运筹学与目标规划

合集下载

运筹学线性规划模型及目标规划模型

运筹学线性规划模型及目标规划模型

问题一:建立一个资源利用的规划模型,需加入时间资源、资金资源。

1、问题的提出1.1基本情况某公司现在新购一生产线,生产电脑配件B1、B2、B3。

已知生产单位产品的利润与所需的劳动力时间、设备台时及单位产品的资金投入,公司的资金拥有量和工作时间拥有量如表1-1所示:表1T项目B1配件种类资源限制B2B3资金(百元)412200劳动力/工时643360设备台时(小323210时)产品利润(元/754件)1.2提出问题1、假设每种配件的市场都是供不应求,不用考虑市场及原材料的供应问题那么在现有的条件下应该如何分配者三种配件的生产才能获得最大利润。

2、模型的建立2.1确定决策变量因为获得最大利润的核心目标,要确定各种配件的生产数量从而去求得所能获得的最大利润。

因此可以设尤,x ,x来表示B1,B2, B3的产量。

1 2 32.2确定目标函数该问题归结为求效益最大化的问题。

这里所追求的利润s应是最大(简写为max)max S = 7 x + 5 x + 4 x1 2 32.3确定约束条件考虑到资金限制和劳动力总工时以及设备台时的要求,会有一定的约束条件用不等式表示参考表1_1数值有'4x + x + 2x < 200<6x + 4x + 3x < 360I3x + 2x + 3x < 210侦1 2 32.4建立模型综合前述各步及变量非负的条件建立起线性规划模型如下。

求变量气(i = 1,2,3)使得目标函数:max S = 7 x + 5 x + 4 x1 2 3取得最大值,并满足如下的约束条件的要求:4x + x + 2x < 2001 2 36x + 4x + 3 x < 360s.t. < 1 2 3|3x i+ 2x2 + 3x3 < 210I x , x , x > 0v 1 2 33、模型的求解分析上述线性规划模型是非标准的线性规划模型,用常规方法将其变为标准型的线性规划模型,然后利用单纯形法进行求解。

运筹学第五章_目标规划

运筹学第五章_目标规划

第一节目标规划实例与模型
看起来有 点繁~ 有点 ‘烦’… … …★
因此其目标规划的数学模型: minz=p1d1++p2(d2-+d2+)+p3d3s.t 2x1+x2≤11 x1-x2+d1--d1+=0 x1+2x2+d2--d2+=10 8x1+10x2+d3--d3+=56 x1,x2≥0,di-,di+≥0,i=1,2,3
第一节目标规划实例与模型
(5)目标函数—准则函数 目标函数是由各目标约束的正负偏差变量及其相应 的优先级、权因子构成的函数,且对这个函数求极小值, 其中不包含决策变量xi.因为决策者的愿望总是希望尽可能 缩小偏差,使目标尽可能达到理想值,因此目标函数总是 极小化。有三种基本形式:
第一节目标规划实例与模型
第一节目标规划实例与模型
(4)优先级与权因子 多个目标之间有主次缓急之分,凡要求首先达到的目 标,赋于优先级p1,要求第2位达到的目标赋于优先级 p2,…设共有k0个优先级则规定 p1>>p2>>p3……Pk0>0 P1优先级远远高于p2,p3,只有当p1级完成优化后,再考 虑p2,p3。反之p2在优化时不能破坏p1级的优先值,p3级 在优化时不能破坏p1,p2已达到的优值 由于绝对约束是必须满足的约束,因此与绝对约束相 应的目标函数总是放在p1级
第一节目标规划实例与模型
该问题的决策目标是: (1)总利润最大; (2)尽可能少加工; (3)尽可能多销售电扇; (4)生产数量不能超过预销售数量。 (5)绝对目标约束。所谓绝对目标约束就是必须要严格 满足的约束。绝对目标约束是最高优先级,在考虑较低 优先级的目标之前它们必须首先得到满足。

