实用回归分析ppt课件

合集下载

回归分析实例PPT课件

回归分析实例PPT课件
通过各种统计检验来评估 模型的拟合效果,如残差 分析、R方检验、F检验等。
线性回归分析的应用
预测
使用线性回归模型来预测因变 量的值,基于给定的自变量值

解释变量关系
通过线性回归分析来了解自变 量与因变量之间的数量关系和 影响程度。
控制变量效应
在实验或调查中,控制自变量 的影响,以观察因变量的变化 情况。
模型的建立和检验
模型的建立
首先需要收集数据,并进行数据 清洗和预处理,然后选择合适的 自变量和因变量,建立逻辑回归
模型。
模型的检验
通过多种检验方法对模型进行评 估,包括参数估计、假设检验、 模型诊断等,以确保模型的准确
性和可靠性。
模型的优化
根据检验结果对模型进行调整和 优化,包括参数调整、变量筛选
详细描述
收集产品在过去一段时间的销售数据,包括销售额、销售量等,作为自变量, 将未来某一段时间的产品销量作为因变量,建立回归模型。通过模型预测未来 产品销量,为企业制定生产和销售计划提供依据。
实例三:疾病风险预测
总结词
基于个人健康数据和疾病历史,建立回归模型预测疾病风险。
详细描述
收集个人的健康数据和疾病历史,包括血压、血糖、胆固醇等生理指标以及家族 病史等信息,作为自变量,将未来患某种疾病的风险作为因变量,建立回归模型 。通过模型预测个人患某种疾病的风险,为预防和早期干预提供参考。
线性关系的假设
自变量x与因变量y之间存在线性关系, 即随着x的增加(或减少),y也相应 地增加(或减少)。
模型的建立和检验
01
02
03
数据收集与整理
收集相关数据,并进行必 要的整理和清洗,以确保 数据的质量和可靠性。

《回归分析专题》PPT课件

《回归分析专题》PPT课件

改进阶段
{预测带
} 置信带
C.I. = 置信区间 (95%置信度表示所有数据的平均值都位于此带内) P.I. = 预测区间 (95%置信度表示单个数据点位于此带内)
编辑ppt
19
SIXSSIIGXMASIMIPGLEMMEANT
会话窗口中的信息与早期生成的信息相同……
改进阶段
无法否定Ho: 接受Ha:

编辑ppt
20
SIXSSIIGXMASIMIPGLEMMEANT
改进阶段
课堂练习:
您相信我们的家电所占据的展示厅面积的大小会影响销售量。您已经收集了过去12个月内 ,多个零售点销售量与总的占地面积方面的数据。现在,您希望分析这些数据,看占地面 积是否确实与年销售量存在某种关系。
在Minitab输入以下数据:
SIXSSIIGXMASIMIPGLEMMEANT
改进阶段
单变量回归
编辑ppt
1
SIXSSIIGXMASIMIPGLEMMEANT
改进阶段
单变量回归
目的: 介绍作为实证模型建立方法的回归分析,以模拟具有连续响应变量“ Y” 的过程。 (定义:‘实证’-基于观测值或事实)
目标:
• 确定何时使用回归,以及为什么使用。
改进阶段
附录
编辑ppt
23
SIXSSIIGXMASIMIPGLEMMEANT
改进阶段
回归术语
r: R-Sq:
R-Sq(Adj): 估计值的 标准误差 回归均方 (MS回归) F-比率:
p-值:
多重回归的相关系数(r)。越接近+/-1,模型拟合越好。‘ 0’表示无线性关系。
相关系数的平方(R2)。R2的值越接近100%,说明可能存在关系,由模型解释的 变差的百分比越高。

高中信息技术浙教版:回归分析教学课件(共17张PPT)

高中信息技术浙教版:回归分析教学课件(共17张PPT)
判断摄氏温度和华氏温度之间是否符合线性关系。
如符合,请通过回归分析计算出摄氏温度和华氏温度之间的线性回归方程。

本课小结
拓展链接——最小二乘法
最小二乘法是一种机器学习的优化技术,其将残差平方之和最小化作为目标
,找到最优模型来拟合已知的观测数据,使得模型所预测的数据与实际数据之间
误差的平方和最小,一般有线性最小二乘法和非线性最小二乘法两种方法。
用线性最小二乘法来解决线性回归模型存在封闭形式(closed-formsolution)

之间

差的绝对值|-y|,将这个差的绝对值作为对应的真实值(即y)和模型预测值(即

)

之间的误差,这个误差通常称为“残差”。
2而不是|-y|引作为“残差”。这样
为了计算方便,在实际中一般使用(-y)


对于给定的n组(x,y)数据,可用不同的a和b来刻画这n组数据所隐含的y=ax+b关
系。对于这些不同的参数,最佳回归模型是最小化残差平方和的均值,即要求n
1

组(x,y)数据得到的残差平均值 σ(෤ − y)2最小。
从残差的定义可看出,残差平均值最小只与参数a和b有关,最优解即使得残
差最小所对应的a和b的值。
2.5.2回归分析中参数计算
可通过最小二乘法(leastsquare)来求解使得残差最小的a和b。
型称为回归模型。
一旦确定了回归模型,就可以进行预测等
分析工作,如从碳排放量预测气候变化程度、
从广告投人量预测商品销售量等。
2.5.1回归分析的概念
二氧化碳浓度在逐年缓慢增加,→二氧化碳浓度=a*年份+b
设时间年份为x、二氧化碳浓度为y,即y=ax+b。

