计量经济学第四章习题
《计量经济学》第四章精选题及答案
第四章:多重共线性二、简答题1、导致多重共线性的原因有哪些?2、多重共线性为什么会使得模型的预测功能失效?3、如何利用辅回归模型来检验多重共线性?4、判断以下说法正确、错误,还是不确定?并简要陈述你的理由。
(1)尽管存在完全的多重共线性,OLS 估计量还是最优线性无偏估计量(BLUE )。
(2)在高度多重共线性的情况下,要评价一个或者多个偏回归系数的个别显著性是不可能的。
(3)如果某一辅回归显示出较高的2i R 值,则必然会存在高度的多重共线性。
(4)变量之间的相关系数较高是存在多重共线性的充分必要条件。
(5)如果回归的目的仅仅是为了预测,则变量之间存在多重共线性是无害的。
12233i i i Y X X βββ=++来对以上数据进行拟合回归。
(1) 我们能得到这3个估计量吗?并说明理由。
(2) 如果不能,那么我们能否估计得到这些参数的线性组合?可以的话,写出必要的计算过程。
6、考虑以下模型:231234i i i i i Y X X X ββββμ=++++由于2X 和3X 是X 的函数,那么它们之间存在多重共线性。
这种说法对吗?为什么? 7、在涉及时间序列数据的回归分析中,如果回归模型不仅含有解释变量的当前值,同时还含有它们的滞后值,我们把这类模型称为分布滞后模型(distributed-lag model )。
我们考虑以下模型:12313233i t t t t t Y X X X X βββββμ---=+++++其中Y ——消费,X ——收入,t ——时间。
该模型表示当期的消费是其现期的收入及其滞后三期的收入的线性函数。
(1) 在这一类模型中是否会存在多重共线性?为什么? (2) 如果存在多重共线性的话,应该如何解决这个问题? 8、设想在模型12233i i i i Y X X βββμ=+++中,2X 和3X 之间的相关系数23r 为零。
如果我们做如下的回归:1221i i i Y X ααμ=++ 1332i i i Y X γγμ=++(1)会不会存在22ˆˆαβ=且33ˆˆγβ=?为什么? (2)1ˆβ会等于1ˆα或1ˆγ或两者的某个线性组合吗? (3)会不会有22ˆˆvar()var()βα=且33ˆˆvar()var()γβ=? 9、通过一些简单的计量软件(比如EViews 、SPSS ),我们可以得到各变量之间的相关矩阵:2323232311 1k k k k r r r r R r r ⎛⎫⎪ ⎪=⎪ ⎪ ⎪⎝⎭L L M M M M L 。
【VIP专享】计量经济学第四章练习题及参考解答
(2) 3.060 1.657ln() 1.057ln()
(0.337) (0.092) (0.215)0.992 0.991 F 1275.093
GDP CPI R =-+-===进口居民消费价格指数的回归系数的符号不能进行合理的经济意义解释可能数据中有多重共线性。
计算相关系数:
22ln Y 4.09071.2186ln () t= (-10.6458) (34.6222)
0.9828 0.9820 1198.698
GDP R R F =-+===ln Y 5.4424 2.6637ln (PI)C =-+
从修正的可决系数和F统计量可以看出,全部变量对数线性多元回归整体对样本拟合很好,著。
可是其中的lnX3、lnX4、lnX6对lnY影响不显著,而且lnX2、lnX5
可以看出lnx1与lnx2、lnx3、lnx4、lnx5、lnx6之间高度相关,许多相关系数高于作为解释变量,很可能会出现严重多重共线性问题。
在本章开始的“引子”提出的“农业的发展反而会减少财政收入吗?
表4.13 1978-2007
财政收入(亿元)CS农业增加值(亿元)NZ工业增加值(亿元)GZ建筑业增加值
1132.31027.51607
1146.41270.21769.7
1159.91371.61996.5
1175.81559.52048.4
(1)根据样本数据得到各解释变量的样本相关系数矩阵如下:样本相关系数矩阵
解释变量之间相关系数较高,特别是农业增加值、工业增加值、建筑业增加值、最终消费之间,相关系数都在这显然与第三章对模型的无多重共线性假定不符合。
《计量经济学》习题(第四章)
《计量经济学》习题(第四章)第四章习题⼀、单选题1、如果回归模型违背了同⽅差假定,最⼩⼆乘估计量____A .⽆偏的,⾮有效的 B.有偏的,⾮有效的C .⽆偏的,有效的 D.有偏的,有效的2、Goldfeld-Quandt ⽅法⽤于检验____A .异⽅差性 B.⾃相关性C .随机解释变量 D.多重共线性3、DW 检验⽅法⽤于检验____A .异⽅差性 B.⾃相关性C .随机解释变量 D.多重共线性4、在异⽅差性情况下,常⽤的估计⽅法是____A .⼀阶差分法 B.⼴义差分法C .⼯具变量法 D.加权最⼩⼆乘法5、在以下选项中,正确表达了序列⾃相关的是____j i u x Cov D j i x x Cov C ji u u Cov B ji u u Cov A j i j i j i j i ≠≠≠≠≠=≠≠,0),(.,0),(.,0),(.,0),(.6、如果回归模型违背了⽆⾃相关假定,最⼩⼆乘估计量____A .⽆偏的,⾮有效的 B.有偏的,⾮有效的C .⽆偏的,有效的 D.有偏的,有效的7、在⾃相关情况下,常⽤的估计⽅法____A .普通最⼩⼆乘法 B.⼴义差分法C .⼯具变量法 D.加权最⼩⼆乘法8、White 检验⽅法主要⽤于检验____A .异⽅差性 B.⾃相关性C .随机解释变量 D.多重共线性9、Glejser 检验⽅法主要⽤于检验____A .异⽅差性 B.⾃相关性C .随机解释变量 D.多重共线性10、简单相关系数矩阵⽅法主要⽤于检验____A .异⽅差性 B.⾃相关性C .随机解释变量 D.多重共线性2222)(.)(.)(.)(.σσσσ==≠≠i i i i x Var D u Var C x Var B u Var A12、所谓不完全多重共线性是指存在不全为零的数k λλλ,,,21 ,有____1112211221221122.0.0..k k k k k x x x k k k k A x x x v B x x x C x x x v e D x x x v e v λλλλλλλλλλλλ++++=+++=∑?++++=++++=式中是随机误差项13、设21,x x 为解释变量,则完全多重共线性是____0.(021.0.021.22121121=+=++==+x x e x D v v x x C e x B x x A 为随机误差项)14、⼴义差分法是对____⽤最⼩⼆乘法估计其参数 11211211121121)()1(....-------+-+-=-++=++=++=t t t t t t t t t t t t t t t u u x x y y D u x y C u x y B u x y A ρρβρβρρρβρβρββββ15、在DW 检验中要求有假定条件,在下列条件中不正确的是____A .解释变量为⾮随机的 B.随机误差项为⼀阶⾃回归形式C .线性回归模型中不应含有滞后内⽣变量为解释变量D.线性回归模型为⼀元回归形式16、在下例引起序列⾃相关的原因中,不正确的是____A.经济变量具有惯性作⽤B.经济⾏为的滞后性C.设定偏误D.解释变量之间的共线性17、在DW 检验中,当d 统计量为2时,表明____A.存在完全的正⾃相关B.存在完全的负⾃相关C.不存在⾃相关D.不能判定18、在DW 检验中,当d 统计量为4时,表明____A.存在完全的正⾃相关B.存在完全的负⾃相关C.不存在⾃相关D.不能判定19、在DW 检验中,当d 统计量为0时,表明____A.存在完全的正⾃相关C.不存在⾃相关D.不能判定20、在DW 检验中,存在不能判定的区域是____A. 0﹤d ﹤l d ,4-l d ﹤d ﹤4B. u d ﹤d ﹤4-u dC. l d ﹤d ﹤u d ,4-u d ﹤d ﹤4-l dD. 上述都不对21、在修正序列⾃相关的⽅法中,能修正⾼阶⾃相关的⽅法是____A. 利⽤DW 统计量值求出ρB. Cochrane-Orcutt 法C. Durbin 两步法D. 移动平均法22、在下列多重共线性产⽣的原因中,不正确的是____A.经济本变量⼤多存在共同变化趋势B.模型中⼤量采⽤滞后变量C.由于认识上的局限使得选择变量不当D.解释变量与随机误差项相关23、在DW 检验中,存在正⾃相关的区域是____A. 4-l d ﹤d ﹤4B. 0﹤d ﹤l dC. u d ﹤d ﹤4-u dD. l d ﹤d ﹤u d ,4-u d ﹤d ﹤4-l d24、逐步回归法既检验⼜修正了____A .异⽅差性 B.⾃相关性 C .随机解释变量 D.多重共线性25、设)()(,2221i i i i i ix f u Var u x y σσββ==++=,则对原模型变换的正确形式为____ )()()()(.)()()()(.)()()()(..212222122121i i i i i i i i i i i i i i i i i i i i i i i i x f u x f x x f x f y D x f u x f x x f x f y C x f u x f x x f x f y B u x y A ++=++=++=++=ββββββββ 26、在修正序列⾃相关的⽅法中,不正确的是____A.⼴义差分法B.普通最⼩⼆乘法C.⼀阶差分法D. Durbin 两步法27、在检验异⽅差的⽅法中,不正确的是____A. Goldfeld-Quandt ⽅法B. spearman 检验法C. White 检验法28、在DW 检验中,存在零⾃相关的区域是____A. 4-l d ﹤d ﹤4B. 0﹤d ﹤l dC. u d ﹤d ﹤4-u dD. l d ﹤d ﹤u d ,4-u d ﹤d ﹤4-l d29.如果模型中的解释变量存在完全的多重共线性,参数的最⼩⼆乘估计量是()A .⽆偏的 B. 有偏的 C. 不确定 D. 确定的30. 已知模型的形式为u x y 21+β+β=,在⽤实际数据对模型的参数进⾏估计的时候,测得DW 统计量为0.6453,则⼴义差分变量是( )A. 1t t ,1t t x 6453.0x y 6453.0y ----B. 1t t 1t t x 6774.0x ,y 6774.0y ----C. 1t t 1t t x x ,y y ----D. 1t t 1t t x 05.0x ,y 05.0y ----31. 在具体运⽤加权最⼩⼆乘法时,如果变换的结果是x u x x x 1xy 21+β+β=,则Var(u)是下列形式中的哪⼀种?( )A. 2σxB. 2σ2x B. 2σx D. 2σLog(x)32. 在线性回归模型中,若解释变量1x 和2x 的观测值成⽐例,即有i 2i 1kx x =,其中k 为⾮零常数,则表明模型中存在( )A. 异⽅差B. 多重共线性C. 序列⾃相关D. 设定误差33. 已知DW 统计量的值接近于2,则样本回归模型残差的⼀阶⾃相关系数ρ近似等于( ) A. 0 B. –1 C. 1 D. 4⼆、多项选择1、能够检验多重共线性的⽅法有____A.简单相关系数法B. DW检验法C. 判定系数检验法D. ⽅差膨胀因⼦检验E.逐步回归法2、能够修正多重共线性的⽅法有____A.增加样本容量B.岭回归法C.剔除多余变量E.差分模型3、如果模型中存在异⽅差现象,则会引起如下后果____A. 参数估计值有偏B. 参数估计值的⽅差不能正确确定C. 变量的显著性检验失效D. 预测精度降低E. 参数估计值仍是⽆偏的4、能够检验异⽅差的⽅法是____A. gleiser检验法B. White检验法C. 图形法D. spearman检验法E. DW检验法F. Goldfeld-Quandt检验法5、如果模型中存在序列⾃相关现象,则会引起如下后果____A. 参数估计值有偏B. 参数估计值的⽅差不能正确确定C. 变量的显著性检验失效D. 预测精度降低E. 参数估计值仍是⽆偏的6、检验序列⾃相关的⽅法是____A. gleiser检验法B. White检验法C. 图形法D. DW检验法E. Goldfeld-Quandt检验法7、能够修正序列⾃相关的⽅法有____A. 加权最⼩⼆乘法B. Durbin两步法C. ⼴义最⼩⼆乘法D. ⼀阶差分法E. ⼴义差分法8、Goldfeld-Quandt检验法的应⽤条件是____A. 将观测值按解释变量的⼤⼩顺序排列B. 样本容量尽可能⼤C. 随机误差项服从正态分布D. 将排列在中间的约1/4的观测值删除掉9、在DW检验中,存在不能判定的区域是____A. 0﹤d﹤l dB. u d﹤d﹤4-u dC. l d﹤d﹤u dD. 4-u d﹤d﹤4-l dE. 4-l d﹤d﹤4。
