (x )的极值点为x 0,则极值点的偏移问题的图示及函数值的大小关系如下表所示.极值点x 0函数值的大小关系图示极值点不偏移x 0=x 1+x 22f (x 1)=f (2x 0-x 2)极值点偏移左移x 0<x 1+x 22峰口向上:f (x 1)<f (2x 0-x 2)峰口向下:f (x 1)>f (2x 0-x 2)右移x 0>x 1+x 22峰口向上:f (x 1)>f (2x 0-x 2)峰口向下:f (x 1)<f (2x 0-x 2)2.函数极值点偏移问题的题型及解法极值点偏移问题的题设一般有以下四种形式:(1)若函数f (x )在定义域上存在两个零点x 1,x 2(x 1≠x 2),求证:x 1+x 2>2x 0(x 0为函数f (x )的极值点);(2)若在函数f (x )的定义域上存在x 1,x 2(x 1≠x 2)满足f (x 1)=f (x 2),求证:x 1+x 2>2x 0(x 0为函数f (x )的极值点);(3)若函数f (x )存在两个零点x 1,x 2(x 1≠x 2),令x 0=x 1+x 22,求证:f ′(x 0)>0;(4)若在函数f (x )的定义域上存在x 1,x 2(x 1≠x 2)满足f (x 1)=f (x 2),令x 0=x 1+x 22,求证:f ′(x 0)>0.3.极值点偏移问题的一般解法3.1对称化构造法主要用来解决与两个极值点之和,积相关的不等式的证明问题.其解题要点如下:(1)定函数(极值点为0x ),即利用导函数符号的变化判断函数的单调性,进而确定函数的极值点0x .(2)构造函数,即对结论1202x x x +>型,构造函数0()()(2)F x f x f x x =--或00()()()F x f x x f x x =+--;(3)对结论2120x x x ⋅>型,构造函数20()()()x F x f x f x=-,通过研究()F x 的单调性获得不等式.(4)判断单调性,即利用导数讨论()F x 的单调性.(5)比较大小,即判断函数()F x 在某段区间上的正负,并得出()f x 与0(2)f x x -的大小关系.(6)转化,即利用函数f (x )的单调性,将()f x 与0(2)f x x -的大小关系转化为x 与02x x -之间的关系,进而得到所证或所求.3.2.差值代换法(韦达定理代换令1212,x x t x x t =±=.)差值换元的目的也是消参、减元,就是根据已知条件首先建立极值点之间的关系,然后利用两个极值点之差作为变量,从而实现消参、减元的目的.设法用差值(一般用t 表示)表示两个极值点,即12t x x =-,化为单变量的函数不等式,继而将所求解问题转化为关于t 的函数问题求解.3.3.比值代换法比值换元的目的也是消参、减元,就是根据已知条件首先建立极值点之间的关系,然后利用两个极值点的比值作为变量,从而实现消参、减元的目的.设法用比值(一般用t 表示)表示两个极值点,即12x t x =,化为单变量的函数不等式,继而将所求解问题转化为关于t 的函数问题求解.3.4.对数均值不等式法两个正数a 和b (),(, )ln ln ().a ba b L a b a ba ab -⎧≠⎪=-⎨⎪=⎩(, )2a bL a b +≤≤(此式记为对数平均不等式)取等条件:当且仅当a b =时,等号成立.3.5指数不等式法在对数均值不等式中,设m a e =,nb e =,则()(,)()m nme e m n E a b m n e m n ⎧-≠⎪=-⎨⎪=⎩,根据对数均值不等式有如下关系:2(,)2m nm ne e eE a b ++≤≤专项突破练1.已知函数()1ln f x x a x=++.(1)求函数()f x 的单调区间;(2)当()()()1212f x f x x x =≠时,证明:122x x +>.【解析】(1)∵()1ln f x x a x=++,∴()22111x f x x x x -'=-=,令()0f x '=,得x =1,当01x <<时,()0f x '<,()f x 单调递减;当1x >时,()0f x '>,()f x 单调递增,故函数()f x 的减区间为()0,1,增区间为()1,+∞;(2)由(1)知,不妨设1201x x <<<,构造函数()()()2g x f x f x =--,01x <<,故()()()()()()2222241112022x x x g x f x f x x x x x ----'''=+-=+=<--,故()g x 在()0,1上单调递减,()()10g x g >=,∵()10,1x ∈,∴()()()11120g x f x f x =-->,又∵()()12f x f x =,∴()()2120f x f x -->,即()()212f x f x >-,∵1201x x <<<,∴2x ,()121,x -∈+∞,又∵()f x 在()1,+∞上单调递增,∴212x x >-,即122x x +>,得证.2.已知函数()()e ln xf x x a =+.(1)若()f x 是增函数,求实数a 的取值范围;(2)若()f x 有两个极值点1x ,2x ,证明:122x x +>.【解析】(1)函数的定义域为()0,∞+,()1e ln x f x x a x ⎛⎫'=++ ⎪⎝⎭,若()f x 是增函数,即()0f x '≥对任意0x >恒成立,故1ln 0x a x++≥恒成立,设()1ln g x x a x=++,则()22111x g x x x x -'=-=,所以当01x <<时,()0g x '<,()g x 单调递减,当1x >时,()0g x '>,()g x 单调递增,所以当1x =时,()()min 11g x g a ==+,由10a +≥得1a ≥-,所以a 的取值范围是[)1,-+∞.(2)不妨设120x x <<,因为1x ,2x 是()f x 的两个极值点,所以()11111e ln 0x f x x a x ⎛⎫'=++= ⎪⎝⎭,即111ln 0x a x ++=,同理221ln 0x a x ++=,故1x ,2x 是函数()1ln g x x a x=++的两个零点,即()()120g x g x ==,由(1)知,()()min 110g x g a ==+<,故应有(),1a ∞∈--,且1201x x <<<,要证明122x x +>,只需证212x x >-,只需证()()()()211122g x g x g x g x --=--()()111111111111ln ln 2ln ln 2022x a x a x x x x x x ⎡⎤=++--++=+--+>⎢⎥--⎣⎦,设()()11ln ln 22h x x x x x =+--+-,(]0,1x ∈,则()()()()()22222224111111102222x x x h x x x x x x x x x ---'=----=-≤----,所以()h x 在()0,1上单调递减,因为()10,1x ∈,所以()()110h x h >=,即()()2120g x g x -->,()()212g x g x >-,又21>x ,121x ->,及()g x 在()1,+∞上单调递增,所以212x x >-成立,即122x x +>成立.3.已知函数()()11e xf x x -=+.(1)求()f x 的极大值;(2)设m 、n 是两个不相等的正数,且()()11e 1e 4e n m m n m n +-+++=,证明:2m n +<.【解析】(1)因为()()111e 1e x x f x x x --+==+的定义域为R ,()1e x xf x -'=-,当0x <时,()0f x '>,此时函数()f x 单调递增,当0x >时,()0f x '<,此时函数()f x 单调递减,所以,函数()f x 的极大值为()0e f =.(2)证明:因为()()11e 1e 4e n m m n m n +-+++=,则11114e e em n m n --+++=,即()()4f m f n +=,由(1)知,函数()f x 在(),1-∞上单调递增,在()1,+∞上单调递减,因为m 、n 是两个不相等的正数,且满足()()4f m f n +=,不妨设01m n <<<,构造函数()()()2g x f x f x =+-,则()()()1122ee x xxx g x f x f x ---'''=--=--,令()()h x g x '=,则()()()()111111e 1e e ex x x x xh x x x -----'=---=--.当01x <<时,101x x ->>-,则()0h x '<,此时函数()h x 单调递减,当1x >时,101x x ->>-,则()0h x '<,此时函数()h x 单调递减,又因为函数()h x 在()0,∞+上连续,故函数()h x 在()0,∞+上单调递减,当01x <<时,()()10h x h >=,即()0g x '>,故函数()g x 在()0,1上为增函数,故()()()()()()214f m f m g m g f m f n -+=<==+,所以,()()2f n f m >-,21m -> 且1n >,函数()f x 在()1,+∞上为减函数,故2n m <-,则2m n +<.4.已知函数()1ln xf x ax+=(1)讨论f (x )的单调性;(2)若()()2112e e xxx x =,且121200x x x x >>≠,,,证明:>【解析】(1)()()2ln 0xf x x ax -'=>当0a >时,()01x ∈,,()0f x '>,所以()f x 单调递增;()1x ∈+∞,,()0f x '<,所以()f x 单调递减;当0a <时,()01x ∈,,()0f x '<,所以()f x 单调递减;()1x ∈+∞,,()0f x '>,所以()f x 单调递增;(2)证明:()()2112x x x x =e e ,∴()()2112ln ln x x x x =e e ,()()1212ln ln x x x x =e e 即当1a =时,()()12f x f x =由(1)可知,此时1x =是()f x 的极大值点,因此不妨令1201x x <<<>22122x x +>①当22x ≥时,22122x x +>成立;②当212x <<时先证122x x +>此时()2201x -∈,要证122x x +>,即证:122x x >-,即()()122f x f x >-,即()()222f x f x >-即:()()2220f x f x -->①令()()()()()()1ln 21ln 21,22x x g x f x f x x x x+-+=--=-∈-,∴()()()()()222222ln 2ln 2ln 2ln ln 02x x x x x x g x x x x x x ---'=-->--=->-∴()g x 在区间()12,上单调递增∴()()10x g g >=,∴①式得证.∴122x x +>∵21112x x +>,22212x x +>∴221212222x x x x ++>+∴()221212222x x x x +>+->>5.已知函数()22ln x f x x a=-(a ∈R 且0a ≠).(1)2a =,求函数()f x 在()()22f ,处的切线方程.(2)讨论函数()f x 的单调性;(3)若函数()f x 有两个零点12x x 、()12x x <,且2e a =,证明:122e x x +>.【解析】(1)当2a =时,()22ln 2x f x x =-,所以()222ln 2f =-.()2f x x x '=-,所以()22212f '=-=.所以函数()f x 在()()22f ,处的切线方程为()22ln 22y x --=-,即2ln 2y x =-.(2)()f x 的定义域为(0,+∞),22()x f x a x'=-.当a <0时,()0f x '<恒成立,所以()f x 在(0,+∞)上单调递减;当a >0时,(222()x f x x x a x ax'=-=.在(上,()0f x '<,所以()f x 单调递减;在)+∞上,()0f x '>,所以()f x 单调递增.(3)当2e a =,()222ln ex f x x =-.由(2)知,()f x 在()0,e 上单调递减,在()e,∞+上单调递增.由题意可得:()12(0,e),e,x x ∈∈+∞.由(2e)22ln 20f =->及2()0f x =得:()2e,2e x ∈.欲证x 1+x 2>2e ,只要x 1>2e-x 2,注意到f (x )在(0,e)上单调递减,且f (x 1)=0,只要证明f (2e-x 2)>0即可.由22222()2ln 0ex f x x =-=得22222e ln x x =.所以22222(2e )(2e )2ln(2e )e x f x x --=--2222224e 4e 2ln(2e )e x x x -+=--()2222224e 4e 2e ln 2ln 2e e x x x -+=--2222442ln 2ln(2e ),(e,2e),ex x x x =-+--∈令4()42ln 2ln(2e ),(e,2e)etg t t t t =-+--∈则24224(e )()0e 2e e (2e )t g t t t t t -'=-++=--,则g (t )在(e ,2e)上是递增的,∴g (t )>g (e)=0即f (2e-x 2)>0.综上x 1+x 2>2e.6.已知函数()ln f x x x =-(1)求证:当1x >时,()21ln 1x x x ->+;(2)当方程()f x m =有两个不等实数根12,x x 时,求证:121x x m +>+【解析】(1)令()()()21ln 11x g x x x x -=->+,因为()()()()222114011x g x x x x x -'=-=>++,所以()g x 在()1,+∞上单调递增,所以()()10g x g >=,即当1x >时,()21ln 1x x x ->+.(2)证明:由()ln f x x x =-,得()11f x x'=-,易知()f x 在()0,1单调递减,在()1,+∞单调递增,所以()min 1f x =.因为方程()f x m =有两个不等实根,所以1m >.不妨设1201x x <<<.由(1)知,当1x >时,()21ln 1x x x ->+;当01x <<时,()21ln 1x x x -<+.方程()f x m =可化为ln x m x -=.所以()222221ln 1x x m x x --=>+,整理得()222120x m x m -++->.①同理由()111121ln 1x x m x x --=<+,整理得()211120x m x m -++-+>.②由①②,得()()()211210x x x x m -+-+>⎡⎤⎣⎦.又因为21x x >所以121x x m +>+.法二:由()ln f x x x =-,得()11f x x'=-,易知()f x 在()0,1单调递减,在()1,+∞单调递增,所以()min 1f x =.因为方程()f x m =有两个不等实根,所以1m >.不妨设1201x x <<<.要证121x x m +>+,只要证1211ln 1x x x x +>-+,只要证:21ln 11x x >-+>.因为()f x 在()1,+∞上单调递增,只要证:()()()1211ln f x f x f x =>-.令()()()(1ln 01h x f x f x x =--<<,只要证()0,1x ∀∈,()0h x >恒成立.因为()()()()1111ln 11ln 111ln 1ln x x x h x f x f x x x x x x x --⎛⎫⎛⎫=---=-+-=⎪ ⎪-⎭'⎝'-'⎝⎭,令()()ln 101F x x x x x =--<<,则()ln 0F x x '=->,故()F x 在()0,1上单调递增,()()10F x F <=,所以()0h x '<,所以()h x 在()0,1上单调递减,所以()()10h x h >=,故原结论得证.7.已知函数()()22ln 21f x a x x a x a =-+-+.(1)若1a =,证明:()22f x x x <-;(2)若()f x 有两个不同的零点12,x x ,求a 的取值范围,并证明:122x x a +>.【解析】(1)当1a =时,()22ln 1f x x x =-+,定义域为()0,∞+令()()()222ln 21g x f x x x x x =--=-+,则()22g x x'=-当01x <<时,()0g x '>;当1x <时,()0g x '<;所以函数()g x 在()0,1上单调递增,在()1,+∞上单调递减,故()()max 110g x g ==-<,所以()0g x <,得()22f x x x <-;(2)因为()f x 有两个不同的零点12,x x ,则()f x 在定义域内不单调;由()()()()212221x a x af x x a x x--+'=-+-=当0a ≤时,()0f x '<在()0,∞+恒成立,则()f x 在()0,∞+上单调递减,不符合题意;当0a >时,在()0,a 上有()0f x '>,在(),a +∞上有()0f x '<,所以()f x 在()0,a 上单调递增,在(),a +∞上单调递减.不妨设120x a x <<<令()()()2F x f x f a x =--则()()()()()()222F x f x f a x a x f x f a x ''''''=---=+-()()()()()2422221222122a x a ax a a x a x a x x a x -=-+-+--+-=--当()0,x a ∈时,()0F x '>,则()F 在()0,a 上单调递增所以()()()()20F x F a f a f a a <=--=故()()2f x f a x <-,因为120x a x <<<所以()()12f x f a x <-1,又()()2f x f x =1,122a a x a <-<则()()212f x f a x <-,又()f x 在(),a +∞上单调递减,所以212x a x >-,则122x x a +>.8.已知函数()21ln 2f x x x x x =+-.(1)求曲线()y f x =在点()()1,1f 处的切线方程;(2)若()00f x '=(()f x '为()f x 的导函数),方程()f x m =有两个不等实根1x 、2x ,求证:1202x x x +>.【解析】(1)因为()21ln 2f x x x x x =+-,则()ln f x x x '=+,所以,()112f =-,()11f '=,所以,曲线()y f x =在点()()1,1f 处的切线方程为112y x +=-,即32y x =-.(2)证明:因为()ln f x x x '=+,()00f x '=,所以00ln 0x x +=.因为()f x '为增函数,所以()f x 在()00,x 上单调递减,在()0,x +∞上单调递增.由方程()f x m =有两个不等实根1x 、2x ,则可设102x x x <<,欲证1202x x x +>,即证20102x x x x >->,即证()()2012f x f x x >-,而()()21f x f x =,即()()10120f x f x x -->,即()()()()2211110*********ln 2ln 222022x x x x x x x x x x x x +------+->,设()()()()()22000011ln 2ln 22222g x x x x x x x x x x x x x =+------+-,其中00x x <<,则()()00ln ln 22g x x x x x =+-+',设()()()000ln ln 220h x x x x x x x =<+<+-,则()()()000211022x x x x x x x x h x -=-=>--',所以,函数()g x '在()00,x 上单调递增,所以()()0002ln 20g x g x x x '<='+=,所以()g x 在()00,x 上单调递减,所以()()00g x g x >=,即()()2012f x f x x >-,故1202x x x +>得证.9.已知函数2()1e (1),1,1x f x k x x k R x ⎛⎫=--->-∈ ⎪+⎝⎭.(1)若0k =,证明:(1,0)x ∈-时,()1f x <-;(2)若函数()f x 恰有三个零点123,,x x x ,证明:1231x x x ++>.【解析】(1)0k =时,函数1()e ,(1,0)1xx f x x x -=∈-+,则221()e 0(1)x x f x x +='>+,()f x 在(1,0)-上单调递增,所以1()e (0)11xx f x f x -=<=-+.