运筹学与目标规划

运筹学与目标规划
(1) 力求使利润指标不低于12元; (2) 考虑到市场需求,甲、乙两种产品的生产量需保持1:1的比
例;
(3) C和D为贵重设备,严格禁止超时使用;
(4) 设备B必要时可以加班,但加班时间要控制;设备A即要求
充分利用,又尽可能不加班。
要考虑上述多方面的目标,需要借助目标规划的方法。
线性规划模型存在的局限性:
明确问题,列出 目标的优先级和 权系数
构造目标规 划模型
求出满意解
N
满意否?
分析各项目标 完成情况
Y
据此制定出决策方案
2.目标规划的图解法
适用两个变量的目标规划问题,但其操作简单, 原理一目了然。同时,也有助于理解一般目标规划 的求解原理和过程。 图解法解题步骤:
1. 将所有约束条件(包括目标约束和绝对约束,暂不考虑正负偏差变量)的直 线方程分别标示于坐标平面上。 2. 确定系统约束的可行域。 3. 在目标约束所代表的边界线上,用箭头标出正、负偏差变量值增大的方向。 4. 求满足最高优先等级目标的解 5. 转到下一个优先等级的目标,再不破坏所有较高优先等级目标的前提下,求 出该优先等级目标的解 6. 重复5,直到所有优先等级的目标都已审查完毕为止 7. 确定最优解和满意解。

目标规划数学模型的一般形式
min Z j1 n j1 xj d k
n

L
l 1
P l ( lk d k lk d k )
k 1
K
达成函数
c kj x j d k d k g k ( k 1 .2 K ) a ij x 0
Chapter9 目标规划
( Goal programming )

运筹学:目标规划

运筹学:目标规划

运筹学:⽬标规划
基本概念
概念解释
正偏差变量d+决策值超过⽬标值的部分
负偏差变量d−决策值未达到⽬标值的部分
绝对约束必须严格满⾜的约束
⽬标约束允许产⽣正/负偏差的约束,⽬标函数也可转化为⽬标约束
优先因⼦与权系数达到⽬标时有轻重缓急
⽬标规划的⽬标函数正负偏差变量赋予优先因⼦/权系数⽽构造的
⽬标规划的数学模型需要确定⽬标值、优先等级、权系数等具有主观性和模糊性的参数
图解法
按优先级⼀步步缩⼩范围,如果满⾜不了就只在临近点中取
单纯形法
检验数对每个优先因⼦排成⼀⾏,初态k=1,每次检查该⾏是否存在负数,并且对应列的前k−1 ⾏系数为 0,若有则进⾏换基操作,否则k++,若k=K则结束
确定换⼊变量:选择检验数最⼩的
确定换出变量:b 列⽐ a 列,最⼩⽐值原则,如果有多个相同就选择优先级别⾼的变量
Processing math: 100%。

运筹学第五章 目标规划

运筹学第五章 目标规划

第五章 目标规划§5.1重点、难点提要一、目标规划的基本概念与模型特征 (1)目标规划的基本概念。

当人们在实践中遇到一些矛盾的目标,由于资源稀缺和其它原因,这些目标可能无法同时达到,可以把任何起作用的约束都称为“目标”。

无论它们是否达到,总的目的是要给出一个最优的结果,使之尽可能接近制定的目标。

目标规划是处理多目标的一种重要方法,人们把目标按重要性分成不同的优先等级,并对同一个优先等级中的不同目标赋权,使其在许多领域都有广泛应用。

在目标规划中至少有两个不同的目标;有两类变量:决策变量和偏差变量;两类约束:资源约束(也称硬约束)和目标约束(也称软约束)。

(2)模型特征。

目标规划的一般模型:⎪⎪⎪⎩⎪⎪⎪⎨⎧=≥=≥==-+=≤⎪⎭⎫ ⎝⎛+=+-=+-===++--∑∑∑∑.,,2,1;0,;,,2,10,,2,1,,2,1..)(min 1111K k d d n j x K k g d d x c m i b x a t s d d P Z k k j n j k k k j kj i nj j ij Lr K k k rk k rk r ωω 其中r P 为目标优先因子,+-rk rk ωω,为目标权系数,+-k k d d ,为偏差变量。