应用统计方法第四章-回归分析PPT课件

应用统计方法第四章-回归分析PPT课件
应用统计方法第四章-回归分 析ppt课件
• 回归分析概述 • 线性回归分析 • 非线性回归分析 • 多元回归分析 • 回归分析的注意事项
01
回归分析概述
回归分析的定义
回归分析是一种统计学方法,用于研 究自变量和因变量之间的相关关系, 并建立数学模型来描述这种关系。
它通过分析因变量对自变量的依赖程 度,来预测因变量的未来值或解释因 变量的变异。
影响
共线性会导致回归系数不 稳定,降低模型的预测精 度和可靠性。
解决方法
通过剔除不必要的自变量、 使用主成分分析等方法来 降低共线性的影响。
05
回归分析的注意事项
数据质量与预处理数据完整性源自确保数据集中的所有必要 信息都已收集,没有遗漏 或缺失值。
数据准确性
核实数据的准确性,并处 理任何错误或异常值。
回归分析的分类
线性回归分析
研究自变量和因变量之间线性关系的回归分析。
多元回归分析
研究多个自变量与一个因变量之间关系的回归分析。
ABCD
非线性回归分析
研究自变量和因变量之间非线性关系的回归分析,如多 项式回归、指数回归、对数回归等。
一元回归分析
研究一个自变量与一个因变量之间关系的回归分析。
回归分析的应用场景
02
线性回归分析
线性回归模型
线性回归模型
描述因变量与自变量之间线性关系的 数学模型。
模型形式
(Y = beta_0 + beta_1X_1 + beta_2X_2 + ldots + beta_pX_p + epsilon)
最小二乘法估计
最小二乘法
01
通过最小化预测值与实际值之间的残差平方和来估计回归参数

自变量的选择与逐步回归实用回归分析ppt课件

自变量的选择与逐步回归实用回归分析ppt课件

§5.2 所有子集回归
准则2 赤池信息量AIC达到最小
设回归模型的似然函数为L(θ,x), θ的维数为p,x为样本,在 回归分析中样本为y=(y1,y2,…yn)′,则AIC定义为:
AIC=-2lnL(θˆ L ,x)+2p 其中θˆ L 是θ的极大似然估计,p 是未知参数的个数。
§5.2 所有子集回归
βˆ p (Xp X p )-1 Xpy
ˆ
2 p
n
1 p
1 SSEp
§5.1 自变量选择对估计和预测的影响
二、自变量选择对预测的影响
关于自变量选择对预测的影响可以分成两种情况: 第一种情况是全模型正确而误用了选模型; 第二种情况是选模型正确而误用了全模型式。
§5.1 自变量选择对估计和预测的影响
(一)全模型正确而误用选模型的情况
性质 1. 在 xj与 xp+1, …,xm的相关系数不全为 0 时,选模型回归系数的 最小二乘估计是全模型相应参数的有偏估计,即
E(ˆ jp ) jp j (j=1,2, …,p)。
§5.1 自变量选择对估计和预测的影响
(一)全模型正确而误用选模型的情况 性质 2. 选模型的的预测是有偏的。 给定新自变量值x0p (x01, x02,, x0m ) ,因变量新值为 y0=β0+β1x01+β2x02+…+βmx0m+ε0 用选模型的预测值为
(ˆ 0p ,ˆ 1p ,,ˆ pp )
全模型的最小二乘参数估计为βˆ m (ˆ 0m ,ˆ 1m ,,ˆ mm )
这条性质说明 D(ˆ jp ) D(ˆ jm ), j 0,1,, p 。
§5.1 自变量选择对估计和预测的影响
(一)全模型正确而误用选模型的情况

回归分析应用PPT课件

回归分析应用PPT课件

回归分析的应用场景
A
经济预测
通过分析历史数据,预测未来的经济趋势,如 股票价格、GDP等。
市场营销
通过研究消费者行为和购买历史,预测未 来的销售趋势和客户行为。
B
C
医学研究
研究疾病与风险因素之间的关系,预测疾病 的发生概率。
科学研究
在各种科学领域中,如生物学、物理学、化 学等,回归分析被广泛应用于探索变量之间 的关系和预测结果。
06 回归分析的局限性
多重共线性问题
总结词
多重共线性问题是指自变量之间存在高 度相关关系,导致回归系数不稳定,影 响模型预测精度。
VS
详细描述
在回归分析中,如果多个自变量之间存在 高度相关关系,会导致回归系数的不稳定 性,使得模型预测精度降低。这种情况在 数据量较小或者自变量较多的情况下更容 易出现。为了解决这个问题,可以采用减 少自变量数量、使用主成分分析等方法。
预测能力评估
使用模型进行预测,并比较预 测值与实际观测值之间的误差
,评估模型的预测能力。
03 多元线性回归分析
多元线性回归模型
01
确定因变量和自变 量
在多元线性回归模型中,因变量 是我们要预测的变量,而自变量 是影响因变量的因素。
02
建立数学模型
03
模型参数解释
通过最小二乘法等估计方法,建 立因变量与自变量之间的线性关 系式。
回归分析可以帮助我们理解数据的内在规律,预测未来的趋势,并优化决 策。
回归分析的分类
01
一元回归分析
研究一个自变量和一个因变量之间的关系。
02
多元回归分析
研究多个自变量和一个因变量之间的关系。
03
线性和非线性回归分析

