中职数学基础模块上册集合的运算word教案
1.4集合的运算(教学设计)-中职《数学》(高教版)
§1.4集合的运算一、学习要求:1、清楚集合交、并的概念2、会准确地进行集合之间的交、并运算二、学习重点、难点:重点:交集和并集的概念难点:正确地进行集合之间的交、并运算三、学时安排共三学时第一学时:学习集合的交运算和交集,能理解两个集合交集的概念,正确地进行集合之间的交运算第二学时:学习集合的并运算和并集,能理解两个集合并集的概念,正确地进行集合之间的并运算第三学时:集合的关系与运算小结,会正确地进行集合之间的运算四:学习过程:第一学时(一)课前尝试1、学习方法:(1)回顾集合的基本概念、数集的数轴表示、几个基本数集的表示(2)阅读书本P.40-41,能知道集合的交运算及交集的概念,钻研例1、例2结合问题理解集合之间的交运算2、尝试练习:(1)请你画数轴并把下列数集在数轴上表示出来.①{}1 x x<-②{}3 x x≥③[) 1,4 -(2)已知{}{}1,4,7,2,1,2,4A B==-,则A B⋂=.(二)课堂探究1、探究问题10名学生组成一个小组.在期中考试时,组内有8位同学数学成绩优秀,有5位同学语文成绩优秀.语文、数学双优的同学可能是几位?2、知识链接(1)集合的交运算及交集的概念及交集的维恩图表示形式(2)集合的交集的性质:A∩B= B∩A;A∩A=A;A∩Ф=Ф;若,A B A B A ⊆⋂=则3、拓展练习(1)求下列集合的交集①{}{}2,4,7,2,1,2,4A B==-②{}{},A B==等腰三角形直角三角形③{}{}1,4A x xB x x=≤-=>-④{}{}1,2A x xB x x=≤-=>(2)(解答上面的探究问题)10名学生组成一个小组.在期中考试时,组内有8位同学数学成绩优,有5位同学语文成绩优秀.语文、数学双优的同学可能是几位?4、当堂练习(1)已知{}{}2,4,6,1,3,5,6A B==,求A B⋂.(2)求下列集合的交集,并在数轴上表示出来.①{}11,2 A x x B x x⎧⎫=>=>⎨⎬⎩⎭②{}{}13,5 A x x B x x=-≤≤=≤③{}{}1.54, 1.5A x yB y y=-≤≤=≥5、归纳总结:(三)课后拓展(1)设{}{},A x xB x x==是今年下雨的日子是今年天阴的日子,求A B⋂.(2)已知{}{},A B==15的因数18的因数,求A B⋂.(3)已知{}{}14,06A x xB x x=-<≤=<≤,求A B⋂.(4)已知[]()3,5,,4A B=-=-∞,求A B⋂.(5)思考:一个班级有17个女生,其中5人每天都是步行到校,7人有自行车可用,9人可乘汽车,但5+7+9大于17,你如何解释这一结果?有时骑车,有时乘汽车的有几个人?(四)格言警句:形成天才的决定因素应该是勤奋,与几分勤学苦练是成正比例的。
职高数学基础模块上(人教版)教案:集合的基本运算(交集和并集)
职高数学基础模块上(人教版)教案:集合的基本运算(交集和并集)教学目的:(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;(2)能用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
课型:新授课教学重点:集合的交集与并集的概念;教学难点:集合的交集与并集“是什么”,“为什么”,“怎样做”;教学过程:一、引入课题我们两个实数除了可以比较大小外,还可以进行加法运算,类比实数的加法运算,两个集合是否也可以“相加”呢?思考(P9思考题),引入并集概念。
二、新课教学1、并集一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A 与B的并集(Union)Array记作:A∪B 读作:“A并B”即:A∪B={x|x∈A,或x∈B}Venn图表示:说明:两个集合求并集,结果还是一个集合,是由集合A与B的所有元素组成的集合(重复元素只看成一个元素)。
例题1求集合A与B的并集① A={6,8,10,12} B={3,6,9,12}② A={x|-1≤x ≤2} B={x|0≤x ≤3}(过度)问题:在上图中我们除了研究集合A 与B 的并集外,它们的公共部分(即问号部分)还应是我们所关心的,我们称其为集合A 与B 的交集。
2、交集一般地,由属于集合A 且属于集合B 的元素所组成的集合,叫做集合A 与B 的交集(intersection )。
记作:A ∩B读作:“A 交B ” 即: A ∩B={x|∈A ,且x ∈B}交集的Venn 图表示说明:两个集合求交集,结果还是一个集合,是由集合A 与B 的公共元素组成的集合。
例题2求集合A 与B 的交集③ A={6,8,10,12} B={3,6,9,12}④ A={x|-1≤x ≤2} B={x|0≤x ≤3}拓展:求下列各图中集合A 与B 的并集与交集(用彩笔图出)说明:当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集3、例题讲解A例3(P12例1):理解所给集合的含义,可借助venn 图分析例4 P12例2):先“化简”所给集合,搞清楚各自所含元素后,再进行运算。
语文版中职数学基础模块上册1.4《集合运算》word教案
【课题】集合的运算【教学目标】1、理解并集与交集的概念;2、会求出两个集合的并集与交集;3、理解全集与补集的概念;4、会求集合的补集。
【教学重点】交集与并集、集合的补集【教学难点】用描述法表示集合的交集与并集;集合补集的计算。
【教学设计】1、通过生活中的实例导入交集与并集的概念,提高学习兴趣;2、通过生活中的实例导入全集与补集的概念,提高学生的学习兴趣;3、通过学生的解题实践,总结比拟,理解交集与并集的特征,完成知识的升华。
【课时安排】3课时〔135分钟〕【教学过程】一、交集创设情景兴趣导入问题:集合A={13E02班第二组学生,13E02班第三组学生};B={13E02班第一组学生,13E02班第二组学生}。
C={13E02班第二组学生},那么这三个集合之间有什么关系?解决:通过对上面问题的思考,可以看出集合C中的元素是由既属于集合A又属于集合B中的所有元素构成的,也就是由集合A、B的相同元素所组成的,这时,将C称作是A与B的交集.动脑思考探索新知概念:一般地,对于两个给定的集合A、B,由集合A、B的相同元素所组成的集合叫做A与B的交集,记作A B,读作“A交B〞.即A∩B={x丨x∈A且x∈B}。
集合A 与集合B 的交集可用下列图阴影局部来表示:对于任意集合 A ,B ,C ,有:1、交换律:A ∩B=B ∩A ;2、结合律:〔A ∩B 〕∩C=A ∩〔B ∩C 〕。
