常用复杂控制系统
化工自动化及仪表第八章复杂控制系统 第一节串级控制系统
图8-4 加热炉温度串级控制系统方块图
图8-5
副回路(副控制系统)
串级
控制 系统 组成 原理 及术
主设 定值
主控 制器
副设 定值
副控 制器
干扰
操纵
变量
副被控
变量
执行器 副对象
-
-
副测量值
副测量、变送
语
主测量值
主测量、变送
(1) 组成原理
①将原被控对象分解为两个串联的被控对象。
干扰 主对象
主被控 变量
TC
TT
PC
PT
燃料油 气开阀
被加热原料
T 出口温度
解答:
(1)阀的气开、气关特性
依据安全原则,当供气中断时,应使控制阀处于 全关闭状态,不致烧坏加热炉,所以应选气开阀
TC燃料油 气开阀
被加热原料
T 出口温度
(2)控制器的正、反作用
副控 制器
因为:P ys e
P 燃料量 阀开度 u
根据系统的结构和所担负的任务来分:串级、均
匀、比值、分程、选择性、前馈、多冲量等
本章研究内容:
8.1 串级控制系统 8.2 均匀控制系统 8.3 比值控制系统 8.4 分程控制系统 8.6 前馈控制系统
8.1 串级控制系统
复杂控制系统中用的最多的一种。
适用场合:当对象的滞后较大,干扰比较剧烈、
频繁,采用简单控制质量较差,或要求被控变量 的误差范围很小,简单控制系统不能工艺满足要 求。
人们研究出了一种不需要增加太多的仪表就可以 使被控变量达到较高的控制精度的方法——串级控制 系统。
串级控制系统的思想:
把时间常数较大的被控对象分解为两 个时间常数较小的被控对象。
常用复杂控制系统
0
20
T01 T02' T01T02'
02
1
Kc1K02' K01Km1 T01T02'
标准形式: s2 20s 02 0
串级控制系统的工作频率为:
串 0
12
1 2 T01 T02'
2
T01T02 '
(2)提高了系统的工作频率
单回路系统特征方程为 1 Gc (s)Gv (s)G02 (s)G01(s)Gm1(s) 0
K
' 02
1
Kc2 Kv K02 Kc2 Kv K02 Km2
K
' 02
1 Km2
当K02或KV随操作条件或负荷变化时,K02’几乎不变.
当采用串级控制时,主环是一个定值系统,而副环 却是一个随动系统。主调节器能够根据操作条件和负荷 变化的情况,不断修改副调节器的给定值,以适应操作 条件和负荷的变化。
5.应用于非线性过程 特点:负荷或操作条件改变导致过程特性改变。若单回路控 制,需随时改变调节器整定参数以保证系统的衰减率不变; 串级控制,则可自动调整副调节器的给定值。
合成反应器温度串级控制:换热器呈非线性特性
注意
串级控制虽然应用范围广,但必 须根据具体情况,充分利用优点,才 能收到预期的效果。
整定原则: 尽量加大副调节器的增益,提高副回路的频率,
使主、副回路的工作频率错开,以减少相互影响。 先整副环后整主环。
1. 逐步逼近整定法
1)主开环、副闭环,整定副调的参数;记为 GC2(s)1
2) 副回路等效成一个环节,闭合主回路,整定主调节器参数,
记为
GC1(s)1
3)观察过渡过程曲线,满足要求,所求调节器参数即为
常用复杂控制系统之串级控制原理共27页
常用复杂控制系统之串级控制原理
51、没有哪个社会可以制订一部永远 适用的 宪法, 甚至一 条永远 适用的 法律。 ——杰 斐逊 52、法律源于人的自卫本能。——英 格索尔
53、人们通常会发现,法律就是这样 一种的 网,触 犯法律 的人, 小的可 以穿网 而过, 大的可 以破网 而出, 只有中 等的才 会坠入 网中。 ——申 斯通 54、法律就是法律它是一座雄伟的大 夏,庇 护着我 们大家 ;它的 每一块 砖石都 垒在另 一块砖 石上。 ——高 尔斯华 绥 55、今天的法律未必明天仍是法律。 ——罗·伯顿