1)正、负偏差变量,i i d d +-。

正偏差变量i d +表示决策值超过目标值的部分;负偏差变量i d -表示决策值未达到目标值的部分。

因为决策值不可能既超过目标值同时又未达到目标值,所以有0i i d d +-⨯=。

2)硬约束和软约束。

硬约束是指必须严格满足的等式约束和不等式约束;软约束是目标规划特有的。

我们可以把约束右端项看成是要努力追求的目标值,但允许发生正、负偏差,通过在约束中加入正、负偏差变量来表示努力的结果与目标的差距,于是称它们为目标约束。

3)优先因子与权系数。

一个规划问题通常有若干个目标,但决策者在要求达到这些目标时,是有主次或缓急之分的。

运筹学基础-目标规划

运筹学基础-目标规划

5.2 应用举例
[例1]某电子厂生产录音机和电视机两种产品,分别经由甲、乙两个车间生产。已知除外购件外,生产一台录音机需甲车间加工2h,乙车间装配1h;生产一台电视机需甲车间加工1h,乙车间装配3h;两种产品需检验、销售环节,每台录音机检验销售费用需50元,每台电视机检验销售费用需30元。又甲车间每月可用工时为120h,车间管理为80元/h,乙车间每月可用工时为150h,车间管理为20元/h。估计每台录音机利润100元,每台电视机利润75元,又估计下一年度内平均每月可销售录音机50台,电视机80台。 该厂的月度目标为
4、用EXCEL求解下列目标规划问题:
x =(10,20,10)
5、用EXCEL解以下目标规划模型
5、x1=12, x2=10, =14, Z=14p4
答案:
工序
型号
每周最大加工能力
A
B
Ⅰ(小时/台) Ⅱ(小时/台)
4 3
6 2
150 50
利润(元/台)
300
450
如果工厂经营目标的期望值和优先等级如下: p1: 每周总利润不得低于10000元; p2: 因合同要求,A型机每周至少生产10台,B型机每周至少生产15台; p3: 希望工序Ⅰ的每周生产时间正好为150小时,工序Ⅱ的生产时间最好用足,甚至可适当加班。 试建立这个问题的目标规划模型。
+ P3 ( 6d1- +5 d2- )
+ P4d6+
+ P6(6d4++5d5+)
(1)甲、乙两厂设备运转时间约束: 甲的总时间为8×12×25=2400(h),乙的总工作时间为16×7×25=2800(h),则:
2.5x1 +1.5x2 +d2- –d2+ = 2800

《运筹学》教案-目标规划数学模型

《运筹学》教案-目标规划数学模型

《运筹学》教案-目标规划数学模型第一章:目标规划概述1.1 目标规划的定义与意义1.2 目标规划与其他规划方法的区别1.3 目标规划的应用领域1.4 目标规划的发展历程第二章:目标规划的基本原理2.1 目标规划的基本假设2.2 目标规划的数学模型2.3 目标规划的求解方法2.4 目标规划的评估与决策第三章:目标规划的数学模型3.1 单一目标规划模型3.2 多目标规划模型3.3 带约束的目标规划模型3.4 动态目标规划模型第四章:目标规划的求解方法4.1 线性规划求解方法4.2 非线性规划求解方法4.3 整数规划求解方法4.4 遗传算法求解方法第五章:目标规划的应用案例5.1 生产计划目标规划案例5.2 人力资源规划目标规划案例5.3 投资组合目标规划案例5.4 物流配送目标规划案例第六章:目标规划的高级应用6.1 目标规划在供应链管理中的应用6.2 目标规划在项目管理中的应用6.3 目标规划在金融管理中的应用6.4 目标规划在能源管理中的应用第七章:目标规划的软件工具7.1 目标规划软件工具的介绍7.2 常用目标规划软件工具的操作与应用7.3 目标规划软件工具的选择与评估7.4 目标规划软件工具的发展趋势第八章:目标规划在实际问题中的应用8.1 目标规划在制造业中的应用案例8.2 目标规划在服务业中的应用案例8.3 目标规划在政府决策中的应用案例8.4 目标规划在其他领域的应用案例第九章:目标规划的局限性与挑战9.1 目标规划的局限性分析9.2 目标规划在实际应用中遇到的问题9.3 目标规划的发展趋势与展望9.4 目标规划的未来研究方向10.1 目标规划的意义与价值10.2 目标规划在国内外的发展现状10.3 目标规划在未来的发展方向10.4 对运筹学领域的发展展望重点和难点解析重点环节一:目标规划的数学模型补充和说明:在讲解目标规划的数学模型时,重点关注单一目标规划模型和多目标规划模型的构建。