应用统计学:回归分析PPT课件

应用统计学:回归分析PPT课件

03
使用方法
通过菜单和对话框选择分析方法,导入数据,设置参数,运行分析并查
看结果。
Stata软件介绍
适用范围
Stata(Statistical Data Analysis) 是一款适用于各种统计分析和数 据管理的软件,尤其适用于回归 分析。
特点
功能强大、命令语言简洁,支持多 种数据管理操作,提供多种统计分 析方法,结果输出详细且可视化效 果好。
使用方法
通过命令行输入分析命令,导入数 据,设置参数,运行分析并查看结 果。
R软件介绍
适用范围
R(Software for Statistical Computing)是一款开源的统 计软件,适用于各种统计分析,
包括回归分析。
特点
功能强大、社区活跃、可扩展性 强,支持多种编程语言和数据可 视化工具,提供丰富的统计函数
分层回归分析的基本思想是将多个自变量分为若干个层次,每个层次内 部的自变量之间存在较强的相关性,而不同层次的自变量之间相关性较
弱。
分层回归分析在生态学、社会学、医学等领域有广泛应用,例如研究不 同层次的人口特征对健康状况的影响、研究不同层次的社会经济因素对 犯罪率的影响等。
主成分回归分析
主成分回归分析的基本思想是将多个自变量进行主成 分分析,得到少数几个主成分,这些主成分能够反映 原始数据的大部分变异,然后利用这些主成分进行回 归分析。
线性回归模型
线性回归模型是回归分析中最常用的一种模型,其形式为 (Y = beta_0 + beta_1X_1 + beta_2X_2 + ldots + beta_pX_p + epsilon)。
其中 (Y) 是因变量,(X_1, X_2, ldots, X_p) 是自变量,(beta_0, beta_1, ldots, beta_p) 是回归系数,(epsilon) 是误差项。

回归分析法PPT课件

回归分析法PPT课件

线性回归模型的参数估计
最小二乘法
通过最小化误差平方和的方法来估计 模型参数。
最大似然估计
通过最大化似然函数的方法来估计模 型参数。
参数估计的步骤
包括数据收集、模型设定、参数初值、 迭代计算等步骤。
参数估计的注意事项
包括异常值处理、多重共线性、自变 量间的交互作用等。
线性回归模型的假设检验
假设检验的基本原理
回归分析法的历史与发展
总结词
回归分析法自19世纪末诞生以来,经历 了多个发展阶段,不断完善和改进。
VS
详细描述
19世纪末,英国统计学家Francis Galton 在研究遗传学时提出了回归分析法的概念 。后来,统计学家R.A. Fisher对其进行了 改进和发展,提出了线性回归分析和方差 分析的方法。随着计算机技术的发展,回 归分析法的应用越来越广泛,并出现了多 种新的回归模型和技术,如多元回归、岭 回归、套索回归等。
回归分析法的应用场景
总结词
回归分析法广泛应用于各个领域,如经济学、金融学、生物学、医学等。
详细描述
在经济学中,回归分析法用于研究影响经济发展的各种因素,如GDP、消费、投资等;在金融学中,回归分析法 用于股票价格、收益率等金融变量的预测;在生物学和医学中,回归分析法用于研究疾病发生、药物疗效等因素 与结果之间的关系。
梯度下降法
基于目标函数对参数的偏导数, 通过不断更新参数值来最小化目 标函数,实现参数的迭代优化。
非线性回归模型的假设检验
1 2
模型检验
对非线性回归模型的适用性和有效性进行检验, 包括残差分析、正态性检验、异方差性检验等。
参数检验
通过t检验、z检验等方法对非线性回归模型的参 数进行假设检验,以验证参数的显著性和可信度。

第二章回归分析ppt课件

第二章回归分析ppt课件

U和Q的相对大小反映了因子x对y的影响程度, 在n固定的情况下,如果回归
方差所占y方差的比重越大,剩余方差所占的比重越小,就表明回归的效果
越好, 即:x的变化对y的变化起主要作用, 利用回归方程所估计出的ŷ也会
越接近观测值y。
ŷ的方差占y的方差的比重(U/(U+Q))可作为衡量回归模型效果的标准:
ŷ
y -y
ŷ -y
y
x
syy
1 n
n t 1
( yt
y)2
1 n
n t 1
( yt
y)2
1 n
n t 1
( yt
yt )2
“回归平方和”与“剩余平方和”
对上式两边分别乘以n,研究各变量的离差平方和的关系。为避免过多数学符
号,等号左边仍采用方差的记号syy。
n
n
syy ( yt y)2 ( yt yt )2 U Q
回忆前文所讲, y的第i个观测值yi服从怎样的分布?
yi ~ N (β0 +βxi , σ2)
e=yi- (β0 +βxi ) 服从N(0, σ2)
于是, yi (0 xi ) 服从标准正态分布N (0,1)
0.4
在95%的置信概率下:
因为定理: 若有z ~ N (, 2 ), 则有 z ~ N (0,1)
通过方差分析可知,可用“回归平方和”U与“剩余平方和”Q的比值来衡 量回归效果的好坏。可以证明,假设总体的回归系数为0的条件下,统计 量:
U
F=
1 Q
注意Q的自由度为n-2, 即:残差e的方差的无 偏估计为:Q/(n-2)
n2 服从分子自由度为1,分母自由度为n - 2的F分布
上式可以用相关系数的平方来表示:

回归分析 ppt课件

回归分析 ppt课件
2
精品资料
• 你怎么称呼老师? • 如果老师最后没有总结一节课的重点的难点,你
是否会认为老师的教学方法需要改进? • 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭 • “不怕太阳晒,也不怕那风雨狂,只怕先生骂我
笨,没有学问无颜见爹娘 ……” • “太阳当空照,花儿对我笑,小鸟说早早早……”4Fra bibliotek回归分析
•按照经验公式的函数类型: 线性回归和非线性回归;
•按自变量的个数: 一元回归和多元回归;
•按自变量和因变量的类型: 一般的回归分析、含有哑变量的回归分
析、Logistic回归分析
5
回归分析
6
回归分析
•对数据进行预处理,选择合适的变量进行回归分析; •做散点图,观察变量间的趋势,初步选取回归分析方法; •进行回归分析,拟合自变量与因变量之间的经验公式; •拟合完毕之后检验模型是否恰当; •利用拟合结果进行预测控制。
通过以上的简单线性回归分析,可知通货膨胀和失业 的替代关系在我国并不存在。
13
回归分析
我们经常会遇到变量之间的关系为非线性的情况,这时 一般的线性回归分析就无法准确的刻画变量之间的因果关系, 需要用其他的回归分析方法来拟合模型。曲线回归分析是一 种简便的处理非线性问题的分析方法。适用于模型只有一个 自变量且可以化为线性形式的情形,基本过程是先将因变量 或自变量进行变量转换,然后对新变量进行直线回归分析, 最后将新变量还原为原变量,得出变量之间的非线性关系。
8
回归分析
9
回归分析
1.模型拟合情况: 模型的拟合情况反映了模型对数据的解释能力。修正
的可决系数(调整R方)越大,模型的解释能力越强。
观察结果1,模型的拟合优度也就是对数据的解释能力一般,修正的 决定系数为0.326;