稳固知识典型例题例1:集合A ,B ,求A ∩B. A={1,2},B={2,3}; A={a,b},B={c,d,e,f}; A={1,3,5},B=;A={2,4},B={1,2,3,4}.解:(1)相同元素是2,A ∩B={1,2}∩{2,3}={2};(2)没有相同元素A ∩B={a,b}∩{c,d,e,f}= ;(3)因为A 是含有三个元素的集合,是不含任何元素的空集,所以它们的交集是不含任何元素的空集,即 A ∩B=;(4)因为A 中的每一个元素的都是集合B 中的元素,所以A ∩B=A .例2:设Ax,y|xy 0,B x,y|xy 4,求AB .分析集合A 表示方程xy 0的解集;集合B 表示方程xy4的解集.两个解集的交集就是二元一次方程组 xy0,x的解集.y4x y 0,x 2,B2, 2.解:解方程组y 得y.所以Ax4.2例3 设A={X 丨-1<X ≤2},B={X 丨0<X ≤3},求A B .分析这两个集合都是用描述法表示的集合,并且无法列举出集合的元素. 我们知道,这两个集合都可以在数轴上表示出来,如下列图所示.观察图形可以得到这两个集合的交集.解 A B x|1 x 剟2 x|0 x 3 x|0 x ,2.由交集定义和上面的例题,可以得到:对于任意两个集合A,B,都有〔1〕A B BA;〔2〕A A A,A;〔3〕A B A,AB B;〔4〕如果A B,那么A BA.二、并集创设情景兴趣导入问题:13E02班有女生24个,有男生31个,那么13E02班有多少名学生?用我们学过的集合来表示:A={13E02班的女生};B={13E02班的男生};C={13E02班的学生}.那么这三个集合之间有什么关系?解决:通过上面的三个问题的思考,可以看出集合C中的元素是由集合A、B的所有元素所组成的,这时,将C称作是A与B的并集.即A B xx A或x B.集合A与集合B的并集可用图形表示为:BA B BA A(1)(2)(3) (1)对于任意集合A,B,C,有:1、交换律:A∪B=B∪A;2、结合律:〔A∪B〕∪C=A∪〔B∪C〕。
集合的运算教学设计中职
标题:集合的运算教学设计方案(中职)引言:集合是数学中的基本概念之一,它不仅在数学中有着重要的应用,也在各个领域中具有广泛的应用。
教授集合的运算是中职数学教学中的重要内容之一。
本文将设计一套适用于中职学生的集合运算教学方案,旨在帮助学生理解集合的基本概念和运算规则,提高他们的数学思维能力与解决问题的能力。
一、教学目标1. 知识目标:- 了解集合的基本概念和符号表示法;- 掌握集合的运算法则,包括并集、交集和补集;- 熟练运用集合的运算法则解决实际问题。
2. 能力目标:- 发展学生的观察与归纳能力;- 培养学生的逻辑推理和问题解决能力;- 培养学生的团队合作和沟通能力。
3. 情感目标:- 培养学生对数学的兴趣和好奇心;- 提高学生对集合运算实用性的认识;- 培养学生的数学思维和抽象思维能力。
二、教学内容1. 集合的基本概念- 集合的定义和表示法;- 集合中的元素和空集的概念;- 集合的分类和常见的集合。
2. 集合的运算法则- 并集的定义和表示法;- 交集的定义和表示法;- 补集的定义和表示法。
3. 集合的运算例题与解析- 通过具体的例题,引导学生掌握集合的运算法则;- 解析例题中的思路和方法,帮助学生理解集合的运算原理; - 引导学生灵活运用集合的运算法则解决实际问题。
4. 集合的应用- 利用集合运算解决实际问题,如选课问题、调查问题等;- 引导学生将集合的运算与实际问题相联系,提高他们的应用能力。
三、教学方法1. 呈现法- 通过展示集合的概念和运算法则,引发学生的学习兴趣;- 利用课件或板书,在课堂上对概念和法则进行清晰明了的呈现。
2. 问题导入法- 准备一些与集合有关的问题,启发学生思考与实际情境相关的集合运算问题;- 引导学生通过思考和讨论,逐步推导出集合的运算法则。
3. 探究式教学法- 安排学生进行小组活动,采用探究式教学的方法,通过实践和发现,理解集合运算法则;- 引导学生在小组内进行集体讨论,交流归纳各自的探索结果。
中职教材数学(基础模块 高教版)上册电子教案:1.3 集合的运算(1)
【课题】 1.3集合的运算(1)【教学目标】知识目标:(1)理解并集与交集的概念;(2)会求出两个集合的并集与交集.能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过交集与并集问题的研究,培养学生的数学思维能力.【教学重点】交集与并集.【教学难点】用描述法表示集合的交集与并集.【教学设计】(1)通过生活中的实例导入交集与并集的概念,提高学习兴趣;(2)通过对实例的归纳,针对用“列举法”及“描述法”表示集合的运算的不同特征,采用由浅入深的训练,帮助学生加深对知识的理解;(3)通过学生的解题实践,总结比较,理解交集与并集的特征,完成知识的升华;(4)讲与练结合,教学要符合学生的认知规律.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】过程行为行为意图间第二学期的三好学生有王燕、李炎、王勇、孙颖,那么该班哪些同学连续两个学期都是三好学生?用我们学过的集合来表示:A={李佳,王燕,张洁,王勇};B={王燕,李炎,王勇,孙颖};C={王燕,王勇}.那么这三个集合之间有什么关系?问题3 集合A={直角三角形};B={等腰三角形};C={等腰直角三角形}.那么这三个集合之间有什么关系?解决通过上面的三个问题的思考,可以看出集合C中的元素是由既属于集合A又属于集合B中的所有元素构成的,也就是由集合A、B的相同元素所组成的,这时,将C称作是A与B 的交集.引导分析归纳总结自我分析了解引导式启发学生思考集合元素之间的关系5*动脑思考探索新知一般地,对于两个给定的集合A、B,由集合A、B的相同元素所组成的集合叫做A与B的交集,记作A B,读作“A 交B”.即{}A B x x A x B=∈∈且.集合A与集合B的交集可用下图表示为:求两个集合交集的运算叫做交运算.总结归纳仔细分析讲解关键词语强调图像含义思考理解记忆观察带领学生总结三个问题的共同点得到交集的定义10*巩固知识典型例题例1已知集合A,B,求A∩B.(1) A={1,2},B={2,3};(2) A={a,b},B={c,d , e , f };(3) A={1,3,5},B= ∅;说明观察通过例题进一步领会交过 程行为 行为 意图 间(4) A ={2,4},B ={1,2,3,4}.分析 集合都是由列举法表示的,因为 A ∩B 是由集合A 和集合B 中相同的元素组成的集合,所以可以通过列举出集合的所有相同元素得到集合的交集.解 (1) 相同元素是2,A ∩B ={1,2}∩{2,3 }={2};(2) 没有相同元素A ∩B ={a , b }∩{c , d , e , f }=∅;(3) 因为A 是含有三个元素的集合, ∅是不含任何元素的空集,所以它们的交集是不含任何元素的空集,即A ∩B =∅; (4) 因为A 中的每一个元素的都是集合B 中的元素,所以A ∩B =A .例2设(){},|0A x y x y =+=,(){},|4B x y x y =-=,求A B . 分析 集合A 表示方程0x y +=的解集;集合B 表示方程4x y -=的解集.两个解集的交集就是二元一次方程组0,4x y x y +=⎧⎨-=⎩的解集. 解 解方程组0,4.x y x y +=⎧⎨-=⎩得2,2x y =⎧⎨=-⎩.所以(){}2,2A B =-.