《运筹学》教案目标规划数学模型

《运筹学》教案目标规划数学模型

《运筹学》教案-目标规划数学模型教案章节:一、引言教学目标:1. 理解目标规划数学模型的基本概念。

2. 掌握目标规划数学模型的建立方法。

教学内容:1. 目标规划数学模型的定义。

2. 目标规划数学模型的建立步骤。

教学方法:1. 讲授法:讲解目标规划数学模型的基本概念和建立方法。

2. 案例分析法:分析实际案例,让学生更好地理解目标规划数学模型。

教学准备:1. 教案、PPT、教学案例。

2. 投影仪、白板、教学用具。

教学过程:1. 引入新课:通过讲解目标规划数学模型的定义和应用领域,引发学生对该课题的兴趣。

2. 讲解基本概念:讲解目标规划数学模型的基本概念,包括目标、约束条件、优化方法等。

3. 讲解建立方法:讲解目标规划数学模型的建立步骤,包括明确目标、确定约束条件、选择优化方法等。

4. 案例分析:分析实际案例,让学生更好地理解目标规划数学模型。

5. 课堂练习:让学生运用所学的知识,解决实际问题,巩固所学内容。

6. 总结与展望:总结本节课的重点内容,布置课后作业,预告下一节课的内容。

教学评价:1. 课堂讲解的清晰度和准确性。

2. 学生参与案例分析和课堂练习的积极性和主动性。

3. 学生对目标规划数学模型的理解和应用能力。

教案章节:二、线性规划数学模型教学目标:1. 理解线性规划数学模型的基本概念。

2. 掌握线性规划数学模型的建立方法。

教学内容:1. 线性规划数学模型的定义。

2. 线性规划数学模型的建立步骤。

教学方法:1. 讲授法:讲解线性规划数学模型的基本概念和建立方法。

2. 案例分析法:分析实际案例,让学生更好地理解线性规划数学模型。

教学准备:1. 教案、PPT、教学案例。

2. 投影仪、白板、教学用具。

教学过程:1. 引入新课:通过讲解线性规划数学模型的定义和应用领域,引发学生对该课题的兴趣。

2. 讲解基本概念:讲解线性规划数学模型的基本概念,包括决策变量、目标函数、约束条件等。

3. 讲解建立方法:讲解线性规划数学模型的建立步骤,包括明确目标、确定决策变量、列出约束条件等。

第6章目标规划管理运筹学

第6章目标规划管理运筹学

目标规划的正式提出
目标规划(Goal Programming):是针对线性规划目标单一 的局限性而提出的,是线性规划的应用拓展,是解决实际问题 的一种方法。线性规划是研究资源有效分配和利用,其特点是 在满足一组约束条件的情况下,寻求某一个目标的最大值或最 小值。而在现实社会中,经常遇到需要考虑多个目标的优化问 题。目标规划与传统方法不同,它强调了系统性,其方法在于 寻找一个“尽可能”满足所有目标的解,而不是绝对满足这些 目标的值。
根据背 景材料 列出全 部约束 不等式
目标 约束
系统 约束
xj ≥0 d±≥0
“≥”min{d-} “≤”min{d+} “=”min{d-+d+}
左端+ d--d+=右端
确定优先 级和权系 数,构造目 标偏差最 小的目标 函数
约束 条件
目标 规划 数学 模型
管理运筹学 第6章 目标规划
例6-1
已知某实际问题的线性规划模型 为:
目标规划有着极大的灵活性,表现在它可以模拟系统的约束和 目标优先等级变化的各种模型,为管理决策提供众多的信息。 解决目标规划问题首先要根据目标的重要性分清主次先后、轻 重缓急,引入偏差变量,将目标按等级转化为目标约束,最终 形成可用线性规划方法解决的问题。
管理运筹学 第6章 目标规划
目标规划的正式提出
(2)据市场预测,I、II两种产品 需求量的比例大致是1:2;
(3)A为贵重设备,严格禁止超时 使用;
(4)设备C可以适当加班,但要控 制;设备B既要求充分利用,又尽可 能不加班,在重要性上设备B是C的 3倍。
综合考虑上述因素,企业应如何决 策?这里本章所要讨论的问题。
管理运筹学 第6章 目标规划