66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯泰洛齐 68、决定一个人的一生,以及整个命运 的,只 是一瞬 之间。 ——歌 德 69、懒人无法享受休息之乐。——拉布 克 70、浪费时间是一桩大罪过。——卢梭
串级、比值、前馈-反馈、选择性、分程以及三冲量六种复杂控制系统
1、串级控制系统
串级控制系统是应用最早,效果最好,使 用最广泛的一种复杂控制系统,它的特点 是两个调节器相串联,主调节器的输出作 为副调节器的设定,当对象的滞后较大, 干扰比较剧烈、频繁时,可考虑采用串级 控制系统。
1、基本概念
串级控制系统(Cascade Cont ro1System)是一 种常用的复杂控制系统,它根据系统结构
主回路(外回路):断开副调节器的反馈回路 后的整个外回路。
副回路(内回路):由副参数、副调节器及所 包括的一部分对象所组成的闭合回路(随
动回路)
主对象(惰性区):主参数所处的那一部分工 艺设备,它的输入信号为副变量,输出信 号为主参数(主变量)。
副对象(导前区):副参数所处的那一部分工 艺设备,它的输入信号为调节量,其输出 信号为副参数(副参数 将要达到危险值时,就适当降低生产要求, 让它暂时维持生产,并逐渐调整生产,使 之朝正常工况发展。能实现软限控制的控 制系统称为选择性控制系统,又称为取代 控制系统或超驰控制系统。
通常把控制回路中有选择器的控制系统称 为选择性控制(selective control)系统。选择 器实现逻辑运算,分为高选器和低选器两 类。高选器输出是其输入信号中的高信号, 低选器输出是其输入信号中的低信号。
控制系统一般又可分为简单控制系统和复 杂控制系统两大类,所谓复杂,是相对于 简单而言的。凡是多参数,具有两个以上 变送器、两个以上调节器或两个以上调节 阀组成多回路的自动控制系统,称之为复 杂控制系统。
目前常用的复杂控制系统有串级、比值、 前馈-反馈、选择性、分程以及三冲量等, 并且随着生产发展的需要和科学技术进步, 又陆续出现了许多其他新型的复杂控制系 统。
路外,使调整k时不影响控制回路稳定性。
常见的复杂控制系统
串级控制系统主、副被控变量的选择 选择原则如下: 根据工艺过程的控制要求选择主被控变量;主被控 变量应反映工艺指标。 副被控变量应包含主要扰动,并应包含尽可能多的 扰动。 主、副回路的时间常数和时滞应错开,即工作频率 错开,以防止共振现象发生。 主、副被控变量之间应有一一对应关系。 主被控变量的选择应使主对象有较大的增益和足够 的灵敏度。 应考虑经济性和工艺的合理性。
采用外部积分的防饱和积分系统
y
x1
yep
G2
K
T | |
G1
K
T | |
2-6(a)采用外部积分的防饱和积分系统
yep
1
K2
2
1 TI 2 s
3
G1外部积分的防饱和环节的主环开环系统方框图
最终得到输入节点e1与输出节点x1之间的传递函 数: K 1 G (s)W (s) K G (s)W (s) K G (s)W (s)(1 1 )
=
1-
2 T1 x串 g
+ T 2 + K T 2K Z K f K m 2K 2T 1 1 g T 1T 2 2x串
w单 =
1-
1 2 T1 + T 2 x单 g g T 1T 2 2x单
假定串级控制系统和单回路控制以同样的衰减率工作,即令
x串 = x单