例3 设{}|12A x x =-<,{}|03B x x =<,求A B .分析 这两个集合都是用描述法表示的集合,并且无法列举出集合的元素.我们知道,这两个集合都可以在数轴上表示出来,如下图所示.观察图形可以得到这两个集合的交集.解 {}{}|12|03AB x xx x=-<<{}|02x x =<.由交集定义和上面的例题,可以得到: 对于任意两个集合A ,B ,都有 (1)A B B A =;(2)A A A = ,∅=∅ A ; (3)B B A A B A ⊆⊆ ,;强调 引领讲解说明引领强调 含义 说明 启发 引导思考 主动 求解 观察 思考 求解 领会 思考 求解 了解集 注意 观察 学生 是否 理解 知识 点 复习 方程 组的 解法 突出 数轴 的作 用 强调 数形 结合 可以 交给 学生 自我 发现 归纳25B.}23y=,求B.}4x,求A B.巡视指导11名,那么该班有多少名该班团员};={该班非团那么这三个集合之间有什么关系?介绍B.}2,}4B x,求A B.过 程行为 行为 意图 间*理论升华 整体建构 思考并回答下面的问题:1.集合的并集和交集有什么区别?(含义和符号) 2.在进行集合的并运算和交运算时各自的特点是什么? 3.集合用列举法和描述法表示时进行运算需要注意的问题是什么?(1)由集合A 和集合B 的公共元素组成的集合叫做集合A 与集合B 的交集{}B x A x x B A ∈∈=且 .由集合A 和集合B 的所有元素组成的集合叫做集合A 与集合B 的并集{}B x A x x B A ∈∈=或 ;(2)交运算是寻找两个集合都有的公共部分,并运算是将两个集合所有的元素进行合并.(3)列举法求解时要不重不漏,描述法求解时要利用好数轴并注意端点的处理. 质疑 归纳 强调 小组 讨论 回答 理解 强化 以学 生的 小组 讨论 教师 归纳 的形 式强 调重 点突 破难 点70 *巩固知识 典型例题 例5 设{}{}2,1,0,1,5,3,2-==B A ,求B A ,B A .解 {}{}{}22,1,0,15,3,2=-= B A ;{}{}2,1,0,15,3,2-= B A {}5,3,2,1,0,1-=.例6 设{0{1A x x B x x =<=<≤2},≤3},求B A ,B A . 解 将集合A 、B 在数轴上表示:{1A B x x =<≤2},{0A B x x =<≤3}. 引领 分析 讲解 说明领会 思考 求解进行 并交 的对 比例 题讲 解巩 固所 归纳 的强 化点75 *归纳小结 强化思想本次课学了哪些内容?重点和难点各是什么? *自我反思 目标检测本次课采用了怎样的学习方法?你是如何进行学习的?你的学习效果如何?1.{}{}1,0,1,2,0,2,4,6A B =-=,求B A ,B A .引导 提问 巡视回忆 反思 动手培养 学生 总结 反思 学习 过程 的能 力}{}x B x x=,求A 2,04活动探究教材章节1.3;学习与训练1.3;举出交集和并集的生活实例.。
中职数学基础模块1.1.4.1集合的运算(一)教学设计教案人教版.docx
课时教学设计首页(试用)授课时间:年月日课题 1.1.4 集合的运算 (一 )课型新授第几2课时课 1.理解交集与并集的概念与性质.时教 2.掌握交集和并集的表示法,会求两个集合的交集和并集.学目 3.发展学生运用数学语言进行表达、交流的能力;培养学生观察、标(三维)归纳、分析的能力.教学重点:教学交集与并集的概念与运算重点与教学难点:难点交集和并集的概念、符号之间的区别与联系教学方法与发现式教学法、自学法手段使用教材的构想教材中讲解定义、性质占了很大篇幅,而与中职学生专业相关的例子偏少,学生学习起来比较单调枯燥,因此,教学时尝试着多例举些学生感兴趣,与专业学习联系比较紧密的例子,希望能对提升学生学习兴趣有所帮助。
本节的课后作业较多,考虑我校学生基础比较薄弱,不同专业、不同班级在作业布置上有所取舍,降低难度,减轻学生学习负担!☆补充设计☆教师行为学生行为设计意图导入:师:提出问题:联系实际,引实例引入,以我校食堂每天买菜的品 1. 两天所买相同菜的品种构出集合运算:种构成的集合为例,引出集合运算的定义.成的集合记为C,则集合 C 等于问题中新得到第一天买菜的品种构成的集合记为A什么?的集合 C,D 是由已= { 黄瓜,冬瓜,鲫鱼,虾,茄子} ; 2. 两天买过的所有菜的品种知集合的元素组成第二天买菜的品种构成的集合记为B构成的集合记为 D ,则集合 D的.= { 黄瓜,猪肉,毛豆,芹菜,虾,土豆} .等于什么?我们就把由已生:思考,感知集合运算.知集合,按照某种指定的法则,构造出一个新的集合,称为集合的运算.新课:启发学生观察引入中的例一、集合的交子,并发现结论:集合C中的1. 交集的定义.元素是集合 A 与 B 的公共元素,给定两个集合A,B,由既属于 A 又属即集合 C 是由既属于 A 又属于 B 于 B 的所有公共元素所构成的集合,叫做的元素构成的.A, B 的交集.记作 A ∩ B,引导学生感知、归纳、总结,形成概念.读作“ A 交 B”.2.交集的 Venn 图表示.A B A B出示四组图片,请学生讨论:如何根据交运算的定义,用阴影表示出“ A ∩ B”.通过画图,深化理解交集定义中“公共元素”的含意.A (B)A B以填空的形式出示各条性加强学生间的3. 交集的性质.质.合作交流;(1) A ∩ B B ∩ A;请学生根据交集的定义和上通过讨论,深(2) (A ∩ B) ∩ C A ∩ (B ∩C);面的 Venn 图进行讨论,填写性化对交集定义的理(3) A ∩ A=;质.解(4) A ∩=A=.想一想,如果 A B,那么 A∩ B=.例 1(1)已知: A= {1 ,2,3} ,B= {3 ,4,师:出示例1(1) 5} , C= {5 , 3} ,生:口答.通过一组简单的有限集求交集的则 A ∩B=;B ∩C=;(A ∩ B)∩ C =.例2(1) 已知 A= { x | x 是奇数 } ,B= { x | x 是偶数 } ,Z={ x | x 是整数 } ,求 A ∩Z,B ∩Z ,A∩B.解 A ∩Z= { x | x 是奇数 } ∩ { x | x 是整数 } = { x | x 是奇数 } = A;B∩ Z ={ x | x是偶数}∩{ x | x是整数} ={ x | x 是偶数 } =B;A∩ B= { x | x 是奇数 } ∩ { x | x 是偶数} =.二、集合的并1.并集的定义.给定两个集合A, B,把它们所有的元素合并在一起构成的集合,叫做 A 与 B 的并集记作 A ∪ B,读作“ A 并 B”.2. 并集的 Venn 图表示.师:出示例 2(1) ,引导学生弄清:(1)整数的分类;(2){ x | x 是整数 } , { x | x 是奇数 } ,{ x | x 是偶数 } 各集合之间的关系.生:试画出 Venn 图,并解答此题.在引例中,集合 D 是集合A与B 的什么运算?师:出示自学提纲:(1)并集的定义是什么?其记法与读法如何?(2)如何用 Venn 图表示集合A 与B 的并集.(3)并集有哪些性质?