运筹学目标规划

运筹学目标规划

运筹学目标规划运筹学目标规划,英文名为Operations Research,是一门应用数学领域的综合性学科,旨在通过数学建模和优化方法解决工程和管理问题。

运筹学目标规划是运筹学中的一个重要方法,可以帮助决策者制定合理的目标,并找到实现这些目标的最优方案。

运筹学目标规划的主要目标是将决策问题转化为数学模型,并采用数学优化方法解决这些模型。

在目标规划中,决策者的目标通常是多个且互相冲突的,因此需要进行目标权重的设定和优化。

运筹学目标规划通过建立数学模型和运用多目标优化算法,可以帮助决策者找到最佳的目标权重,从而实现最优方案。

运筹学目标规划的应用范围广泛,可以用于解决工程、生产、物流、供应链管理等各个领域的问题。

在生产领域,目标规划可以帮助企业制定合理的生产计划,优化资源配置,提高生产效率和质量。

在物流领域,目标规划可以帮助企业设计最佳的物流网络,优化货物配送路线和仓库布局,降低物流成本和时间。

在供应链管理领域,目标规划可以帮助企业协调供应链上各个环节的决策,并优化整个供应链的绩效。

运筹学目标规划的具体步骤包括问题定义、建模、求解和结果分析。

首先,需要明确决策问题的目标和约束条件,并收集相关的数据。

然后,将问题转化为数学模型,确定目标函数和约束条件。

接下来,采用适当的数学优化方法,如线性规划、整数规划、动态规划等,求解模型,得到最优解。

最后,对求解结果进行分析,评估方案的可行性和有效性,并提出相应的优化建议。

总之,运筹学目标规划是一种将决策问题转化为数学模型,并采用数学优化方法解决的方法。

它可以帮助决策者制定合理的目标,并找到实现这些目标的最优方案。

运筹学目标规划在工程和管理领域有着广泛的应用,可以显著提高效率和降低成本。

将来随着计算机技术的发展和算法的改进,运筹学目标规划还将不断发展和完善,为各个行业的决策者提供更强大的决策支持。

管理运筹学目标规划

管理运筹学目标规划

设d1-未到达利润目旳旳差值, d1+ 为超出目旳旳差值
当利润不不小于3200时,d1->0且d1+=0,有
40x1+30x2+50x3+d1-=3200成立
当利润不小于3200时,d1+>0且d1-=0,有
40x1+30x2+50x3-d1+=3200成立
当利润恰好等于3200时,d1-=0且d1+=0,有
试求一种投资方案,使得一年旳总投资风险不高于700,且投资收 益不低于10000元。用来全部投资一种股票两个目旳不能同步到达.
管理运筹学
13
§2 目旳规划旳图解法
显然,此问题属于目旳规划问题。它有两个目旳变量:一是 限制风险,一是确保收益。在求解之前,应首先考虑两个目旳 旳优先权。
假设第一种目旳(即限制风险)旳优先权比第二个目旳(确 保收益)大,这意味着求解过程中必须首先满足第一种目旳, 然后在此基础上再尽量满足第二个目旳。
min
d
3
x3
d
3
d
3
30
管理运筹学
10
§1 目的规划问题举例
(4) 设d4ˉ 、d4+为设备A旳使用时间偏差变量, d5ˉ、d5+为设备
B旳使用时间偏差变量,最佳不加班旳含义是 d4+ 和d5+同步取最 小值,等价 于d4+ + d5+取最小值,则设备旳目旳函数和约束为:
min
d
4
6
§1 目的规划问题举例
目前决策者根据企业旳实际情况和市场需求,需要重新制 定经营目旳,其目旳旳优先顺序是:
(1)利润不少于3200元 (2)产品甲与产品乙旳产量百分比尽量不超出1.5 (3)提升产品丙旳产量使之到达30件 (4)设备加工能力不足能够加班处理,能不加班最佳不加班 (5)受到资金旳限制,只能使用既有材料不能再购进