T 1 + T 2 + K T 2K Z K f K m 2K 2T 1 w串 = = w单 T1 + T 2 K T 2K Z K f K m 2K 2T 1 = 1+ T1 + T 2 1+ T1 (1 + K T 2K Z K f K m 2K 2 ) T2 T 1+ 1 T2
化工仪表及自动化课件第七章__复杂控制系统
4 高度动态
具有快速响应和大幅度变化的特点,在控制 中需要实时调节。
化工行业中的复杂控制系统应用案例
石油化工
发电厂控制
在炼油、化工加工等领域应用广泛,如精馏塔温度、 压力控制。
保证功率输出、温度和气体流量的稳定性和高效性。
水处理厂
用于控制投加量、能耗和废水回收,保障水质水量。
反馈控制和前馈控制的区别
复杂控制系统简介
探索复杂控制系统的特点和应用领域,了解它们的基本原理和设计方法,并 探讨优化和调节的最佳实践。
复杂控制系统的特点
1 高度集成
由多个子系统和模块交互作用形成,复杂性 高且相互依赖。
2 多变量
控制多个输入和输出,要考虑多种因素的相 互作用。
3 非线性响应
与系统输入之间存在非线性关系,需要进行 非线性建模和控制。
1
反馈控制
根据输出信号的反馈来调节控制器的输入,在实时中调整控制参数。
2
前馈控制
通过提前计算和预测来预防或纠正系统中的异常,避免震荡和控制错误。
单变量控制和多变量控制的对比
单变量控制
只控制一个特定的过程变量,如温度或流量,适用于简单的系统。
多变量控制
控制多个输入和输出,可同时监测和控制多个过程变量,用于复杂系统。
模型预测控制(MPC)的优势与应用
优势
使用数学模型对系统进行预测和优化,确保系统在发电、水处理等领域的复杂系统 控制中。
自适应控制算法的应用
基本概念
将捕捉的反馈信号与预期模型进行比较,自动调整 控制器的输入参数。
应用实例
在化工、制造和航天等领域得到广泛应用,如火箭 推进系统和异丙醇工艺过程中的控制。
系统优化的目标与方法
常见的复杂控制系统有串级均匀比值精选全文
(1)两个变量在控制过程中都 应该是变化的,且变化缓慢。
(2)前后互相联系又互相矛盾 的两个变量应保持在所允许的 范围内波动。
过程控制系统
二.均匀控制系统的方案 1 .简单均匀控制
过程控制系统
如何能够满足均 匀控制的要求呢?是 通过控制器的参数 整定来实现的。
有时为了克服连续发生的同一方向干扰所造成的 过大偏差,防止液位超出规定范围,则引人积分作 用,这时比例度一般大于100%,积分时间也要放 得大一些。
主变送器:测量并转换主被控变量的变送器。 副变送器:测量并转换副被控变量的变送器。 主对象:大多为工业过程中所要控制的、由主被控 变量表 征其主要特性的生产设备或过程。 副对象:大多为工业过程中影响主被控变量的、由副被控变 量表征其特性的辅助生产设备或辅助过程。 副回路:由副变送器、副控制器、控制阀和副对象所构成的 闭环回路 , 又称为“ 副环” 或“内环”。 主回路:由主变送器、主控制器、副回路等效环节、主对象 所构成的闭环回路,又称为“主环”或“外环”。
副被控变量(Y2):大多为影响主被控变量的重要参数。 主控制器:在系统中起主导作用,按主被控变量和其设定值之差 进行控制运算,并将其输出作为副控制器给定值。 副控制器:在系统中起辅助作用,按所测得的副被控变量和主控 输出之差来进行控制运算,其输出直接作用于控制阀的控制器, 简称为“副控”。
过程控制系统
K= F2/F1 式中K为从动流量与主动流量的工艺流量比值。 F1---主动流量(其物料处于主导地位既主物料 ) F2---从动流量(其物料在控制过程中随主物料而变化 )
燃料与空气成比例,什么是主动物料?什么是从动物料?
氢氧化钠浓溶液与水成比例,什么是主动物料?什么是从动物 料?