(2)e ()(1)1x f x x k x ⎛⎫=--⎪+⎝⎭,显然1x =为函数的一个零点,设为3x ;设函数e ()1xF x k x =-+,2e ()(1)x x F x x '=+当(1,0)x ∈-时,()0F x '<,当,()0x ∈+∞时,()0F x '>,故()F x 在(1,0)-上单调递减,在(0,)+∞上单调递增.由已知,()F x 必有两个零点12,x x ,且1210x x -<<<,下证:120x x +>.设函数()()(),(1,0)h x F x F x x =--∈-,则e e ()11x xh x x x -=++-,2e 11()e e (1)11x x x x x x h x x x x -++⎛⎫⎛⎫=+- ⎪⎪+--⎝⎭⎝⎭',由于(1,0)x ∈-,则2e 1e 0(1)1x x x x x x -+⎛⎫-< ⎪+-⎝⎭,由(1)有1e 01xx x ++>-,故()0h x '<,即函数()h x 在(1,0)-上单调递减,所以()(0)0h x h >=,即有()()()211F x F x F x =>-,由于12,(0,)x x -∈+∞,且在(0,)+∞上单调递增,所以21x x >-,所以120x x +>.10.已知函数()()()1ln 3f x x x a x =++-.(1)若函数()f x 为增函数,求实数a 的取值范围;(2)若函数()f x 有两个极值点1x 、()212x x x <.求证:()()12122f x f x x x +++>-.【解析】(1)因为()()()1ln 3f x x x a x =++-,该函数的定义域为()0,∞+,()1ln 2f x x a x'=++-,若函数()f x 为增函数,则()0f x '≥恒成立.令()1ln 2g x x a x =++-,()22111x g x x x x-'=-=,令()0g x '=得1x =,当()0,1x ∈时,()0g x '<,()g x 单调递减;当()1,x ∈+∞时,()0g x '>,()g x 单调递增,故()()11g x g a ≥=-,所以,10a -≥,因此1a ≥.(2)因为函数()f x 有两个极值点1x 、()212x x x <,即方程()0g x =有两个不等的实根1x 、()212x x x <,因为()g x 在()0,1上递减,在()1,+∞上递增,所以,1201x x <<<,即1x 、2x 是1ln 20x a x++-=的两个根,所以11221ln 201ln 20x a x x a x ⎧++-=⎪⎪⎨⎪++-=⎪⎩,则()()111222ln 21ln 21x x a x x x a x ⎧+-=-⎪⎨+-=-⎪⎩,所以,()()()()121211221212ln ln ln ln 2f x f x x x x x x x x x a x x +++=++++-+12ln ln 2x x =+-,即证12ln ln 0x x +>,即证121x x >.由11221ln 201ln 20x a x x a x ⎧++-=⎪⎪⎨⎪++-=⎪⎩两式作差得122111ln x x x x =-,令()120,1x t x =∈,则11ln t x t -=,21ln t x t t-=,即只需证111ln ln t t t t t--⋅>,即证ln 0t >.令()ln t t ϕ=-()0,1t ∈,则()210t ϕ-'=,故()t ϕ在区间()0,1上单调递减,当()0,1t ∈时,()()10t ϕϕ>=,命题得证.11.已知函数()ln f x x x =-.(1)求函数()f x 的单调区间;(2)若函数()y f x =的图象与()y m m R =∈的图象交于()11,A x y ,()22,B x y 两点,证明:12242ln 2x x +>-.【解析】(1)()f x 的定义域为(0,)+∞令11()10xf x x x -'=-=>,解得01x <<令11()10x f x x x-'=-=<,解得1x >所以()f x 的单调增区间为(0,1),减区间为(1,)+∞(2)由(1)不妨设1201x x <<<由题知11ln x x m -=,22ln x x m -=两式相减整理可得:12121ln x x x x -=所以要证明12242ln 2x x +>-成立,只需证明1211222(42ln 2l )n x x x x x x +->-因为12ln 0x x <,所以只需证明212112(42ln 2ln )2x x x x x x <-+-令12,01x t t x =<<,则只需证明1(42ln l 21n 2)t t t -<-+,即证(1)ln (1)02(42ln 2)t t t +--<-令2()(1)ln (1)2(4ln 2)g t t t t -=-+-2ln 22l 12ln (2)1()22n 2ln t t t g t t t t++'--=++=记()2ln (2)12ln 2h x t t t +-=+则()2ln 2h x t '=易知,当102t <<时,()0h x '<,当112t <<时,()0h x '>所以当12t =时,min 11()()022n 2ln l h x h ==+=所以当01t <<时,()0g t '≥,函数()g t 单调递增故()(1)0g t g <=,即(1)ln (1)02(42ln 2)t t t +--<-所以,原不等式12242ln 2x x +>-成立.12.已知函数()()3ln 010f x ax x a a =+≠.(1)讨论()f x 的单调性.(2)若函数()f x 有两个零点12x x ,,且12x x <,证明:12310x x +>.【解析】(1)函数()f x 的定义域为()0,∞+,()()ln ln 1f x a x a a x '=+=+.①当0a >时,令()0f x '<,得10x e <<,则()f x 在10,e ⎛⎫⎪⎝⎭上单调递减;令()0f x '>,得1x e >,则()f x 在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增.②当0a <时,令()0f x '<,得1x e >,则()f x 在1,e ⎛⎫+∞ ⎪⎝⎭上单调递减;令()0f x '>,得10x e <<,则()f x 在10,e ⎛⎫⎪⎝⎭上单调递增.综上所述,当0a >时,()f x 在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增;当0a <时,()f x 在1,e ⎛⎫+∞ ⎪⎝⎭上单调递减,在10,e ⎛⎫ ⎪⎝⎭上单调递增.(2)证明:因为12x x ,为()f x 的两个零点,所以113ln 010x x +=,223ln 010x x +=,两式相减,可得121233ln ln 01010x x x x -+-=,即1122123ln 10x x x x x x -=⋅,121212310ln x x x x x x -=⋅,因此,121121310ln x x x x x -=⋅,212121310ln x x x x x -=⋅.令12x t x =,则121113513310ln 10ln 10ln t t t x x t t t---+=⋅+⋅=⋅,令()()1ln 01h t t t t t =--<<,则()22211110t t h t t t t -+'=+-=>,所以函数()h t 在()0,1上单调递增,所以()()10h t h <=,即1ln 0t t t--<.因为01t <<,所以11ln t t t->,故12310x x +>得证.13.已知函数()ln f x x x ax a =-+.(1)若1≥x 时,()0f x ≥,求a 的取值范围;(2)当1a =时,方程()f x b =有两个不相等的实数根12,x x ,证明:121x x <.【解析】(1)∵1≥x ,()0f x ≥,∴ln 0a x a x -+≥,设()ln (1)ag x x a x x =-+≥,()221a x a g x x x x-'=-=,当1a >时,令()0g x '=得x a =,当1x a <≤时,()0g x '<,()g x 单调递减;当x a >时,()0g x '>,()g x 单调递增,∴()(1)0g a g <=,与已知矛盾.当1a ≤时,()0g x '≥,∴()g x 在[1,)+∞上单调递增,∴()(1)0g x g ≥=,满足条件;综上,a 取值范围是(,1]-∞.(2)证明:当1a =时,()ln f x x '=,当1x >,'()0f x >,当01x <<,'()0f x <,则()f x 在区间(1,)+∞上单调递增,在区间()0,1上单调递减,不妨设12x x <,则1201x x <<<,要证121x x <,只需证2111x x <<,∵()f x 在区间(1,)+∞上单调递增,∴只需证121()(f x f x <,∵12()()f x f x =,∴只需证111()()f x f x <.设1()()()(01)F x f x f x x =-<<,则22211()ln ln ln 0,x F x x x x x x -'=-=>,∴()F x 在区间()0,1上单调递增,∴()(1)0F x F <=,∴1()()0f x f x-<,即111()()f x f x <成立,∴121x x <.14.设函数()()e xf x x a =+,已知直线21y x =+是曲线()y f x =的一条切线.(1)求a 的值,并讨论函数()f x 的单调性;(2)若()()12f x f x =,其中12x x <,证明:124x x ⋅>.【答案】(1)1a =;()f x 在(),2-∞-上单调递减,在()2,-+∞上单调递增【解析】(1)设直线21y x =+与曲线()y f x =相切于点()()00,x f x ,()()1e x f x x a '=++ ,()()0001e 2x f x x a '∴=++=;又()()0000e 21x f x x a x =+=+,002e 21xx ∴-=+,即00e 210x x +-=;设()e 21x g x x =+-,则()e 20xg x '=+>,()g x ∴在R 上单调递增,又()00g =,()g x ∴有唯一零点0x =,00x ∴=,12a ∴+=,解得:1a =;()()1e x f x x ∴=+,()()2e x f x x '=+,则当(),2x ∞∈--时,()0f x '<;当()2,x ∈-+∞时,()0f x '>;()f x ∴在(),2-∞-上单调递减,在()2,-+∞上单调递增.(2)由(1)知:()()2min 2e 0f x f -=-=-<;当1x <-时,()0f x <;当1x >-时,()0f x >,1221x x ∴<-<<-;要证124x x ⋅>,只需证1242x x <<-;()f x 在(),2-∞-上单调递减,∴只需证()124f x f x ⎛⎫> ⎪⎝⎭,又()()12f x f x =,则只需证()224f x f x ⎛⎫> ⎪⎝⎭对任意()22,1x ∈--恒成立;设()()()421h x f x f x x ⎛⎫=--<<- ⎪⎝⎭,()()()()444333822e 2e e e 8xx xxxx x h x x x x x -⎛⎫++'∴=++=+ ⎪⎝⎭;设()()43e821x xp x x x -=+-<<-,则()2437e024x xp x x x -⎡⎤⎛⎫'=⋅++<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,()p x ∴在()2,1--上单调递减,()()2880p x p ∴<-=-+=,又当21x -<<-时,()432e 0xx x +<,()0h x '∴>,()h x ∴在()2,1--上单调递增,()()()()2220h x h f f ∴>-=---=,即()4f x f x ⎛⎫> ⎪⎝⎭在()2,1x ∈--时恒成立,又()22,1x ∈--,()224f x f x ⎛⎫∴> ⎪⎝⎭,原不等式得证.15.已知函数()()32ln f x x x a a R x=++-∈有两个不同的零点12,x x .(1)求实数a 的取值范围;(2)求证:121x x >.【解析】(1)定义域为()()22232230,,1x x f x x x x ∞+-+=-+=',()(),0,10x f x '∈<,所以()f x 在()0,1x ∈上单调递减.()()1,,0x f x '∈+∞>,所以()f x 在()1,x ∈+∞上单调递增,所以()f x 在1x =处取得极小值,也是最小值,又()min ()14f x f a ==-,所以先保证必要条件()10f <成立,即4a >满足题意.当4a >时,易知,()()()33222ln 22ln 2022f a a a a a a a a=++-=++>;()111132ln 2ln 0;f a a a a a a aa a ⎛⎫=+--=+->> ⎪⎝⎭由以上可知,当4a >时,()()32ln f x x x a a R x=++-∈有两个不同的零点.(2)由题意,假设1201x x <<<,要证明121x x >,只需证明121x x >.只需证()121f x f x ⎛⎫< ⎪⎝⎭,又()()12f x f x =.即只需证()221f x f x ⎛⎫< ⎪⎝⎭,构造函数()()1,(1)g x f x f x x ⎛⎫=-> ⎪⎝⎭.()224ln g x x xx =-+()222(1)x g x x --∴=',所以()g x 在()1,+∞单调递减.()()()2210,1,1g x g x g =>∴< ,即()221f x f x ⎛⎫<⎪⎝⎭成立,即()121f x f x ⎛⎫< ⎪⎝⎭所以原命题成立.16.已知a 是实数,函数()ln f x a x x =-.(1)讨论()f x 的单调性;(2)若()f x 有两个相异的零点12,x x 且120x x >>,求证:212e x x ⋅>.【解析】(1)()f x 的定义域为()0,∞+,()1a a x f x x x-'=-=,当0a ≤时,()0f x '<恒成立,故()f x 在()0,∞+上单调递减;当0a >时,令()0f x '>得:()0,x a ∈,令()0f x '<得:(),x a ∈+∞,故()f x 在()0,x a ∈上单调递增,在(),x a ∈+∞上单调递减;综上:当0a ≤时,()f x 在()0,∞+上单调递减;当0a >时,()f x 在()0,x a ∈上单调递增,在(),x a ∈+∞上单调递减;(2)由(1)可知,要想()f x 有两个相异的零点12,x x ,则0a >,不妨设120x x >>,因为()()120f x f x ==,所以1122ln 0,ln 0a x x a x x -=-=,所以()1212ln ln x x a x x -=-,要证212e x x ⋅>,即证12ln ln 2x x +>,等价于122x x a a +>,而1212ln ln 1x x a x x -=-,所以等价于证明121212ln ln 2x x x x x x ->-+,即()1212122ln x x x x x x ->+,令12x t x =,则1t >,于是等价于证明()21ln 1t t t ->+成立,设()()21ln 1t g t t t -=-+,1t >()()()()222114011t g t t t t t -'=-=>++,所以()g t 在()1,+∞上单调递增,故()()10g t g >=,即()21ln 1t t t ->+成立,所以212e x x ⋅>,结论得证.17.已知函数()1e xf x ax -=-,(1)讨论函数()f x 的单调性;(2)若函数()f x 在()0,2上有两个不相等的零点12,x x ,求证:121x x a>.【解析】(1)()1e xf x a -='-,x ∈R .①当0a ≤时,()0f x '>恒成立,()f x 单调递增;②当0a >时,由()0f x '>得,()1ln ,x a ∈++∞,()f x 单调递增,由()0f x '<得,(),1ln x a ∈-∞+,()f x 单调递减.综上:当0a ≤时,()f x 单调递增;当0a >时,()f x 在()1ln ,x a ∈++∞上单调递增,在(),1ln x a ∈-∞+上单调递减.(2)∵()f x 在()0,2上有两个不相等的零点1x ,2x ,不妨设12x x <,∴1e x a x -=在()0,2上有两个不相等的实根,令()1e x g x x -=,()0,2x ∈,∴()()12e 1x x g x x --'=,由()0g x '<得,()0,1x ∈,()g x 单调递减,由()0g x '>得,()1,2x ∈,()g x 单调递增,()11g =,()e 22g =,0x →,()g x ∞→+,∴e 1,2a ⎛⎫∈ ⎪⎝⎭要证121x x a>,即证121ax x >,又∵()()12g x g x a ==,只要证211e1x x ->,即证211e x x ->,∵121x x <<,即证()()211e xg x g -<即证()()212e x g x g -<,即证12221e 112e e ex x x x ----<,即证212e ln 10x x -+->令()1eln 1xh x x -=+-,()1,2x ∈,∴()11e x h x x-'=-+,令()e e x x x ϕ=-,()1,2x ∈,则()e e x x ϕ'=-,当()1,2x ∈时,()e e>0x x ϕ'=-恒成立,所以()e e xx x ϕ=-在()1,2x ∈上单调递增,又()()10x ϕϕ>=,∴e e x x >,∴11e x x-<,∴()0h x '>∴()h x 在()1,2上递增,∴()()10h x h >>,∴1e ln 10x x -+->,∴121x x a>.18.已知函数21()ln 2f x x x x x =+-的导函数为()'f x .(1)判断()f x 的单调性;(2)若关于x 的方程()f x m '=有两个实数根1x ,212()x x x <,求证:2122x x <.【解析】(1)()1(1ln )(0)f x x x x x x '=+-+=>,令()ln g x x x =-,由11()1(0)x g x x x x'-=-=>,可得()g x 在(0,1)上单调递减,(1,)+∞上单调递增,所以()()(1)10f x g x g '==>,所以()f x 在(0,)+∞上单调递增;(2)依题意,1122ln ln x x mx x m-=⎧⎨-=⎩,相减得2121ln x x x x -=-,令21(1)x t t x =>,则有1ln 1t x t =-,2ln 1t t x t =-,欲证2122x x <成立,只需证222ln (ln )21(1)t t t t t ⋅<--成立,即证3322(1)(ln )t t t -<成立,即证13232(1)ln t t t-<成立,令13(1)t x x =>,只需证13212()3ln 0x x x-->成立,令1321()2()3ln (1)F x x x x x=-->,即证1x >时,()0F x >成立11323333232(2)3()2(1x x F x x x x+-'=+-=,令1323()2(2)3(1)h x x x x =+->,则11233()2(3)63(22)(1)x x x x x g x '=-=->,可得()h x 在23(1,2)内递减,在23(2,)+∞内递增,所以23()(2)0h x h = ,所以()0F x ',所以()F x 在(1,)+∞上单调递增,所以()(1)0F x F >=成立,故原不等式成立.19.已知函数()ln f x x =.(1)设函数()()ln tg x x t x=-∈R ,且()()g x f x ≤恒成立,求实数t 的取值范围;(2)求证:()12e e x f x x>-;(3)设函数()()1y f x ax a R x=--∈的两个零点1x 、2x ,求证:2122e x x >.【解析】(1)由()()g x f x ≤可得ln ln tx x x-≤,可得2ln t x x ≤,令()2ln h x x x =,其中0x >,则()()21ln h x x '=+,当10ex <<时,()0h x '<,此时函数()h x 单调递减,当1ex >时,()0h x '>,此时函数()h x 单调递增,所以,()min 12e e h x h ⎛⎫==- ⎪⎝⎭,所以,2e t ≤-;(2)要证()12e e x f x x >-,即证2ln e ex x x x >-,由(1)可知,1ln ex x ≥-,当且仅当1e x =时,等号成立,令()2e exx m x =-,其中0x >,则()1e x x m x -'=,当01x <<时,()0m x '>,此时函数()m x 单调递增,当1x >时,()0m x '<,此时函数()m x 单调递减,所以,()()max 11em x m ==-,因为1ln ex x ≥-和()1e m x ≤-取等的条件不同,故2ln e e x x x x >-,即()12e e x f x x >-;(3)由题知1111ln x ax x -=①,2221ln x ax x -=②,①+②得()()12121212ln x x x x a x x x x +-=+③,②-①得()22121112ln xx x a x x x x x ⎛⎫-+=- ⎪⎝⎭④.