目标规划运筹学

目标规划运筹学

目标规划运筹学目标规划是一种运筹学方法,旨在帮助个人或组织制定明确的目标,并通过合理的安排资源和计划来达到这些目标。

它结合了规划和运筹学的概念和技术,可以帮助人们更好地管理时间、能源、资金和其他资源,以实现最佳的结果。

目标规划的核心理念是将复杂的问题分解为更容易解决的子问题,并为每个子问题设定明确的目标。

然后通过对每个子问题进行分析和优化,制定出最佳的解决方案,最终实现整体目标。

具体来说,目标规划包括以下几个主要步骤:1. 目标设定:明确和具体化需要实现的目标。

目标应该是可衡量的,并且具备一定的时间限制和约束条件。

2. 因素分析:识别影响目标实现的因素,并对这些因素进行评估与分析。

这些因素可以是内部的,如资源和技能,也可以是外部的,如市场情况和竞争对手。

3. 子目标设定:将整体目标分解为更小的子目标,并为每个子目标设定明确的要求和优先级。

4. 度量指标确定:为每个子目标制定度量指标,以便可以进行定量评估和衡量目标的实现程度。

5. 模型建立:根据因素分析和子目标设定的结果,建立数学模型来描述问题,并根据模型进行系统分析和优化。

6. 解决方案确定:通过模型的求解,得出最佳的解决方案,以实现目标的最大化。

7. 实施和控制:将解决方案转化为具体的行动计划,并进行实施和控制。

通过监测和评估目标的实现程度,及时对计划进行修正和调整。

运用目标规划的方法可以帮助个人和组织时刻保持目标的明确性和可行性,同时还可以提高决策的科学性和效率。

通过合理的规划和优化,可以最大限度地利用有限的资源,减少浪费,提高整体效益。

总之,目标规划是一种应用广泛的运筹学方法,它可以帮助个人和组织制定明确的目标,并通过科学的分析和优化,实现最佳的解决方案。

运用目标规划的思维方式和技术工具,可以提高个人和组织的绩效和效能,实现更好的发展和成长。

第五章运筹学目标规划分析

第五章运筹学目标规划分析

解:设 x1, x2 分别表示甲乙产品的产量,则相应的线性 规划模型为: max z 2 x1 3 x2
2 x1 2 x2 12 x1 2 x2 8 s.t . 4 x1 16 4 x2 12 x1 , x2 0
它的最优解为: x1 =4, x2 =2, z =14
3. 对所有的目标函数建立约束方程,并入原来的约束条 件中,组成新的约束条件;
4. 引入目标的优先等级和加权系数;建立使组合偏差最 小的目标函数。
1.确定目标函数的期望值 每一个目标函数希望达到的期望值(或目标值、理想值)。
根据历史资料、市场需求或上级部门的布置等来确定。 2.设置偏差变量,用来表明实际值同目标值之间的差异。
解:设 x1, x2 分别表示彩色和黑白电视机的产量。该问 题的目标规划模型为:
min z P1d1 P2d 2 P3 (2d 3 d4 )
x1 x2 d1 d1 40 x1 x2 d 2 d 2 50 s.t . x1 d3 d3 24 x d d 2 4 4 30 x , x , d , d 0 ( i 1, 2, 3, 4) 1 2 i i
P1 :企业利润目标; P2 :甲、乙产品的产量尽可能达到1∶1的要求;
P3 :设备A、B尽量不超负荷工作,在第三优先级中,设备A的重 要性是设备B的三倍。
min z P1d1 P2 (d 2 d2 ) 3 P3 (d 3 d3 ) P3d 4
4 x1 16 (1) (2) 4 x2 12 2 x 3 x d d 12 (3) 2 1 1 1 (4) x1 x2 d 2 d 2 0 2 x 2 x d d (5) 2 3 3 12 1 x 2x d d 8 (6) 1 2 4 4 x , x 0, d , d i i 0 ( i 1, 2, 3, 4) 1 2