计量经济学第四章习题详解word精品
第四章习题4.1没有进行t 检验,并且调整的可决系数也没有写出来,也就是没有考虑自由度的影响,会使结果存在一研究的目的和要求我们知道,商品进口额与很多因素有关,了解其变化对进出口产品有很大帮助。
为了探究和预测商品 进口额的变化,需要定量地分析影响商品进口额变化的主要因素。
二、模型的设定及其估计经分析,商品进口额可能与国内生产总值、居民消费价格指数有关。
为此,考虑国内生产总值 居民消费价格指数 CPI 为主要因素。
各影响变量与商品进口额呈正相关。
为此,设定如下形式的计量经济 模型:4.3199511048.160793.7302.8+ In+ InCP1996 11557.4 71176.6 327.9 1997 11806.5 78973.0 337.1 1998 11626.1 84402.3 334.4 1999 13736.4 89677.1 329.7 2000 18638.8 99214.6 331.0 2001 20159.2 109655.2 333.3 2002 24430.3 120332.7 330.6 2003 34195.6 135822.8 334.6 2004 46435.8 159878.3 I 347.7 2005 54273.7 183084.8 353.9 2006 63376.9 211923.5 359.2 2007 73284.6 249529.9 376.5 2008 79526.5 314045.4 398.7 2009 68618.4 340902.8 395.9 201094699.3 401512.8 408.9 2011113161.4472881.6431.0GDP 、式中, 为第 年中国商品进口额(亿元);In GDP 为第 年国内生产总值(亿元);In CPI 为居民消费价格 指数(以1985年为100)。
各解释变量前的回归系数预期都大于零。
(完整word版)计量经济学第四章习题详解
第四章习题4.1 没有进行t检验,并且调整的可决系数也没有写出来,也就是没有考虑自由度的影响,会使结果存在误差.4.3200224430.3120332。
7 330.6200334195。
6135822.8 334。
6200446435.8159878.3 l347.7200554273.7183084.8 353.9200663376.9211923。
5 359。
2200773284。
6249529。
9 376.5200879526.5314045.4 398.7200968618。
4340902。
8 395。
9201094699.3401512.8 408。
92011113161.4472881.6 431.0一研究的目的和要求我们知道,商品进口额与很多因素有关,了解其变化对进出口产品有很大帮助。
为了探究和预测商品进口额的变化,需要定量地分析影响商品进口额变化的主要因素。
二、模型的设定及其估计经分析,商品进口额可能与国内生产总值、居民消费价格指数有关。
为此,考虑国内生产总值GDP、居民消费价格指数CPI为主要因素。
各影响变量与商品进口额呈正相关。
为此,设定如下形式的计量经济模型:=+ln+lnCP式中,亿元);lnGDP为国内生产总值(亿元);lnCPI为居民消费价格指数(以1985年为100)。
各解释变量前的回归系数预期都大于零。
为估计模型,根据上表的数据,利用EViews软件,生成Y、lnGDP、lnCPI等数据,采用OLS方法估计模型参数,得到的回归结果如下图所示:模型方程为:lnY=-3。
111486+1。
338533lnGDP-0.421791lnCPI(0。
463010)(0。
088610)(0。
233295)t= (—6。
720126) (15。
10582)(—1。
807975)=0.988051 =0.987055 F=992。
2582该模型=0.988051,=0。
987055,可决系数很高,F检验值为992.2582,明显显著。
《计量经济学》第四章练习题
《计量经济学》第四章练习题一、单项选择题(每题2分)1、完全的多重共线性是指解释变量的数据矩阵的秩()(A )大于k (B )小于k(C )等于k (D )等于k+12、当模型存在严重的多重共线性时,OLS 估计量将不具备()(A )线性(B )无偏性(C )有效性(D )一致性3、如果每两个解释变量的简单相关系数比较高,大于()时则可认为存在着较严重的多重共线性。
(A )0.5 (B )0.6(C )0.7 (D )0.84、方差扩大因子VIF j 可用来度量多重共线性的严重程度,经验表明,VIF j ()时,说明解释变量与其余解释变量间有严重的多重共线性。
(A )小于5 (B )大于1(C )小于1 (D )大于105、对于模型01122i i i i y x x u βββ=+++,与r 23等于0相比,当r 23等于0.5时,3?β的方差将是原来的()(A )2倍(B )1.5倍(C )1.33倍(D )1.25倍6、无多重共线性是指数据矩阵的秩()(A )小于k (B )等于k(C )大于k (D )等于k+17、无多重共线性假定是假定各解释变量之间不存在()(A )线性关系(B )非线性关系(C )自相关(D )异方差8、经济变量之间具有共同变化的趋势时,由其构建的计量经济模型易产生()(A )异方差(B )自相关(C )多重共线性(D )序列相关9、完全多重共线性产生的后果包括参数估计量的方差()(A )增大(B )减小(C )无穷大(D )无穷小10、不完全多重共线性产生的后果包括参数估计量的方差()(A )增大(B )减小(C )无穷大(D )无穷小11、不完全多重共线性下,对参数区间估计时,置信区间趋于()(A )变大(B )变小(C )不变(D )难以估计12、较高的简单相关系数是多重共线性存在的()(A )必要条件(B )充分条件(C )充要条件(D )并非条件13、方差扩大因子VIF j 是由辅助回归的可决系数R j 2计算而得,R j 2越大,方差扩大因子VIF j 就()(A )越大(B )越小(C)不变(D)无关14、解释变量间的多重共线性越弱,方差扩大因子VIF j就越接近于()(A)1 (B)2(C)0 (D)1015、多重共线性是一个()(A)样本特性(B)总体特性(C)模型特性(D)以上皆不对二、多项选择题1、多重共线性包括()(A)完全的多重共线性(B)不完全的多重共线性(C)解释变量间精确的线性关系(D)解释变量间近似的线性关系(E)非线性关系2、多重共线性产生的经济背景主要由()(A)经济变量之间具有共同变化趋势(B)模型中包含滞后变量(C)采用截面数据(D)样本数据自身的原因3、多重共线性检验的方法包括()(A)简单相关系数检验法(B)方差扩大因子法(C)直观判断法(D)逐步回归法(E)DW检验法4、修正多重共线性的经验方法包括()(A)剔除变量法(B)增大样本容量(C)变换模型形式(D)截面数据与时间序列数据并用(E)变量变换5、严重的多重共线性常常会出现下列情形()(A)适用OLS得到的回归参数估计值不稳定(B)回归系数的方差增大(C)回归方程高度显著的情况下,有些回归系数通不过显著性检验(D)回归系数的正负号得不到合理的经济解释三、名词解释(每题4分)1、多重共线性2、完全的多重共线性3、辅助回归4、方差扩大因子VIF j5、逐步回归法6、不完全的多重共线性四、简答题(每题5分)1、多重共线性的实质是什么?2、为什么会出现多重共线性?3、多重共线性对回归参数的估计有何影响?4、判断是否存在多重共线性的方法有那些?5、针对多重共线性采取的补救措施有那些?6、具有严重多重共线性的回归方程能否用来进行预测?五、辨析题1、在高度多重共线性的情形中,要评价一个或多个偏回归系数的单个显著性是不可能的。
《计量经济学》习题(第四章)
第四章 习 题一、单选题1、如果回归模型违背了同方差假定,最小二乘估计量____A .无偏的,非有效的 B.有偏的,非有效的C .无偏的,有效的 D.有偏的,有效的2、Goldfeld-Quandt 方法用于检验____A .异方差性 B.自相关性C .随机解释变量 D.多重共线性3、DW 检验方法用于检验____A .异方差性 B.自相关性C .随机解释变量 D.多重共线性4、在异方差性情况下,常用的估计方法是____A .一阶差分法 B.广义差分法C .工具变量法 D.加权最小二乘法5、在以下选项中,正确表达了序列自相关的是____j i u x Cov D j i x x Cov C ji u u Cov B ji u u Cov A j i j i j i j i ≠≠≠≠≠=≠≠,0),(.,0),(.,0),(.,0),(.6、如果回归模型违背了无自相关假定,最小二乘估计量____A .无偏的,非有效的 B.有偏的,非有效的C .无偏的,有效的 D.有偏的,有效的7、在自相关情况下,常用的估计方法____A .普通最小二乘法 B.广义差分法C .工具变量法 D.加权最小二乘法8、White 检验方法主要用于检验____A .异方差性 B.自相关性C .随机解释变量 D.多重共线性9、Glejser 检验方法主要用于检验____A .异方差性 B.自相关性C .随机解释变量 D.多重共线性10、简单相关系数矩阵方法主要用于检验____A .异方差性 B.自相关性C .随机解释变量 D.多重共线性11、所谓异方差是指____2222)(.)(.)(.)(.σσσσ==≠≠i i i i x Var D u Var C x Var B u Var A12、所谓不完全多重共线性是指存在不全为零的数k λλλ,,,21 ,有____1112211221221122.0.0..k k k k k x x x k k k k A x x x v B x x x C x x x v e D x x x v e v λλλλλλλλλλλλ++++=+++=∑⎰++++=++++=式中是随机误差项13、设21,x x 为解释变量,则完全多重共线性是____0.(021.0.021.22121121=+=++==+x x e x D v v x x C e x B x x A 为随机误差项) 14、广义差分法是对____用最小二乘法估计其参数11211211121121)()1(....-------+-+-=-++=++=++=t t t t t t t t t t t t tt t u u x x y y D u x y C u x y B u x y A ρρβρβρρρβρβρββββ15、在DW 检验中要求有假定条件,在下列条件中不正确的是____A .解释变量为非随机的 B.随机误差项为一阶自回归形式C .线性回归模型中不应含有滞后内生变量为解释变量D.线性回归模型为一元回归形式16、在下例引起序列自相关的原因中,不正确的是____A.经济变量具有惯性作用B.经济行为的滞后性C.设定偏误D.解释变量之间的共线性17、在DW 检验中,当d 统计量为2时,表明____A.存在完全的正自相关B.存在完全的负自相关C.不存在自相关D.不能判定18、在DW 检验中,当d 统计量为4时,表明____A.存在完全的正自相关B.存在完全的负自相关C.不存在自相关D.不能判定19、在DW 检验中,当d 统计量为0时,表明____A.存在完全的正自相关B.存在完全的负自相关C.不存在自相关D.不能判定20、在DW 检验中,存在不能判定的区域是____A. 0﹤d ﹤l d ,4-l d ﹤d ﹤4B. u d ﹤d ﹤4-u dC. l d ﹤d ﹤u d ,4-u d ﹤d ﹤4-l dD. 上述都不对21、在修正序列自相关的方法中,能修正高阶自相关的方法是____A. 利用DW 统计量值求出ρˆ B. Cochrane-Orcutt 法 C. Durbin 两步法 D. 移动平均法22、在下列多重共线性产生的原因中,不正确的是____A.经济本变量大多存在共同变化趋势B.模型中大量采用滞后变量C.由于认识上的局限使得选择变量不当D.解释变量与随机误差项相关23、在DW 检验中,存在正自相关的区域是____A. 4-l d ﹤d ﹤4B. 0﹤d ﹤l dC. u d ﹤d ﹤4-u dD. l d ﹤d ﹤u d ,4-u d ﹤d ﹤4-l d24、逐步回归法既检验又修正了____A .