实用回归分析课件(残差与及残差图)

实用回归分析课件(残差与及残差图)

残差的基本概念
定义
残差是指观测值与通过回归模型预测的值之间的 差异。
计算方法
残差 = 观测值 - 预测值。
重要性
残差用于评估回归模型的拟合效果,可以帮助我 们发现异常值、模型的不确定性和误差来源。
02
残差的性质与计算
残差的定义与计算方法
残差
观测值与回归方程预测值之差。
计算方法
实际观测值 - 预测值。
如果残差分布符合正态分布,那 么残差图上的点应该大致呈钟形 分布。通过观察残差图的分布形
状,可以检验残差的正态性。
残差图的用途与限制
01
辅助模型诊断
通过观察残差图,可以对模型的假设条件进行检验,如线性关系、误差
项的正态性等。
02
改进模型
根据残差图的观察结果,可以对模型进行调整和改进,如添加或删除解
详细描述
在案例一中,我们将使用一组线性回归模型的数据,通过计算残差、绘制残差图等方法,分析模型的 拟合效果。我们将重点关注残差的分布、正态性、独立性和同方差性等方面,以评估模型的可靠性。
案例二:时间序列数据的残差分析
总结词
时间序列数据具有时序依赖性和波动性,因此在进行回归分析时需要特别注意残差的分 析。
自相关性诊断方法
通过计算自相关图、使用自相关 系数、偏自相关系数等方法,可 以诊断出自相关性。
自相关性处理方法
处理自相关性可以采用差分、季 节性差分、指数平滑等方法,消 除自相关性对回归分析的影响。
异方差性诊断与处理
异方差性定义
异方差性是指回归模型的残差项的方差不恒 定,即随着预测变量的变化,残差的方差也 会发生变化。
指残差之间存在相关性,通常表现为 时间序列数据的滞后相关性。

回归分析学习课件PPT课件

回归分析学习课件PPT课件
03 网格搜索
为了找到最优的参数组合,可以使用网格搜索方 法对参数空间进行穷举或随机搜索,通过比较不 同参数组合下的预测性能来选择最优的参数。
非线性回归模型的假设检验与评估
假设检验
与线性回归模型类似,非线性回归模型也需要进行假设检验,以检验模型是否满足某些统计假 设,如误差项的独立性、同方差性等。
整估计。
最大似然法
03
基于似然函数的最大值来估计参数,能够同时估计参数和模型
选择。
多元回归模型的假设检验与评估
线性假设检验
检验回归模型的线性关系 是否成立,通常使用F检 验或t检验。
异方差性检验
检验回归模型残差的异方 差性,常用的方法有图检 验、White检验和 Goldfeld-Quandt检验。
多重共线性检验
检验回归模型中自变量之 间的多重共线性问题,常 用的方法有VIF、条件指数 等。
模型评估指标
包括R方、调整R方、AIC、 BIC等指标,用于评估模 型的拟合优度和预测能力。
05
回归分析的实践应用
案例一:股票价格预测
总结词
通过历史数据建立回归模型,预测未来股票 价格走势。
详细描述
利用股票市场的历史数据,如开盘价、收盘价、成 交量等,通过回归分析方法建立模型,预测未来股 票价格的走势。
描述因变量与自变量之间的非线性关系,通过变 换或使用其他方法来适应非线性关系。
03 混合效应回归模型
同时考虑固定效应和随机效应,适用于面板数据 或重复测量数据。
多元回归模型的参数估计
最小二乘法
01
通过最小化残差平方和来估计参数,是最常用的参数估计方法。
加权最小二乘法
02
适用于异方差性数据,通过给不同观测值赋予不同的权重来调

回归及相关分析PPT课件

回归及相关分析PPT课件
或实际场景中。
05
相关分析
相关系数的计算
计算公式
相关系数r是通过两个变量之间的样本数据计算得出的,公式为r = (n Σxy - ΣxΣy) / (√(n Σx² - (Σx)²) * √(n Σy² - (Σy)²)),其中n是样本数量,Σx和Σy分别是x和y的样本总和,Σxy是x和y的样本乘积总和。
模型的评估与检验
模型的评估指标
模型的评估指标包括均方误差 (MSE)、均方根误差
(RMSE)、决定系数(R^2) 等,用于衡量模型的预测精度。
模型的检验方法
模型的检验方法包括残差分析、 正态性检验、异方差性检验等, 用于检查模型的假设是否成立。
模型的应用与推广
通过评估和检验模型,可以确定 模型在样本数据上的表现,并进 一步将其应用到更大范围的数据
回归及相关分析ppt课件
目 录
• 回归分析概述 • 一元线性回归分析 • 多元线性回归分析 • 非线性回归分析 • 相关分析
01
回归分析概述
回归分析的定义
01
回归分析是一种统计学方法,用 于研究自变量和因变量之间的相 关关系,并建立数学模型来预测 因变量的值。
02
它通过分析数据中的变量之间的 关系,找出影响因变量的重要因 素,并确定它们之间的数量关系 。
值。
模型的评估与检验
在估计多元线性回归模型的参 数后,需要对模型进行评估和 检验,以确保模型的有效性和 可靠性。
评估模型的方法包括计算模型 的拟合优度、比较模型的预测 值与实际值等。
检验模型的方法包括检验模型 的假设是否成立、检验模型的 残差是否符合正态分布等。
04
非线性回归分析
非线性回归模型
详细描述