运筹学 目标规划

运筹学 目标规划
1 1 -3 5 1 -5 1
P3
P2 P3 θ + d - d + d2 3 3 ½ 4 -½ 10/3 10 -½ 5 1 -1 6/3
σj
最终表
CB cj XB xs d1 x2 x1 b x1 x2 3 2 4 1 2 1 P1 P2 P3 xs 1 P1 P2 d1 - d1 + d2 2 1 -1 3 4/3
0
d3
d3 A
-
+
d2 d2 (3)
-
+
(2) x1
Min z =P1d1- +P2d2+ +P3(2d3-+d4-) x1 +x2 +d1- -d1+ =40 x1 +x2 +d2- -d2+ =50 x1 +d3- -d3+ =24 x2 +d4- -d4+ =30 x1, x2, di-, di+ ≥0, i=1,2,3,4
1 1 1 1
P3 θ - d + d3 3 -½ ½ -½ ½ -4/3 -1/6 1/6 -5/3 5/3 1/3 -1/3
P2 d2 + -2 -3
σj
单纯形法
1.
ห้องสมุดไป่ตู้
2.
建立初始单纯形表,在表中将检验数行按 优先因子个数分别列成 K 行,置 k=1 检查该行中是否存在负数,且对应的前k-1 行的系数是零
1 -2 -10 2 1
P1 P2 P2 P3 θ + d - d + d - d + d1 2 2 3 3
11/1
P2 P3
1
-1 1 -1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例1 某企业计划生产甲,乙两种产品,这些产品分别要在 A,B,C,D四种不同设备上加工。按工艺文件规定,如表所示。
A
B
C
D 单件利润

1
1
4
0
2

2
2
0
4
3
最大负荷 12
8
16
12
问该企业应如何安排计划,使得计划期内的总利润收入为最 大?
解:设甲、乙产品的产量分别为x1,x2,建立线性规划模型:
目标规划怎样解决上述线性规划模型建模中 的局限性?
1)设置偏差变量,用来表明实际值同目标值之间的差异
偏差变量用下列符号表示:
d+——超出目标的偏差,称正偏差变量 d-——未达到目标的偏差,称负偏差变量
正负偏差变量两者必有一个为0。 当实际值超出目标值时: d+>0, d-=0; 当实际值未达到目标值时: d+=0, d->0; 当实际值同目标值恰好一致时: d+=0, d-=0;
2 x1
2x2
d
d
12
由上可知,目标规划的目标函数只能是 minZ = f( d +,d - )
其基本形式有三种:
(1) 要求恰好达到目标值,即正、负偏差变量都要尽 可能地小
minZ = f( d ++ d - )
(2) 要求不超过目标值,即允许达不到目标值,即正 偏差变量要尽可能地小
max z 2 x1 3 x2
2x1 2x2 12
s.t
4
x1 x1