一.比值控制系统的类型
复杂控制系统分析
把副回路看成是一个动态环节,这个环节的
输出为:
若采用单回路控制,在同样条件下采用同样的方法, 可以得到它的稳态输出为:
y1(∞)< y‘1 (∞),也就是说,串级控制系统 的稳态偏差比单回路控制系统的稳态误差要小得多, 其原因就在于前者具有一定的自适应能力。
串级控制系统主副回路和主副调节器选择: 一、主副回路的选择原则 (1)副回路应该把生产系统中尽量多的干扰、变
(4)前馈控制系统只能用来克服生产过程中主要的、 可测的扰动。 实际工业生产中使被调量发生变化的原因(扰动) 是很多的,对每一种扰动都需要一个独立的前馈控 制,这就会使控制系统变得非常复杂;而且有的扰 动往往是难于测量的,对于这些扰动就无法实现前 馈控制。 (5)前馈控制系统一般只能实现局部补偿而不能保 证被调量的完全不变。
(4)动态前馈比静态前馈复杂,参数的整定也比较麻烦。 因此,在静态前馈能够满足工艺要求的时候,尽量不采 用动态前馈。实际工程中,通常控制通道和扰动通道的 惯性时间和纯滞后时间接近,往往采用静态前馈就能获 得良好的控制效果。 (5)扰动通道的时间常数远大于控制通道的时间常数, 反馈控制已能获得良好的控制性能,只有控制性能要求 很高时,才有必要引入前馈控制。 (6)扰动通道的时间常数远远小于控制通道的时间常数, 由于扰动的影响十分快速,前馈调节器的输出迅速达到 最大或最小,以至难于补偿扰动的影响,这时不宜采用 前馈控制。
预估补偿控制
Smith(史密斯)预估补偿是针对具有纯迟延
的过程,在PID反馈控制的基础上,引入预补 偿环节,从而使控制品质大大提高的方法。
Smith(史密斯)预估补偿原理
被控变量的闭环传递函数是
扰动作用至被控变量的闭环传递函数是
复杂控制系统(已修改)
21 复杂控制系统一、概述1、单回路控制系统——简单控制系统:在一般情况下能够满足生产控制要求。
特殊情况:系统干扰因素多、干扰变化剧烈,以及工艺特殊要求。
2、复杂控制系统——串级控制系统、比值控制系统、均匀控制系统、前馈控制系统、选择控制系统、分程控制系统等复杂系统--随着控制理论与工业应用的发展,包含的内容也不同,例如复杂大系统--人口系统,环境控制,能源控制,企业生产经营控制等。
3、多回路系统多回路系统特征:基于PID控制策略;由多个控制回路组成的系统。
4、多回路系统的发展80-90%控制系统是基于PID控制的系统,包括多回路系统。
多回路系统应用状况以乙烯生产厂为例,它共有421个控制回路其中:常规PID单回路347个,串级、比值等74个(串级24)多回路系统占17.5%。
二、串级控制系统的构成加热炉是工业生产中常用设备之一。
工艺要求被加热物料的温度为某一定值,因此选取加热炉的出口温度为被控变量,选取燃料量为操纵变量,构成图5-1(a)所示的单回路控制系统。
影响炉出口温度的因素很多,主要有:被加热物料的流量和炉前温度变化[f1(t)];燃料热值的变化、压力的波动[f2(t)];烟囱挡板位置的改变、抽力的变化[f3(t)]等。
图5-1(a)系统的特点是,所有对被控变量的扰动都包含在这个回路之中,并都由温度控制器来克服。
但是控制通道的时间常数和容量滞后较大,控制作用不用及时,系统克服扰动的能力较差,不能满足工艺的要求。
为此,另外选择,炉膛温度为被控变量,燃料量为操纵变量,设计图5-1(b)所示的单回路控制系统,以维持炉口温度为某一定值。
该系统的特点是对于扰动[f2(t)] 、[f3(t)]能及时有效地克服,但是扰动[f1(t)]未包括在系统内,系统不能克服扰动[f1(t)]对炉出口温度的影响,仍然不能达到生产工艺要求。