生:自学教材 P14~ 15——集口答题,使学生初步掌握交集的定义.借助 Venn 图解答题目,数形结合深化对交集的理解.通过类比,得出并集的定义,提高学生的自学能力.合的并,每四人为一组,讨论并回答自学提纲中提出的问题.师:以提问的方式检查学生A B A B自学情况,订正学生回答的问题结果,并出示各知识点.想一想:如果 A B,那么 A∪ B=.A ( B)A B给学生以赏识性评价.通过学生自己画图,深化理解并集定义中“所有元素”的含意.课时教学流程3.并集的性质.(1) A ∪ B B ∪ A;(2) (A∪ B)∪ C A∪ (B∪C);(3) A ∪ A=;(4) A ∪=A=.例1(2)已知: A= {1 , 2, 3} , B=师:出示例 1(2),例 2(2) {3 , 4, 5} , C= {5 , 3} .则 A ∪ B=;B ∪ C=;生:口答.(A ∪ B)∪ C=.例 2(2)已知 A= { x | x 是奇数 } ,B= { x |x 是偶数 } ,Z={ x | x 是整数 } ,求 A ∪Z,师:请学生对比交、并运算B ∪Z, A ∪ B.定义的不同,强调定义中“公共解 A ∪Z= { x | x 是奇数 } ∪ { x | x 元素”与“所有元素”的不同含是整数 } = { x | x 是整数 } =Z;义.以学生填空和自己画图的方法,调动学生自己类比交集,并主动参与到教学中来.通过一组简单的有限集求并集的口答题,使学生初步掌握并集的定义.B ∪Z= { x | x 是偶数 } ∪ { x | x 是整数 } = { x | x 是整数 } =Z;A ∪ B= { x | x 是奇数 } ∪ { x | x 是偶数 } = { x | x 是整数 } =Z.三、综合应用例 3已知C= { x | x≥1} , D= { x | x< 5} ,求 C ∩ D, C∪ D.解 C ∩ D= { x | x≥ 1} ∩ { x | x< 5}={ x | 1≤ x<5} ;C∪ D= { x | x≥ 1} ∪ { x | x< 5} =R.练习 1 已知 A= { x | x 是锐角三角形 } ,B= { x | x 是钝角三角形 } .求 A ∩ B, A ∪ B.练习 2 已知 A= { x | x 是平行四边形 } , B ={ x | x 是菱形 } ,求 A ∩ B , A ∪ B.师:引导学生画图、讨论、解答,在黑板上写出各题答案.师:订正答案,对学生出现的问题给以纠正、讲解.通过例1(1) ,例2(1)与例 1(2),例2(2) 的对比,帮助学生区别交集、并集的定义.通过综合应用,使学生进一步掌握求交集、并集的方法,并与前面练习 3已知A= { x | x 是菱形 } ,B= { x | x是矩形 } ,求 A ∩ B .例4教师首先引导学生分析例 4 已知A= {( x, y) | 4 x+ y= 6} , B得出:A∩ B的元素是集合A 与集= {( x, y)| 3 x+2 y= 7} ,求 A ∩ B.合B中两方程所构成的方程组的解 A ∩ B ={( x,y)| 4 x+ y= 6} ∩ {( x,解,然后板书详细的解题过程,学过的知识结合,使学生对学过的集合有更新的认识.太原市教研科研中心研制课 时 教 学 流 程y)| 3 x + 2 y = 7}并强调注意点集的表示方法.4 x + y = 6={( x , y)}|3 x + 2 y = 7={(1 , 2)} .小结 :1. 学生读书、反思:读教材 P13~16,总结本节课定义记法图示性质收获.交集2. 教师引导梳理,出示表并集格.学生填表,巩固所学内容.在板书例 4 的过程中,使学生明确初中方程组的解的含义.通过对比,加深理解,强化记忆.梳理总结也可对学生薄弱或易错处强调总结 .太原市教研科研中心研制课时教学设计尾页(试用)☆补充设计☆板书设计一、集合的交1 、定义:二、集合的并定义:练习:2 、图示:图示:3 、性质:性质:作业设计教材P16,练习 A 组第 1~ 4 题.教学后记。
高教版中职数学基础模块上册:1.3《集合的运算》优秀教案(全站免费)
高教版中职数学基础模块上册:1.3《集合的运算》优秀教案(全站免费)中职数学教学设计:集合的基本运算(1)一、教学目标1、知识与技能(1)理解并集和交集的含义,会求两个简单集合的交集与并集。
(2)能够使用Venn图表达两个集合的运算,体会直观图像对抽象概念理解的作用。
2、过程与方法(1)进一步体会类比的作用。
(2)进一步树立数形结合的思想。
3、情感态度与价值观集合作为一种数学语言,让学生体会数学符号化表示问题的简洁美。
二、教学重点与难点教学重点:并集与交集的含义。
教学难点:理解并集与交集的概念,符号之间的区别与联系。
三、教学过程1、创设情境(1)通过师生互动的形式来创设问题情境,把学生全体作为一个集合,按学科兴趣划分子集,让他们亲身感受,激起他们的学习兴趣。
(2)用Venn图表示。
2、探究新知(1)通过Venn图,类比实数的加法运算,引出并集的含义:一般地,由所有属于集合A 或集合B 的元素组成的集合,称为集合A 和集合B 的并集。
记作:A ∪B ,读作:A 并B ,其含义用符号表示为:AUB={x |x ∈A ,或x ∈B }。
(2)解剖分析1)“所有”:不能认为A ∪B 是由A 的所有元素和B 的所有元素组成的集合,即简单平凑,要满足集合的互异性,相同的元素即A 和B 的公共元素只能算作并集中的一个元素。
两个集合求并集,结果还是一个集合,是由集合A 与B 的所有元素组成的集合(重复元素只看成一个元素)。
2)“或”:“x ∈A 或x ∈B ”这一条件,包括下列三种情况:B x A x ?∈但;A B ?∈x x 但;B x A x ∈∈且3)用Venn 图表示A ∪B :3、讲授教材例4和例5。
4、思考:求集合的并集是集合间的一种运算,那么,集合间还有其他运算吗(具体画出A 与B 相交的Venn 图)?5、交集的含义:一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集。
中职数学基础模块上册集合的表示法word教案1.doc