2x2
8 16

4x2 12
x1 , x2 0
其最优解为x1=4,x2=2,z*=14元
但企业的经营目标不仅仅是利润,而且要考虑多个方面,如: (1) 力求使利润指标不低于12元; (2) 考虑到市场需求,甲、乙两种产品的生产量需保持1:1的比
L
K
min Z
Pl (
d lk k
例; (3) C和D为贵重设备,严格禁止超时使用; (4) 设备B必要时可以加班,但加班时间要控制;设备A即要求
充分利用,又尽可能不加班。
要考虑上述多方面的目标,需要借助目标规划的方法。
线性规划模型存在的局限性:
1)要求问题的解必须满足全部约束条件,实际问题中并非所有 约束都需要严格满足。 2)只能处理单目标的优化问题。实际问题中,目标和约束可 以相互转化。 3)线性规划中各个约束条件都处于同等重要地位,但现实问 题中,各目标的重要性即有层次上的差别,同一层次中又可以 有权重上的区分。 4)线性规划寻求最优解,但很多实际问题中只需找出满意解 就可以。
现假定:
第1优先级P1——企业利润; 第2优先级P2——甲乙产品的产量保持1:1的比例 第3优先级P3——设备A,B尽量不超负荷工作。其中设备A的重要性 比设备B大三倍。
上述目标规划模型可以表示为:
min
z

P1
d
1

P2
(d
2

d 2
)
3
P3
(d
3

d 3
)

P3
d
4
4x1 16
的需要而由线性规划逐步发展起来的一个分支。
由于现代化企业内专业分工越来越细,组织机构日益复杂,为 了统一协调企业各部门围绕一个整体的目标工作,产生了目标管 理这种先进的管理技术。目标规划是实行目标管理的有效工具, 它根据企业制定的经营目标以及这些目标的轻重缓急次序,考虑 现有资源情况,分析如何达到规定目标或从总体上离规定目标的 差距为最小。
故恒有d+×d-=0
2)统一处理目标和约束
对有严格限制的资源使用建立系统约束,数学形式同线 性规划中的约束条件。如C和D设备的使用限制。
4x1 16 4x2 12 对不严格限制的约束,连同原线性规划建模时的目标, 均通过目标约束来表达。
(1)例如要求甲、乙两种产品保持1:1的比例,系统约束表达为: x1=x2。由于这个比例允许有偏差,
Chapter9 目标规划
( Goal programming )
本章主要内容:
1.目标规划问题及其数学模型 2.目标规划的图解法 3.目标规划应用举例 4.用管理运筹学软件2.0求解目标规划的注意事项
1.目标规划问题及其数学模型
问题的提出: 目标规划是在线性规划的基础上,为适应经济管理多目标决策
minZ = f( d +)
(3) 要求超过目标值,即超过量不限,但必须是即负 偏差变量要尽可能地小
minZ = f( d -)
3)目标的优先级与权系数
在一个目标规划的模型中,为达到某一目标可牺牲其他 一些目标,称这些目标是属于不同层次的优先级。优先级 层次的高低可分别通过优先因子P1,P2,…表示。对于同一层 次优先级的不同目标,按其重要程度可分别乘上不同的权 系数。权系数是一个个具体数字(权系数可以根据具体情况而定), 乘上的权系数越大,表明该目标越重要。
x1

x2
d
d

0
若希望甲的产量低于乙的产量,即不希望d+>0,用目标约
束可表为:
min{d }
x1

x2
d
d

0
若希望甲的产量恰好等于乙的产量,即不希望d+>0,也不
希望d->0用目标约束可表为:
min{d d }
x1

x2
d
d

当x1<x2时,出现负偏差d-,即: x1+d- =x2或x1-x2+d- =0 当x1>x2时,出现正偏差d+,即: x1-d+ =x2或x1-x2-d+ =0
∵正负偏差不可能同时出现,故总有:
• x1-x2+d--d+ =0
若希望甲的产量不低于乙的产量,即不希望d->0,用目标
约束可表为: min{d }
4 x2 12
s.t
2
x1

3
. x1 x2
x2

d
2
d 1


d
2
d 1
0
12
2 x1 2x2来自d 3

d
3
12

x1
2x2

d
4

d
4

8

x1
,
x
2
,
d
i
,
d
i
0
(i 1,...,4)
目标规划数学模型的一般形式
0
(2)力求使利润指标不低于12元,目标约束表示为:
min{d }
2 x1

3x2
d
d

12
: (3)设备B必要时可加班及加班时间要控制,目标约束表示为
min{d }
x1
2x2
d
d

8
(4)设备A既要求充分利用,又尽可能不加班,目标约束表示为:
min{d d }
相关文档
最新文档