异方差性 B.自相关性 C .随机解释变量 D.多重共线性25、设)()(,2221i i i i i i x f u Var u x y σσββ==++=,则对原模型变换的正确形式为____ )()()()(.)()()()(.)()()()(..212222122121i i i i i i i i i i i i i i i i i i i i i i i i x f u x f x x f x f y D x f u x f x x f x f y C x f u x f x x f x f y B u x y A ++=++=++=++=ββββββββ26、在修正序列自相关的方法中,不正确的是____A.广义差分法B.普通最小二乘法C.一阶差分法D. Durbin 两步法27、在检验异方差的方法中,不正确的是____A. Goldfeld-Quandt 方法B. spearman 检验法C. White 检验法D. DW 检验法28、在DW 检验中,存在零自相关的区域是____A. 4-l d ﹤d ﹤4B. 0﹤d ﹤l dC. u d ﹤d ﹤4-u dD. l d ﹤d ﹤u d ,4-u d ﹤d ﹤4-l d29.如果模型中的解释变量存在完全的多重共线性,参数的最小二乘估计量是( )A .无偏的 B. 有偏的 C. 不确定 D. 确定的30. 已知模型的形式为u x y 21+β+β=,在用实际数据对模型的参数进行估计的时候,测得DW 统计量为0.6453,则广义差分变量是( )A. 1t t ,1t t x 6453.0x y 6453.0y ----B. 1t t 1t t x 6774.0x ,y 6774.0y ----C. 1t t 1t t x x ,y y ----D. 1t t 1t t x 05.0x ,y 05.0y ----31. 在具体运用加权最小二乘法时,如果变换的结果是x u x x x 1xy 21+β+β=,则Var(u)是下列形式中的哪一种?( )A. 2σxB. 2σ2x B. 2σx D. 2σLog(x)32. 在线性回归模型中,若解释变量1x 和2x 的观测值成比例,即有i 2i 1kx x =,其中k 为非零常数,则表明模型中存在( )A. 异方差B. 多重共线性C. 序列自相关D. 设定误差33. 已知DW 统计量的值接近于2,则样本回归模型残差的一阶自相关系数ρˆ近似等于( ) A. 0 B. –1 C. 1 D. 4二、多项选择1、能够检验多重共线性的方法有____A.简单相关系数法B. DW 检验法C. 判定系数检验法D. 方差膨胀因子检验E.逐步回归法3、能够修正多重共线性的方法有____A.增加样本容量B.岭回归法C.剔除多余变量D.逐步回归法E.差分模型3、如果模型中存在异方差现象,则会引起如下后果____A. 参数估计值有偏B. 参数估计值的方差不能正确确定C. 变量的显著性检验失效D. 预测精度降低E. 参数估计值仍是无偏的4、能够检验异方差的方法是____A. gleiser检验法B. White检验法C. 图形法D. spearman检验法E. DW检验法F. Goldfeld-Quandt检验法5、如果模型中存在序列自相关现象,则会引起如下后果____A. 参数估计值有偏B. 参数估计值的方差不能正确确定C. 变量的显著性检验失效D. 预测精度降低E. 参数估计值仍是无偏的6、检验序列自相关的方法是____A. gleiser检验法B. White检验法C. 图形法D. DW检验法E. Goldfeld-Quandt检验法7、能够修正序列自相关的方法有____A. 加权最小二乘法B. Durbin两步法C.广义最小二乘法D. 一阶差分法E.广义差分法8、Goldfeld-Quandt检验法的应用条件是____A. 将观测值按解释变量的大小顺序排列B. 样本容量尽可能大C. 随机误差项服从正态分布D. 将排列在中间的约1/4的观测值删除掉9、在DW检验中,存在不能判定的区域是____A. 0﹤d﹤l dB. u d﹤d﹤4-u dC. l d﹤d﹤u dD. 4-u d﹤d﹤4-l dE. 4-l d﹤d﹤4。
计量经济学课后答案第四、五章(内容参考)
计量经济学课后答案第四、五章(内容参考)第四章随机解释变量问题1. 随机解释变量的来源有哪些?答:随机解释变量的来源有:经济变量的不可控,使得解释变量观测值具有随机性;由于随机干扰项中包括了模型略去的解释变量,而略去的解释变量与模型中的解释变量往往是相关的;模型中含有被解释变量的滞后项,而被解释变量本身就是随机的。
2.随机解释变量有几种情形? 分情形说明随机解释变量对最小二乘估计的影响与后果?答:随机解释变量有三种情形,不同情形下最小二乘估计的影响和后果也不同。
(1)解释变量是随机的,但与随机干扰项不相关;这时采用OLS估计得到的参数估计量仍为无偏估计量;(2)解释变量与随机干扰项同期无关、不同期相关;这时OLS估计得到的参数估计量是有偏但一致的估计量;(3)解释变量与随机干扰项同期相关;这时OLS估计得到的参数估计量是有偏且非一致的估计量。
3. 选择作为工具变量的变量必须满足那些条件?答:选择作为工具变量的变量需满足以下三个条件:(1)与所替代的随机解释变量高度相关;(2)与随机干扰项不相关;(3)与模型中其他解释变量不相关,以避免出现多重共线性。
4.对模型Y t =β+β1X1t+β2X2t+β3Yt-1+μt假设Yt-1与μt相关。
为了消除该相关性,采用工具变量法:先求Y t关于X1t与 X2t回归,得到Yt,再做如下回归:Y t =β+β1X1t+β2X2t+β3Y t?1-+μt试问:这一方法能否消除原模型中Yt的相关性? 为什么?解答:能消除。
在基本假设下,X1t,X2t与μt应是不相关的,由此知,由X1t 与X2t估计出的Yt应与μt不相关。
5.对于一元回归模型Y t =β+β1Xt*+μt假设解释变量Xt *的实测值Xt与之有偏误:Xt= Xt*+et,其中et是具有零均值、无序列相关,且与Xt不相关的随机变量。
试问:(1) 能否将X t= X t*+e t代入原模型,使之变换成Y t=β0+β1X t+νt后进行估计? 其中,νt为变换后模型的随机干扰项。
计量经济学第4章课后答案
17CHAPTER 4SOLUTIONS TO PROBLEMS4.2 (i) and (iii) generally cause the t statistics not to have a t distribution under H 0.Homoskedasticity is one of the CLM assumptions. An important omitted variable violates Assumption MLR.3. The CLM assumptions contain no mention of the sample correlations among independent variables, except to rule out the case where the correlation is one.4.3 (i) While the standard error on hrsemp has not changed, the magnitude of the coefficient has increased by half. The t statistic on hrsemp has gone from about –1.47 to –2.21, so now the coefficient is statistically less than zero at the 5% level. (From Table G.2 the 5% critical value with 40 df is –1.684. The 1% critical value is –2.423, so the p -value is between .01 and .05.)(ii) If we add and subtract 2βlog(employ ) from the right-hand-side and collect terms, we havelog(scrap ) = 0β + 1βhrsemp + [2βlog(sales) – 2βlog(employ )] + [2βlog(employ ) + 3βlog(employ )] + u = 0β + 1βhrsemp + 2βlog(sales /employ ) + (2β + 3β)log(employ ) + u ,where the second equality follows from the fact that log(sales /employ ) = log(sales ) – log(employ ). Defining 3θ ≡ 2β + 3β gives the result.(iii) No. We are interested in the coefficient on log(employ ), which has a t statistic of .2, which is very small. Therefore, we conclude that the size of the firm, as measured by employees, does not matter, once we control for training and sales per employee (in a logarithmic functional form).(iv) The null hypothesis in the model from part (ii) is H 0:2β = –1. The t statistic is [–.951 – (–1)]/.37 = (1 – .951)/.37 ≈ .132; this is very small, and we fail to reject whether we specify a one- or two-sided alternative.4.4 (i) In columns (2) and (3), the coefficient on profmarg is actually negative, although its t statistic is only about –1. It appears that, once firm sales and market value have been controlled for, profit margin has no effect on CEO salary.(ii) We use column (3), which controls for the most factors affecting salary. The t statistic on log(mktval ) is about 2.05, which is just significant at the 5% level against a two-sided alternative.18(We can use the standard normal critical value, 1.96.) So log(mktval ) is statistically significant. Because the coefficient is an elasticity, a ceteris paribus 10% increase in market value is predicted to increase salary by 1%. This is not a huge effect, but it is not negligible, either.