百度文库- 让每个人平等地提升自我长春市第二中等专业学校课时教案数学护理专业2012年9月4日第2周第1次章节1.1.2 集合的表示法课题教学1. 掌握集合的列举法与描述法目2. 会用适当的方法表示集合的教学集合的表示法重点教学集合表示法的选择与规范书写难点技.通过集合语言的学习与运用,培养学生的数学思维能力能课教法新授课讲练结合型(教具)板书集合的表示法1. 列举法2. 描述法例题设计作课后业小结教教签务研字科室长春市第二中等专业学校教案副页No. 1教学教师时过程行为间引入课题:集合的表示法过程行为间*创设情景兴趣导入问题不大于 5 的自然数所组成的集合中有哪些元素质疑小于 5 的实数所组成的集合中有哪些元素?解决不大于 5 的自然数所组成的集合中只有0、 1、 2、 3、 4、引导5 这6 个元素,这些元素是可以一一列举的.而小于 5 的实数有无穷多个,而且无法一一列举出来,但元素的特征是明显的:讲解(1)集合的元素都是实数;( 2)集合的元素都小于 5.归纳当集合中元素可以一一列举时,可以用列举的方法表示集合;当集合中元素无法一一列举但元素特征是明显时,可以分总结析出集合的元素所具有的特征性质,通过对元素特征性质的描45 述来表示集合.*动脑思考探索新知集合的表示有两种方法:( 1)列举法.把集合的元素一一列举出来,写在花括号内,仔细元素之间用逗号隔开.如不大于 5 的自然数所组成的集合可以分析表示为0,1,2,3,4,5 .讲解关键当集合为无限集或为元素很多的有限集时,在不发生误解词语的情况下可以采用省略的写法.例如,小于100 的自然数集可以表示为 0,1,2,3, ,99 ,正偶数集可以表示为 2,4,6, .( 2)描述法.在花括号内画一条竖线,竖线的左侧写出集合的代表元素,竖线的右侧写出元素所具有的特征性质.如小于强调5 的实数所组成的集合可表示为{ x | x 5, x R} .如果从上下文能明显看出集合的元素为实数,那么可以将 x R 省略不写.如不等式 3 x 6 0 的解集可以表示为{ x | x 2} .说明为了简便起见,有些集合在使用描述法表示时,可以省过程行为 间略竖线及其左边的代表元素,直接用中文来表示集合的特征性50质.例如所有正奇数组成的集合可以表示为{正奇数 }.* 巩固知识 典型例题例 2 用列举法表示下列集合:( 1)由大于 4 且小于 12 的所有偶数组成的集合;( 2)方程 x 2 5x 6 0 的解集.分析这两个集合都是有限集. ( 1)题的元素可以直接列举出来;( 2)题的元素需要解方程 x 2 5x6 0 才能得到.解( 1)集合表示为2,0,2,4,6,8,10 ;说明( 2)解方程 x 2 5 x 6 0 得 x 11, x 2 6 .故方程解集为强调1,6 .例 3用描述法表示下列各集合:引领( 1)不等式 2x 10 的解集;( 2)所有奇数组成的集合;讲解 ( 3)由第一象限所有的点组成的集合.说明分析 用描述法表示集合关键是找出元素的特征性质. ( 1)题解不等式就可以得到不等式解集元素的特征性质;(2)题奇数引领分析2k 1(k Z ) 的形式”.( 3)题元的特征性质是“元素都能写成强调素的特征性质是“为第一象限的点” ,即横坐标与纵坐标都为含义正数.解 ( 1 ) 解 不 等 式 2x 10 得 x1,所以解集为2说明x x1 ; 260( 2)奇数集合 x x 2 k 1,k Z ;( 3)第一象限所有的点组成的集合为 x, y x 0, y 0 .* 运用知识 强化练习过程行为间教材练习 1.1.21.用列举法表示下列各集合:( 1)方程 x2 3x 4 0 的解集;(2)方程 4 x 3 0 的解集;巡视(3)由数 1, 4, 9,16, 25 组成的集合;(4)所有正奇数组成的集合.2.用描述法表示下列各集合:指导( 1)大于 3 的实数所组成的集合;( 2)方程 x2 4 0 的解集;( 3)大于 5 的所有偶数所组成的集合;( 4)不等式2x 5 3 的70 解集.* 理论升华整体建构本次课重点学习了集合的表示法:列举法、描述法,用列举法表示集合,元素清晰明了;用描述法表示集合,元素特征总结性质直观明确 .归纳因此表示集合时,要针对实际情况,选用合适的方法.例75 如,不等式(组)的解集,一般采用描述法来表示,方程(组)的解集,一般采用列举法来表示.* 巩固知识典型例题例 4 用适当的方法表示下列集合:引领( 1)方程 x+5=0 的解集;分析(2)不等式 3x-7>5 的解集;(3)大于 3 且小于 11 的偶数组成的集合;( 4)不大于讲解5 的所有实数组成的集合;80 解 (1) { - 5} ;(2) { x| x>4} 说明;* 运用知识强化练习提问选用适当的方法表示出下列各集合:(1) 由大于 10 的所有自然数组成的集合;巡视(2) 方程x2 9 0 的解集;(3) 不等式 4 x 6 5 的解集;指导(4) 平面直角坐标系中第二象限所有的点组成的集合;(5) 方程 x2 4 3 的解集;归纳85 (6) 不等式组3x 30, 的解集.强调x 6 0* 归纳小结强化思想过程行为间本次课学了哪些内容?重点和难点各是什么?引导( 1)本次课学了哪些内容?88 ( 2)通过本次课的学习,你会解决哪些新问题了?提问( 3)在学习方法上有哪些体会?*继续探索活动探究(1) 阅读理解:教材,学习与训练;说明(2) 书面作业:教材习题,学习与训练训练题;90(3) 实践调查:探究生活中集合知识的应用。
中职数学基础模块上册(人教版)教案:集合的运算(二)
中职数学基础模块上册(人教版)教案:集合的运算(二)1.1.4 集合的运算(二)【教学目标】1. 了解全集的意义;理解补集的概念,掌握补集的表示法;理解集合的补集的性质;会求一个集合在全集中的补集.2. 发展学生运用数学语言进行表达、交流的能力;培养学生建立数形结合的思想,将满足条件的集合用Venn图或数轴一一表示出来;提高学生观察、比较、分析、概括的能力.3. 鼓励学生主动参与“教”与“学”的整个过程,激发其求知欲望,增强其学习数学的兴趣与自信心.【教学重点】补集的概念与运算.【教学难点】全集的意义;数集的运算.【教学方法】本节课采用发现式教学法,通过引入实例,进而分析实例,引导学生寻找、发现其一般结果,归纳其普遍规律.【教学过程】课新课合都是某一给定集合的子集,那么称这个给定的集合为这些集合的全集.通常用字母U表示.2. 特征:全集是一个相对的概念,是一个给定的集合,在研究不同问题时,全集也不一定相同.我们在研究数集时,常常把实数集R作为全集.二、补集1. 定义.如果 A 是全集U的一个子集,由U中的所有不属于 A的元素构成的集合,叫做 A 在U 中的补集.记作U A.读作“A 在U中的补集”.2. 补集的Venn图表示.例1 已知:U={1,2,3,4,5,6},A={1,3,5}.则U A=;A ∩U A=;A ∪U A=.解{2,4,6}; ;U.例2已知U={ x | x是实数},Q={ x | x 是有理数}.则U Q=;Q∩U QU之间关系怎样?生:观察集合间的关系,得出;集合A是集合U的子集.师:通过上例,介绍全集的定义与特征.师:通过引导学生回答引例中的问题2“没有购进的品种构成的集合是什么?”,得出补集的定义和特征;介绍补集的记法和读法.生:根据定义,试用阴影表示补集.师:订正、讲解补集Venn图表示法.生:对例1口答填空.师:引导学生画出例2的Venn图,明确集合间关系,请学生观察并说出结果.集涵义.通过引导学生回答问题1,得出全集的定义和特征.从引例的集合关系中直观感知补集涵义.通过画图来理解补集定义,突破难点.借助简单题目使学生初步理解补集定义.例2中补充两问,为学生得出性质做铺垫.AUC U A新课=;Q∪U Q=.解{ x | x 是无理数};∅;U.3. 补集的性质.(1) A ∪U A=U;(2) A ∩U A=∅;(3) U(U A)=A.例3已知全集U=R,A={x | x>5},求U A.解U A={x | x≤5}.练习 1(1) 已知全集U=R,A={ x | x<1},求U A.(2) 已知全集U=R,A={ x | x≤1},求U A.练习2设U={1,2,3,4,5,6},A={5,2,1},B={5,4,3,2}.求U A;U B;U A ∩UB;UA ∪U B.练习3 已知全集U=R,A={x | -1< x < 1}.求U A,U A∩U,UA∪U,A ∩U A,A ∪U A.师:以填空的形式出示各条性质.生:填写性质.师:结合数轴讲解例3.学生解答练习1,并总结解题规律.学生做练习2、3,老师点拨、解答学生疑难.结合具体例题和Venn图,使学生自己得出补集的各个性质,深化对补集概念的理解.培养学生数形结合的数学意识.通过练习加深学生对补集的理解.小结补集定义记法图示性质1. 学生读书、反思,说出自己学习本节课的收获和存在问题.2. 老师引导梳理,总结本节课的知识点,学生填表巩固.让学生读书、反思,培养学生形成良好的学习习惯,提高学习能力.作业教材P17,练习A组第1~4题.学生课后完成.巩固拓展.。