③÷④得()()1212212122112ln ln x x x x x x x x x x x x ++-=-,不妨设120x x <<,记211x t x =>.令()()()21ln 11t F t t t t -=->+,则()()()()222114011t F t t t t t -'=-=>++,所以()F t 在()1,+∞上单调递增,所以()()10F t F >=,则()21ln 1t t t ->+,即()2121122lnx x x x x x ->+,所以()()1212212122112ln ln 2x x x x x x x x x x x x ++-=>-.因为()()()()1212121212122ln ln ln x x x x x x x x x x +-<==所以2,即1>.令()2ln x x x ϕ=-,()2120x x xϕ'=+>,则()x ϕ在()0,∞+上单调递增.又)1lnln 2112e =+<,所以)1ln >-)ϕϕ>,所以2122x xe >.20.已知函数1()e xx f x -=.(1)求()f x 的单调区间与极值.(2)设m ,n 为两个不相等的正数,且ln ln m n n m m n -=-,证明:4e mn >.【解析】(1)()f x 的定义域为R ,()2e rxf x -'=.当(,2)x ∈-∞时,()0f x '>;当(2,)x ∈+∞时,()0.f x '<所以()f x 的单调递增区间为(,2)-∞,单调递减区间为(2,)+∞.故()f x 在2x =处取得极大值,且极大值为21e ,无极小值.(2)证明:易知m ,0n >,ln ln (ln 1)m n n m m n m n -=-⇔-()ln n ln ln 1ln 1ln 1ln 1ln 1e emn m n m n m n m ----=-⇔=⇔=即()ln (ln )f f m n =,ln ln m n ≠.不妨设1ln x m =,2ln x n =,12x x <.(1)可知2(2,)x ∈+∞,()()120f x f x =>,1(1,2)x ∈当23x ≥时,124x x +>,4e mn >,当223x <<时,2142x <-<,()()()()22224222222441e 31414x xx x x x e x x f x f x e e e ----------=-=设4()(1)e (3)e x x h x x x -=---,(2,3)x ∈,则()()()()()442e2e 2e e xx x x h x x x x --=---=--',因为(2,3)x ∈,4x x -<,所以()0h x '>,()h x 在区间(2,3)上单调递增,422()(21)e (32)e 0h x ->---=,所以()()()()2212440f x f x f x f x --=-->,()()124x f f x >-又因为1x ,24(1,2)x -∈,所以124x x >-,即124x x +>,故4e mm >.21.已知函数()()2ln f x e x x =-,其中 2.71828e =⋅⋅⋅为自然对数的底数.(1)讨论函数()f x 的单调性;(2)若()12,0,1x x ∈,且()21121212ln 2ln ln x x x ex x x x -=-,证明:1211221e e x x <+<+.【解析】(1)2(1)'()ln e x xf x =-+,2e y x =是减函数,1ln y x =+是增函数,所以'()f x 在()0,∞+单调递减,∵()'0f e =,∴()0,x e ∈时,()'()'0f x f e >=,()f x 单调递增;(),x e ∈+∞时,()'()'0f x f e <=,()f x 单调递减.(2)由题意得,121212ln ln 2ln 2ln x x e x e x x x -=-,即1212112ln 2ln e x e x x x ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,112211112ln 2ln e e x x x x ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,设111a x =,221a x =,则由()12,0,1x x ∈得,()12,1,a a ∈+∞,且()()12f a f a =.不妨设12a a <,则即证12221e a a e <+<+,由()20f e =及()f x 的单调性知,1212a e a e <<<<.令()()()2F x f x f e x =--,1x e <<,则[]24'()'()'(2)2ln (2)(2)e F xf x f e x x e x x e x =+-=----,∵()22x e x e -≤,∴2224'()2ln 0eF x e e>--=,()()0F x F e <=,∴()()2f x f e x <-,取1x a =,则()()112f a f e a <-,又()()12f a f a =,则()()212f a f e a <-,又12e a e ->,2a e >,且()f x 在(),e +∞单调递减,∴212a e a >-,122a a e +>.下证:1221a a e +<+.(i )当21a e <+时,由1a e <得,1221a a e +<+;(ii )当212e a e +≤<时,令()()(21)G x f x f e x =-+-,12e x e +<<,则22'()'()'(21)1ln 1ln(21)21e e G x f x f e x x e x x e x=++-=--+--+-+-222(21)2ln (21)(21)e e x e x x e x+⎡⎤=---++⎣⎦-++,记2(21)t x e x =-++,12e x e +≤<,则2(21)'()2ln e e G x t t+=--,又2(21)t x e x =-++在[)1,2e e +为减函数,∴()22,1t e e ∈+,2(21)2e e t +-在()22,1e e +单调递减,ln t 在()22,1e e +单调递增,∴2(21)2ln e e t t+--单调递减,从而,'()G x 在[)1,2e e +单调递增,又2(21)'(2)2ln 2(212)21ln 22(212)e e G e e e e e e e e e +=--+-=--+-,ln 1≤-x x ,∴()'20G e >,又2(21)'(1)2ln(1)(211)(1)(211)e e G e e e e e e e ++=--++--++--1ln(1)01e e e -=-+<+,从而,由零点存在定理得,存在唯一0(1,2)x e e ∈+,使得()0'0G x =,当[)01,x e x ∈+时,()0'()'0()G x G x G x <=⇒单调递减;当()0,2x x e ∈时,()0'()'0()G x G x G x >=⇒单调递增.所以,{}()max (1),(2)G x G e G e ≤+,又(1)(1)(211)(1)()(1)ln(1)G e f e f e e f e f e e e e +=+-+--=+-=-+-,ln 11ln ln(1)x x e x e x e e e+≤⇒≤⇒+≤,所以,11(1)(1)0e G e e e e e+-+<-⋅-=<,显然,()()()22212000G e f e f e e =-+-=-=,所以,()0<G x ,即()()210f x f e x -+-<,取[)21,2x a e e =∈+,则()()2221f a f e a <+-,又()()12f a f a =,则()()1221f a f e a <+-,结合()221211e a e e e +-<+-+=,1a e <,以及()f x 在()0,e 单调递增,得到1221a e a <+-,从而1221a a e +<+.22.已知函数()e ln xf x x a x a =--,其中0a >.(1)若2e a =,求()f x 的极值:(2)令函数()()g x f x ax a =-+,若存在1x ,2x 使得()()12g x g x =,证明:1212e e 2x xx x a +>.【解析】(1)当2e a =时()e 2eln 2e xf x x x =-,()0,x ∈+∞,所以()()()1e 2e2e 1e xxx x f x x x x+-'=+-=,当()0,1x ∈时,202x x <+<,1e e x <<,所以()0f x '<,当()1,x ∈+∞时,22x x +>,e e x >,所以()0f x '>,所以()f x 在()0,1上单调递减,在()1,+∞上单调递增,所以()f x 的极小值为()1e f =-,无极大值.(2)证明:()()()e ln e ln e x x xg x a x ax x f x ax x a x a ==-=+---,令e x t x =,则上述函数变形为()ln h a t t t =-,对于()e x t x x =,()0,x ∈+∞,则()()1e 0xt x x '=+>,即()e x t x x =在()0,∞+上单调递增,。
专题09 极值点偏移(二)(原卷版)2021学年高三导数满分突破
专题09极值点偏移(二)一.考情分析函数的极值点偏移问题,是导数应用问题,呈现的形式往往非常简洁,涉及函数的双零点,是一个多元数学问题,不管待证的是两个变量的不等式,还是导函数的值的不等式,解题的策略都是把双变量的等式或不等式转化为一元变量问题求解,途径都是构造一元函数.二.经验分享1、极值点偏移的判定定理对于可导函数)(x f y =,在区间),(b a 上只有一个极大(小)值点0x ,方程0)(=x f 的解分别为21,x x ,且b x x a <<<21,(1)若)2()(201x x f x f -<,则021)(2x x x ><+,即函数)(x f y =在区间),(21x x 上极(小)大值点0x 右(左)偏;(2)若)2()(201x x f x f ->,则021)(2x x x <>+,即函数)(x f y =在区间),(21x x 上极(小)大值点0x 右(左)偏.2、运用判定定理判定极值点偏移的方法 1、极值点偏移处理方法:(1)求出函数)(x f 的极值点0x ;(2)构造一元差函数)()()(00x x f x x f x F --+=; (3)确定函数)(x F 的单调性;(4)结合0)0(=F ,判断)(x F 的符号,从而确定)(0x x f +、)(0x x f -的大小关系. 口诀:极值偏离对称轴,构造函数觅行踪;四个步骤环相扣,两次单调紧跟随. 2、答题模板若已知函数)(x f 满足)()(21x f x f =,0x 为函数)(x f 的极值点,求证:0212x x x <+. (1)讨论函数)(x f 的单调性并求出)(x f 的极值点0x ;假设此处)(x f 在),(0x -∞上单调递减,在),(0+∞x 上单调递增.(2)构造)()()(00x x f x x f x F --+=;注:此处根据题意需要还可以构造成)2()()(0x x f x f x F --=的形式.(3)通过求导)('x F 讨论)(x F 的单调性,判断出)(x F 在某段区间上的正负,并得出)(0x x f +与)(0x x f -的大小关系;假设此处)(x F 在),0(+∞上单调递增,那么我们便可得出0)()()()(000=-=>x f x f x F x F ,从而得到:0x x >时,)()(00x x f x x f ->+.(4)不妨设201x x x <<,通过)(x f 的单调性,)()(21x f x f =,)(0x x f +与)(0x x f -的大小关系得出结论;接上述情况,由于0x x >时,)()(00x x f x x f ->+且201x x x <<,)()(21x f x f =,故)2()]([)]([)()(2002002021x x f x x x f x x x f x f x f -=-->-+==,又因为01x x <,0202x x x <-且)(x f 在),(0x -∞上单调递减,从而得到2012x x x -<,从而0212x x x <+得证.(5)若要证明0)2('21<+x x f ,还需进一步讨论221x x +与0x 的大小,得出221xx +所在的单调区间,从而得出该处函数导数值的正负,从而结论得证.此处只需继续证明:因为0212x x x <+,故0212x x x <+,由于)(x f 在),(0x -∞上单调递减,故0)2('21<+x x f . 【说明】(1)此类试题由于思路固定,所以通常情况下求导比较复杂,计算时须细心;(2)此类题目若试题难度较低,会分解为三问,前两问分别求)(x f 的单调性、极值点,证明)(0x x f +与)(0x x f -(或)(x f 与)2(0x x f -)的大小关系;若试题难度较大,则直接给出形如0212x x x <+或0)2('21<+x x f 的结论,让你给予证明,此时自己应主动把该小问分解为三问逐步解题. 三、题型分析例1.已知函数()()2ln f x x x ax x a a R =+-+∈在其定义域内有两个不同的极值点.(1)求a 的取值范围.(2)设()f x 的两个极值点为12,x x ,证明212x x e >.例2.已知函数()()()2a xg x xea R -=∈, e 为自然对数的底数.(1)讨论()g x 的单调性;(2)若函数()()2ln f x g x ax =-的图象与直线()y m m R =∈交于A B 、两点,线段AB 中点的横坐标为0x ,证明: ()00f x '<(()f x '为函数()f x 的导函数)例3.已知()21ln 2f x x x mx x =--,m ∈R .若()f x 有两个极值点1x ,2x ,且12x x <,求证:212e x x >(e 为自然对数的底数).例4.已知函数()ln f x x a x =+与()3bg x x=-的图象在点()1,1处有相同的切线. (Ⅰ)若函数()2y x n =+与()y f x =的图象有两个交点,求实数n 的取值范围; (Ⅱ)若函数()()()3222m mF x x g x f x ⎛⎫=-+- ⎪⎝⎭有两个极值点1x ,2x ,且12x x <,证明:()221F x x <-.例5.已知函数()()21ln 1f x x a x =-+-, a R ∈.(Ⅰ)若函数()f x 为定义域上的单调函数,求实数a 的取值范围; (Ⅱ)若函数()f x 存在两个极值点1x , 2x ,且12x x <,证明: ()()1221f x f x x x >.例6.已知函数()()2ln 2,g x x ax a x a R =-+-∈.(1)求()g x 的单调区间;(2)若函数()()()212f x g x a x x =++-, 1212,()x x x x <是函数()f x 的两个零点, ()f x '是函数()f x 的导函数,证明: 1202x x f +⎛⎫<⎪⎝⎭'.迁移应用1.已知函数()e xf x ax =-有两个不同的零点1x ,2x ,其极值点为0x .(1)求a 的取值范围;(2)求证:1202x x x +<; (3)求证:121x x <.2已知函数()211xx f x e x-=+. (1)求()f x 的单调区间;(2)证明:当()()()1212f x f x x x =≠时,120x x +<.3.已知函数2)1()2()(-+-=x a e x x f x有两个零点21,x x .证明:122x x +<.4已知函数()ln xf x x a=+(a R ∈),曲线()y f x =在点()()1,1f 处的切线与直线10x y ++=垂直. (1)试比较20172016与20162017的大小,并说明理由;(2)若函数()()g x f x k =-有两个不同的零点12,x x ,证明: 212•x x e >.5.已知函数(1)(1ln )(),()ln ()x x f x g x x mx m R x++==-∈(1)求函数()g x 的单调区间;(2)当0m >时,对任意的[]11,2x ∈,存在[]21,2x ∈,使得12()3()f x m g x ->成立,试确定实数m 的取值范围。
完整版导数压轴题分类2 极值点偏移问题含答案
导数压轴题分类(2)---极值点偏移问题极值点偏移问题常见的处理方法有⑴构造一元差函数Fx f x f 2x 0 x 或者F x f x o x f x o x 。
其中x o 为函数y f x 的极值点。
⑵利用对数平均不等式。
•、ab-—b -—b 。
⑶变换主元等方法。
In a In b 2任务一、完成下面问题,总结极值点偏移问题的解决方法。
2 21 设函数 f(x) a In x x ax (a R)(1)试讨论函数f (x)的单调性;a 21nx x 2 ax 可知 2x 2 ax a 2 (2x a)(x a)x x① 若a 0时,当 x (0, a)时,f (x)0 ,函数f (x)单调递减,当 x (a, )时,f (x) 0,函数f (x)单调递增;② 若a 0时,当 f (X) 2x 0在x (0,)内恒成立,函数f (x)单调递增;③ 若a 0时,当 x (0,a)时,f (X )0 ,函数f (x)单调递减, 因为函数f(x)的定义域为(0,),所以2 f (x)0,函数f (x)单调递增;当)时,((2) f (x) m 有两解捲必(论x 2),求证:x-i x 2 2a .解析:(1)由f(x)a 2f (x)2x axa 2,(2)要证 X i X 2 2a , 只需证 a 22 a 2xg(x) f (x)为增函数。
只需证: f (X ^jX1) f (a)0,即证2- N +X 2 a 0 (*)x , x 2 a又 a 21n X i X i 2ax i2 2m, a In X 2 X 2 ax 2 m,两式相减整理得:2x a,则 g (x)g(x) (x)x2a 2x , +x 2 aln x 1 ln x 2 1 2(x 1ix x 2a)a0,把丄(x 1aX 2 a) ln x ( xlnX 2 代入(*) X 2式,即证:x 1 x 22ln x (lnx2o 化为2(竺1)=t 即证:2(t 1) lnt 0x2ln^10,令冬x-i x 2x X 2生1xx t 1x令(t ) 2(t 1) ln t(0 t1),则⑴4 1 (t 1)2卜ot 21t 1t t1 t所以⑴为减函数,⑴(1)综上得:原不等式得证。
导数压轴题分类(2)---极值点偏移问题(含答案)
导数压轴题分类(2)---极值点偏移问题极值点偏移问题常见的处理方法有⑴构造一元差函数()()()x x f x f F --=02x 或者()()()x x f x x f x F --+=00。
其中0x 为函数()x f y =的极值点。
⑵利用对数平均不等式。
2ln ln ab ba b a b a +<--<。
⑶变换主元等方法。
任务一、完成下面问题,总结极值点偏移问题的解决方法。
1.设函数22()ln ()f x a x x ax a R =-+-∈ (1)试讨论函数()f x 的单调性;(2)()f x m =有两解12,x x (12x x <),求证:122x x a +>. 解析:(1)由22()ln f x a x x ax =-+-可知2222(2)()()2a x ax a x a x a f x x a x x x--+-'=-+-==因为函数()f x 的定义域为(0,)+∞,所以① 若0a >时,当(0,)x a ∈时,()0f x '<,函数()f x 单调递减,当(,)x a ∈+∞时,()0f x '>,函数()f x 单调递增;② 若0a =时,当()20f x x '=>在(0,)x ∈+∞内恒成立,函数()f x 单调递增; ③ 若0a <时,当(0,)2a x ∈-时,()0f x '<,函数()f x 单调递减,当(,)2ax ∈-+∞时,()0f x '>,函数()f x 单调递增; (2)要证122x x a +>,只需证122x x a +>,(x)g =222(x)2,g (x)20(x)(x)a a f x a g f x x'''=-+-=+>∴=则为增函数。