(iii) These variables are individually significant at low significance levels, with t ceoten ≈ 3.11 and t comten ≈ –2.79. Other factors fixed, another year as CEO with the company increases salary by about 1.71%. On the other hand, another year with the company, but not as CEO, lowers salary by about .92%. This second finding at first seems surprising, but could be related to the “superstar” effect: firms that hire CEOs from outside the company often go after a small pool of highly regarded candidates, and salaries of these people are bid up. More non-CEO years with a company makes it less likely the person was hired as an outside superstar.4.7 (i) .412 ± 1.96(.094), or about .228 to .596.(ii) No, because the value .4 is well inside the 95% CI.(iii) Yes, because 1 is well outside the 95% CI.4.8 (i) With df = 706 – 4 = 702, we use the standard normal critical value (df = ∞ in Table G.2), which is 1.96 for a two-tailed test at the 5% level. Now t educ = −11.13/5.88 ≈ −1.89, so |t educ | = 1.89 < 1.96, and we fail to reject H 0: educ β = 0 at the 5% level. Also, t age ≈ 1.52, so age is also statistically insignificant at the 5% level.(ii) We need to compute the R -squared form of the F statistic for joint significance. But F = [(.113 − .103)/(1 − .113)](702/2) ≈ 3.96. The 5% critical value in the F 2,702 distribution can be obtained from Table G.3b with denominator df = ∞: cv = 3.00. Therefore, educ and age are jointly significant at the 5% level (3.96 > 3.00). In fact, the p -value is about .019, and so educ and age are jointly significant at the 2% level.(iii) Not really. These variables are jointly significant, but including them only changes the coefficient on totwrk from –.151 to –.148.(iv) The standard t and F statistics that we used assume homoskedasticity, in addition to the other CLM assumptions. If there is heteroskedasticity in the equation, the tests are no longer valid.4.11 (i) Holding profmarg fixed, n rdintensΔ = .321 Δlog(sales ) = (.321/100)[100log()sales ⋅Δ] ≈ .00321(%Δsales ). Therefore, if %Δsales = 10, n rdintens Δ ≈ .032, or only about 3/100 of a percentage point. For such a large percentage increase in sales,this seems like a practically small effect.(ii) H 0:1β = 0 versus H 1:1β > 0, where 1β is the population slope on log(sales ). The t statistic is .321/.216 ≈ 1.486. The 5% critical value for a one-tailed test, with df = 32 – 3 = 29, is obtained from Table G.2 as 1.699; so we cannot reject H 0 at the 5% level. But the 10% criticalvalue is 1.311; since the t statistic is above this value, we reject H0 in favor of H1 at the 10% level.(iii) Not really. Its t statistic is only 1.087, which is well below even the 10% critical value for a one-tailed test.1920SOLUTIONS TO COMPUTER EXERCISESC4.1 (i) Holding other factors fixed,111log()(/100)[100log()](/100)(%),voteA expendA expendA expendA βββΔ=Δ=⋅Δ≈Δwhere we use the fact that 100log()expendA ⋅Δ ≈ %expendA Δ. So 1β/100 is the (ceteris paribus) percentage point change in voteA when expendA increases by one percent.(ii) The null hypothesis is H 0: 2β = –1β, which means a z% increase in expenditure by A and a z% increase in expenditure by B leaves voteA unchanged. We can equivalently write H 0: 1β + 2β = 0.(iii) The estimated equation (with standard errors in parentheses below estimates) isn voteA = 45.08 + 6.083 log(expendA ) – 6.615 log(expendB ) + .152 prtystrA(3.93) (0.382) (0.379) (.062) n = 173, R 2 = .793.The coefficient on log(expendA ) is very significant (t statistic ≈ 15.92), as is the coefficient on log(expendB ) (t statistic ≈ –17.45). The estimates imply that a 10% ceteris paribus increase in spending by candidate A increases the predicted share of the vote going to A by about .61percentage points. [Recall that, holding other factors fixed, n voteAΔ≈(6.083/100)%ΔexpendA ).] Similarly, a 10% ceteris paribus increase in spending by B reduces n voteAby about .66 percentage points. These effects certainly cannot be ignored.While the coefficients on log(expendA ) and log(expendB ) are of similar magnitudes (andopposite in sign, as we expect), we do not have the standard error of 1ˆβ + 2ˆβ, which is what we would need to test the hypothesis from part (ii).(iv) Write 1θ = 1β +2β, or 1β = 1θ– 2β. Plugging this into the original equation, and rearranging, givesn voteA = 0β + 1θlog(expendA ) + 2β[log(expendB ) – log(expendA )] +3βprtystrA + u ,When we estimate this equation we obtain 1θ≈ –.532 and se( 1θ)≈ .533. The t statistic for the hypothesis in part (ii) is –.532/.533 ≈ –1. Therefore, we fail to reject H 0: 2β = –1β.21C4.3 (i) The estimated model isn log()price = 11.67 + .000379 sqrft + .0289 bdrms (0.10) (.000043) (.0296)n = 88, R 2 = .588.Therefore, 1ˆθ= 150(.000379) + .0289 = .0858, which means that an additional 150 square foot bedroom increases the predicted price by about 8.6%.(ii) 2β= 1θ – 1501β, and solog(price ) = 0β+ 1βsqrft + (1θ – 1501β)bdrms + u= 0β+ 1β(sqrft – 150 bdrms ) + 1θbdrms + u .(iii) From part (ii), we run the regressionlog(price ) on (sqrft – 150 bdrms ), bdrms ,and obtain the standard error on bdrms . We already know that 1ˆθ= .0858; now we also getse(1ˆθ) = .0268. The 95% confidence interval reported by my software package is .0326 to .1390(or about 3.3% to 13.9%).C4.5 (i) If we drop rbisyr the estimated equation becomesn log()salary = 11.02 + .0677 years + .0158 gamesyr (0.27) (.0121) (.0016)+ .0014 bavg + .0359 hrunsyr (.0011) (.0072)n = 353, R 2= .625.Now hrunsyr is very statistically significant (t statistic ≈ 4.99), and its coefficient has increased by about two and one-half times.