高教版中职数学基础模块上册电子教案
高教版中职数学基础模块上册电子教案第一章:集合1.1 集合的概念教学目标:理解集合的概念,掌握集合的表示方法。
能够列举常见的集合类型,如自然数集、整数集、实数集等。
教学内容:集合的定义及表示方法集合的类型及特点教学活动:1. 引入集合的概念,通过实际例子讲解集合的表示方法。
2. 引导学生思考集合的特点,如无序性、确定性等。
3. 练习列举常见的集合类型,加深对集合概念的理解。
教学评价:课堂练习:列举五个常见的集合,并说明其表示方法。
课后作业:练习题,加深对集合概念的理解。
1.2 集合的运算教学目标:理解并掌握集合的运算规则,包括并集、交集、补集等。
能够运用集合的运算解决实际问题。
教学内容:集合的并集、交集、补集的定义及运算规则集合运算的应用教学活动:1. 引入集合的运算概念,通过实际例子讲解并集、交集、补集的运算规则。
2. 引导学生通过集合运算解决实际问题,如统计数据、几何图形等。
3. 练习集合运算,加深对集合运算的理解和应用能力。
教学评价:课堂练习:运用集合运算解决实际问题,如统计数据、几何图形等。
课后作业:练习题,加深对集合运算的理解和应用能力。
第二章:函数2.1 函数的概念教学目标:理解函数的基本概念,掌握函数的表示方法。
能够识别和理解函数的定义域、值域等基本要素。
教学内容:函数的定义及表示方法函数的定义域、值域等基本要素教学活动:1. 引入函数的概念,通过实际例子讲解函数的表示方法。
2. 引导学生思考函数的定义域、值域等基本要素,加深对函数概念的理解。
3. 练习识别和理解函数的基本要素,巩固对函数概念的认识。
教学评价:课堂练习:识别和理解给定的函数,说明其定义域、值域等基本要素。
课后作业:练习题,加深对函数概念的理解。
2.2 函数的性质教学目标:理解并掌握函数的性质,包括单调性、奇偶性、周期性等。
能够运用函数的性质解决实际问题。
教学内容:函数的单调性、奇偶性、周期性等性质函数性质的应用教学活动:1. 引入函数的性质概念,通过实际例子讲解单调性、奇偶性、周期性等性质。
中职数学(高教版)教案:集合的运算(全3课时)
中等专业学校2023-2024-1教案教学内容2、考察集合A={1,2,3},B={2,3,4}与集合C={2,3}之间的关系.一般地,由所有属于A又属于B的元素所组成的集合,叫做A,B的交集.记作A∩B(读作"A交B"),即A∩B={x|x∈A,且x∈B}.如:{1,2,3,6}∩{1,2,5,10}={1,2}.又如:A={a,b,c,d,e},B={c,d,e,f}.则A∩B={c,d,e}基本性质A∩B= B∩A; A∩A=A; A∩Ф=Ф; A ∩B=A⇔A⊆B注:是否给出证明应根据学生的基础而定.例题例1.设A={x|x>-2},B={x|x<3},求A∩B.解:A∩B={x|x>-2}∩{x|x<3}={x|-2<x<3}.例2.设A={x|x是等腰三角形},B={x|x是直角三角形},求A∩B.解:A∩B={x|x是等腰三角形}∩{x|x是直角三角形}={x|x是等腰直角三角形}例3、已知集合M ={(x ,y )|x +y =2},N ={(x ,y )|x -y =4},那么集合M ∩N 为( )A . x =3,y =-1 B.(3,-1) C.{3,-1} D.{(3,-1)}分析: 由已知得M ∩N ={(x ,y )|x +y =2,且x -y =4}={(3,-1)}.也可采用筛选法.首先,易知A 、B 不正确,因为它们都不是集合符号.又集合M ,N 的元素都是数组(x ,y ),所以C 也不正确.注: 求两集合的交集即求同时满足两集合中元素性质的元素组成的集合.本题中就是求方程组⎩⎨⎧=-=+42y x y x 的解组成的集合.另外要弄清集合中元素的一般形式.课堂练习:1、设A={x|x>-2},B={x|x<3},求A B.2、设A={x|x 是等腰三角形},B={x|x 是直角三角形},求A B.基础巩固1.若集合A ={0,1,2,3,4},B ={1,2,4}则A ∪B =( )A .{0,1,2,3,4}B .{1,2,3,4}C .{1,2}D .{0} 答案:A 2.设S ={x||x|<3},T ={x|3x -5<1},则S∩T =( ) A .∅ B .{x|-3<x<3}C .{x|-3<x<2}D .{x|2<x<3 答案:C3.已知A ,B 均为集合U ={1,3,5,7,9}的子集,且A∩B ={3}, A∩∁UB ={9},则A =( ) A .{1,3} B .{3,7,9}C .{3,5,9}D .{3,9} 答案:D4.设A={(x,y)|4x+y=6},B={(x,y)|3x+2y=7},则A∩B为()A.{x=1,或y=2} B.{1,2}C.{(1,2)} D.(1,2)解析:A∩B=x,y4x+y=63x+2y=7={(1,2)}.答案:C5.已知集合A={(x,y)|x,y∈R且x2+y2=1},B ={(x,y)|x,y∈R且x+y=1,则A∩B的元素个数为()A.4个B.3个C.2个D.1个解析:由x2+y2=1,x+y=1⇒x=1,y=0或x=0,y=1,即A∩B={(1,0),(0,1)}.答案:C小结:本节课我们学习了交集的概念和基本性质再次突出交集概念中“且”的含义.课后作业:第18页练习A、B中等专业学校2023-2024-1教案编号:备课组别数学组课程名称数字所在年级一年级主备教师授课教师授课系部授课班级授课日期课题§1.4集合的运算教学目标(1)理解两个集合的并集的含义,会求两个集合的并集(重点、难点);(2)能用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
中职数学基础模块上册《集合的运算》word教案
No。
1课时序号授课班级授课时间学年第1学期第1。