综上分析,为了充分应用上述两种方案的优点,选取炉出口温度为被控变量,选择炉膛温度为中间辅助参数,把炉出口温度控制器的输出作为炉膛温度控制器的设定值,构成了图5-2所示的炉出口温度与炉膛温度的串级控制系统,图5-3是它的方块图。
常用的复杂控制系统
复杂控制系统。
一.串级控制系统串级控制系统的基本概念串级控制系统的采用了两个控制器,我们将温度控制器称为主控制器,把流量控制器称为副控制器。
主控制器的输出作为副控制器的设定,然后由副控制器的输出去操纵控制阀。
在串级控制系统中出现了两个被控对象,即主对象(温度对象)和副对象(流量对象),所以有两个被控参数,主被控参数(温度)和副被控参数(流量)。
主被控参数的信号送往主控制器,而副被控参数的信号被送往副控制器作为测量,这样就构成了两个闭合回路,即主回路(外环)和副回路(内环)。
1. 改善了对象特征,起了超前控制的作用2. 改善了对象动态特性,提高了工作频率3. 提高了控制器总放大倍数,增强了抗干扰能力4. 具有一定的自适应能力,适应负荷和操作条件的变化串级控制系统的设计原则1. 在选择副参数时,必须把主要干扰包含在副回路中,并力求把更多的干扰包含在副回路中。
2. 选择副参数,进行副回路的设计时,应使主、副对象的时间常数适当匹配。
3. 方案应考虑工艺上的合理性、可能性和经济性。
串级控制系统的应用场合1. 被控对象的控制通道纯滞后时间较长,用单回路控制系统不能满足质量指标时,可采用串级控制系统。
2对象容量滞后比较大,用单回路控制系统不能满足质量指标时,可采用串级控制系统。
3.控制系统内存在变化激烈且幅值很大的干扰。
4. 被控对象具有较大的非线性,而负荷变化又较大。
串级控制系统应用中的问题1. 主、副控制器控制规律的选择串级控制系统中主、副控制器的控制规律选择都应按照工艺要求来进行。
主控制器一般选用PID控制规律,副控制器一般可选P控制规律。
2. 主、副控制器正、反作用方式的确定。
副控制器作用方式的确定,与简单控制系统相同。
主控制器的作用方向只与工艺条件有关。
3. 串级控制系统控制器参数整定⑴在主回路闭合的情况下,主、副控制器都为纯比例作用,并将主控制器的比例度置于100%,用4:1衰减曲线法整定副控制器,求取副回路4:1衰减过程的副控制器比例度(δ2p)以及操作周期(T2P)。
化工仪表及其自动化控制课件第八章复杂控制系统
10Mpa中压蒸汽
控制阀的可调比 R=Qmax/Qmin
汽 包
给水
4Mpa 中压蒸汽
由于口径固定,采用同一个控制阀,能够 控制的最大流量和最小流量不可能相差太 大,满足不了生产上流量大范围变化的要 求,在这种情况下可采用两个控制阀并联 的分程控制方案。
蒸汽减压系统分程控制系统
A阀
B阀
A阀小口径
B阀大口径
均匀控制的要求
1、表征前后供求矛盾的两个变量在控制过程中都应该是缓慢变化的。 2、前后互相联系又互相矛盾的两个变量应保持在所允许的范围内波动。
1-液位变化曲线 2-流量变化曲线
均匀控制的特点
• 不同于常规的定值控制系统,而对被控变量(CV)与控制变量 (MV)都有平稳的要求;
• 为解决CV与MV都希望平稳这一对矛盾,只能要求CV与MV都 渐变。均匀控制通常要求在最大干扰下,CV在上下限内波动, 而MV应在一定范围内平缓渐变。
• 主要适用于主流量干扰频繁、工艺上不允许负荷有较大波动或 工艺 上经常需要提降负荷的场合。
比值控制方案4:变比值控制系统
Q2
蒸汽
Q1
煤气
• 要求主、副流量的比值能跟随 第三变量的需要而加以调整;
• 存在问题:Q2回路存在非线性,
喷射泵
Q1流量减少时,回路增益增大,
触媒层
有可能使系统不稳定,并可能
第一节 串级控制系统
单回路控制的局限性
进料
1
TC
蒸汽
2
塔底采出
方案1:控制塔釜温度恒定