回归分析(excel)PPT课件

回归分析(excel)PPT课件
关系。
数据降维
通过回归分析找出影响 因变量的关键因素,实
现数据降维。
控制和优化
通过回归分析建立控制 和优化模型,实现生产
过程的控制和优化。
02
Excel回归分析工具介绍
线性回归工具的使用
使用步骤
选择数据,点击“数据”选项卡中的“数据分析”按钮,选择“回归”工具, 在弹出的对话框中设置因变量和自变量,点击“确定”即可得到线性回归分析 结果。
注意事项
多项式回归分析适用于非线性关系,但需要注意阶数的选择,过高或过低的阶数 都可能导致模型拟合不良。
逻辑回归工具的使用
使用步骤
选择数据,点击“数据”选项卡中的“数据分析”按钮,选 择“回归”工具,在弹出的对话框中设置因变量和自变量, 同时选择“Logistic回归”复选框,点击“确定”即可得到逻 辑回归分析结果。
避免过拟合和欠拟合
过拟合
过拟合是指模型在训练数据上表现良好 ,但在测试数据上表现较差的情况。为 了防止过拟合,可以使用正则化、增加 数据量、简化模型等方法。
VS
欠拟合
欠拟合是指模型在训练数据上表现较差, 无法捕捉到数据的内在规律和特征。为了 解决欠拟合问题,可以尝试增加模型复杂 度、调整模型参数等方法。
回归分析(excel)ppt课件
• 回归分析简介 • Excel回归分析工具介绍 • 回归分析的步骤 • 回归分析的案例 • 回归分析的注意事项
01
回归分析简介
回归分析的定义
01
回归分析是一种统计学方法,用 于研究自变量和因变量之间的相 关关系,并建立数学模型来预测 因变量的值。
02
它通过分析数据中的变量关系, 找出影响因变量的重要因素,并 计算出它们之间的最佳拟合直线 或曲线。

《回归分析方法》课件

《回归分析方法》课件

线性回归模型的评估与优化
评估指标:R平方值、调整R平方值、F统计量、P值等 优化方法:逐步回归、岭回归、LASSO回归、弹性网络回归等 交叉验证:K折交叉验证、留一法交叉验证等 模型选择:AIC、BIC等模型选择方法来自01逻辑回归分析
逻辑回归分析的定义
逻辑回归是一种统计方法,用于预测二分类因变量 逻辑回归使用逻辑函数(logistic function)来估计概率 逻辑回归的目标是找到最佳的参数,使得模型能够准确预测因变量 逻辑回归广泛应用于医学、金融、市场营销等领域
逻辑回归模型的应用场景
预测客户是 否会购买产 品
预测客户是 否会违约
预测客户是 否会流失
预测客户是 否会响应营 销活动
预测客户是 否会购买保 险
预测客户是 否会进行投 资
01
多项式回归分析
多项式回归分析的定义
多项式回归分析是一种统计方法,用于建立因变量与多个自变量之 间的关系模型。 多项式回归分析通过使用多项式函数来拟合数据,从而得到更精确 的预测结果。 多项式回归分析的优点是可以处理非线性关系,并且可以处理多个 自变量之间的关系。
求解结果:得到模型的参 数值,用于预测和评估模
型的性能
套索回归模型的应用场景
预测股票价格 预测房价 预测汇率 预测商品价格
Ppt
感谢观看
汇报人:PPT
岭回归模型的参数求解
岭回归模型: 一种线性回归 模型,通过在 损失函数中加 入一个L2正 则项来防止过
拟合
参数求解方法: 梯度下降法、 牛顿法、拟牛
顿法等
梯度下降法: 通过迭代求解 参数,每次迭 代都沿着梯度 下降的方向更
新参数
牛顿法:通过 求解Hessian 矩阵的逆矩阵 来更新参数, 收敛速度快, 但计算复杂度

SPSS回归分析应用PPT课件

SPSS回归分析应用PPT课件
第49页/共379页
表7-1 强度与拉伸倍数的试验数据
序号 1 2 3 4 5 6 7 8 9 10 11 12
拉伸倍数 2.0 2.5 2.7 3.5 4.0 4.5 5.2 6.3 7.1 8.0 9.0 10.0
第50页/共379页
强度(kg/mm2) 1.6 2.4 2.5 2.7 3.5 4.2 5.0 6.4 6.5 7.3 8.0 8.1
第4页/共379页
• 在回归分析中,因变量y是随机变量, 自变量x可以是随机变量,也可以是非随机的 确定变量;而在相关分析中,变量x和变量y都 是随机变量。
• 相关分析是测定变量之间的关系密切 程度,所使用的工具是相关系数;而回归分析 则是侧重于考察变量之间的数量变化规律,并 通过一定的数学表达式来描述变量之间的关系, 进而确定一个或者几个变量的变化对另一个特 定变量的影响程度。
b. Dependent Variable: 财 政 收 入 ( 亿 元 )
第40页/共379页
(2)回归方程的显著性检验(F检验) 回归方程的显著性检验是对因变量与所有 自变量之间的线性关系是否显著的一种假设检 验。 回归方程的显著性检验一般采用F检验,利用 方差分析的方法进行。
第41页/共379页
第42页/共379页
5、回归方程的显著性检验 F检验:检验因变量和诸自变量之间是否存在显著的 线性关系。
检验的假设为:
对给定的显著性水平 ,查F分布表确定临界值。 ,拒绝原假设,说明回归方程显著。
第43页/共379页
变差来源 平方和 自由度
回归 残差 总和
方差
F统计量
第44页/共379页
(3)回归系数的显著性检验(t检验) 所谓回归系数的显著性检验,就是根据样 本估计的结果对总体回归系数的有关假设进行 检验。 之所以对回归系数进行显著性检验,是因 为回归方程的显著性检验只能检验所有回归系 数是否同时与零有显著性差异,它不能保证回 归方程中不包含不能较好解释说明因变量变化 的自变量。因此,可以通过回归系数显著性检 验对每个回归系数进行考察。