2课时12机电预19.17工作课时2课时课的类型教学内容教学目标新授课√练习课实验课复习课测验课综合课1.1.1集合的概念1.初步理解集合的概念;理解集合中元素的性质.2.初步理解“属于”关系的意义;知道常用数集的概念及其记法.3.引导学生发现问题和提出问题,培养独立思考和创造性地解决问题的意识.教材分析重点难集合的基本概念,元素与集合的关系.正确理解集合的概念点教具准备教学后记本节课采用问题教学和讲练结合的教学方法,运用现代化教学手段,通过创设情景,引导学生自己独立地去发现、分析、归纳,形成概念.【引课】师生共同欣赏图片“中国所有的大熊猫”、“我们班的所有同学”.师:“物以类聚”;“人以群分”;这些都给我们以集合的印象.引入课题【新授】课件展示引例:(1)某学校数控班学生的全体;(2)正数的全体;(3)平行四边形的全体;(4)数轴上所有点的坐标的全体1.集合的概念.(1)一般地,把一些能够确定的对象看成一个整体,我们就说,这个整体是由这些对象的全体构成的集合(简称为集).(2)构成集合的每个对象都叫做集合的元素.(3)集合与元素的表示方法:一个集合,通常用大写英文字母A,B,C,…表示,它的元素通常用小写英文字母a,b,c,…表示.2.元素与集合的关系.(1)如果a是集合A的元素,就说a属于A,记作a∈A,读作“a属于A”.(2)如果a不是集合A的元素,就说a不属于A,记作a∉A.读作“a不属于A”.3.集合中元素的特性.(1)确定性:作为集合的元素,必须是能够确定的.这就是说,不能确定的对象,就不能构成集合.(2)互异性:对于一个给定的集合,集合中的元素是互异的.这就是说,集合中的任何两个元素都是不同的对象.4.集合的分类.(1)有限集:含有有限个元素的集合叫做有限集.(2)无限集:含有无限个元素的集合叫做无限集.5.常用数集及其记法.(1)自然数集:非负整数全体构成的集合,记作N;(2)正整数集:非负整数集内排除0的集合,记作N+或N*;(3)整数集:整数全体构成的集合,记作Z;(4)有理数集:有理数全体构成的集合,记作Q;(5)实数集:实数全体构成的集合,记作R.【巩固】例1判断下列语句能否构成一个集合,并说明理由.(1)小于10的自然数的全体;(2)某校高一(2)班所有性格开朗的男生;(3)英文的26个大写字母;(4)非常接近1的实数.练习1判断下列语句是否正确:(1)由2,2,3,3构成一个集合,此集合共有4个元素;(2)所有三角形构成的集合是无限集;(3)周长为20cm的三角形构成的集合是有限集;(4)如果a∈Q,b∈Q,则a+b∈Q.例2用符号“∈”或“∉”填空:(1)1N,0N,-4N,0.3N;(2)1Z,0Z,-4Z,0.3Z;(1) -3 N ;(2) 3.14Q ;(3) Z ; (4) - R ;(5)2 R ; (6) 0Z(3) 1 Q ,0 Q ,-4 Q ,0.3 Q ;(4) 1 R ,0 R ,-4 R ,0.3 R .练习 2 用符号“∈”或“∉”填空:1312【小结】1. 集合的有关概念:集合、元素.2. 元素与集合的关系:属于、不属于.3. 集合中元素的特性.4. 集合的分类:有限集、无限集.5. 常用数集的定义及记法.【作业】教材 P4,练习 A 组第 1~3 题课时序号授课班级授课时间课的类型教学内容教学目标专业学校课时工作计划No。
语文版中职数学基础模块上册1.1《集合》word教案
集合》一.教学内容《职高数学》基础版上册语文出版社教材第一单元第一课时《集合》二.教学目标1.理解集合与元素的含义。
2.明确集合中元素的确定性.互异性.无序性,并注意此性质在解题中的应用;3.正确判断集合与元素的关系。
4.培养学生从特殊到一般的归纳概括能力。
三.教学重点1.集合的概念2.集合与元素的关系四.教学难点正确判断集合与元素的关系五.教学步骤(一)创设情境,引入课题教师例举生活中和初中数学里接触过的有关“集合”的一些实例,并引导学生例举一些生活中集合的例子,启发学生形成集合的一些概念。
(二)温故知新,形成概念1.集合:集合是一个不加定义的概念。
一般地,符合某种条件(或具有某种性质)的对象的全体就构成了一个集合。
一般用大写拉丁文字母A,B,C…表示。
2.元素:集合里的各个对象叫做集合的元素。
一般用小写拉丁字母a,b,c…表示。
我们再来看几个集合的例子:(1)把我校高一年级的所有学生看成一个整体,那么这个年级全体学生不形成一个集合,其中每个学生都是这个集合的一个元素;(2)把中国的直辖市看成一个整体,那么中国的直辖市就形成一个集合,北京.上海.天津.重庆都是这个集合的元素.观察以上的实例,思考集合中元素的特点.3.集合元素的特点(1)集合的元素具有确定性对于给定的集合,它的元素必须是确定的.(2)集合的元素具有互异性对于给定的集合,它的元素必须是互不相同的.也就是说,集合中的元素是不重复出现的.(3)集合的元素具有无序性讲解教材第5页例1注意强调用元素的确定性来判断所指的对象能否组成集合.议一议(1)能否确定你所在的班级中,高个子的同学构成的集合?(2)能否确定你所在的班级中,最高的三位同学组成的集合?4.集合与元素的关系(1)属于;如果a是集合A中的元素,就说a属于A,记做a∈A(2)不属于:如果a不是集合A的元素,就说a不属于A.记做a ²A(注:不属于符号没找到)集合可以根据它含有的元素的个数分为两类:有限集(含有有限个元素).无限集(含有无限个元素).不含任何元素的集合叫做空集,记做Φ5.常用数集(先复习初中数学数的分类)实数集合,用R 表示.有理数集合,用Q表示;整数集合,用Z表示;自然数集合,用N表示;正整数集合,用N*表示;讲解教材第6页例2(三)学生练习教材第6页练习题1.2.3.(四)小结:1.集合.元素的含义.2.集合中元素的特点.3.集合与元素的关系4.常用数集的表示(五)作业布置教材第6页习题一1.2.3.教学反思1.本节课是在学生初中已接触过了集合的基础上,学习集合的第一课时。
高教版中职教材—数学(基础模块)上册电子教案【完整版】(可编辑)
高教版中职教材—数学(基础模块)上册电子教案【完整版】【课题】1.1 集合的概念【教学目标】知识目标:(1)理解集合;会用适的法表示集合集合的表示法集合表示90分钟【教学过程】教学过程教师行为学生行为教学意图时间*新阶段学习导入语介绍中职阶段学习数学的必要性,数学的学习内容、学习方法、学习特点等等.同学们就要开始新的人生阶段了,很高兴可以和大家一起度过这段美好的时光.希望同学们可以通过自己不懈的努力,在毕业后能够找到一个合适的工作,能够独立生存,能够成为为家庭、为企业、为社会做出自我贡献的能工巧匠.当然要达到这样的目的需要你脚踏实地的认真的学做人、学做事,那么现在请让我们从学习开始……1.学习――旅程学习是一段旅程,对知识的探求永无止境,而且这段旅程可以从任何时候开始!未来的成功在现在脚下!2.老师――导游与大家一起开始这一段新的旅程、一起分享学习中的快乐、一起体会成长与进步的滋味.3.目的――运用我们应当能够理解数学,而且通过运用数学进行沟通和推理,在现实生活中应用数学来解决问题,养成一种数学上的自信心理.请不要害怕学数学,每个人都可以根据自己的能力和实际需要学好自己的数学.4.准备――必需品轻松愉快的心情、热情饱满的精神、全力以赴的态度、踏实努力的行动、科学认真的方法、及时真诚的交流.回答为什么要学数学?学什么样的数学?