目标:控制塔釜温度稳定
方案1 优点:将所有对温度的干扰都概括在控 制回路内。 缺点:当蒸汽压力波动较大时,由于温 度对象滞后较大,控制质量不理想。
常用的几种复杂控制在DCS系统中的应用
常用的几种复杂控制在DCS系统中的应用摘要随着化工行业的发展,系统的控制发挥了重要的作用,并且在化工行业的发展中,为了满足工艺生产条件的控制,应用最多的是较为复杂的控制。
本文笔者就当前应用较为广泛的几种复杂控制进行了相应的阐述,介绍了各个方案的控制原理以及在系统中的应用情况,目的是为复杂控制在DCS系统中的应用提供指导和借鉴。
关键词复杂控制;DCS系统;比值控制;分程控制;串级控制DCS系统需要复杂控制来为系统的正常运行提供有力的条件和支持,以便促进系统的正常运行。
同时对于系统的复杂控制的方法较多,本文着重阐述集中常用的复杂控制,以便为对复杂控制在DCS系统中的应用进行总结和分析。
1常用复杂控制的原理1.1比值控制在化工生产的过程中,很多工作需要将材料同时投入到反应器中,这就需要借助于比值控制,进而确定各种材料的比例,实现化工生产的的顺利进行,因为化工生产是一个特殊的生产过程,对各个材料的比例有严格的要求,因此需要利用比值控制对原料等比例进行有效地控制,进而推进化工生产工作的开展。
以甲醛制备为例,为了实现生产的安全和高效率,需要对四种材料的比例进行分析和控制,这就需要借助于比值控制,利用比值控制的组态策略,计算出其他三种原料气体的体积量,最终实现甲醛制备的完成。
在实际的生产控制过程汇总,实际的工作环境是处于不断发展变化中,并且设备本身也存在一定的差异性,这就容易导致一种原料的进料量产生变化,为了满足生产的需要,另一种原料也要跟随第一种原料的变化而变化,确保两种原料的设定值是不变的,在比值控制的帮助下,计算出输出的设定值,即调节模块的设定值,在不断的比较运算中,通模块的输出来控制调节阀,决定调节阀的开度,又对原料进行调整,进而实现两种原料量的协调。
可见,比值控制对化工生产中原料用量的控制和协调起到了很好的控制作用。
1.2分程控制一般而言,通过对一只调节阀的操作便能够实现对一台调节器的输出工作,如果通过一只调节器对两个或者是两个以上的调节阀进行控制,并且是通过对信号的分析根据不同的需求去对不同的阀门进行操作,这种控制方式就是分程控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
T T 0 2' 0 2
(2)提高了系统的工作频率
' 串级系统的特征方程为: 1 G s G s G s G s 0 c 1 0 2 0 1 m 1
将各环节传函代入,化简得
T01 T02 ' 2 0 ' ' ' T T T 1 K KK K 01 02 2 T 1 0 2 1 c 2 0 1 m 1 s0 s c 0 ' ' ' T T T T 0 10 2 0 10 2 2 1 K c 1 K 02 K 01 K m 1 0 T01T02 '
( s ) K T s 1 ,( G s ) K , G ( s ), K G ( s ) K 0 2 0 2 0 2 c 2 c 2 v v m 2 m 2 假设 G
' K K K 1 K K K K K c 2 v 0 2 c 2 v m 2 0 2 0 2 () ' 则 Gs T T s 1 0 2 0 2 s 1 1 K K K K c 2 v m 2 0 2 ' 0 2
比值越大,系统的控制 能力和抗干扰能力越强
控制能力和抗干扰能力综合指标:
Y sX s 1 1 G s G s G s c 1 c 2 v Y sF s 1 2
假设 G ( sK ) , G ( sK ) , G ( sK ) c 1 c 1 C 2 CV 2 V 则