只需证:12x x ()()02f f a +''>=,即证()2121221212221+0+0a x x a x x a x x x x a-+->⇔-+->++(*) 又2222111222ln ,ln ,a x x ax m a x x ax m -+-=-+-=两式相减整理得:1212212ln ln 1(x x a)0x x x x a --++-=-,把1212212ln ln 1(x x a)x x a x x -+-=-代入(*)式,即证:121212ln ln 20x x x x x x --+>+-化为:121112222(1)2(1)ln 0,=,ln 011x x x x t t t x x x t x ---+>-+>++令即证: ()()2222(1)41(t 1)(t)ln (01),(t)0111t t t t t t t tϕϕ---'=-+<<=-+=<+++令则所以(t)ϕ为减函数,(t)(1)0ϕϕ<= 综上得:原不等式得证。
导数中的极值点偏移问题(学生版)
极值点偏移问题高考要求结合函数与导数的知识能够处理极值点偏移问题.知识解读1.极值点偏移的相关概念所谓极值点偏移,是指对于单极值函数,由于函数极值点左右的增减速度不同,使得函数图像没有对称性。
若函数f (x )在x =x 0处取得极值,且函数y =f (x )与直线y =b 交于A (x 1,b ),B (x 2,b )两点,则AB 的中点为M x 1+x 22,b ,而往往x 0≠x 1+x 22。
如下图所示。
图1极值点不偏移图2极值点偏移极值点偏移的定义:对于函数y =f (x )在区间(a ,b )内只有一个极值点x 0,方程f (x )的解分别为x 1、x 2,且a <x 1<x 2<b ,(1)若x 1+x 22≠x 0,则称函数y =f (x )在区间(x 1,x 2)上极值点x 0偏移;(2)若x 1+x 22>x 0,则函数y =f (x )在区间(x 1,x 2)上极值点x 0左偏,简称极值点x 0左偏;(3)若x 1+x 22<x 0,则函数y =f (x )在区间(x 1,x 2)上极值点x 0右偏,简称极值点x 0右偏。
2.极值点偏移问题的解法(1)对称化构造法:构造辅助函数:对结论x 1+x 2>(<)2x 0型,构造函数F (x )=f (x )-f (2x 0-x );对结论x 1x 2>(<)x 20型,构造函数F (x )=f x -f x 20x,通过研究F (x )的单调性获得不等式.(2)比值代换法:通过代数变形将所证的双变量不等式通过代换t =x 1x 2化为单变量的函数不等式,利用函数单调性证明.题型突破题型1求和型极值点偏移1.(2024高三下·全国·专题练习)已知函数f x =2x ln x-x2+1.(1)证明:f x <1;(2)若0<x1<x2,且f x1=0,证明:x1+x2>2.+f x2x2-ax-2a2ln x.2.(2024·云南·二模)已知常数a>0,函数f(x)=12(1)若∀x>0,f(x)>-4a2,求a的取值范围;(2)若x1、x2是f(x)的零点,且x1≠x2,证明:x1+x2>4a.3.(2024·四川南充·一模)已知函数f(x)=x-ln x-a有两个不同的零点x1,x2.(1)求实数a的取值范围;(2)求证:x1+x2>2.e x-k(x-1),x>-1,k∈R.4.(2024·安徽淮南·二模)已知函数f(x)=1-2x+1(1)若k=0,证明:x∈(-1,0)时,f(x)<-1;(2)若函数f(x)恰有三个零点x1,x2,x3,证明:x1+x2+x3>1.5.(23-24高三下·天津·阶段练习)已知函数f(x)=x2-2ax+4ln x.(1)讨论f(x)的单调区间;(2)已知a∈[4,6],设f(x)的两个极值点为λ1,λ2λ1<λ2,且存在b∈R,使得y=f(x)的图象与y=b有三个公共点x1,x2,x3x1<x2<x3;①求证:x1+x2>2λ1;②求证:x3-x1<47.6.已知函数f x =3ln x+ax2-4x(a>0).(1)当a=1时,讨论f x 的单调性;,x2,x3,且x1<x2<x3,证明:x3-x1<4. (2)当a=12时,若方程f x =b有三个不相等的实数根x17.(2024·广东湛江·一模)已知函数f x =1+ln xe ln1 ax.(1)讨论f x 的单调性;(2)若方程f x =1有两个根x1,x2,求实数a的取值范围,并证明:x1x2>1.8.(2024高三·全国·专题练习)已知函数f(x)=ln x+12ax2-(a+1)x,(a∈R).(1)当a=1时,判断函数y=f(x)的单调性;(2)若关于x的方程f(x)=12ax2有两个不同实根x1,x2,求实数a的取值范围,并证明x1⋅x2>e2.9.(23-24高三上·河南·阶段练习)已知函数f(x)=12ax2-(2a+1)x+2ln x(a∈R).(1)若f(x)有唯一极值,求a的取值范围;(2)当a≤0时,若f(x1)=f(x2),x1≠x2,求证:x1x2<4.10.(23-24高三上·云南昆明·阶段练习)设a,b为函数f x =x⋅e x-m(m<0)的两个零点.(1)求实数m的取值范围;(2)证明:e a+e b<1.11.(2023·湖北武汉·三模)已知函数f x =ax+a-1ln x+1x,a∈R.(1)讨论函数f x 的单调性;(2)若关于x的方程f x =xe x-ln x+1x有两个不相等的实数根x1、x2,(ⅰ)求实数a的取值范围;(ⅱ)求证:e x1x2+ex2x1>2ax1x2.12.(2024·全国·模拟预测)设函数f x =ln x-ax a∈R.(1)若a=3,求函数f x 的最值;(2)若函数g x =xf x -x+a有两个不同的极值点,记作x1,x2,且x1<x2,求证:ln x1+2ln x2>3.13.(2024高三下·全国·专题练习)已知函数g x =ln x-ax2+2-ax(a∈R).(1)求g x 的单调区间;(2)若函数f x =g x +a+1x2-2x,x1,x20<x1<x2是函数f x 的两个零点,证明:fx1+x22<0.14.(2024·吉林·二模)在平面直角坐标系xOy中,Rt△OAB的直角顶点A在x轴上,另一个顶点B在函数f x =ln xx图象上(1)当顶点B在x轴上方时,求Rt△OAB以x轴为旋转轴,边AB和边OB旋转一周形成的面所围成的几何体的体积的最大值;(2)已知函数g x =e ax 2-ex+ax2-1x,关于x的方程f x =g x 有两个不等实根x1,x2x1<x2.(i)求实数a的取值范围; (ii)证明:x21+x22>2e.15.(2024·全国·模拟预测)已知函数f(x)=ln x+1x,g(x)=e x x.(1)若对任意的m,n∈(0,+∞)都有f(m)≤t≤g(n),求实数t的取值范围;(2)若x1,x2∈(0,+∞)且x1≠x2,e x2-x1=x x12x x21,证明:x31+x32>2.反馈训练1.(2021·全国·统考高考真题)已知函数f x =x1-ln x. (1)讨论f x 的单调性;(2)设a,b为两个不相等的正数,且b ln a-a ln b=a-b,证明:2<1a +1b<e.2.设函数f x =ln x-ax a∈R.(1)若a=3,求函数f x 的最值;(2)若函数g x =xf x -x+a有两个不同的极值点,记作x1,x2,且x1<x2,求证:ln x1+2ln x2>3.3.(2024·广东湛江·一模)已知函数f x =1+ln xe ln1 ax.(1)讨论f x 的单调性;(2)若方程f x =1有两个根x1,x2,求实数a的取值范围,并证明:x1x2>1.4.(23-24高二下·云南·期中)已知函数f x =3ln x+ax2-4x(a>0).(1)当a=1时,讨论f x 的单调性;(2)当a=12时,若方程f x =b有三个不相等的实数根x1,x2,x3,且x1<x2<x3,证明:x3-x1<4.5.(2024·辽宁·模拟预测)已知函数f x =e x-ax2(a>0).(1)当a=e2内的单调性;4时,判断f x 在区间1,+∞(2)若f x 有三个零点x1,x2,x3,且x1<x2<x3.(i)求a的取值范围;(ii)证明:x1+x2+x3>3.6.(2024·河北保定·二模)已知函数f(x)=ax-x ln x,f (x)为其导函数.(1)若f(x)≤1恒成立,求a的取值范围;(2)若存在两个不同的正数x1,x2,使得f x1>0.=f x2,证明:f x1x2117.(2023·山东日照·二模)已知函数f x =x-a ln x.(1)若f x ≥1恒成立,求实数a的值:(2)若x1>0,x2>0,e x1+ln x2>x1+x2,证明:e x1+x2>2.12。
导数压轴题分类(2)---极值点偏移问题(含答案)
导数压轴题分类(2)---极值点偏移问题(含答案)极值点偏移问题是在求解函数的极值点时,由于函数表达式的特殊性质,导致极值点位置发生偏移,需要采用特殊的解决方法。
常见的处理方法有以下几种:1.构造一元差函数F(x)=f(x)-f(2x-x)或F(x)=f(x+x)-f(x-x),其中x为函数y=f(x)的极值点。
2.利用对数平均不等式ab<a-b+a+b。
3.变换主元等方法lna-lnb^2<ln(a-b^2)。
接下来,我们以一个具体的例子来说明极值点偏移问题的解决方法。
题目:设函数f(x)=-alnx+x-ax(a∈R),试讨论函数f(x)的单调性;若f(x)=m有两解x1,x2(x12a。
解析:1.讨论函数f(x)的单调性由f(x)=-alnx+x-ax可知:f'(x)=-a/x+1-a=-(a/x+a-1)因为函数f(x)的定义域为(0,+∞),所以:①若a>0时,当x∈(0,a)时,f'(x)0,函数f(x)单调递增。
②若a=0时,当f'(x)=1/x>0在x∈(0,+∞)XXX成立,函数f(x)单调递增。
③若a0,函数f(x)单调递增。
2.求证x1+x2>2a因为f(x)=m有两解x1,x2(x1<x2),所以:alnx1+x1-ax=m,-alnx2+x2-ax=m将两式相减,整理得:lnx1-lnx2+ln(x1-x2)=a根据对数平均不等式,有:ln(x1-x2)<(lnx1-lnx2)/2代入上式得:a>-[(lnx1-lnx2)/2]化XXX:x1-x2<2e^-2a因为x1+x2>2x2>a,所以:x1+x2>2a综上所述,极值点偏移问题的解决方法包括构造一元差函数、利用对数平均不等式和变换主元等方法。
在具体求解中,需要根据函数表达式的特殊性质,选择合适的方法进行处理。
2(t-1)x2-1)/(4(t-1)2+1)为减函数,且在(1,∞)上递增,所以原不等式得证。
导数综合题题根之二:不对称问题(极值点偏移)
导数综合题题根之二:不对称问题(极值点偏移)山东省平度第一中学 王尊甫一、极值点偏移初步认识:极值点偏移问题在近几年高考及各种模考中作为热点以压轴题的形式多次给出,难度较大,需要引起老师们的高度关注。
那么,什么是极值点偏移问题呢?极值点偏移问题的表述是:已知函数()y f x =是连续函数,在区间12(,)x x 内有且只有一个极值点0x ,且12()()f x f x =,若极值点左右的“增减速度”相同,常常有极值点1202x x x +=,我们称这种状态为极值点不偏移,函数图像呈现对称形态;若极值点左右的“增减速度”不同,函数的图象不具有对称性,常常有极值点1202x x x +≠的情况,我们称这种状态为“极值点偏移”. 根据0x 与221x x +的大小关系,我们将极值点偏移划分为极值点左偏和极值点右偏两种情况,如下图所示:我们可以尝试给出极值点左(右)偏的一般性定义:极值点左偏:若函数)(x f y =满足)()(21x f x f =,且在),(21x x 内有唯一一个极值点0x x =,如果0212x x x >+,则函数)(x f y =极值点左偏。
如图1,若函数)(x f y =极值点左偏,且)(x f 的图像上凸(即)('x f y =递减),则0)()2(0'21'=<+x f x x f ; 如图2,若函数)(x f y =极值点左偏,且)(x f 的图像下凸(即)('x f y =递增),则0)()2(0'21'=>+x f x x f ;极值点右偏:若函数)(x f y =满足)()(21x f x f =,且在),(21x x 内有唯一一个极值点0x x =,如果0212x x x <+,则函数)(x f y =极值点右偏。
如图3,若函数)(x f y =极值点右偏,且)(x f 的图像上凸(即)('x f y =递减),则0)()2(0'21'=>+x f x x f ; 如图4,若函数)(x f y =极值点右偏,且)(x f 的图像下凸(即)('x f y =递增),则0)()2(0'21'=<+x f x x f ;二、高考题题型及解法分析近几年高考题中首次出现极值点偏移问题要追溯到2010年天津卷。
三招解决极值点偏移问题含详解
三招解决极值点偏移问题极值点偏移问题简介:极值点偏移问题是咱们高中非常常见的导数问题,其中解法与题型也非常非常多,比如比值换元,差值换元,对称化构造,同构方程,对数均值不等式,切线夹,割线放缩,零点差一次拟合,飘带函数放缩,泰勒二次拟合,零点差一次拟合等等。
很多学生看了题不知道从哪里入手,在此总结了三大类题型,包括了大部分方法,看起来更加清晰明了,这三类题型也是必须掌握的题型,前两种较基础要掌握,最后一种难度偏高可以选择性记忆。
一.最常见的方法--构造函数极值点偏移模型:考点1.利用韦达定理,进行构造函数1已知函数f x =12x2+a ln x-4x a>0.(1)当a=3时,试讨论函数f x 的单调性;(2)设函数f x 有两个极值点x1,x2x1<x2,证明:f x1+f x2>ln a-10.2已知函数f x =ln x +x 2-ax a ∈R .(1)若a =1,求函数f x 图象在点1,f 1 处的切线方程;(2)设f x 存在两个极值点x 1,x 2且x 1<x 2,若0<x 1<12,求证:f x 1 -f x 2 >34-ln2.考点2. 利用分析法,进行对称构造3已知函数f (x )=ln x +m x -1.(1)若存在实数x ,使f (x )<-1成立,求实数m 的取值范围;(2)若f (x )有两个不同零点x 1,x 2,求证:x 1+x 2>2.4已知函数f x =ln x-a x-2a∈R.(1)讨论f x 的单调性;(2)若f x 有两个零点x1,x2x1<x2,证明:x1+3x2>3a+2.5已知函数f x =2ln x+ax a∈R(1)若f x ≤0在0,+∞上恒成立,求a的取值范围;(2)设g x =x3-f x ,x₁,x₂为函数g(x)的两个零点,证明:x₁x₂<1.二.对数均值不等式飘带函数模型:考点1.同构方程,利用比值换元构造函数6已知函数f x =x -2 e x -ax a ∈R .(1)若a =2,讨论f x 的单调性.(2)已知关于x 的方程f x =x -3 e x +2ax 恰有2个不同的正实数根x 1,x 2.(i )求a 的取值范围;(ii )求证:x 1+x 2>4.7已知函数f x =2ln x-ax2+2x-1,g x =f x -2ax+3a∈R.(1)若f1 =-1,求函数y=f x 的极值;(2)若关于x的不等式g x ≤0恒成立,求整数a的最小值;(3)当0<a<1时,函数g x 恰有两个不同的零点x1,x2,且x I<x2,求证:x1+x2>2a.考点2.和积转化(差积转化)8已知函数f x =xe x-ax+1,x∈-1,+∞,a>0,g x =bx-ln x x,(1)当b=1,f x 和g x 有相同的最小值,求a的值;(2)若g x 有两个零点x1,x2,求证:x1x2>e.考点3.消参减元9已知函数f x =ax2-ln x+1a∈R.(1)讨论函数f x 极值点的个数;(2)若函数f x 在定义域内有两个不同的零点x1,x2,①求a的取值范围;②证明:x1+x2>2a a.三.零点差--放缩法筷子夹汤圆模型:考点1.零点差,切线夹10已知函数f x =3x-e x+1,其中e=2.71828⋯是自然对数的底数.(1)设曲线y=f x 与x轴正半轴相交于点P x0,0,曲线在点P处的切线为l,求证:曲线y=f x 上的点都不在直线l的上方;(2)若关于x的方程f x =m(m为正实数)有两个不等实根x1,x2x1<x2,求证:x2-x1<2-34 m.11已知函数f x =x +b e x -a (b >0)在点-1,f -1 处的切线方程为e -1 x +ey +e -1=0.(1)求a 、b ;(2)设曲线y =f (x )与x 轴负半轴的交点为P ,曲线在点P 处的切线方程为y =h (x ),求证:对于任意的实数x ,都有f (x )≥h (x );(3)若关于x 的方程f x =m (m >0)有两个实数根x 1、x 2,且x 1<x 2,证明:x 2-x 1≤1+m 1-2e 1-e .考点2.割线放缩12已知f x =x ln x 与y =a 有两个不同的交点A ,B ,其横坐标分别为x 1,x 2(x 1<x 2).(1)求实数a 的取值范围;(2)求证:ae +1<x 2-x 1.考点3.二次拟合13已知m∈R,函数f(x)=xe x-m有两个不同的零点x1,x2.(I)证明:0<m<1e;(Ⅱ)证明:x2-x1>21-em.三招解决极值点偏移问题极值点偏移问题简介:极值点偏移问题是咱们高中非常常见的导数问题,其中解法与题型也非常非常多,比如比值换元,差值换元,对称化构造,同构方程,对数均值不等式,切线夹,割线放缩,零点差一次拟合,飘带函数放缩,泰勒二次拟合,零点差一次拟合等等。
2022年高考压轴大题:极值点的偏移问题解题方法
2022年高考压轴大题:极值点的偏移问题解题方法极值点偏移问题常作为压轴题出现,题型复杂多变.解决此类问题,先需理解此类问题的实质,例1 已知函数f (x )=x e -x . (1)求函数f (x )的单调区间;(2)若x 1≠x 2且f (x 1)=f (x 2),求证:x 1+x 2>2.(1)解 f ′(x )=e -x (1-x ),令f ′(x )>0得x <1;令f ′(x )<0得x >1,∴函数f (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减. (2)证明 方法一 (对称化构造法)构造辅助函数F (x )=f (x )-f (2-x ),x >1,则F ′(x )=f ′(x )+f ′(2-x )=e -x (1-x )+e x -2(x -1)=(x -1)(e x -2-e -x ),∴当x >1时,x -1>0,e x -2-e -x >0,∴F ′(x )>0, ∴F (x )在(1,+∞)上单调递增,∴F (x )>F (1)=0, 故当x >1时,f (x )>f (2-x ),(*)由f (x 1)=f (x 2),x 1≠x 2,可设x 1<1<x 2, 将x 2代入(*)式可得f (x 2)>f (2-x 2), 又f (x 1)=f (x 2), ∴f (x 1)>f (2-x 2).又x 1<1,2-x 2<1,而f (x )在(-∞,1)上单调递增, ∴x 1>2-x 2, ∴x 1+x 2>2.方法二 (比值代换法) 设0<x 1<1<x 2,f (x 1)=f (x 2)即11ex x -=22ex x -,取对数得ln x 1-x 1=ln x 2-x 2.令t =x 2x 1>1,则x 2=tx 1,代入上式得ln x 1-x 1=ln t +ln x 1-tx 1,得x 1=ln t t -1,x 2=t ln t t -1.∴x 1+x 2=t +1ln t t -1>2∴ln t -2t -1t +1>0,设g (t )=ln t -2t -1t +1(t >1),∴g ′(t )=1t -2t +1-2t -1t +12=t -12t t +12>0,∴当t >1时,g (t )单调递增,∴g (t )>g (1)=0,∴ln t -2t -1t +1>0,故x 1+x 2>2.例2 已知函数f (x )=ln x -ax 有两个零点x 1,x 2. (1)求实数a 的取值范围; (2)求证:x 1·x 2>e 2.(1)解 f ′(x )=1x -a =1-ax x(x >0),∴若a ≤0,则f ′(x )>0,不符合题意;∴若a >0,令f ′(x )=0,解得x =1a.当x ∴⎝⎛⎭⎫0,1a 时,f ′(x )>0; 当x ∴⎝⎛⎭⎫1a ,+∞时,f ′(x )<0. 由题意知f (x )=ln x -ax 的极大值f ⎝⎛⎭⎫1a =ln 1a -1>0,解得0<a <1e. 所以实数a 的取值范围为⎝⎛⎭⎫0,1e . (2)证明 因为f (1)=-a <0,所以1<x 1<1a<x 2.构造函数H (x )=f ⎝⎛⎭⎫1a +x -f ⎝⎛⎭⎫1a -x =ln ⎝⎛⎭⎫1a +x -ln ⎝⎛⎭⎫1a -x -2ax ,0<x <1a. H ′(x )=11a +x +11a-x -2a =2a 3x21-a 2x 2>0,所以H (x )在⎝⎛⎭⎫0,1a 上单调递增, 故H (x )>H (0)=0,即f ⎝⎛⎭⎫1a +x >f ⎝⎛⎭⎫1a -x .