回归分析PPT优秀课件1

回归分析PPT优秀课件1
选修1-2
(一)
2019/5/22
必修3(第二章 统计)知识结构
收集数据
(随机抽样)
整理、分析数据 估计、推断 用样本估计总体 变量间的相关关系
简 单 随 机 抽 样
2019/5/22
分 层 抽 样
系 统 抽 样
用样本 的频率 分布估 计总体 分布
用样本 数字特 征估计 总体数 字特征
线 性 回 归 分 析
3240
4450
5700
7140
8640
10350
12200
2019/5/22
问题:有时散点图的各点并不集中在 一条直线的附近,仍然可以按照求回 归直线方程的步骤求回归直线,显然 这样的回归直线没有实际意义。在怎 样的情况下求得的回归直线方程才有 实际意义? 即建立的线性回归模型是否合理?
如何对一组数据之间的线性相关程 度作出定量分析?
请看下节课分解
2019/5/22
85.每一年,我都更加相信生命的浪费是在于:我们没有献出爱,我们没有使用力量,我们表现出自私的谨慎,不去冒险,避开痛苦,也失去了快乐。――[约翰· B· 塔布] 86.微笑,昂首阔步,作深呼吸,嘴里哼着歌儿。倘使你不会唱歌,吹吹口哨或用鼻子哼一哼也可。如此一来,你想让自己烦恼都不可能。――[戴尔· 卡内基] 87.当一切毫无希望时,我看着切石工人在他的石头上,敲击了上百次,而不见任何裂痕出现。但在第一百零一次时,石头被劈成两半。我体会到,并非那一击,而是前面的敲打使它裂开。――[贾柯· 瑞斯] 88.每个意念都是一场祈祷。――[詹姆士· 雷德非] 89.虚荣心很难说是一种恶行,然而一切恶行都围绕虚荣心而生,都不过是满足虚荣心的手段。――[柏格森] 90.习惯正一天天地把我们的生命变成某种定型的化石,我们的心灵正在失去自由,成为平静而没有激情的时间之流的奴隶。――[托尔斯泰] 91.要及时把握梦想,因为梦想一死,生命就如一只羽翼受创的小鸟,无法飞翔。――[兰斯顿· 休斯] 92.生活的艺术较像角力的艺术,而较不像跳舞的艺术;最重要的是:站稳脚步,为无法预见的攻击做准备。――[玛科斯· 奥雷利阿斯] 93.在安详静谧的大自然里,确实还有些使人烦恼.怀疑.感到压迫的事。请你看看蔚蓝的天空和闪烁的星星吧!你的心将会平静下来。[约翰· 纳森· 爱德瓦兹] 94.对一个适度工作的人而言,快乐来自于工作,有如花朵结果前拥有彩色的花瓣。――[约翰· 拉斯金] 95.没有比时间更容易浪费的,同时没有比时间更珍贵的了,因为没有时间我们几乎无法做任何事。――[威廉· 班] 96.人生真正的欢欣,就是在于你自认正在为一个伟大目标运用自己;而不是源于独自发光.自私渺小的忧烦躯壳,只知抱怨世界无法带给你快乐。――[萧伯纳] 97.有三个人是我的朋友爱我的人.恨我的人.以及对我冷漠的人。 爱我的人教我温柔;恨我的人教我谨慎;对我冷漠的人教我自立。――[J·E·丁格] 98.过去的事已经一去不复返。聪明的人是考虑现在和未来,根本无暇去想过去的事。――[英国哲学家培根] 99.真正的发现之旅不只是为了寻找全新的景色,也为了拥有全新的眼光。――[马塞尔· 普劳斯特] 100.这个世界总是充满美好的事物,然而能看到这些美好事物的人,事实上是少之又少。――[罗丹] 101.称赞不但对人的感情,而且对人的理智也发生巨大的作用,在这种令人愉快的影响之下,我觉得更加聪明了,各种想法,以异常的速度接连涌入我的脑际。――[托尔斯泰] 102.人生过程的景观一直在变化,向前跨进,就看到与初始不同的景观,再上前去,又是另一番新的气候――。[叔本华] 103.为何我们如此汲汲于名利,如果一个人和他的同伴保持不一样的速度,或许他耳中听到的是不同的旋律,让他随他所听到的旋律走,无论快慢或远近。――[梭罗] 104.我们最容易不吝惜的是时间,而我们应该最担心的也是时间;因为没有时间的话,我们在世界上什么也不能做。――[威廉· 彭] 105.人类的悲剧,就是想延长自己的寿命。我们往往只憧憬地平线那端的神奇【违禁词,被屏蔽】,而忘了去欣赏今天窗外正在盛开的玫瑰花。――[戴尔· 卡内基] 106.休息并非无所事事,夏日炎炎时躺在树底下的草地,听着潺潺的水声,看着飘过的白云,亦非浪费时间。――[约翰· 罗伯克] 107.没有人会只因年龄而衰老,我们是因放弃我们的理想而衰老。年龄会使皮肤老化,而放弃热情却会使灵魂老化。――[撒母耳· 厄尔曼] 108.快乐和智能的区别在于:自认最快乐的人实际上就是最快乐的,但自认为最明智的人一般而言却是最愚蠢的。――[卡雷贝· C· 科尔顿] 109.每个人皆有连自己都不清楚的潜在能力。无论是谁,在千钧一发之际,往往能轻易解决从前认为极不可能解决的事。――[戴尔· 卡内基] 110.每天安静地坐十五分钟· 倾听你的气息,感觉它,感觉你自己,并且试着什么都不想。――[艾瑞克· 佛洛姆] 111.你知道何谓沮丧---就是你用一辈子工夫,在公司或任何领域里往上攀爬,却在抵达最高处的同时,发现自己爬错了墙头。--[坎伯] 112.「伟大」这个名词未必非出现在规模很大的事情不可;生活中微小之处,照样可以伟大。――[布鲁克斯] 113.人生的目的有二:先是获得你想要的;然后是享受你所获得的。只有最明智的人类做到第二点。――[罗根· 皮沙尔· 史密斯] 114.要经常听.时常想.时时学习,才是真正的生活方式。对任何事既不抱希望,也不肯学习的人,没有生存的资格。 ――[阿萨· 赫尔帕斯爵士] 115.旅行的精神在于其自由,完全能够随心所欲地去思考.去感觉.去行动的自由。――[威廉· 海兹利特] 116.昨天是张退票的支票,明天是张信用卡,只有今天才是现金;要善加利用。――[凯· 里昂] 117.所有的财富都是建立在健康之上。浪费金钱是愚蠢的事,浪费健康则是二级的谋杀罪。――[B·C·福比斯] 118.明知不可而为之的干劲可能会加速走向油尽灯枯的境地,努力挑战自己的极限固然是令人激奋的经验,但适度的休息绝不可少,否则迟早会崩溃。――[迈可· 汉默] 119.进步不是一条笔直的过程,而是螺旋形的路径,时而前进,时而折回,停滞后又前进,有失有得,有付出也有收获。――[奥古斯汀] 120.无论那个时代,能量之所以能够带来奇迹,主要源于一股活力,而活力的核心元素乃是意志。无论何处,活力皆是所谓“人格力量”的原动力,也是让一切伟大行动得以持续的力量。――[史迈尔斯] 121.有两种人是没有什么价值可言的:一种人无法做被吩咐去做的事,另一种人只能做被吩咐去做的事。――[C·H·K·寇蒂斯] 122.对于不会利用机会的人而言,机会就像波浪般奔向茫茫的大海,或是成为不会孵化的蛋。――[乔治桑] 123.未来不是固定在那里等你趋近的,而是要靠你创造。未来的路不会静待被发现,而是需要开拓,开路的过程,便同时改变了你和未来。――[约翰· 夏尔] 124.一个人的年纪就像他的鞋子的大小那样不重要。如果他对生活的兴趣不受到伤害,如果他很慈悲,如果时间使他成熟而没有了偏见。――[道格拉斯· 米尔多] 125.大凡宇宙万物,都存在着正、反两面,所以要养成由后面.里面,甚至是由相反的一面,来观看事物的态度――。[老子] 126.在寒冷中颤抖过的人倍觉太阳的温暖,经历过各种人生烦恼的人,才懂得生命的珍贵。――[怀特曼] 127.一般的伟人总是让身边的人感到渺小;但真正的伟人却能让身边的人认为自己很伟大。――[G.K.Chesteron] 128.医生知道的事如此的少,他们的收费却是如此的高。――[马克吐温] 129.问题不在于:一个人能够轻蔑、藐视或批评什么,而是在于:他能够喜爱、看重以及欣赏什么。――[约翰· 鲁斯金]