( s ) K , G ( s ) K 假设 G C C V V
则
Y 1 s X 1 s KK c v Y s F s 1 2
一般情况下有 K K K C 1 C 2 C
结论:由于副回路的存在, 能迅速克服二次干扰。
2.能改善控制通道的动态特性,提高工作频率
(1)等效时间常数减小,响应速度加快
《过程控制与自动化仪表》
西安理工大学 潘永湘 杨延西 赵跃 制作
教学理念:
教书育人要义 传道授业释疑; 师生同心协力, 共探过控真谛 。
熟悉仪表原理, 统领系统设计; 理论实践结合,思维创新第一。
第6章 常用复杂控制系统
第6章 常用复杂控制系统
6.1 串级控制系统 6.2 前馈控制系统
本章要点
工艺要求: 物料自顶部连续进入釜中, 经反应后由底部排出。反 应产生的热量由夹套中的 冷却水带走。为保证产品 质量,对反应温度T1要进 行严格控制。
选取冷却水流量为调节参数,构成单回路控制系统 被控过程有三个热容积,即夹套中的冷却水、釜壁和釜中物料。
引起温度T1变化的干扰因素有: 进料方面有进料流量、进料入口温度和化学组成,用F1表示; 冷却水方面有水的入口温度和阀前压力,用F2表示。
2 ' s 等效副回路 G 0 2
Y s G s G s G s c 2 v 0 2 G ( s ) G ( s )( G s ) c 2 v 0 2 X s 1 G s G s G s G s 2 c 2 v 0 2 m 2
G s G s Y s 02 01 1 F s 1 G s G s G s G s 2 c v 02 m 1
控制能力和抗干扰能力综合指标为:
Y s X s 1 1 G s G s c v Y s F s 1 2
在干扰F2作用下
* Y s G s G s 1 0 2 0 1 * F s 1 G s G s G s G s G s G s 2 c 1 c 2 v 0 2 0 1 m 1
控制能力和抗干扰能力综合指标:
Y sX s 1 1 G s G s G s c 1 c 2 v Y sF s 1 2
Y s s X 1 1 K K K c 1 c 2 v Y s F s 1 2
结论:主、副调节器放大系数的乘积越大, 抗干扰能力越强,控制质量越好。
与单回路控制系统的比较:
G s G s G s G s Y s c v 02 01 1 1 X s G s G s G s G s G s 1 c v 02 01 m 1
1)了解串级控制系统的应用背景,熟悉串级控制系统 的典型结构与特点;
2)掌握串级控制系统的设计方法,熟悉串级控制系统 的参数整定方法; 3)了解前馈控制的原理及使用场合;
4)掌握前馈补偿器的设计方法,熟悉前馈-反馈复合 控制的特点及工业应用。
6.1 串级控制系统 6.1.1 串级控制的基本间长,调节不及时
将两个调节器串联在一起工作,各自完成不同任务的系统 结构,就是串级控制的基本思想。根据这一构思,反应釜温度 串级控制示意图为
串级控制系统的一般结构框图
副回路
主回路 --定值控制
主回路
副回路 --随动控制
6.1.2 串级控制系统的特点
( s ) G ( s ) G ( s ) 对于同一对象 G 0 01 02
单回路控制
串级控制
1.能迅速克服进入副回路的干扰
串级控制等效方框图
Y s G s 2 0 2 G s F s G s G s G s G s 1 2 c 2 v 0 2 m 2
* 0 2
等效副对象为
在给定信号X1作用下
Y s G s G s G s G s G s 1 1 c 2 v 0 2 0 1 c X s 1 G s G s G s G s G s G s 1 c 1 c 2 v 0 2 0 1 m 1