(ii) The equation with runsyr , fldperc , and sbasesyr added is22n log()salary = 10.41 + .0700 years + .0079 gamesyr(2.00) (.0120) (.0027)+ .00053 bavg + .0232 hrunsyr (.00110) (.0086)+ .0174 runsyr + .0010 fldperc – .0064 sbasesyr (.0051) (.0020) (.0052) n = 353, R 2 = .639.Of the three additional independent variables, only runsyr is statistically significant (t statistic = .0174/.0051 ≈ 3.41). The estimate implies that one more run per year, other factors fixed,increases predicted salary by about 1.74%, a substantial increase. The stolen bases variable even has the “wrong” sign with a t statistic of about –1.23, while fldperc has a t statistic of only .5. Most major league baseball players are pretty good fielders; in fact, the smallest fldperc is 800 (which means .800). With relatively little variation in fldperc , it is perhaps not surprising that its effect is hard to estimate.(iii) From their t statistics, bavg , fldperc , and sbasesyr are individually insignificant. The F statistic for their joint significance (with 3 and 345 df ) is about .69 with p -value ≈ .56. Therefore, these variables are jointly very insignificant.C4.7 (i) The minimum value is 0, the maximum is 99, and the average is about 56.16. (ii) When phsrank is added to (4.26), we get the following:n log() wage = 1.459 − .0093 jc + .0755 totcoll + .0049 exper + .00030 phsrank (0.024) (.0070) (.0026) (.0002) (.00024)n = 6,763, R 2 = .223So phsrank has a t statistic equal to only 1.25; it is not statistically significant. If we increase phsrank by 10, log(wage ) is predicted to increase by (.0003)10 = .003. This implies a .3% increase in wage , which seems a modest increase given a 10 percentage point increase in phsrank . (However, the sample standard deviation of phsrank is about 24.)(iii) Adding phsrank makes the t statistic on jc even smaller in absolute value, about 1.33, but the coefficient magnitude is similar to (4.26). Therefore, the base point remains unchanged: the return to a junior college is estimated to be somewhat smaller, but the difference is not significant and standard significant levels.(iv) The variable id is just a worker identification number, which should be randomly assigned (at least roughly). Therefore, id should not be correlated with any variable in the regression equation. It should be insignificant when added to (4.17) or (4.26). In fact, its t statistic is about .54.23C4.9 (i) The results from the OLS regression, with standard errors in parentheses, aren log() psoda =−1.46 + .073 prpblck + .137 log(income ) + .380 prppov (0.29) (.031) (.027) (.133)n = 401, R 2 = .087The p -value for testing H 0: 10β= against the two-sided alternative is about .018, so that we reject H 0 at the 5% level but not at the 1% level.(ii) The correlation is about −.84, indicating a strong degree of multicollinearity. Yet eachcoefficient is very statistically significant: the t statistic for log()ˆincome β is about 5.1 and that forˆprppovβ is about 2.86 (two-sided p -value = .004).(iii) The OLS regression results when log(hseval ) is added aren log() psoda =−.84 + .098 prpblck − .053 log(income ) (.29) (.029) (.038) + .052 prppov + .121 log(hseval ) (.134) (.018)n = 401, R 2 = .184The coefficient on log(hseval ) is an elasticity: a one percent increase in housing value, holding the other variables fixed, increases the predicted price by about .12 percent. The two-sided p -value is zero to three decimal places.(iv) Adding log(hseval ) makes log(income ) and prppov individually insignificant (at even the 15% significance level against a two-sided alternative for log(income ), and prppov is does not have a t statistic even close to one in absolute value). Nevertheless, they are jointly significant at the 5% level because the outcome of the F 2,396 statistic is about 3.52 with p -value = .030. All of the control variables – log(income ), prppov , and log(hseval ) – are highly correlated, so it is not surprising that some are individually insignificant.(v) Because the regression in (iii) contains the most controls, log(hseval ) is individually significant, and log(income ) and prppov are jointly significant, (iii) seems the most reliable. It holds fixed three measure of income and affluence. Therefore, a reasonable estimate is that if the proportion of blacks increases by .10, psoda is estimated to increase by 1%, other factors held fixed.。
计量经济学第四章习题
计量经济学第四章习题第四章练习题1. 什么是异⽅差性?试举例说明经济现象中的异⽅差性。
检验异⽅差性的⽅法思路是什么? 2. 判断题。
并简单说明理由。
(1) 存在异⽅差时,普通最⼩⼆乘法(OLS )估计量是有偏的和⽆效的; (2) 存在异⽅差时,常⽤的t 检验和F 检验失效;(3) 存在异⽅差时,常⽤的OLS 估计⼀定是⾼估了估计量的标准差; (4)如果从OLS 回归中估计的残差呈现出系统性,则意味着数据中存在着异⽅差; (5) 存在序列相关时,OLS 估计量是有偏的并且也是⽆效的; (6) 消除序列相关的⼀阶差分变换假定⾃相关系数ρ必须等于1; (7) 回归模型中误差项t u 存在异⽅差时,OLS 估计不再是有效的; (8) 存在多重共线性时,模型参数⽆法估计;(9)存在多重共线性时,⼀定会使参数估计值的⽅差增⼤,从⽽造成估计效率的损失;(10) ⼀旦模型中的解释变量是随机变量,则违背了基本假设,使得模型的OLS 估计量有偏且不⼀致。
3. 回归模型中误差项t u 存在序列相关时,OLS 估计不再是⽆偏的;已知消费模型:01122t t t t y x x u ααα=+++。
其中,t y :消费⽀出;t x 1:个⼈可⽀配收⼊;t x 2:消费者的流动资产。
设0)(=t u E ,为常数)其中2212()(σσt t ar x u V =。
要求: (1)进⾏适当变换消除异⽅差,并证明之。
(2)写出消除异⽅差后,模型的参数估计量的表达式。
4. 简述异⽅差对下列各项有何影响:(1) OLS 估计量及其⽅差; (2) 置信区间;(3)显著性t 检验和F 检验的使⽤。
5. 已知模型:22201122,()t t t t t t t Y X X u Var u Z βββσσ=+++==。
式中,Y 、X 1、X 2和Z 的数据已知。
假设给定权数t w ,加权最⼩⼆乘法就是求下式中的各β,以使的下式最⼩2221102)()(t t t t t t t t t X w X w w Y w u w RSS βββ---==∑∑(1) 求RSS 对β1、β2和β2的偏微分并写出正规⽅程。
计量经济学第四章练习题及参考解答