spss第五讲回归分析PPT课件

spss第五讲回归分析PPT课件
关于x的残差图 关于y的残差图 标准化残差图
2、用于判断误差的假定是否成立 3、检测有影响的观测值
34
残差图
(形态及判别)


0




0
0
x
(a)满意模式
x
(b)非常数方差
x
(c)模型不合适
35
二、检验正态性 标准化残差(standardized residual)
2. E(y0) 在1-置信水平下的置信区间为
yˆ0 t 2 (n 2)se
1
n
x0 x 2
n
xi x 2
i 1
式中:se为估计标准误差
29
个别值的预测区间
1. 利用估计的回归方程,对于自变量 x 的一个给定值 x0 ,求出因变量 y 的一个个别值的估计区间,这一
区间称为预测区间(prediction interval) 2. y0在1-置信水平下的预测区间为
一、变差 1、因变量 y 的取值是不同的,y 取值的这种波动称为变
差。变差来源于两个方面
由于自变量 x 的取值不同造成的 除 x 以外的其他因素(如x对y的非线性影响、测量误差等)
的影响
2、对一个具体的观测值来说,变差的大小可以通过该 实际观测值与其均值之差y y 来表示
16
误差分解图
y
(xi , yi )
32
一、检验方差齐性
残差(residual)
1、因变量的观测值与根据估计的回归方程求 出的预测值之差,用e表示
ei yi yˆi
2、反映了用估计的回归方程去预测而引起的 误差
3、可用于确定有关误差项的假定是否成立 4、用于检测有影响的观测值
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