由1<x 1<1a <x 2,知2a -x 1>1a,故f (x 2)=f (x 1)=f ⎝⎛⎭⎫1a -⎝⎛⎭⎫1a -x 1<f ⎝⎛⎭⎫1a +⎝⎛⎭⎫1a -x 1=f ⎝⎛⎭⎫2a -x 1. 因为f (x )在⎝⎛⎭⎫1a ,+∞上单调递减, 所以x 2>2a -x 1,即x 1+x 2>2a.故ln x 1x 2=ln x 1+ln x 2=a (x 1+x 2)>2, 即x 1·x 2>e 2.例3已知函数f (x )=x 2-2x +1+a e x 有两个极值点x 1,x 2,且x 1<x 2. 证明:x 1+x 2>4.解析 证明:令g (x )=f ′(x )=2x -2+a e x ,则x 1,x 2是函数g (x )的两个零点. 令g (x )=0,得a =-2(x -1)e x .令h (x )=-2(x -1)e x , 则h (x 1)=h (x 2),h ′(x )=2x -4e x ,可得h (x )在区间(-∞,2)上单调递减,在区间(2,+∞)上单调递增, 所以x 1<2<x 2.令H (x )=h (2+x )-h (2-x ),则H ′(x )=h ′(2+x )-h ′(2-x )=2x (e 2-x -e 2+x )e 2+x ·e 2-x ,当0<x <2时,H ′(x )<0,H (x )单调递减,有H (x )<H (0)=0, 所以h (2+x )<h (2-x ).所以h (x 1)=h (x 2)=h (2+(x 2-2))<h (2-(x 2-2))=h (4-x 2). 因为x 1<2,4-x 2<2,h (x )在(-∞,2)上单调递减, 所以x 1>4-x 2,即x 1+x 2>4.例4已知f (x )=x ln x -12mx 2-x ,m ∈R .若f (x )有两个极值点x 1,x 2,且x 1<x 2. 求证:x 1x 2>e 2(e 为自然对数的底数).一题多解解法1思路参考:转化为证明ln x 1+ln x 2>2,根据x 1,x 2是方程f ′(x )=0的根建立等量关系. 令t =x 2x 1将ln x 1+ln x 2变形为关于t 的函数,将ln x 1+ln x 2>2转化为关于t 的不等式进行证明. 证明:欲证x 1x 2>e 2,需证ln x 1+ln x 2>2.若f (x )有两个极值点x 1,x 2,即函数f ′(x )有两个零点.又f ′(x )=ln x -mx ,所以x 1,x 2是方程f ′(x )=0的两个不等实根.于是,有⎩⎪⎨⎪⎧ln x 1-mx 1=0,ln x 2-mx 2=0,解得m =ln x 1+ln x 2x 1+x 2. 另一方面,由⎩⎪⎨⎪⎧ln x 1-mx 1=0,ln x 2-mx 2=0,得ln x 2-ln x 1=m (x 2-x 1), 从而得ln x 2-ln x 1x 2-x 1=ln x 1+ln x 2x 1+x 2.于是,ln x 1+ln x 2=(ln x 2-ln x 1)(x 2+x 1)x 2-x 1=⎝⎛⎭⎫1+x 2x 1ln x 2x 1x 2x 1-1.又0<x 1<x 2,设t =x 2x 1,则t >1. 因此,ln x 1+ln x 2=(1+t )ln tt -1,t >1. 要证ln x 1+ln x 2>2,即证(t +1)ln tt -1>2,t >1. 即当t >1时,有ln t >2(t -1)t +1. 设函数h (t )=ln t -2(t -1)t +1,t >1, 则h ′(t )=1t -2(t +1)-2(t -1)(t +1)2=(t -1)2t (t +1)2≥0, 所以,h (t )为(1,+∞)上的增函数.注意到,h (1)=0,因此,h (t )>h (1)=0. 于是,当t >1时,有ln t >2(t -1)t +1. 所以ln x 1+ln x 2>2成立,即x 1x 2>e 2. 解法2思路参考:将证明x 1x 2>e 2转化为证明x 1>e 2x 2.依据x 1,x 2是方程f ′(x )=0的两个不等实根构造函数g (x )=ln x x ,结合函数g (x )的单调性,只需证明g (x 2)=g (x 1)<g ⎝⎛⎭⎫e 2x 1.证明:由x 1,x 2是方程f ′(x )=0的两个不等实根,所以mx 1=ln x 1,mx 2=ln x 2. 令g (x )=ln xx ,g (x 1)=g (x 2), 由于g ′(x )=1-ln xx 2,因此,g (x )在(0,e)上单调递增,在(e ,+∞)上单调递减. 又x 1<x 2,所以0<x 1<e<x 2.令h (x )=g (x )-g ⎝⎛⎭⎫e 2x (x ∈(0,e)),h ′(x )=(1-ln x )(e 2-x 2)x 2e 2>0, 故h (x )在(0,e)上单调递增,故h (x )<h (e)=0,即g (x )<g ⎝⎛⎭⎫e 2x .令x =x 1,则g (x 2)=g (x 1)<g ⎝⎛⎭⎫e 2x 1.因为x 2,e 2x 1∈(e ,+∞),g (x )在(e ,+∞)上单调递减,所以x 2>e 2x 1,即x 1x 2>e 2. 解法3思路参考:设t 1=ln x 1∈(0,1),t 2=ln x 2∈(1,+∞),推出t 1t 2=e t 1-t 2.将证明x 1x 2>e 2转化为证明t 1+t 2>2,引入变量k =t 1-t 2<0构建函数进行证明. 证明:设t 1=ln x 1∈(0,1),t 2=ln x 2∈(1,+∞),由⎩⎪⎨⎪⎧ln x 1-mx 1=0,ln x 2-mx 2=0得⎩⎪⎨⎪⎧t 1=m e t1,t 2=m et 2⇒t 1t 2=e t 1-t 2.设k =t 1-t 2<0,则t 1=k e k e k -1,t 2=k e k -1. 欲证x 1x 2>e 2, 需证ln x 1+ln x 2>2.即只需证明t 1+t 2>2,即k (1+e k )e k -1>2⇔k (1+e k )<2(e k -1)⇔k (1+e k )-2(e k -1)<0. 设g (k )=k (1+e k )-2(e k -1)(k <0),g ′(k )=k e k -e k +1, g ″(k )=k e k <0,故g ′(k )在(-∞,0)上单调递减, 故g ′(k )>g ′(0)=0,故g (k )在(-∞,0)上单调递增, 因此g (k )<g (0)=0,命题得证. 解法4思路参考:设t 1=ln x 1∈(0,1),t 2=ln x 2∈(1,+∞),推出t 1t 2=e t 1-t 2.将证明x 1x 2>e 2转化为证明t 1+t 2>2,引入变量t 1t 2=k ∈(0,1)构建函数进行证明.证明:设t 1=ln x 1∈(0,1),t 2=ln x 2∈(1,+∞),由⎩⎪⎨⎪⎧ln x 1-mx 1=0,ln x 2-mx 2=0得⎩⎪⎨⎪⎧t 1=m e t1,t 2=m et 2⇒t 1t 2=e t 1-t 2.设t 1t 2=k ∈(0,1),则t 1=k ln k k -1,t 2=ln k k -1.欲证x 1x 2>e 2,需证ln x 1+ln x 2>2,即只需证明t 1+t 2>2,即(k +1)ln kk -1>2⇔ln k <2(k -1)k +1⇔ln k -2(k -1)k +1<0. 设g (k )=ln k -2(k -1)k +1(k ∈(0,1)),g ′(k )=(k -1)2k (k +1)2>0, 故g (k )在(0,1)上单调递增,因此g (k )<g (1)=0,命题得证.思维升华1.本题考查应用导数研究极值点偏移问题,基本解题方法是把双变量的等式或不等式转化为一元变量问题求解,途径都是构造一元函数.2.基于课程标准,解答本题一般需要熟练掌握转化与化归能力、运算求解能力、逻辑思维能力,体现了逻辑推理、数学运算的核心素养.3.基于高考数学评价体系,本题涉及函数与方程、不等式、导数的计算与应用等知识,渗透着函数与方程、转化与化归、分类讨论等思想方法,有一定的综合性,属于能力题,在提升学生思维的灵活性、创造性等数学素养中起到了积极的作用.多维训练1.已知函数f (x )=e x (e x -ax +a )有两个极值点x 1,x2. (1)求a 的取值范围; (2)求证:2x 1x 2<x 1+x 2.(1)解:因为f (x )=e x (e x -ax +a ),所以f ′(x )=e x (e x -ax +a )+e x (e x -a )=e x (2e x -ax ). 令f ′(x )=0,则2e x =ax . 当a =0时,不成立; 当a ≠0时,2a =xe x .令g (x )=xe x ,所以g ′(x )=1-x e x .当x <1时,g ′(x )>0;当x >1时,g ′(x )<0.所以g (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减. 又因为g (1)=1e ,当x →-∞时,g (x )→-∞,当x →+∞时,g (x )→0,因此,当0<2a <1e 时,f (x )有2个极值点,即a 的取值范围为(2e ,+∞).(2)证明:由(1)不妨设0<x 1<1<x 2,且⎩⎨⎧2e x 1=ax 1,2e x 2=ax 2,所以⎩⎪⎨⎪⎧ln 2+x 1=ln a +ln x 1,ln 2+x 2=ln a +ln x 2, 所以x 2-x 1=ln x 2-ln x 1. 要证明2x 1x 2<x 1+x 2,只要证明2x 1x 2(ln x 2-ln x 1)<x 22-x 21,即证明2ln ⎝⎛⎭⎫x 2x 1<x 2x 1-x 1x 2.设x 2x 1=t (t >1),即要证明2ln t -t +1t <0在t ∈(1,+∞)上恒成立. 记h (t )=2ln t -t +1t (t >1),h ′(t )=2t -1-1t 2=-t 2+2t -1t 2=-(t -1)2t 2<0, 所以h (t )在区间(1,+∞)上单调递减,所以h (t )<h (1)=0,即2ln t -t +1t <0,即2x 1x 2<x 1+x 2. 2.已知函数f (x )=x ln x -2ax 2+x ,a ∈R .(1)若f (x )在(0,+∞)内单调递减,求实数a 的取值范围; (2)若函数f (x )有两个极值点分别为x 1,x 2,证明x 1+x 2>12a . (1)解:f ′(x )=ln x +2-4ax . 因为f (x )在(0,+∞)内单调递减,所以 f ′(x )=ln x +2-4ax ≤0在(0,+∞)内恒成立, 即4a ≥ln x x +2x 在(0,+∞)内恒成立. 令g (x )=ln x x +2x ,则g ′(x )=-1-ln x x 2. 所以,当0<x <1e 时,g ′(x )>0,即g (x )在⎝⎛⎭⎫0,1e 内单调递增; 当x >1e 时,g ′(x )<0,即g (x )在⎝⎛⎭⎫1e ,+∞内单调递减.所以g (x )的最大值为g ⎝⎛⎭⎫1e =e , 所以实数a 的取值范围是⎣⎡⎭⎫e 4,+∞.(2)证明:若函数f (x )有两个极值点分别为x 1,x 2,则f ′(x )=ln x +2-4ax =0在(0,+∞)内有两个不等根x 1,x 2. 由(1),知0<a <e4.由⎩⎪⎨⎪⎧ln x 1+2-4ax 1=0,ln x 2+2-4ax 2=0,两式相减, 得ln x 1-ln x 2=4a (x 1-x 2). 不妨设0<x 1<x 2, 所以要证明x 1+x 2>12a ,只需证明x 1+x 24a (x 1-x 2)<12a (ln x 1-ln x 2). 即证明2(x 1-x 2)x 1+x 2>ln x 1-ln x 2,亦即证明2⎝⎛⎭⎫x 1x 2-1x 1x 2+1>ln x 1x 2.令函数h (x )=2(x -1)x +1-ln x,0<x <1. 所以h ′(x )=-(x -1)2x (x +1)2<0, 即函数h (x )在(0,1)内单调递减. 所以当x ∈(0,1)时,有h (x )>h (1)=0, 所以2(x -1)x +1>ln x .即不等式2⎝⎛⎭⎫x 1x 2-1x 1x 2+1>ln x 1x 2成立.综上,x 1+x 2>12a ,命题得证.3.已知函数f (x )=ln x -ax (a ∴R ).(1)讨论函数f (x )在(0,+∞)上的单调性; (2)证明:e x -e 2ln x >0恒成立. (1)解 f (x )的定义域为(0,+∞),f ′(x )=1x -a =1-ax x,当a ≤0时,f ′(x )>0,∴f (x )在(0,+∞)上单调递增,当a >0时,令f ′(x )=0,得x =1a,∴x ∴()0,1a 时,f ′(x )>0;x ∴()1a ,+∞时,f ′(x )<0,∴f (x )在()0,1a 上单调递增,在()1a ,+∞上单调递减.(2)证明 方法一 要证e x -e 2ln x >0,即证e x -2>ln x , 令φ(x )=e x -x -1,∴φ′(x )=e x -1.令φ′(x )=0,得x =0,∴x ∴(-∞,0)时,φ′(x )<0; x ∴(0,+∞)时,φ′(x )>0,∴φ(x )在(-∞,0)上单调递减,在(0,+∞)上单调递增, ∴φ(x )min =φ(0)=0,即e x -x -1≥0,即e x ≥x +1,当且仅当x =0时取“=”. 同理可证ln x ≤x -1,当且仅当x =1时取“=”. 由e x ≥x +1(当且仅当x =0时取“=”),可得e x -2≥x -1(当且仅当x =2时取“=”),又ln x ≤x -1,即x -1≥ln x ,当且仅当x =1时取“=”,所以e x -2≥x -1≥ln x 且两等号不能同时成立,故e x -2>ln x .即证原不等式成立.方法二 令φ(x )=e x -e 2ln x ,φ(x )的定义域为(0,+∞),φ′(x )=e x -e 2x ,令h (x )=e x-e 2x,∴h ′(x )=e x+e 2x2>0,∴φ′(x )在(0,+∞)上单调递增.又φ′(1)=e -e 2<0,φ′(2)=e 2-12e 2=12e 2>0,故∴x 0∴(1,2),使φ′(x 0)=0,即0e x -e 2x 0=0,即0e x =e 2x 0,∴当x ∴(0,x 0)时,φ′(x )<0; 当x ∴(x 0,+∞)时,φ′(x 0)>0,∴φ(x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,∴φ(x )min =φ(x 0)=0ex -e 2ln x 0=e 2x 0-e 2ln x 0=e 2x 0-022e e ln e x =e 2x 0-e 2(2-x 0)=e 2()1x 0+x 0-2=e 2·x 0-12x 0>0,故φ(x )>0,即e x -e 2ln x >0,即证原不等式成立.4.(2018·全国∴)已知函数f (x )=1x-x +a ln x .(1)讨论f (x )的单调性;(2)若f (x )存在两个极值点x 1,x 2,证明:f x 1-f x 2x 1-x 2<a -2.(1)解 f (x )的定义域为(0,+∞),f ′(x )=-1x 2-1+ax =-x 2-ax +1x 2.∴若a ≤2,则f ′(x )≤0,当且仅当a =2,x =1时,f ′(x )=0, 所以f (x )在(0,+∞)上单调递减. ∴若a >2,令f ′(x )=0,得 x =a -a 2-42或x =a +a 2-42.当x ∴⎝⎛⎭⎫0,a -a 2-42∴⎝⎛⎭⎫a +a 2-42,+∞时, f ′(x )<0;当x ∴⎝⎛⎭⎫a -a 2-42,a +a 2-42时,f ′(x )>0.所以f (x )在⎝⎛⎭⎫0,a -a 2-42,⎝⎛⎭⎫a +a 2-42,+∞上单调递减,在⎝⎛⎭⎫a -a 2-42,a +a 2-42上单调递增. (2)证明 由(1)知,f (x )存在两个极值点当且仅当a >2. 由于f (x )的两个极值点x 1,x 2满足x 2-ax +1=0, 所以x 1x 2=1,不妨设x 1<x 2,则x 2>1.由于f x 1-f x 2x 1-x 2=-1x 1x 2-1+a ln x 1-ln x 2x 1-x 2=-2+a ln x 1-ln x 2x 1-x 2=-2+a -2ln x 21x 2-x 2,所以f x 1-f x 2x 1-x 2<a -2等价于1x 2-x 2+2ln x 2<0.设函数g (x )=1x-x +2ln x ,由(1)知,g (x )在(0,+∞)上单调递减.又g (1)=0,从而当x ∴(1,+∞)时,g (x )<0.所以1x 2-x 2+2ln x 2<0,即f x 1-f x 2x 1-x 2<a -2.。
导数的极值点偏移问题
导数极值点偏移问题如上图所示,x0为函数的极值点,x0处对应的曲线的切线的斜率为0极值点左移:x1x22x0, x x1x2处切线与 x 轴不平行2极值点右移:x1x22x0, x x1x2处切线与 x 轴不平行2由上面图像可知,函数的图像分为凸函数和凹函数。
当函数图像为凸函数,且极值点左偏时,有f' x1 x2 f ' x00;当函数图像为凸函数,且极值点右偏时,有2f 'x1x2f2f 'x1x2f2f 'x1x2f2' x00 。
当函数图像为凹函数,且极值点左偏时,' x00 ;当函数图像为凹函数,且极值点右移时,有' x00 。
如图所示,上图的函数图像为凸函数,且极值点右移,x1和 x2处对应的函数值相等,我们可以作 x2关于 x0的对称点 x3,则 x3 2x0x2x1,且 x3x0,故 f x3 f x1,即f 2 x0 x2f x1,故我们可以构造函数 F x f 2x0 x2 f x1,只需要判断函数F x 的单调性,然后根据单调性判断函数的最小值,只要满足 F x min0 ,我们就可以得到 x1 x2 2x0。
同理,我们可以得到凸函数极值点左移以及凹函数极值点左移或右移的构造函数。
做题步骤:(1)求极值点x0;(2)构造函数F ( x) f (x) f (2 x0 x) ;(3)判断极值点左移还是右移;(4)若是左移,求导时研究极值点左侧区间,比较 f ( x) 和 f (2 x0 x) 大小,然后在极值点右侧区间利用 f ( x) 单调性,得出结论;若是右移,求导时研究极值点右侧区间,比较 f (x)和 f (2 x0 x) 大小,然后在极值点左侧区间利用 f (x) 单调性,得出结论;(5)若极值点求不出来,由 f ' ( x0 ) 0 ,使用替换的思想,简化计算步骤.经典题型:1. 已知函数f x lnx ax2,其中 a R(1)若函数f x 有两个零点,求 a 的取值范围;(2)若函数f x 有极大值为1,且方程 f x m 的两根为x1, x2,且x1x2,证明:2x1 x2 4a .2. 已知函数 f x e x ax a a R ,其中e为自然对数的底数.(1)讨论函数y f x 的单调性;(2)若函数 f x 有两个零点x1, x2,证明:x1x22ln a .(1)试讨论函数 f x 的单调性;(2)如果a0且关于x的方程 f x m 有两解x1,x2(x1x2),证明 x1x22a .( Ⅰ ) 求f x 的单调区间;(Ⅱ)设 f x 极值点为x0,若存在 x1 , x 20,,且x1x2,使f x1f x2,求证: x1x22x0 .5. 设函数 f x a 2lnx x 2ax aR .(1)试讨论函数 f x 的单调性;(2)设2h xf x x0时,若方程x2 xaal n x, 记, 当 ah xm mR 有两个不相等的实根 x 1 , x 2 ,证明 h'x 1x 2 0 .26. 设函数f x 1 x2 a 1 x alnx.2(Ⅰ)讨论函数 f x的单调性;(Ⅱ)若 f x b 有两个不相等的实数根x1x20. x1 , x2,求证 f27. 设函数 f x x2alnx , g x = a 2 x .(Ⅰ)求函数 f x 的单调区间;(Ⅱ)若函数 F x f x g x 有两个零点x1, x2.(1)求满足条件的最小正整数 a 的值;x1x20 .(2) 求证:F28.(2016年全国卷1)已知函数 f x x 2 e x a x 1 2有两个零点(1)求a的取值范围;(2)设x1, x2是f x的两个零点,证明:x1x229.(2018 年湖北省七市州联考)已知函数f x axe2 x 2 x 1 2 ,a R (1)当a4 时,谈论函数 f x的单调性;(2)当0 a 1时,求证:函数 f x有两个不相等的零点x1, x2,且x1x2210.(广西桂林2017 年第一次联合模拟考试)已知函数 f x m 1ln x 1 m R 的两个x 2零点为x1 , x2 x1x2(1)求实数m的取值范围;(2)求证:112x1x2e11.已知函数 f x e x ax 有两个零点(1)求实数a的取值范围;(2)设x1, x2是函数 f x 的两个零点,证明:x1x2212.已知函数 f x e x 1kx 2k(1)讨论函数 f x 的单调性;(2)当函数 f x 有两个零点x1, x2时,证明:x1x22。
类型三、活跃在导数大题中的“极值点”偏移问题
.