第四章练习题及参考解答4.1 假设在模型i i i i u X X Y +++=33221βββ中,32X X 与之间的相关系数为零,于是有人建议你进行如下回归:ii i i i i u X Y u X Y 23311221++=++=γγαα(1)是否存在3322ˆˆˆˆβγβα==且?为什么? (2)111ˆˆˆβαγ会等于或或两者的某个线性组合吗? (3)是否有()()()()3322ˆvar ˆvar ˆvar ˆvar γβαβ==且?练习题4.1参考解答:(1) 存在3322ˆˆˆˆβγβα==且。
因为()()()()()()()23223223232322ˆ∑∑∑∑∑∑∑--=iiiii iii iii x x x x x x x y x x y β当32X X 与之间的相关系数为零时,离差形式的032=∑i ix x有()()()()222223222322ˆˆαβ===∑∑∑∑∑∑iiiiiiii xx y x x x x y 同理有:33ˆˆβγ= (2) 111ˆˆˆβαγ会等于或的某个线性组合 因为 12233ˆˆˆY X X βββ=--,且122ˆˆY X αα=-,133ˆˆY X γγ=- 由于3322ˆˆˆˆβγβα==且,则 11222222ˆˆˆˆˆY Y X Y X X αααββ-=-=-= 11333333ˆˆˆˆˆY Y X Y X X γγγββ-=-=-= 则 1112233231123ˆˆˆˆˆˆˆY Y Y X X Y X X Y X X αγβββαγ--=--=--=+- (3) 存在()()()()3322ˆvar ˆvar ˆvar ˆvar γβαβ==且。
因为()()∑-=22322221ˆvar r x iσβ当023=r 时,()()()22222232222ˆvar 1ˆvar ασσβ==-=∑∑iixr x 同理,有()()33ˆvar ˆvar γβ=4.2在决定一个回归模型的“最优”解释变量集时人们常用逐步回归的方法。
计量经济学第四章部分课后题(庞皓第三版)
计量经济学第四章作业思考题:4.3 多重共线性的典型表现是什么?判断是否存在多重共线性的方法有哪些?答:(1)多重共线性的典型表现:A.模型拟和较好,但偏回归系数几乎都无统计学意义;B.偏回归系数估计值不稳定,方差很大;C.偏回归系数估计值的符号可能与预期不符或与经验相悖,结果难以解释。
(2)具体的判断方法:A.解释变量之间简单相关系数矩阵法;B.方差扩大因子法;C.直观判断法;D.逐步回归的方法。
4.4 针对出现多重共线性的不同情形,能采取的补救措施有哪些?答:(1)根据经验,可以选择剔除变量,增大样本容量,变换模型形式,利用非样本先验信息,截面数据和时间序列数据并用以及变量变换等不同方法。
(2)采取逐步回归方法由由一元模型开始逐步增加解释变量个数,增加的原则是显著提高可决系数,自身显著而与其他变量之间又不产生共线性。
(3)采取岭回归方法来降低多重共线性的程度。
4.9 以下陈述是否正确?请判断并说明理由。
(1)在高度多重共线性的情形中,要评价一个或多个偏回归系数的单个显著性是不可能的。
答:正确。
(2)尽管有完全的多重共线性,OLS估计量仍然是BLUE。
答:错误。
(3)如果有某一辅助回归显示出高的R j2值,则高度共线性的存在肯定是无疑的。
答:正确。
(4)变量的两两高度相关并不表示高度多重共线性。
答:正确。
(5)如果其他条件不变,VIF越高,OLS估计量的方差越大。
答:正确。
(6)如果在多元回归中,根据通常的t检验,全部偏回归系数分别都是统计上不显著的,你就不会得到一个高的R2值。
答:错误。
(7)在Y对X2和X3的回归中,假如X3的值很少变化,这就会使Var(β3)增大,极端的情况下,如果全部X3值都相同,Var(β3) 将是无穷大。
答:正确。
(8)如果分析的目的仅仅是预测,则多重共线性是无害的。
答:错误。
练习题:4.3(1)利用eviews分析得到如下数据:Dependent Variable: LNYMethod: Least SquaresDate: 05/09/16 Time: 12:45Sample: 1985 2011Included observations: 27Variable Coefficient Std. Error t-Statistic Prob.C -3.111486 0.463010 -6.720126 0.0000LNGDP 1.338533 0.088610 15.10582 0.0000LNCPI -0.421791 0.233295 -1.807975 0.0832R-squared 0.988051 Mean dependent var 9.484710Adjusted R-squared 0.987055 S.D. dependent var 1.425517S.E. of regression 0.162189 Akaike info criterion -0.695670Sum squared resid 0.631326 Schwarz criterion -0.551689Log likelihood 12.39155 Hannan-Quinn criter. -0.652857F-statistic 992.2583 Durbin-Watson stat 0.522613Prob(F-statistic) 0.000000由上可知,模型为:lnY=1.338533lnGDP t—0.421791lnCPI t—3.111486(2)A.该模型的可决系数为0.988051,修正可决系数为0.987055,两者都很高。
第四章练习题及参考解答(第四版)计量经济学
第四章练习题及参考解答4.1 假设在模型i i i i u X X Y +++=33221βββ中,32X X 与之间的相关系数为零,有人建议你分别进行如下回归:1221i i i Y X u αα=++ 1332i i i Y X u γγ=++(1) 是否存在3322ˆˆˆˆβγβα==且?为什么? (2) 1ˆβ会等于1ˆα或1ˆγ或者两者的某个线性组合吗? (3) 是否有()()22ˆˆVar Var βα=且()()33ˆˆVar Var βγ=?【练习题4.1参考解答】(1) 存在2233ˆˆˆˆαβγβ==且 。
因为 ()()()()()()()22332322222323ˆi iii ii iiii iy x x y x x x x x x x β-=-∑∑∑∑∑∑∑当23X X 与 之间的相关系数为零时,离差形式的230i ix x =∑有 ()()()()223222222223ˆˆi i ii i iiiy x x y x xx x βα===∑∑∑∑∑∑ 同理有: 33ˆˆγβ= (2)会的。
(3) 存在 ()()()()2233ˆˆˆˆvar var var var βαβγ==且 因为 ()()2222223ˆvar 1ix r σβ=-∑当 230r = 时, ()()()22222222223ˆˆvar var 1iix x r σσβα===-∑∑ 同理,有 ()()33ˆˆvar var βγ=4.2 表4.4给出了1995—2016年中国商品进口额Y 、国生产总值GDP 、居民消费价格指数CPI 的数据。
表4.4 中国商品进口额、国生产总值、居民消费价格指数资料来源:《中国统计年鉴2017》考虑建立模型: i t t t u CPI GDP Y ++=ln ln ln 321βββ+ (1)利用表中数据估计此模型的参数。
(2)你认为数据中有多重共线性吗?(3)进行以下回归:121ln ln t t i Y A A GDP v =++ 122ln ln t t i Y B B CPI v =++ 123ln ln t t i GDP C C CPI v =++ 根据这些回归你能对多重共线性的性质有什么认识?(4)假设经检验数据有多重共线性,但模型中32ˆˆββ和在5%水平上显著,并且F 检验也显著,你对此模型的应用有何建议?【练习题4.2参考解答】建立模型: i t t t u CPI GDP Y ++=ln ln ln 321βββ+ (1)利用表中数据估计此模型的参数。
计量经济学课后习题答案汇总
计量经济学练习题第一章导论一、单项选择题⒈计量经济研究中常用的数据主要有两类:一类是时间序列数据,另一类是【 B 】A 总量数据B 横截面数据C平均数据 D 相对数据⒉横截面数据是指【A 】A 同一时点上不同统计单位相同统计指标组成的数据B 同一时点上相同统计单位相同统计指标组成的数据C 同一时点上相同统计单位不同统计指标组成的数据D 同一时点上不同统计单位不同统计指标组成的数据⒊下面属于截面数据的是【D 】A 1991-2003年各年某地区20个乡镇的平均工业产值B 1991-2003年各年某地区20个乡镇的各镇工业产值C 某年某地区20个乡镇工业产值的合计数D 某年某地区20个乡镇各镇工业产值⒋同一统计指标按时间顺序记录的数据列称为【B 】A 横截面数据B 时间序列数据C 修匀数据D原始数据⒌回归分析中定义【 B 】A 解释变量和被解释变量都是随机变量B 解释变量为非随机变量,被解释变量为随机变量C 解释变量和被解释变量都是非随机变量D 解释变量为随机变量,被解释变量为非随机变量二、填空题⒈计量经济学是经济学的一个分支学科,是对经济问题进行定量实证研究的技术、方法和相关理论,可以理解为数学、统计学和_经济学_三者的结合。
⒉⒊现代计量经济学已经形成了包括单方程回归分析,联立方程组模型,时间序列分析三大支柱。
⒋⒌经典计量经济学的最基本方法是回归分析。
计量经济分析的基本步骤是:理论(或假说)陈述、建立计量经济模型、收集数据、计量经济模型参数的估计、检验和模型修正、预测和政策分析。
⒍⒎常用的三类样本数据是截面数据、时间序列数据和面板数据。
⒏⒐经济变量间的关系有不相关关系、相关关系、因果关系、相互影响关系和恒等关系。
三、简答题⒈什么是计量经济学?它与统计学的关系是怎样的?计量经济学就是对经济规律进行数量实证研究,包括预测、检验等多方面的工作。
计量经济学是一种定量分析,是以解释经济活动中客观存在的数量关系为内容的一门经济学学科。
计量经济学第四章习题
习题一:根据美国1965年第1季度至1983年第2季度数据(n=26),对回归方程μβββtt t t X X Y +++=33221 估计结果如下:X X Yt t t 3209.293.096.10ˆ-+-= )09.3()06.249()33.3(--=t 9996.02=R 28738.5F =其中Y ——个人消费支出(亿美元),X 2——可支配收入(亿美元) X 3——银行支付的主要利率(%)回答以下问题:1、根据估计的结果,边际消费倾向(MPC )为多少?2、MPC 显著不为1吗?给出检验过程。
3、模型中包括主要利率变量的理论基础是什么?其系数预期的符号是什么?4、β3显著不为0吗?给出检验过程。
5、检验假设02=R6、计算每个系数估计量的标准误差。
以上检验中显著性水平均为0.05。
习题二:根据美国1961年第1季度至1977年第2季度的数据估计了对咖啡的需求函数如下:t P t I t P t Q '++-=ln ln ln ˆln 1483.05155.01647.02789.1 t:(-2.14) (1.23) (0.55)D D D t t t T 3210097.01570.00961.00089.0---- 80.02=R t:(-3.36) (-3.74) (-6.03) (-0.37)式中Q :(按人口)平均消费咖啡量P :每磅咖啡的相对价格(以1967年为不变价) I:(按人口)平均PDI,单位为美元(以1967年为不变价)P ′:每磅茶的相对价格(以1967年为不变价) T:时间 T=1(1961年第1季度)至T=66(1977年第2季度)D 1—1第一季度 D 2 —2第二季度 D 3 —3第三季度 ln —自然对数问题:解释P 、I 、P '系数经济意义。
1. 咖啡的需求对价格是否富有弹性。
2. 咖啡和茶是互补品还是替代品,为什么?3. 解释T 的系数意义。
计量经济学第四章课后习题