并在变化幅度不大的一条带子内.
****如果残差都落在变化幅度不大一条带子内,
也就可以说明回归模型满足基本假设.
2
5.1 残差与残差图
一、残差概念与残差图
e
0
x
(b)
****y观测值的方差并非相同,随x增加而增加. 【消除异方差】
3
5.1 残差与残差图
一、残差概念与残差图
e
0
x (c)
****y与x之间并非线性关系. 可能y与x是曲线关系 可能y存在自相关

ei
ˆ
学生化残差
SREi ˆ
ei 1 hii
ZREi / SREi 3 观测数据判定为异常值
存在y的异常观测值,普通/标准化/学生化残差都不适用
11
5.3 异常值与强影响值
当数据中存在关于 y 的异常观察值时,异常值把回归线拉向 自己,使异常值本身的残差减少,而其余观察值的残差增大,这时 回归标准差ˆ 也会增大,因而用“3σ ”准则不能正确分辨出异常值。 解决这个问题的方法是改用删除残差。
12
5.3 异常值与强影响值
删除残差的构造思想是: 在计算第 i 个观察值的残差时,用删除掉这第 i 个观察值的 其余 n-1 个观察值拟合回归方程,计算出第 i 个观察值的删除 拟合值 yˆ (i) ,这个删除拟合值与第 i 个值无关,不受第 i 个值是否 为异常值的影响,第 i 个观察值的删除残差为:
i 1 n
xiei 0
i 1
8
5.2 残差的性质
二、改进的残差
9
5.3 异常值与强影响值
异常值分为两种情况: 一种是关于因变量y异常; 另一种是关于自变量x异常。
10
5.3 异常值与强影响值
一、关于因变量y的异常值
在残差分析中,认为超过 3ˆ 的残差为异常值。
标准化残差
ZREi
n i 1
hii

p+1 n
——判断为强影响点
15
5.3 异常值与强影响值
二、关于自变量x的异常值
SPSS 软件计算出的是中心化杠杆值 chii,也就是自变量中心化后 生成的帽子矩阵的主对角线元素,由参考文献[2]可知,
chii=hii-1/n
n
因此, chii =p,中心化杠杆值 chii 的平均值是 i 1
20
5.3 异常值与强影响值
RES-残差e
DRE-删除残差
ZRE-标准化残差
SRE –学生化残差SREi
SDR –删除学生化残差SRE(i)
COO-库克距离Dii
LEV-中心化杠杆值chii
21
5.3 异常值与强影响值
22
5.3 异常值与强影响值
异常录入 重新核实数据 的错误
2.数据测量误差 3.数据随机误差 4.缺少重要自变量 5.缺少观测数据
重新测量数据 删除或重新观测异常值数据 增加必要的自变量
增加观测数据,适当扩大自变 量取值范围
6.存在异方差
采用加权线性回归
7.模型选用错误,线性模型不适用 改用非线性回归模型
23
删除第19组数据
对本例的数据,通过核实认为不存在登记误差和测量误差。 删除第 19 组数据,用其余 30 组数据拟合回归方程,发现 第 12 组数据的删除学生化残差增加为 SRE(12)=3.125,仍然存在 异常值现象,因而认为异常值的原因不是由于数据的随机误差。 实际上本例数据存在异方差,应该采用加权最小二乘回归。
5.1 残差与残差图
一、残差概念与残差图
残差 ei yi yˆi yi ˆ0 ˆ1xi 误差项 i yi 0 1xi
残差ei是误差项i的估计值。
1
5.1 残差与残差图
一、残差概念与残差图
e
0
x
(a)
****一般认为,如果一个回归模型满足所给出的
基本假定,所有残差应在e=0附近随机变化,
可以证明:
e(i) yi yˆ(i)
e( i )

ei 1 hii
13
5.3 异常值与强影响值
第 i 个观察值的删除学生化残差,
SRE(i)

SREi

n n
p 1 p2

SREi2 n p
2
1
2
用 SP SS 软件可以直接计算出删除学生化残差 SRE(i)的数值, | SRE(i)|>3 的观测值即判定为异常值。
14
5.3 异常值与强影响值
二、关于自变量x的异常值
杠杆值
hii

1 n

(xi x )2 Lxx
var(ei ) (1 hii ) 2
回归的杠杆值hii也是表示自变量的第i次观测值与 自变量平均值之间距离的远近。
杠杆值大的样本点称为强影响点。
hii

2(3)h ,
其中h =
1 n
1 n
p
ch
n
chii
i 1

n
chii 2(3)ch
——判断为强影响点
16
5.3 异常值与强影响值
强影响点不一定是y的异常值点,不能单纯 根据杠杆值hii的大小判断强影响点是否异 常
利用Cook距离,来判断强影响点是否为y
的异常值点.
Di (
p
ei2
1)ˆ
2

(1
hii hii
)
2

17
5.3 异常值与强影响值
三、异常值实例分析
例5.1 做异常值的诊断分析。
分别计算 普通残差ei, 学生化残差SREi, 删除残差e(i), 删除学生化残差SRE(i), 杠杆值chii, 库克距离Di
18
5.3 异常值与强影响值
19
5.3 异常值与强影响值
24
5.3 异常值与强影响值
四、异常值问题补充
学生化删除残差、杠杆值、Cook距离——识别异常值
采取的措施: 1. 不能简单的剔除,有时异常观测值是正确的,它说明回 归模型的失败,失败的原因可能是遗漏了一个重要变量,或 者选择了不正确的回归函数形式. 2.如果异常值数据时准确的,但是找不到对它合理的解释, 与剔除这个观测值相比,一个更稳健的方法是抑制它的影响. 3.最小绝对离差和法是一种稳健估计方法,它具有对异常值 和不合适模型不敏感性质.
0
6
5.2 残差的性质
一、残差的性质
性质2 var(ei ) (1 hii ) 2
其中, hii

1 n

(xi x)2 Lxx
称为杠杆值
靠近x附近的点相应的残差方 差较大,
远离x附近的点相应的残差方 差较小.
7
5.2 残差的性质
一、残差的性质 性质3. 残差满足约束条件:
n
ei 0
4
5.1 残差与残差图
一、残差概念与残差图
e
1 3 57 0
2 46 8
x
(d)
****蛛网现象(y具有自相关)
5
5.2 残差的性质
一、残差的性质 性质1 E (ei)=0
证明: E(ei ) E( yi ) E( yˆi )
(0 1xi ) E(ˆ0 ˆ1xi )
相关文档
最新文档