x1
又0
x1
x2 ,设 t
x2 x1
,则 t
1.因此, ln
x1
ln
x2
1 t ln t
t 1
,t
1.
要证 ln
x1
ln
x2
2 ,即证:
t
1ln t
t 1
2,t
1.即:当 t
1时,有 ln t
2t 1
t 1
.
活跃在导数大题中的极值点偏移问题 第 3 页 共 34 页
题型二、解析式含参数
★★一题介绍常规套路:
示例
2:已知
f
x
x ln
x
1 2
mx2
x
, m R .若
f
x 有两个极值点
x1 ,
x2 ,且
x1
x2 ,求
证: x1x2 e2 ( e 为自然对数的底数).
证法 1:欲证 x1x2 e2 ,需证 ln x1 ln x2 2 .若 f x 有两个极值点 x1 , x2 ,即函数 f x 有两
x 2x
x(2 x)
知当 x (0,1) 时,h' (x) 0 ,即 h(x) 递增,所以此时 h(x) h(1) 0 ,即 g(x) g(2 x) 恒成立,
由 0 x1 1 x2 得 g(x1 ) g(2 x1 ) ,所以 g(x2 ) g(2 x1 ) , 因为 x2 1,2 x1 1 , g(x) 在 (1,) 递减,所以 x2 2 x1 ,即 x1 x2 2 ,
(完整版)极值点偏移问题
极值点偏移问题总结判定方法1极值点偏移的定义对于函数y f(x)在区间(a,b)内只有一个极值点X。
,方程f (x) 0的解分别为Xp x2,且a X i X2 b,(1)若冬X2x0,则称函数y f(x)在区间(X i,X2)上极值点X o偏移;2(2)若空X2x0,则函数y f (x)在区间(x i, X2)上极值点X o左偏,简称极值点X o2左偏;(3)若X o,贝U函数y f(x)在区间(X i,X2)上极值点X o右偏,简称极值点X o2右偏。
2、极值点偏移的判定定理则函数y f (x)的单调递增(减)区间为(a,x o),单调递减(增)区间为(x o,b),又 a x i x2b,有'X2(a,b)由于f'(X1 X2) o,故匹X2(a,x o),所以2 2 2乞△ ( )X o,即函数极大(小)值点X o右(左)偏。
2判定定理2 对于可导函数y f(x),在区间(a,b)上只有一个极大(小)值点沧,方程f(x) 0的解分别为x「X2,且a X i X2 b ,(1)若f(xj f (2x o X2),则一X2( )x o 即函数y f (x)在区间(x i, X2)上极2,大(小)值点X o右(左)偏;(2)若f(xj f(2x o X2),则■昙()X o 即函数y f(x)在区间(X i,X2)上极2大(小)值点X o左(右)偏。
证明:(1)因为对于可导函数y f (x)在区间(a,b)上只有一个极大(小)值点x o,则函数y f (x)的单调递增(减)区间为(a,x o),单调递减(增)区间为(x o,b),又a X i X2 b,有X! X o,且2x o X2 X o,又 f (xj f (2x°X2),故X i ( )2X o X2,所以空X2( )x o,即函数极大(小)值点X o右(左)偏.2结论(2)证明略。
二、运用判定定理判定极值点偏移的方法1•方法概述:(1)求出函数f(x)的极值点;(2)构造一兀差函数F(x) f (x o x) f (x o x)(3)确定函数F(x)的单调性;(4)结合F(o)o,判断F(x)的符号,从而确定f(x o x), f(x o x)的大小关系。
专题07 极值点偏移问题 (解析版)
导数及其应用 专题七:极值点偏移问题一、知识储备1、极值点偏移的相关概念所谓极值点偏移,是指对于单极值函数,由于函数极值点左右的增减速度不同,使得函数图像没有对称性。
若函数)(x f 在0x x =处取得极值,且函数)(x f y =与直线b y =交于),(),,(21b x B b x A 两点,则AB 的中点为),2(21b x x M +,而往往2210xx x +≠。
如下图所示。
图1 极值点不偏移 图2 极值点偏移极值点偏移的定义:对于函数)(x f y =在区间),(b a 内只有一个极值点0x ,方程)(x f 的解分别为21x x 、,且b x x a <<<21,(1)若0212x x x ≠+,则称函数)(x f y =在区间),(21x x 上极值点0x 偏移;(2)若0212x x x >+,则函数)(x f y =在区间),(21x x 上极值点0x 左偏,简称极值点0x 左偏;(3)若0212x x x <+,则函数)(x f y =在区间),(21x x 上极值点0x 右偏,简称极值点0x 右偏。
2、对称变换主要用来解决与两个极值点之和、积相关的不等式的证明问题.其解题要点如下:(1)定函数(极值点为0x ),即利用导函数符号的变化判断函数单调性,进而确定函数的极值点x 0.(2)构造函数,即根据极值点构造对称函数0()()(2)F x f x f x x =--,若证2120x x x > ,则令2()()()x F x f x f x=-. (3)判断单调性,即利用导数讨论()F x 的单调性.(4)比较大小,即判断函数()F x 在某段区间上的正负,并得出()f x 与0(2)f x x -的大小关系.(5)转化,即利用函数()f x 的单调性,将()f x 与0(2)f x x -的大小关系转化为x 与02x x -之间的关系,进而得到所证或所求.[提醒] 若要证明122x x f +⎛⎫'⎪⎝⎭的符号问题,还需进一步讨论122x x +与x 0的大小,得出122x x +所在的单调区间,从而得出该处导数值的正负. 二、例题讲解1.(2022·贵州省思南中学高三月考(文))设函数()22ln 1f x x mx =-+.(1)讨论函数()f x 的单调性;(2)当1m =时,若在()f x 定义域内存在两实数1x ,2x 满足12x x <且()()12f x f x =,证明:122x x +>.【详解】(1)依题意,函数()f x 定义域为(0,)+∞,()222(1)2mx f x mx x x-'=-=,当0m ≤时,()0f x '>,()f x 在(0,)+∞上单调递增,当0m >时,由()0f x '=得m x m =,当0mx m <<时,()0f x '>,当m x m >时,()0f x '<,于是得()f x 在(0,)m m 上单调递增,在(,)mm+∞上单调递减,所以,当0m ≤时,()f x 在(0,)+∞上单调递增,当0m >时,()f x 在(0,)m m 上单调递增,在(,)mm+∞上单调递减;(2)分析 :如图:1201x x <<< 要证122x x +> 只需证:122x x -<由于101x <<,则112x <-即只需证1212x x <-< 如图,只需证12(2)()f x f x ->;由于()()12f x f x = 只需证11(2)()f x f x ->此时可构造函数()()(2)F x f x f x =--(即用x 替代了上式1x ) 只需证:在01x <<,()()(2)0F x f x f x =--<。
导数处理极值点偏移问题
第二讲 导数应用-------极值点偏移问题的处理策略及探究所谓极值点偏移问题,是指对于单极值函数,由于函数极值点左右的增减速度不同,使得函数图像没有对称性。
若函数()f x 在0x x =处取得极值,且函数()y f x =与直线y b =交于1(,)A x b ,2(,)B x b 两点,则AB 的中点为12(,)2x x M b +,而往往1202x xx +≠.如下图所示.极值点没有偏移此类问题在近几年高考及各种模考,作为热点以压轴题的形式给出,很多学生对待此类问题经常是束手无策。
而且此类问题变化多样,有些题型是不含参数的,而更多的题型又是含有参数的。
不含参数的如何解决?含参数的又该如何解决,参数如何来处理?是否有更方便的方法来解决?其实,处理的手段有很多,方法也就有很多,我们先来看看此类问题的基本特征,再从几个典型问题来逐一探索! 【问题特征】2016年全国I 卷的第21题是一道导数应用问题,呈现的形式非常简洁,考查了函数的双零点的问题,也是典型的极值点偏移的问题, 是考生实力与潜力的综合演练场.虽然大多学生理解其题意,但对于极值点偏移的本质理解的深度欠佳,面对此类问题大多感到“似懂非懂”或“云里雾里”.一、试题再现及解析 (一)题目(2016年全国I 卷)已知函数()()()221xf x x e a x =-+-有两个零点.(1)求a 的取值范围;(2)设12,x x 是()f x 的两个零点,证明:122x x +<.本题第(1)小题含有参数的函数()f x 有两个零点,自然想到研究其单调性,结合零点存在性定理求得a 的取值范围是()0,+∞.第(2)小题是典型的极值点偏移的问题,如何证明呢?(二)官方解析(2)不妨设12x x <,由(1)知,()()()122,1,1,,2,1x x x ∈-∞∈+∞-∈-∞,()f x 在(),1-∞上单调递减,所以122x x +<等价于()()122f x f x >-,即()()222f x f x >-.由于()()22222221x f x x ea x --=-+-,而()()()2222221x f x x e a x =-+-,所以()()()222222222x x f x f x x e x e ---=---.令()()22x x g x xe x e -=---,则()()()21x x g x x e e -'=--,所以当1x >时,()0g x '<,而()10g =, 故当1x >时,()()10g x g <=.从而()()2220g x f x =-<,故122x x +<. 二、对解析的分析本问待证是两个变量的不等式,官方解析的变形是122x x <-,借助于函数的特性及其单调性,构造以2x 为主元的函数.由于两个变量的地位相同,当然也可调整主元变形为212x x <-,同理构造以1x 为主元的函数来处理.此法与官方解析正是极值点偏移问题的处理的通法.不妨设12x x <,由(1)知,()()()121,1,1,,21,x x x ∈-∞∈+∞-∈+∞,()f x 在()1,+∞上单调递增,所以122x x +<等价于()()212f x f x <-,即()()1120f x f x --<.令()()()()()2221xx u x f x f x xex e x -=--=--<,则()()()210x x u x x e e -'=-->,所以()()10u x u <=,即()()()21f x f x x <-<,所以()()()1212f x f x f x =<-;所以212x x <-,即122x x +<.极值点偏移问题的处理策略: 【处理策略一】主元法所谓主元法就是在一个多元数学问题中以其中一个为“主元”,将问题化归为该主元的函数、方程或不等式等问题,其本质是函数与方程思想的应用.作为一线的教育教学工作者,笔者尝试用主元法破解函数的极值点偏移问题,理性的对此类进行剖析、探究,旨在为今后的高考命题和高考复习教学提供一点参考.一般地,主元法破解极值点偏移问题思路是:第一步:根据()()()1212f x f x x x =≠建立等量关系,并结合()f x 的单调性,确定12,x x 的取值范围; 第二步:不妨设12x x <,将待证不等式进行变形,进而结合原函数或导函数的单调性等价转化. 第三步:构造关于1x (或2x )的一元函数()()()()21,2i i T x f x f a x i =--=,应用导数研究其单调性,并借助于单调性,达到待证不等式的证明.题型一:不含参数的问题.例1.(2010天津理)已知函数()()xf x xe x R -=∈ ,如果12x x ≠,且12()()f x f x = ,证明:12 2.x x +>【解析】法一:()(1)xf x x e -'=-,易得()f x 在(,1)-∞上单调递增,在(1,)+∞上单调递减,x →-∞时,()f x →-∞,(0)0f =,x →+∞时,()0f x →, 函数()f x 在1x =处取得极大值(1)f ,且1(1)f e=,如图所示. 由1212()(),f x f x x x =≠,不妨设12x x <,则必有1201x x <<<,欲证122x x +>,即证212x x >-,故122,(1,)x x -∈+∞,又因为()f x 在(1,)+∞上单调递减,故只需证21()(2)f x f x <-,又因为12()()f x f x =,故也即证11()(2)f x f x <-,构造函数()()(2),(0,1)H x f x f x x =--∈,则等价于证明()0H x <对(0,1)x ∈恒成立.由221()()(2)(1)0x x xH x f x f x e e--'''=+-=->,则()H x 在(0,1)x ∈上单调递增,所以()(1)0H x H <=,即已证明()0H x <对(0,1)x ∈恒成立,故原不等式122x x +>亦成立.法二:由12()()f x f x =,得1212x x x ex e --=,化简得2121x x x e x -=…①, 不妨设21x x >,由法一知,121o x x <<<.令21t x x =-,则210,t x t x >=+,代入①式,得11tt x e x +=,反解出11t t x e =-,则121221t t x x x t t e +=+=+-,故要证:122x x +>,即证:221t tt e +>-,又因为10te ->,等价于证明:2(2)(1)0tt t e +-->…②,构造函数()2(2)(1),(0)t G t t t e t =+-->,则()(1)1,()0t tG t t e G t te '''=-+=>,故()G t '在(0,)t ∈+∞上单调递增,()(0)0G t G ''>=,从而()G t 也在(0,)t ∈+∞上单调递增,()(0)0G t G >=,即证②式成立,也即原不等式122x x +>成立.法三:由法二中①式,两边同时取以e 为底的对数,得221211lnln ln x x x x x x -==-,也即2121ln ln 1x x x x -=-,从而221212121212221211111ln ln ()ln ln 1x x x x x x x xx x x x x x x x x x x x +-++=+==---, 令21(1)x t t x =>,则欲证:122x x +>,等价于证明:1ln 21t t t +>-…③, 构造(1)ln 2()(1)ln ,(1)11t t M t t t t t +==+>--,则2212ln ()(1)t t t M t t t --'=-, 又令2()12ln ,(1)t t t t t ϕ=-->,则()22(ln 1)2(1ln )t t t t t ϕ'=-+=--,由于1ln t t ->对(1,)t ∀∈+∞恒成立,故()0t ϕ'>,()t ϕ在(1,)t ∈+∞上单调递增,所以()(1)0t ϕϕ>=,从而()0M t '>,故()M t 在(1,)t ∈+∞上单调递增,由洛比塔法则知:1111(1)ln ((1)ln )1lim ()limlim lim(ln )21(1)x x x x t t t t t M t t t t t→→→→'+++===+='--,即证()2M t >,即证③式成立,也即原不等式122x x +>成立.【点评】以上三种方法均是为了实现将双变元的不等式转化为单变元不等式,方法一利用构造新的函数来达到消元的目的,方法二、三则是利用构造新的变元,将两个旧的变元都换成新变元来表示,从而达到消元的目的.例2.已知()ln f x x x =的图像上有,A B 两点,其横坐标为1201x x <<<,且12()()f x f x =.(1)证明:1221x x e <+<;(2)证明:1<<. 【解析】(1)证明:由()ln ,()ln 1f x x x f x x '==+,令()0f x '=,得1x e=, 故12101x x e <<<<,构造函数21()()(),(0),F x f x f x x e e=--<< 则2221()ln ln()2ln ()2ln 20F x x x x x e e e '=+-+=-+<+=,故()F x 在1(0,)e上单调递减,即1()()0F x F e >=,∴2()()f x f x e >-,令1x x =,则2112()()()f x f x f x e =>-,再由2121,(,1)x x e e -∈,且()f x 在1(,1)e 上单调递增,故212x x e >-,即证:122x x e+>. 又构造函数:1()()(1),(0)2g x f x f x x =--<<,则1112()ln ln(1)2,()01(1)x g x x x g x x x x x -'''=+-+=-=>--,故()g x '在1(0,)2上单调递增,由于0x →时,()g x '→-∞,且1()ln(1)0g e e '=->,故必存在01(0,)x e ∈,使得0()0g x '=,故()g x 在0(0,)x 上单调递减,在01(,)2x 上单调递增,又0x →时,()0g x →,且1()02g =,故()0g x <在1(0,)2x ∈上恒成立,也即()(1)f x f x <-在1(0,)2x ∈上恒成立,令1x x =,有121()()(1)f x f x f x =<-,再由211,1(,1)x x e -∈,且()f x 在1(,1)e 上单调递增,故211x x <-,即证:121x x +<成立.综上:即证1221x x e<+<成立.(2)令12t t =则22112212,,,(0,1)x t x t t t ==∈,且212()2ln ,()(),()2(2ln 1)h t t t h t h t h t t t '===+,令()0h t '=,得t =, 故1201t t <<<<.构造函数()()),(0H t h t h t t =-<<,则 ()()),()())H t h t h t H t h t h t'''''''''=+-=-,由于4()0h t t '''=>,则()h t ''在上单调递增,因为t t <-,故()0H t ''<,()H t '在上单调递减,故()0H t H ''>=,即()H t在上单调递增,即()0H t H <=,即())h t h t <-,同理得出:12t t +<; 再构造1()()(1),(0)2G x h t h t t =--<<,同样求导利用单调性可得出1()()02G t G >=,从而()(1)h t h t >-对1(0,)2t ∈恒成立,同理得出:121t t +>.综上:即证121t t <+<成立,也即原不等式1<<成立.练习1:已知函数2()ln f x x x x =++,正实数12,x x 满足1212()()0f x f x x x ++=,证明:12x x +≥. 【解析】由1212()()0f x f x x x ++=,得2211122212ln ln 0x x x x x x x x ++++++= 从而212121212()()ln()x x x x x x x x +++=-,令12t x x =,构造函数()ln t t t ϕ=-,得11()1t t t tϕ-'=-=,可知()t ϕ在(0,1)上单调递减,在(1,)+∞上单调递增,所以()(1)1t ϕϕ≥=,也即21212()()1x x x x +++≥,解得:12x x +≥.练习2(2013年湖南文科第21题)已知函数()211xx f x e x-=+. (1)求()f x 的单调区间;(2)证明:当()()()1212f x f x x x =≠时,120x x +<.解: (1) ()f x 在(),0-∞上单调递增,在()0,+∞上单调递减;(2)由(1)知当1x <时,()0f x >. 不妨设12x x <,因为()()12f x f x =,即121222121111x x x x e e x x --=++,则1201x x <<<, 要证明120x x +<,即120x x <-<,只需证明()()12f x f x <-,即()()22f x f x <-.而22()()f x f x <-等价于2222(1)10x x e x ---<,令()2()(1)10xg x x ex x =--->,则2'()(12)1x g x x e =--,令2()(12)1xh x x e=--,则2()40x h x xe '=-<,所以()h x 单调递减,()()00h x h <=,即()0g x '<,所以()g x 单调递减, 所以()()00g x g <=,得证.题型二:含参数的问题例3.已知函数x ae x x f -=)(有两个不同的零点12,x x ,求证:221>+x x . 【解析】思路1:函数()f x 的两个零点,等价于方程xxea -=的两个实根,从而这一问题与例1完全等价,例1的四种方法全都可以用;思路2:也可以利用参数a 这个媒介去构造出新的函数.解答如下:因为函数()f x 有两个零点12,x x , 所以⎩⎨⎧==)2()1(2121x x ae x ae x ,由)2()1(+得:)(2121xx e e a x x +=+,要证明122x x +>,只要证明12()2x x a e e +>,由)2()1(-得:1212()xxx x a e e -=-,即1212x x x x a e e -=-,即证:121212()2x x xx e e x x e e+->-211)(212121>-+-⇔--x x x x e e x x , 不妨设12x x >,记12t x x =-, 则0,1tt e >>, 因此只要证明:121t te t e +⋅>-01)1(2>+--⇔t t e e t , 再次换元令x t x e t ln ,1=>=,即证2(1)ln 0(1,)1x x x x -->∀∈+∞+ 构造新函数2(1)()ln 1x F x x x -=-+,0)1(=F求导2'2214(1)()0(1)(1)x F x x x x x -=-=>++,得)(x F 在),1(+∞递增, 所以0)(>x F ,因此原不等式122x x +>获证.【点评】含参数的极值点偏移问题,在原有的两个变元12,x x 的基础上,又多了一个参数,故思路很自然的就会想到:想尽一切办法消去参数,从而转化成不含参数的问题去解决;或者以参数为媒介,构造出一个变元的新的函数。