中国能源消耗情况分析一、数据图形分析:图一 图二协方差矩阵(lny 与lnx )LNX1 LNX2 LNX3 LNX4 LNX5 LNX6 LNX7 LNY LNX1 1.000000 0.999970 0.999725 0.996897 0.993628 0.997198 0.708411 0.956283 LNX2 0.999970 1.000000 0.999746 0.997179 0.993886 0.996818 0.709053 0.954224 LNX3 0.999725 0.999746 1.000000 0.997887 0.991722 0.995511 0.716060 0.955923 LNX4 0.996897 0.997179 0.997887 1.000000 0.989485 0.989932 0.708962 0.944844 LNX5 0.993628 0.993886 0.991722 0.989485 1.000000 0.994070 0.667196 0.931304 LNX6 0.997198 0.996818 0.995511 0.989932 0.994070 1.000000 0.685726 0.962121 LNX7 0.708411 0.709053 0.716060 0.708962 0.667196 0.685726 1.000000 0.712070 LNY0.9562830.9542240.9559230.9448440.9313040.9621210.7120701.000000协方差矩阵(lny 与x )LNY X1 X2 X3 X4 X5 X6 X7 LNY 1.000000 0.972383 0.972994 0.970843 0.976252 0.954336 0.978077 0.716253 X1 0.972383 1.000000 0.999924 0.999470 0.998471 0.979294 0.996754 0.740635 X2 0.972994 0.999924 1.000000 0.999159 0.998662 0.980804 0.997243 0.743553 X3 0.970843 0.999470 0.999159 1.000000 0.998499 0.972904 0.994407 0.743665 X4 0.976252 0.998471 0.998662 0.998499 1.000000 0.974752 0.994885 0.755789 X5 0.954336 0.979294 0.980804 0.972904 0.974752 1.000000 0.986569 0.716553 X6 0.978077 0.996754 0.997243 0.994407 0.994885 0.986569 1.000000 0.726342 X70.716253 0.7406350.7435530.7436650.7557890.7165530.7263421.000000分析:将录入Eviews的数据Y,X1,X2,X3, X4,X5,X6,X7进行分析,通过每组数据随时间变化趋势可以发现,这八组数据都是逐年增长的,但增长速率有所变动。
计量经济学第四章第6和10题答案
第4章练习6解:(1)答:不能,因为将代入原模型中使其变换后的模型为,显然,由于与同期相关,则说明变换后的模型中的随机干扰项与同期相关。
解:(2)对于多数经济变量的时间序列,除非它们是以一阶差分的形式或变化率的形式出现,往往具有较强的相关性,因此,当和直接表示经济规模或水平的经济变量时,它们之间很可能相关;如果变量是一阶差分的形式或以变化率的形态出现,则它们间的相关性就会降低,但仍有一定程度的相关性。
解:(3)由(2)的结论知,,即与变换后的模型的随机干扰项不相关,而且与有较强的相关性,因此可用作为的工具变量对变换后的模型进行估计。
第4章练习10编编号号170080081006115018001876026501000100907120020002052039001200127308140022002201049501400142509155024002435051100160016930101500260026860解:根据eview软件操作得:Dependent Variable: YMethod: Least SquaresDate: 04/17/11 Time: 22:28Sample: 1 10Included observations: 10Variable CoefficientStd.Error t-Statistic Prob.C245.515869.523483.5314080.0096 X10.5684250.7160980.7937810.4534 X2-0.0058330.070294-0.0829750.9362R-squared0.962099 Mean dependentvar1110.000Adjusted R-squared0.951270 S.D. dependentvar314.2893S.E. ofregression69.37901 Akaike infocriterion11.56037Sum squaredresid33694.13 Schwarzcriterion11.65115Log likelihood-54.80185 Hannan-Quinncriter.11.46079F-statistic88.84545 Durbin-Watsonstat 2.708154Prob(F-statistic)0.000011根据以上表格可得估计的回归模型为:(3.53)(0.79)(-0.083)分析:1.从回归估计的结果看,模型拟合较好。
计量经济学第四章练习题及参考解答
第四章练习题及参考解答4.1 假设在模型i i i iu X X Y +++=33221βββ中,32X X 与之间的相关系数为零,于是有人建议你进行如下回归:ii i i i i u X Y u X Y 23311221++=++=γγαα(1)是否存在3322ˆˆˆˆβγβα==且?为什么? (2)111ˆˆˆβαγ会等于或或两者的某个线性组合吗? (3)是否有()()()()3322ˆvar ˆvar ˆvar ˆvarγβαβ==且? 练习题4.1参考解答:(1) 存在3322ˆˆˆˆβγβα==且。
因为()()()()()()()23223223232322ˆ∑∑∑∑∑∑∑--=iiiii iii iii x x x x x xx y x x y β当32X X 与之间的相关系数为零时,离差形式的032=∑i i x x有()()()()222223222322ˆˆαβ===∑∑∑∑∑∑iiiiiiii xx y x x x x y 同理有:33ˆˆβγ= (2) 111ˆˆˆβαγ会等于或的某个线性组合 因为12233ˆˆˆY X X βββ=--,且122ˆˆY X αα=-,133ˆˆY X γγ=- 由于3322ˆˆˆˆβγβα==且,则 11222222ˆˆˆˆˆY Y X Y X X αααββ-=-=-=11333333ˆˆˆˆˆY Y X Y X X γγγββ-=-=-=则 1112233231123ˆˆˆˆˆˆˆY Y Y X X Y X X Y X X αγβββαγ--=--=--=+- (3) 存在()()()()3322ˆvar ˆvar ˆvar ˆvarγβαβ==且。
因为()()∑-=22322221ˆvarr x iσβ当023=r 时,()()()22222232222ˆvar 1ˆvar ασσβ==-=∑∑iixr x 同理,有()()33ˆvar ˆvar γβ=4.2在决定一个回归模型的“最优”解释变量集时人们常用逐步回归的方法。
计量经济学第四章习题(龚志民)fixed
第四章 多元线性回归模型的估计与假设检验问题4.1什么是偏回归系数? 答:在总体回归函数12233k k Y X X X u ββββ=+++++中,系数2,,k ββ被称为斜率系数或偏回归系数。
(多元样本回归函数的系数亦称偏回归系数)4.2什么是完全多重共线性?什么是高度共线性(近似完全共线性)?答:对于解释变量123,,...k X X X X ,如果存在不全为0的数123,,...k λλλλ,使得112233...0k k X X X X λλλλ++++=则称解释变量之间存在着完全的多重共线性。
如果解释变量123,,...k X X X X 之间存在较大的相关性,但又不是完全共线性,则称解释变量之间存在不完全多重共线性。
4.3 多元回归方程中偏回归系数与一元回归方程中回归系数的含义有何差别? 答:相同点:两者都表示当X 每变化一单位时,Y 的均值的变化。
不同点:偏回归系数是表示当其他解释变量不变时,这一解释变量对被解释变量的影响。
而回归系数则不存在其他解释变量,也就不需要对其他变量进行限制。
4.4 几个变量“联合显著”的含义是什么?答:联合显著的含义是,几个变量作为一个集体是显著的。
即在它们的系数同时为0的假设下,统计量超过临界值。
直观的意义是,它们的系数同时为零的可能性很小。
习题4.5下表中的数据23,,Y X X 分别表示每周销售量,每周的广告投入和每周顾客的平均收入(见DATA4-5)(1)估计回归方程12233()E Y X X βββ=++。
(2)计算拟合优度。
(3)计算校正拟合优度。
(4)计算2β的置信区间(置信水平为95%)。
(5)检验假设03H :0β=(备择假设13H :0β≠,显著性水平为5%) (6)检验假设03H :0β=(备择假设13H :0β>,显著性水平为5%)(7)检验建设023H :0ββ==(显著性水平为5%)。
答:(1)由eviews6.0输出结果:可知1ˆ109.4β=,23ˆˆ2.835714, 5.125714ββ== 回归方程为:23()109.4 2.835714 5.125714E Y X X =++(2)由输出结果可以得到拟合优度为0.910086。
第四章练习题及参考解答(第四版)计量经济学
第四章练习题及参考解答4.1 假设在模型i i i i u X X Y +++=33221βββ中,32X X 与之间的相关系数为零,有人建议你分别进行如下回归:1221i i i Y X u αα=++ 1332i i i Y X u γγ=++(1) 是否存在3322ˆˆˆˆβγβα==且?为什么? (2) 1ˆβ会等于1ˆα或1ˆγ或者两者的某个线性组合吗? (3) 是否有()()22ˆˆVar Var βα=且()()33ˆˆVar Var βγ=?【练习题4.1参考解答】(1) 存在2233ˆˆˆˆαβγβ==且 。
因为 ()()()()()()()22332322222323ˆi iii ii iiii iy x x y x x xx x x x β-=-∑∑∑∑∑∑∑当23X X 与 之间的相关系数为零时,离差形式的230i ixx =∑有 ()()()()223222222223ˆˆi i i i i iiiy x x y x xx x βα===∑∑∑∑∑∑ 同理有: 33ˆˆγβ= (2)会的。
(3) 存在 ()()()()2233ˆˆˆˆvar var var var βαβγ==且 因为 ()()2222223ˆvar 1ix r σβ=-∑当 230r = 时, ()()()22222222223ˆˆvar var 1iix x r σσβα===-∑∑ 同理,有 ()()33ˆˆvar var βγ=4.2 表4.4给出了1995—2016年中国商品进口额Y 、国内生产总值GDP 、居民消费价格指数CPI 的数据。
表4.4 中国商品进口额、国内生产总值、居民消费价格指数资料来源:《中国统计年鉴2017》考虑建立模型: i t t t u CPI GDP Y ++=ln ln ln 321βββ+ (1)利用表中数据估计此模型的参数。
(2)你认为数据中有多重共线性吗?(3)进行以下回归:121ln ln t t i Y A A GDP v =++ 122ln ln t t i Y B B CPI v =++ 123ln ln t t i GDP C C CPI v =++ 根据这些回归你能对多重共线性的性质有什么认识?(4)假设经检验数据有多重共线性,但模型中32ˆˆββ和在5%水平上显著,并且F 检验也显著,你对此模型的应用有何建议?【练习题4.2参考解答】建立模型: i t t t u CPI GDP Y ++=ln ln ln 321βββ+ (1)利用表中数据估计此模型的参数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
地区 农业总产 农作物种植
值
面积
湖北 921.6 省
7155.9
湖南 874.0 省
7886.2ຫໍສະໝຸດ 广东 960.0 省4808.0
广 西 623.1
6368.2
海南 省
重庆 市
四川 省
贵州 省
云南 省
西藏
170.9 333.0 987.7 317.7 516.9 26.6
826.9 3435.3 9387.5 4695.0 5890.0 231.2
试问:
(1) 当设定模型为 相关?