专题21导数极值点偏移问题(原卷版)
专题21导数极值点偏移问题知识梳理 方法技巧题型归类 题型一:消参减元 题型二:对称变换题型三:比(差)值换元题型四:对数均值不等式培优训练 训练一:训练二:训练三:训练四:训练五:训练六:强化测试 解答题:共12题一、【知识梳理】【方法技巧】众所周知,函数)(x f 满足定义域内任意自变量x 都有)2()(x m f x f -=,则函数)(x f 关于直线m x =对称;可以理解为函数)(x f 在对称轴两侧,函数值变化快慢相同,且若)(x f 为单峰函数,则m x =必为)(x f 的极值点. 如二次函数)(x f 的顶点就是极值点0x ,若c x f =)(的两根的中点为221x x +,则刚好有0212x x x =+,即极值点在两根的正中间,也就是极值点没有偏移.若相等变为不等,则为极值点偏移:若单峰函数)(x f 的极值点为m ,且函数)(x f 满足定义域内m x =左侧的任意自变量x 都有)2()(x m f x f ->或)2()(x m f x f -<,则函数)(x f 极值点m左右侧变化快慢不同. 故单峰函数)(x f 定义域内任意不同的实数21,x x 满足)()(21x f x f =,则221x x +与极值点m 必有确定的大小关系: ①若221x x m +<,则称为极值点左偏;②若221x x m +>,则称为极值点右偏.1.对称变换主要用来解决与两个极值点之和、积相关的不等式的证明问题.其解题要点如下:(1)定函数(极值点为x 0),即利用导函数符号的变化判断函数的单调性,进而确定函数的极值点x 0.(2)构造函数,即根据极值点构造对称函数F (x )=f (x )-f (2x 0-x ),若证x 1x 2>x 20,则令F (x )=f (x )-f ⎝ ⎛⎭⎪⎫x 20x . (3)判断单调性,即利用导数讨论F (x )的单调性.(4)比较大小,即判断函数F (x )在某段区间上的正负,并得出f (x )与f (2x 0-x )的大小关系.(5)转化,即利用函数f (x )的单调性,将f (x )与f (2x 0-x )的大小关系转化为x 与2x 0-x 之间的关系,进而得到所证或所求.2.含参函数问题可考虑先消去参数,其目的就是减元,进而建立与所求解问题相关的函数.3.比(差)值换元就是根据已知条件首先建立极值点之间的关系,然后利用两个极值点之比(差)作为变量,从而实现消参、减元的目的.一般用t 表示两个极值点之比(差),继而将所求解问题转化为关于t 的函数问题.4.对数均值不等式可用对称化构造或比值换元进行证明,在解答题中,一般要先证明后应用.设a ,b >0,a ≠b ,则a +b 2>a -b ln a -ln b >ab ,其中a -b ln a -ln b被称之为对数平均数,上述不等式称为对数均值不等式.二、【题型归类】【题型一】消参减元【典例1】已知函数f (x )=ln x -ax ,a 为常数,若函数f (x )有两个零点x 1,x 2,求证:x 1·x 2>e 2.【典例2】已知函数f(x)=ln(ax)+12ax2-2x,a>0.设x1,x2是函数f(x)的两个极值点,且x1<x2,求证:x1+x2>2.【题型二】对称变换【典例1】已知函数f(x)=e xx-ln x+x-a.(1)若f(x)≥0,求a的取值范围;(2)证明:若f(x)有两个零点x1,x2,则x1x2<1.【典例2】已知函数f(x)=2x+ln x.(1)求f(x)的极值和单调区间;(2)若函数g(x)=f(x)-a(a>2)的两个零点为x1,x2,证明:x1+x2>4.【题型三】比(差)值换元【典例1】已知函数f(x)=x ln x的图象与直线y=m交于不同的两点A(x1,y1),B(x2,y2).求证:x1x2<1e2.【典例2】已知函数f(x)=ln xx-m⎝⎛⎭⎪⎫m∈⎝ ⎛⎭⎪⎫0,1e的两个零点为x1,x2,证明:ln x1+ln x2>2.【题型四】对数均值不等式【典例1】设函数()(),x f x e ax a a R =-+∈其图象与x 轴交于12(,0),(,0)A x B x 两点,且12x x <.(1)求实数a 的取值范围;(2)证明:0(()f f x ''<为函数()f x 的导函数);【典例2】已知f (x )=a -1x -ln x 有两个零点x 1,x 2,且x 1<x 2,求证:2<x 1+x 2<3e a -1-1.三、【培优训练】【训练一】已知函数f (x )=x e -x .(1)求函数f (x )的单调区间;(2)若x 1≠x 2且f (x 1)=f (x 2),求证:x 1+x 2>2.【训练二】已知函数f (x )=x ln x -12mx 2-x ,m ∈R .(1)若g (x )=f ′(x )(f ′(x )为f (x )的导函数),求函数g (x )在区间[1,e]上的最大值;(2)若函数f (x )有两个极值点x 1,x 2,求证:x 1x 2>e 2.【训练三】已知函数()sin e xx f x =,()0,x π∈. (1)求函数()f x 的单调区间;(2)若12x x ≠,且()()12f x f x =,证明:122x x π+>.【训练四】已知函数2()ln ln f x x x m x =-+有两个极值点x 1,x 2. (1)求实数m 的取值范围;(2)证明:x 1x 2<4.【训练五】已知函数f (x )=x (1-ln x ).(1)讨论f (x )的单调性;(2)设a ,b 为两个不相等的正数,且b ln a -a ln b =a -b ,证明:2<1a +1b <e.【训练六】已知函数f (x )=(x -2)e x +a (x -1)2有两个零点.(1)求a 的取值范围;(2)设x 1,x 2是f (x )的两个零点,求证:x 1+x 2<2.四、【强化测试】【解答题】1. 已知函数f (x )=2x +ln x ,若x 1≠x 2,且f (x 1)=f (x 2),求证:x 1+x 2>4.2.已知函数f(x)=e xe x,f(x1)=f(x2)=t(0<x1<x2,0<t<1).证明:x1+x2>2x1x2.3.已知函数f(x)=x-ln x-a有两个不同的零点x1,x2.(1)求实数a的取值范围;(2)证明:x1+x2>a+1.4.已知f(x)=x2-2a ln x,a∈R.若y=f(x)有两个零点x1,x2(x1<x2).(1)求实数a的取值范围;(2)若x0是y=f(x)的极值点,求证:x1+3x2>4x0.5.已知a是实数,函数f(x)=a ln x-x.(1)讨论f(x)的单调性;(2)若f(x)有两个相异的零点x1,x2且x1>x2>0,求证:x1x2>e2.6.已知函数f(x)=ln x-ax有两个零点x1,x2.(1)求实数a的取值范围;(2)求证:x1·x2>e2.7. 已知函数f (x )=x 2a -2ln x (a ∈R ,a ≠0).(1)求函数f (x )的极值;(2)若函数f (x )有两个零点x 1,x 2(x 1<x 2),且a =4,证明:x 1+x 2>4.8. 已知函数f (x )=a e x -x ,a ∈R .若f (x )有两个不同的零点x 1,x 2.证明:x 1+x 2>2.9. 已知函数()2ln 1f x x x ax =-+.(1)若()0f x ≥恒成立,求实数a 的取值范围.(2)若函数()31y f x ax ax =-+-的两个零点为1x ,2x ,证明:212e x x >.10. 已知函数31()28ln 6f x x ax x =-+.(1)若函数()f x 在定义域内单调递增,求实数a 的取值范围; (2)若函数()f x 存在两个极值点12,x x ,求证:124x x +>.11. 已知a ∈R ,()ax f x x e -=⋅,(其中e 为自然对数的底数). (1)求函数()y f x =的单调区间;(2)若0a >,函数()y f x a =-有两个零点x ,2x ,求证:22122x x e +>.12. 已知函数()()ln 2f x a x x =+-. (1)当1a =时,求()f x 的最大值; (2)设点()()11,A x f x 和()()22,B x f x 是曲线()y f x =上不同的两点,且()()12f x f x =,若12ak x x <+恒成立,求实数k 的取值范围.。
导数压轴大题之极值点偏移问题,把握本质与通用思路才能举一反三
导数压轴大题之极值点偏移问题,把握本质与通用思路才能举一反三极值点偏移题型是上一篇所讲述的双变量题型的一种重要分型。
2016年高考I卷的压轴大题就考了这种题型。
这类题型的特点鲜明,解题思路通用性强。
本文通过原创的一张图来直观、简明地揭示极值点偏移问题的基本原理(未见第二家如此系统地阐述它的原理)。
相信每一位同学学会后,再遇到此类题型就有底气而不会再发怵了,真正做到举一反三。
1. 导数(应用)压轴大题之不等式有关问题的极值点偏移题型及典型例题例1(2016国I) 已知函数f(x) = (x-2)e^x +a(x-1)^2有两个零点。
(1) 求a的取值范围;(2) 设x1, x2是f(x)的两个零点,证明:x1+x2<2。
(提示:这题在上一篇中已给出详细解答,这里不再赘述。
作为2016年的压轴题,第(2)问算是极值点偏移题型中的一个难度适中的题目,因此刚好可用来清晰地揭示极值点偏移题型的基本原理与通用解题思路。
不熟悉这类题型的同学应先把该题学透,再继续学习其它例题)例2 已知函数f(x) = xlnx,g(x) = 1/2×mx^2+x。
(1) 若函数f(x)与g(x)的图像上存在关于原点对称的点,求实数m 的取值范围;(2) 设F(x) = f(x) – g(x),已知F(x)在(0, +∞)上存在两个极值点x1、x2,且x1<x2,求证:x1x2 > e^2 (其中e为自然对数的底数)。
解:依题意,x>0,讲解:①从极值点偏移题型角度看,本题(2)问稍有变化(可视作常规题型的变式——出题人常以类似的方式改题或增加难度):(a) 分析的函数对象为‘导函数’及其两个零点——即两个等值点。
但这些变化对以极值点偏移的思路进行解题并无太大差别,仅仅是对象不同而已。
(b) 已知函数的定义域受限——x>0;处理时不要忘了其约束。
(c) 从所求证的‘x1x2 > e^2’看不出与极值点偏移问题相关,但只需利用已知推出可知条件“x1=lnx1/m和x2=lnx2/m”,即可把所求证问题转化为需知问题(或称需知条件)“x2+x1>2/m”——此为极值点偏移的标准形态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数综合题题根之二:不对称问题(极值点偏移)山东省平度第一中学 王尊甫一、极值点偏移初步认识:极值点偏移问题在近几年高考及各种模考中作为热点以压轴题的形式多次给出,难度较大,需要引起老师们的高度关注。
那么,什么是极值点偏移问题呢?极值点偏移问题的表述是:已知函数()y f x =是连续函数,在区间12(,)x x 内有且只有一个极值点0x ,且12()()f x f x =,若极值点左右的“增减速度”相同,常常有极值点1202x x x +=,我们称这种状态为极值点不偏移,函数图像呈现对称形态;若极值点左右的“增减速度”不同,函数的图象不具有对称性,常常有极值点1202x x x +≠的情况,我们称这种状态为“极值点偏移”. 根据0x 与221x x +的大小关系,我们将极值点偏移划分为极值点左偏和极值点右偏两种情况,如下图所示:我们可以尝试给出极值点左(右)偏的一般性定义:极值点左偏:若函数)(x f y =满足)()(21x f x f =,且在),(21x x 内有唯一一个极值点0x x =,如果0212x x x >+,则函数)(x f y =极值点左偏。
如图1,若函数)(x f y =极值点左偏,且)(x f 的图像上凸(即)('x f y =递减),则0)()2(0'21'=<+x f x x f ; 如图2,若函数)(x f y =极值点左偏,且)(x f 的图像下凸(即)('x f y =递增),则0)()2(0'21'=>+x f x x f ;极值点右偏:若函数)(x f y =满足)()(21x f x f =,且在),(21x x 内有唯一一个极值点0x x =,如果0212x x x <+,则函数)(x f y =极值点右偏。
如图3,若函数)(x f y =极值点右偏,且)(x f 的图像上凸(即)('x f y =递减),则0)()2(0'21'=>+x f x x f ; 如图4,若函数)(x f y =极值点右偏,且)(x f 的图像下凸(即)('x f y =递增),则0)()2(0'21'=<+x f x x f ;二、高考题题型及解法分析近几年高考题中首次出现极值点偏移问题要追溯到2010年天津卷。
例1.(2010天津理)已知函数()()xf x xe x R -=∈ ,如果12x x ≠,且12()()f x f x = ,证明:12 2.x x +>【解析】方法一:()(1)xf x x e -'=-,易得()f x 在(,1)-∞上单调递增,在(1,)+∞上单调递减,x →-∞时,()f x →-∞,(0)0f =,x →+∞时,()0f x →, 函数()f x 在1x =处取得极大值(1)f ,且1(1)f e=,如图所示. 由1212()(),f x f x x x =≠,不妨设12x x <,则必有1201x x <<<,构造函数()(1)(1),(0,1]F x f x f x x =+--∈,则21()(1)(1)(1)0xx x F x f x f x e e+'''=++-=->,所以()F x 在(0,1]x ∈上单调递增,()(0)0F x F >=,也即(1)(1)f x f x +>-对(0,1]x ∈恒成立. 由1201x x <<<,则11(0,1]x -∈,所以11112(1(1))(2)(1(1))()()f x f x f x f x f x +-=->--==,即12(2)()f x f x ->,又因为122,(1,)x x -∈+∞,且()f x 在(1,)+∞上单调递减, 所以122x x -<,即证12 2.x x +>方法二:欲证122x x +>,即证212x x >-,由法一知1201x x <<<,故122,(1,)x x -∈+∞,又因为()f x 在(1,)+∞上单调递减,故只需证21()(2)f x f x <-,又因为12()()f x f x =, 故也即证11()(2)f x f x <-,构造函数()()(2),(0,1)H x f x f x x =--∈,则等价于证明()0H x <对(0,1)x ∈恒成立.由221()()(2)(1)0x x x H x f x f x e e--'''=+-=->,则()H x 在(0,1)x ∈上单调递增,所以()(1)0H x H <=,即已证明()0H x <对(0,1)x ∈恒成立,故原不等式122x x +>亦成立.方法三:由12()()f x f x =,得1212x x x e x e --=,化简得2121x xx e x -=…①,不妨设21x x >,由法一知,121o x x <<<.令21t x x =-,则210,t x t x >=+,代入①式,得11tt x e x +=,反解出11t t x e =-,则121221t t x x x t t e +=+=+-,故要证:122x x +>,即证:221t tt e +>-,又因为10t e ->,等价于证明:2(2)(1)0t t t e +-->…②,构造函数()2(2)(1),(0)t G t t t e t =+-->,则()(1)1,()0t tG t t e G t te '''=-+=>, 故()G t '在(0,)t ∈+∞上单调递增,()(0)0G t G ''>=,从而()G t 也在(0,)t ∈+∞上单调递增,()(0)0G t G >=,即证②式成立,也即原不等式122x x +>成立.方法四:由法三中①式,两边同时取以e 为底的对数,得221211ln ln ln xx x x x x -==-,也即2121ln ln 1x x x x -=-,从而221212121212221211111ln ln ()ln ln 1x x x x x x x x x x x x x x x x x x x x +-++=+==---,令21(1)x t t x =>,则欲证:122x x +>,等价于证明:1ln 21t t t +>-…③, 构造(1)ln 2()(1)ln ,(1)11t t M t t t t t +==+>--,则2212ln ()(1)t t t M t t t --'=-, 又令2()12ln ,(1)t t t t t ϕ=-->,则()22(ln 1)2(1ln )t t t t t ϕ'=-+=--,由于1ln t t ->对(1,)t ∀∈+∞恒成立,故()0t ϕ'>,()t ϕ在(1,)t ∈+∞上单调递增,所以()(1)0t ϕϕ>=,从而()0M t '>,故()M t 在(1,)t ∈+∞上单调递增,由洛必达法则知:1111(1)ln ((1)ln )1lim ()lim lim lim(ln )21(1)x x x x t t t t t M t t t t t →→→→'+++===+='--,即证()2M t >,即证③式成立,也即原不等式122x x +>成立.【点评】以上四种方法均是为了实现将双变元的不等式转化为单变元不等式,方法一、二利用构造新的函数来达到消元的目的,方法、四则是利用构造新的变元,将两个旧的变元都换成新变元来表示,从而达到消元的目的.例2.已知函数x ae x x f -=)(有两个不同的零点12,x x ,求证:221>+x x .【解析】方法一:函数()f x 的两个零点,等价于方程xxe a -=的两个实根,从而这一问题与例1完全等价,例1的四种方法全都可以用;方法二:也可以利用参数a 这个媒介去构造出新的函数.解答如下:因为函数()f x 有两个零点12,x x ,所以⎩⎨⎧==)2()1(2121x x ae x ae x , 由)2()1(+得:)(2121xx e e a x x +=+, 要证明122x x +>,只要证明12()2x x a e e +>,由)2()1(-得:1212()xxx x a e e -=-,即1212x x x x a e e-=-, 即证:121212()2x x xx e e x x e e +->-211)(212121>-+-⇔--x x x x e e x x , 不妨设12x x >,记12t x x =-,则0,1t t e >>,因此只要证明:121t te t e +⋅>-01)1(2>+--⇔t t e e t , 再次换元令x t x e t ln ,1=>=,即证2(1)ln 0(1,)1x x x x -->∀∈+∞+ 构造新函数2(1)()ln 1x F x x x -=-+,0)1(=F求导2'2214(1)()0(1)(1)x F x x x x x -=-=>++,得)(x F 在),1(+∞递增, 所以0)(>x F ,因此原不等式122x x +>获证.【点评】含参数的极值点偏移问题,在原有的两个变元12,x x 的基础上,又多了一个参数,故思路很自然的就会想到:想尽一切办法消去参数,从而转化成不含参数的问题去解决;或者以参数为媒介,构造出一个变元的新的函数。