时,是否存在序列
(2) 若按一阶自相关假设,试用杜宾两步法与广义最小 二乘法估计原模型。
(3) 采用差分形式与作为新数据,估计模型,该模型是 否存在序列相关?
15. 对于线性回归模型:,已知为一阶自回归形式:,要 求:证明的估计值为:
16. 某上市公司的子公司的年销售额与其总公司年销售额的 观测数据如下:
1550
2400
24350
10
1500
2600
26860
11. 2004年全国31个省市自治区农业总产值(亿元)和农作物 播种面积(万亩)数据(数据来源:《中国统计年鉴 2005》)如下表所示:
地区
北京 市
天津 市
河北 省
山西 省
内蒙 古
辽宁 省
吉林 省
黑龙 江
上海 市
江苏 省
浙江 省
安徽 省
农业总产 值
(1) (2)
(3)
19. 为研究劳动力在制造业中所占比率的变动趋势,根据美 国1949~1964年的年度数据,得以下两种回归模型结 果:
模型A: 模型B: 其中:Y为劳动力比率,t为时间。括号中的数字是t检验 值。要求:
(1) 判断两个模型是否存在自相关? (2) 解释自相关存在的原因? (3) 如何区分“纯粹”自相关和模型形式误设产生的自相
394.3 567.5 706.89 856.37 1282.81 844.74 2576.81 1237.16 5812.02 754.78 607.41 1143.67
435.3 450.0 2712.6 1118.5 641.7 1129.6 647.6 1305.8 3127.9 2134.5 764.0 523.3
(5) 建立两变量的全对数模型,给出估计结果。并应 用Goldfeld-Quandt检验与White检验看是否存在 异方差?与(1)的估计结果相比较,其参数的经济 意义有何不同?对数模型与(1)的模型相比有何优 点?
12. 序列相关违背了哪些基本假定?其来源有哪些?检验方 法有哪些,都适用于何种形式的序列相关检验?
工业增加值(亿 元) Y 1996.5 2048.4 2162.3 2375.6 2789 3448.7 3967 4585.8 5777.2 6484 6858 8087.1
10284.5 14143.8 19359.6 24718.3 29082.6 32412.1 33387.9 35087.21 39570.3
陕西 省
甘肃 省
413.7 331.4
4099.8 3668.9
福建 省
江西 省
山东 省
河南 省
525.8 491.1 1891.7 1602.9
2519.3 5182.8 10638.6
青海 省
宁夏
34.2 71.3
新 疆 515.0
13789.7
473.3 1158.3 3592.3
试对数据进行如下分析:
关?
20. 假定某企业的短期生产决策由下述模型表示: ,其中Yt 为产量,为劳动投入。设每当t-1期生产过剩(用),则
该企业在第t期就会趋向于“生产不足”(用)。要求:
(1) 该模型违反了线性模型的何种假定? (2) 指出这种违反假定情况对斜率系数的OLS估计量的影
响。 (3) 简述此情况下适合的修正方法。
17. 对于模型:,要求:
(1) 如果用变量的一次差分估计该模型,采用何种自相关 形式?
(2) 用差分估计时,并不删除截距,其含义是什么? (3) 假设模型存在一阶自相关,如果用OLS法估计,试证
明其估计式: 仍然是无偏的,式中的。 (4) 试证明 不是有效的。
18. 假设为内生变量,为外生变量,以下各组方程中哪些方 程可以用Durbin—Watson方法检验一阶自相关:
值
力 (万公顷) (万吨) 资产 (万马力)
(亿元) (万人)
(元)
北 京 19.64 天 津 14.40 河 北 149.9 山 西 55.07 内蒙古 60.85 辽 宁 87.48 吉 林 73.81 黑龙江 104.51 山 东 276.55 河 南 200.02 陕 西 68.18 新 疆 49.12
4. 简述异方差对下列各项有何影响:
(1) OLS估计量及其方差; (2) 置信区间; (3) 显著性t检验和F检验的使用。
5. 已知模型:。式中,Y、X1、X2和Z的数据已知。假设给 定权数,加权最小二乘法就是求下式中的各,以使的下 式最小
(1) 求RSS对1、2和2的偏微分并写出正规方程。 (2) 用Z去除原模型,写出所得新模型的正规方程组。
(2) 假设。逐步描述如何求得BLUE并给出理论依据。
7. 2000年我国部分省市城镇居民每个家庭平均全年可支配 收入与消费支出的统计数据如下表所示,
可支配收入 消费性支出
地区
(元)
(元)
X
Y
北 京 10349.69 8493.49
天 津 8140.5
6121.04
河 北 5661.16 4348.47
92.7 95.3 1135.7 290.5 411.5 611.3 486.2 620.2 109.3 1242.4 592.6 842.0
农作物种植 面积 312.5 504.3 8695.4 3741.5
5924.0 3723.3 4904.0 9888.4 404.4 7669.0 2778.4 9200.4
3941.87 3927.75 4356.06 4020.87 3824.44 8868.19 5323.18 7020.22
5022 3830.71 4644.5 5218.79 8016.91 4276.67 4126.47 4185.73 4422.93
(1) 试用OLS法建立居民人均消费支出与可支配收入的线 性模型;
6 137.1 22.76 16 160.7 26.98
7 141.2 23.48 17 164.2 27.52
8 142.8 23.66 18 165.6 27.78
9 145.5 24.10 19 168.7 28.24
10 145.3 24.01 20 171.7 28.78
要求:
(1) 用最小二乘法估计关于的回归方程。 (2) 用D.W.检验分析随机项的一阶自相关性。 (3) 用Durbin两步法估计回归模型的参数。 (4) 直接用差分法估计回归模型的参数。
(1) 根据表中数据,建立一元线性回归模型,并给出 估计结果。
(2) 分别将残差的绝对值和残差平方值对农作物产值X 作散点图,是否表明存在异方差?
(3) 对回归的残差进行Park检验、Glejser检验、 Goldfeld-Quandt检验与White检验,得出什么结 论?
(4) 如果在对数回归模型中发现了异方差,你会选择 用哪种WLS变换来消除它?估计结果如何?
(2) 对模型作异方差检验; (3) 若存在异方差,试采用适当的方法估计模型对数。
8. 下表给出1985年我国北方几个省市农业总产值,农用化 肥量、农田水利、农业劳动力,每日生产性固定生产原 值以及农机动力数据,
1985年我国北方12个省市农业统计资料表
地 区 农业总产农业劳动灌溉面积化肥用量 户均固定 农机动力
序X Y序X Y
号
号
1 127.3 20.96 11 148.3 24.54
2 130.0 21.40 12 146.4 24.30
3 132.7 21.96 13 150.2 25.00
4 129.4 21.52 14 153.1 25.64
5 135.0 22.39 15 157.3 26.36
13. 怎样认识用一阶自回归表示序列相关?简述DW检验的 应用条件。
14. 我国1980~2000年全社会固定资产投资总额与工业增加 值的统计资料如下表所示。
年份
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
90.1 95.2 1639.0 562.6 462.9 588.9 399.7 425.3 2365.6 2557.5 884.2 256.1
33.84 34.95 357.26 107.90 96.49 72.40 69.63 67.95 456.55 318.99 117.90 260.46
7.5 3.9 92.4 31.4 15.4 61.6 36.9 25.8 152.3 127.9 36.1 15.1
第四章 练习题
1. 什么是异方差性?试举例说明经济现象中的异方差性。 检验异方差性的方法思路是什么?
2. 判断题。并简单说明理由。
(1) 存在异方差时,普通最小二乘法(OLS)估计量是 有偏的和无效的;
(2) 存在异方差时,常用的t检验和F检验失效; (3) 存在异方差时,常用的OLS估计一定是高估了估计
编号 家庭消费支出 可支配收入 (元)Y (元)X1
1
700
800
2
650