例3.函数()ln f x x ax =-,a 为常数,若函数()f x 有两个零点12,x x ,试证明:212.x x e ⋅>【解析】方法一:消参转化成无参数问题:ln ()0ln ln x f x x ax x ae =⇔=⇔=,12,x x 是方程()0f x =的两根,也是方程ln ln x x ae =的两根,则12ln ,ln x x 是x x ae =,设1122ln ,ln u x u x ==,()x g x xe -=,则12()()g u g u =,从而2121212ln ln 22x x e x x u u >⇔+>⇔+>,此问题等价转化成为例1,下略.方法二:利用参数a 作为媒介,换元后构造新函数: 不妨设12x x >,∵1122ln 0,ln 0x ax x ax -=-=,∴12121212ln ln (),ln ln ()x x a x x x x a x x +=+-=-,∴1212ln ln x x a x x -=-,欲证明212x x e >,即证12ln ln 2x x +>.∵1212ln ln ()x x a x x +=+,∴即证122a x x >+,∴原命题等价于证明121212ln ln 2x x x x x x ->-+,即证:1122122()ln x x x x x x ->+,令12,(1)x t t x =>,构造2(1)ln ,1)1(t t g t t t -=->+,此问题等价转化成为例2中思路二的解答,下略.方法三:直接换元构造新函数:12221211ln ln ln ,ln x x x x a x x x x ==⇔=设2121,,(1)xx x t t x <=>, 则112111ln ln ln ,ln ln tx t x x tx t t x x +==⇔=, 反解出:1211ln ln ln ln ,ln ln ln ln ln 111t t t tx x tx t x t t t t ===+=+=---, 故212121ln ln 2ln 21t x x e x x t t +>⇔+>⇔>-,转化成法二,下同,略.例 4.设函数()()xf x e ax a a R =-+∈,其图像与x 轴交于)0,(,)0,(21x B x A 两点,且21x x <.证明:0f '<.【解析】由(),()xxf x e ax a f x e a '=-+=-,易知:a 的取值范围为2(,)e +∞,()f x 在(,ln )a -∞上单调递减,在(ln ,)a +∞上单调递增.法一:利用通法构造新函数,略; 法二:将旧变元转换成新变元:∵12120,0,x x e ax a e ax a ⎧-+=⎪⎨-+=⎪⎩两式相减得:2121x x e e a x x -=-,记21,(0)2x x t t -=>,则121221212221()(2())22x x x x x x t t x x e e ef e t e e x x t++-+-'=-=---, 设()2(),(0)t t g t t e e t -=-->,则()2()0t tg t e e -'=-+<,所以()g t 在(0,)t ∈+∞上单调递减,故()(0)0g t g <=,而12202x x et +>,所以12()02x x f +'<,又∵()xf x e a '=-是R122x x +<,∴0)(21<⋅'x x f .容易想到,但却是错解的过程:欲证:0)(21<⋅'x x f ,即要证:12()02x x f +'<,亦要证1220x x e a +-<,也即证:122x x e a +<,很自然会想到:对112211220,(1),0,(1),x x x xe ax a e a x e ax a e a x ⎧⎧-+==-⎪⎪⇔⎨⎨-+==-⎪⎪⎩⎩两式相乘得:12212(1)(1)x x e a x x +=--,即证:12(1)(1)1x x --<.考虑用基本不等式212122(1)(1)()2x x x x +---<,也即只要证:124x x +<.由于121,ln x x a >>.当取3a e =将得到23x >,从而124x x +>.而二元一次不等式124x x +<对任意2(,)a e ∈+∞不恒成立,故此法错误. 【迷惑】此题为什么两式相减能奏效,而变式相乘却失败?两式相减的思想基础是什么?其他题是否也可以效仿这两式相减的思路?【解决】此题及很多类似的问题,都有着深刻的高等数学背景. 拉格朗日中值定理:若函数()f x 满足如下条件: (1)函数在闭区间[,]a b 上连续;(2)函数在开区间(,)a b 内可导,则在(,)a b 内至少存在一点ξ,使得()()()f b f a f b aξ-=-.当()()f b f a =时,即得到罗尔中值定理. 上述问题即对应于罗尔中值定理,设函数图像与x 轴交于12(,0),(,0),A x B x 两点,因此21211221()()(e )()0002x x AB f x f x e a x x k x x ----=⇔=⇔=-,∴2121x x e e a x x -=-,…… 由于12()()0f x f x ==,显然11()()0f x f x +=与11()()0f x f x ⋅=,与已知 12()()0f x f x ==不是充要关系,转化的过程中范围发生了改变.例5.(2011年辽宁理)已知函数2()ln (2).f x x ax a x =-+- (I )讨论()f x 的单调性;(II )设0a >,证明:当10x a <<时,11()()f x f x a a+>-; (III )若函数()y f x =的图像与x 轴交于,A B 两点,线段AB 中点的横坐标为0x ,证明:0()0f x '<.【解析】(I )易得:当0a ≤时,()f x 在(0,)+∞上单调递增;当0a >时,()f x 在1(0,)a上单调递增,在1(,)a+∞上单调递减.(II )方法一:构造函数111()()(),(0)g x f x f x x a a a=+>-<<,利用函数单调性证明,方法上同,略;方法二:构造以a 为主元的函数,设函数11()()()h a f x f x a a=+>-,则()ln(1)ln(1)2h a ax ax ax =+---,32222()2111x x x a h a x ax ax a x '=+-=+--,由10x a<<,解得10a x <<,当10a x <<时,()0h a '>,而(0)0h =, 所以()0h a >,故当10x a <<时,11()()f x f x a a+>-.(III )由(I )知,只有当0a >时,且()f x 的最大值1()0f a >,函数()y f x =才会有两个零点,不妨设1212(,0),(,0),0A x B x x x <<,则1210x x a <<<,故111(0,)x a a-∈,由(II )得:1111221111()()(())()()f x f x f x f x f x a a a a a-=+->--==,又由()f x 在1(,)a +∞上单调递减,所以212x x a >-,于是12012x x x a+=>,由(I )知,0()0f x '<. 【问题的进一步探究】对数平均不等式的介绍与证明两个正数a 和b 的对数平均定义:(),(,)ln ln ().a ba b L a b a b a a b -⎧≠⎪=-⎨⎪=⎩对数平均与算术平均、几何平均的大小关系:(,)2a bL a b +≤≤(此式记为对数平均不等式) 取等条件:当且仅当a b =时,等号成立.只证:当a b ≠(,)2a bL a b +<<.不失一般性,可设a b >.证明如下:(I(,)L a b ……① 不等式①1ln ln ln 2ln (1)a a b x x x b x ⇔-<⇔<⇔<-=>其中构造函数1()2ln (),(1)f x x x x x =-->,则22211()1(1)f x x x x'=--=--.因为1x >时,()0f x '<,所以函数()f x 在(1,)+∞上单调递减,故()(1)0f x f <=,从而不等式①成立;(II )再证:(,)2a bL a b +<……②不等式②2(1)2()2(1)ln ln ln ln (1)(1)(1)a a b a x b a b x x a a b b x b---⇔->⇔>⇔>=>+++其中构造函数2(1)()ln ,(1)(1)x g x x x x -=->+,则22214(1)()(1)(1)x g x x x x x -'=-=++.因为1x >时,()0g x '>,所以函数()g x 在(1,)+∞上单调递增,故()(1)0g x g <=,从而不等式②成立;综合(I )(II )知,对,a b R +∀∈(,)2a b L a b +≤成立,当且仅当a b =时,等号成立.前面例题用对数平均不等式解决例1.(2010天津理)已知函数()()xf x xe x R -=∈ ,如果12x x ≠,且12()()f x f x = ,证明:12 2.x x +>【解析】法五:由前述方法四,可得12121ln ln x x x x -=-,利用对数平均不等式得:1212121ln ln 2x x x xx x -+=<-,即证:122x x +>,秒证.说明:由于例2,例3最终可等价转化成例1的形式,故此处对数平均不等式的方法省略. 例 4.设函数)()(R a a ax e x f x∈+-=,其图像与x 轴交于)0,(,)0,(21x B x A 两点,且21x x <.证明:0)(21<⋅'x x f .【解析】法三:由前述方法可得:121212(1ln )11x x e e a x a x x x ==<<<--,等式两边取以e 为底的对数,得1122ln ln(1)ln(1)a x x x x =--=--,化简得:1212(1)(1)1ln(1)ln(1)x x x x ---=---,由对数平均不等式知:1212(1)(1)1ln(1)ln(1)x x x x ---=>---1212()0x x x x -+<,故要证1122ln(1)ln(01)ln f a x x x x --+-'<⇔⇔<-证1212121212ln(1)ln(1)ln(()1)x x x x x x x x x x ⇔⇔-+-<+--++<+-证证∵1212()0x x x x -+< ∴1212ln(()1)ln10x x x x -++<=,而2120x x +-=>∴121212ln(()1)x x x x x x -++<+-. 例5.(11年,辽宁理)已知函数2()ln (2).f x x ax a x =-+- (I )讨论()f x 的单调性;(II )设0a >,证明:当10x a <<时,11()()f x f x a a+>-; (III )若函数()y f x =的图像与x 轴交于,A B 两点,线段AB 中点的横坐标为0x ,证明:0()0f x '<.【解析】(I )(II )略,(III )由12()()0f x f x ==22111222ln (2)ln (2)0x ax a x x ax a x ⇔-+-=-+-=2212121212ln ln 2()()x x x x a x x x x ⇒-+-=-+-1212221212ln ln 2()x x x x a x x x x -+-⇒=-+- 故要证12001()02x x f x x a+'<⇔=>2212121212121212121ln ln 2ln ln 2()2x x x x x x x x x x x x x x x x +-+-++⇔>=--+-+- 121212ln ln 2x x x x x x -⇔<+-.根据对数平均不等,此不等式显然成立,故原不等式得证.(2016年新课标I 卷理数压轴21题)已知函数2)1()2()(-+-=x a e x x f x有两个零点21,x x .证明:122x x +<.【解析】由2()(2)(1)xf x x e a x =-+-,得()(1)(2)xf x x e a '=-+,可知()f x 在(,1)-∞上单调递减,在(1,)+∞上单调递增.要使函数()y f x =有两个零点12,x x ,则必须0a >. 法一:构造部分对称函数不妨设12x x <,由单调性知12(,1),(1,)x x ∈-∞∈+∞,所以22(,1)x -∈-∞,又∵()f x 在(,1)-∞单调递减,故要证:122x x +<,等价于证明:21(2)()0f x f x -<=,又∵222222(2)(1)x f x x e a x --=-+-,且22222()(2)(1)0x f x x e a x =-+-=∴222222(2)(2)x x f x x ex e --=---,构造函数2g()(2),((1,))x x x xe x e x -=---∈+∞,由单调性可证,此处略.法二:参变分离再构造差量函数由已知得:()()120f x f x ==,不难发现11x ≠,21x ≠,故可整理得:()()()()121222122211x x x e x e a x x ---==-- 设()()()221x x e g x x -=-,则()()12g x g x = 那么()()()2321'1x x g x e x -+=-,当1x <时,()'0g x <,()g x 单调递减;当1x >时,()'0g x >,()g x 单调递增.设0m >,构造代数式:()()111222*********m m m m m m m m g m g m e e e e m m m m +-----+-⎛⎫+--=-=+ ⎪+⎝⎭设()2111mm h m e m -=++,0m >则()()2222'01m m h m e m =>+,故()h m 单调递增,有()()00h m h >=. 因此,对于任意的0m >,()()11g m g m +>-.由()()12g x g x =可知1x 、2x 不可能在()g x 的同一个单调区间上,不妨设12x x <,则必有121x x <<令110m x =->,则有()()()()()1111211112g x g x g x g x g x +->--⇔->=⎡⎤⎡⎤⎣⎦⎣⎦ 而121x ->,21x >,()g x 在()1,+∞上单调递增,因此:()()121222g x g x x x ->⇔-> 整理得:122x x +<.法三:参变分离再构造对称函数由法二,得()()()221xx e g x x -=-,构造()()(2),((,1))G x g x g x x =--∈-∞,利用单调性可证,此处略.法四:构造加强函数【分析说明】由于原函数()f x 的不对称,故希望构造一个关于直线1x =对称的函数g()x ,使得当1x <时,()()f x g x <,当1x >时,()()f x g x >,结合图像,易证原不等式成立. 【解答】由2()(2)(1)xf x x e a x =-+-,()(1)(2)xf x x e a '=-+,故希望构造一个函数()F x ,使得(1)(2)(1)(2)(1)()()x x x e a x e a x e F e x -+--+=--'=,从而()F x 在(,1)-∞上单调递增,在(1,)+∞上单调递增,从而构造出2(2)(1)()2e a x g x c +-=+(c 为任意常数),又因为我们希望(1)0F =,而(1)f e =-,故取c e =-,从而达到目的.故2(2)(1)()2e a x g x e +-=-,设()g x 的两个零点为34,x x ,结合图像可知:13241x x x x <<<<,所以12342x x x x +<+=,即原不等式得证.法五:利用“对数平均”不等式1212122212(2)(2),0,12,(1)(1)x x x e x e a a x x x x --==><<<--参变分离得:由得12122212(2)(2)ln ln (1)(1)x x e x x x x --+=+--将上述等式两边取以为底的对数,得:, 22121212[ln(-1)-ln(-1)]-[ln(2-)-ln(2-)]x x x x x x =-化简得:,221212121222121212221212[ln(-1)-ln(-1)][ln(2-)-ln(2-)]1-[ln(-1)-ln(-1)][ln(2-)-ln(2-)][(1)(1)](1)(1)22x x x x x x x x x x x x x x x x x x =--=-+-+------故:()()由对数平均不等式得: 221222221212[ln(-1)-ln(-1)]2(1)(1)(1)(1)x x x x x x >----+-, 121212[ln(2-)-ln(2-)]22222x x x x x x >----+-()()()(),从而122212122(2)21(1)(1)22x x x x x x +->+-+--+-()()1212122212122(2)[4()]2(1)(1)4()x x x x x x x x x x +--+++-=+-+--+ 12122212122(2)21(1)(1)4()x x x x x x x x +-+-=++-+--+等价于:12122212122(2)20(1)(1)4()x x x x x x x x +-+->+-+--+1222121221(2)[](1)(1)4()x x x x x x =+-+-+--+ 由221212(1)(1)0,4()0x x x x -+->-+>,故122x x +<,证毕.说明:谈谈其它方法的思路与困惑。