怎么学数学?介绍说明讲解说明倾听了解领会引领学生了解新阶段的数学学习特点重点是要树立学生的数学学习信心8 *揭示课题缤纷多彩的世界,众多繁杂的现象,需要我们去认识.将对象进行分类和归类,加强对其属性的认识,是解决复杂问题的重要手段之一.例如,按照使用功能分类存放物品,在取用时就十分方便.这就是我们将要研究学习的1.1集合.说明了解引入教学内容10 *创设情景兴趣导入问题某商店进了一批货,包括:面包、饼干、汉堡、彩笔、水笔、橡皮、果冻、薯片、裁纸刀、尺子.那么如何将这些商品放在指定的篮筐里?解决显然,面包、饼干、汉堡、果冻、薯片放在食品归纳面包、饼干、汉堡、果冻、薯片组成了食品播放课件质疑引导分析观看课件自我建构从实际事例使学生自然的走向知识点启发学生体会集合概念15 *动脑思考探索新知概念由某些确定的对象组成的整体叫做集合,简称集.组成集合的对象叫做这个集合的元素.如大于2并且小于5的自然数组成的集合是由哪些元素组成?…表示集合,小写英文字母…表示集合的元素.集合中的元素具有下列特点:互异性无序性:一个给定的集合中的元素排列无顺序;3 确定性的所有解;(4)不等式的所有解.解 1 由于小于10的自然数包括0、1、2、3、4、5、6、7、8、9十个数,它们是确定的对象,所以它们可以组成集合.(2)由于个子高没有具体的标准,对象是不确定的,因此不能组成集合.(3)方程的解是?1和1,它们是确定的对象,所以可以组成集合.(4)解不等式,得,它们是确定的对象,所以可以组成集合.类型由方程的所有解组成的集合叫做这个方程的解集.由不等式的所有解组成的集合叫做这个不等式的解集.像方程的解组成的集合那样,由有限个元素组成的集合叫做有限集.像不等式x-2 0的解组成的集合那样,由无限个元素组成的集合叫做无限集.像平面上与点O的距离为2 cm的所有点所有自然数组成的集合叫做自然数集,记作.所有正整数组成的集合叫做正整数集,记作或.所有整数组成的集合叫做整数集,记作.所有有理数组成的集合叫做有理数集,记作.所有实数组成的集合叫做实数集,记作.不含任何元素的集合叫做空集,记作.例如,方程x的实数解的集合是集合A的元素,记作(读作“属于A”),不是集合A的元素,记作(读作“不属于A”).集合中的对象(元素)必须是确定的.对于任何的一个对象,或者属于这个集合,或者不属于这个集合,二者必居其一.总结归纳讲解说明强调质疑分析讲解提问归纳说明引领强调讲解分析讲解理解领会记忆思考回答理解领会明确思考了解理解记忆领会带领学生理解整体个体意义为后习做准备通过例题进一步领会元素确定性观察学生是否理解知识点集合类型比较简单可以让学己分析强调各个数集的内涵和表示字母突出强调符号规范书写35 *运用知识强化练习练习1.1.11.用符号“”或“”填空:(1)?3 ,0.5 ,3 ;(2)1.5 ,?5 ,3 ;(3)?0.2 ,,7.21 ;(4)1.5 ,?1.2 ,.2.指出下列各集合中,哪个集合是空集?(1)方程的解集;(2)方程的解集.提问巡视指导思考动手求解交流及时了解学生知识掌握情况40 *创设情景兴趣导入问题不大于5的自然数不大于5的自然数只有0、1、2、3、4、5这6个,是可以一一列举的.(2)归纳当集合中元素可以一一列举质疑引导讲解总结思考自我分析自我建构用较简单的问题给学生参与学习的起点引导学生得出结论45 *动脑思考探索新知集合的表示有两种方法:(1)列举法.把集合的元素一一列举出来,写在花括号内,元素之间用逗号隔开.如不大于5的自然数.当集合为无限集或为元素很多的有限集时,在不发生误解的情况下可以采用省略的写法.例如,小于100的自然数集可以表示为,正偶数集可以表示为.(2)描述法.在花括号内画一条竖线,竖线的左侧写出集合的代表元素,竖线的右侧写出元素所具有的特征性质.如小于5的实数所组成的集合可表示为.如果从上下文能明显看出集合的元素为实数,那么可以将省略不写.如不等式的解集可以表示为.为了简便起见,有些集合在使用描述法表示时,可以省略竖线及其左边的代表元素,直接用中文来表示集合的特征性质.例如所有正奇数组成的集合可以表示为正奇数.仔细分析讲解关键词语强调说明理解记忆了解理解记忆了解带领学生总结集合两种表示方法特别注意强调写法的规范性50 *巩固知识典型例题例2 用列举法表示下列集合:(1)由大于且小于的所有偶数组成的集合;(2)方程的解集.分析这两个集合都是有限集.(1)题的元素可以直接列举出来;(2)题的元素需要解方程才能得到.解(1)集合表示为;(2)解方程得,.故方程解集为.例3 用描述法表示下列各集合:(1)不等式的解集;(2)所有奇数组成的集合;(3)由第一象限所有的点组成的集合.分析用描述法表示集合关键是找出元素的特征性质.(1)题解不等式就可以得到不等式解集元素的特征性质;(2)题奇数的特征性质是“元素都能写成的形式”.(3)题元素的特征性质是“为第一象限的点”,即横坐标与纵坐标都为正数.解(1)解不等式得,所以解集为;(2)奇数集合;(3)第一象限所有的点组成的集合为.说明强调引领讲解说明引领分析强调说明观察思考主动求解观察思考求解领会思考求解通过例题进一步领会集合的表示注意观察学生理解知识点突出表示法的书写要规范复习对应数学知识60 *运用知识强化练习教材练习1.1.21.用列举法表示下列各集合:(1)方程的解集;(2)方程的解集;(3)由数1,4,9,16,25组成的集合;(4)所有正奇数组成的集合.2.用描述法表示下列各集合:(1)大于3的实数所组成的集合;(2)方程的解集;(3)大于5的所有偶数所组成的集合;(4)不等式的解集.巡视指导动手求解检验学习的效果70 *理论升华整体建构本次课重点学习了集合的表示法:列举法、描述法,用列举法表示集合,元素清晰明了;用描述法表示集合,元素特征性质直观明确.因此表示集合时,要针对实际情况,选用合适的方法.例如,不等式(组)的解集,一般采用描述法来表示,方程(组)的解集,一般采用列举法来表示.总结归纳理解体会从整体再突出集合表示方法75 *巩固知识典型例题例4 用表示下列集合(1)方程x+5 0的解集;()不等式3x-7 5的解集(3)大于3且小于11的偶数组成的集合;()不大于5的所有实数组成的集合;1 ?5 ;2 x| x 4 ;3 4,6,8,10 ;4 x| x≤5 .引领分析讲解说明领会思考求解进行综合解巩固所归纳的强化点80*运用知识强化练习选用适当的方法表示出下列各集合:1 由大于10的所有自然数组成的集合;2 方程的解集;3 不等式的解集;4 平面直角坐标系中第二象限所有的点组成的集合;5 方程的解集;6 不等式组的解集.提问巡视指导归纳强调动手求解交流及时了解学生知识掌握情况85 *归纳小结强化思想本次课学了哪些内容?重点和难点各是什么?(1)本次课学了哪些内容?(2)通过本次课的学习,你会解决哪些新问题了?(3)在学习方法上有哪些体会?引导提问回忆反思培养学生总结学习过程88 *继续探索活动探究1 阅读理解:教材1.1,学习与训练1.1;2 书面作业:教材习题1.1,学习与训练1.1训练题;3 实践调查:探究生活中集合知识的应用说明记录90【课题】1.2 集合之间的关系【教学目标】知识目标:(1)()会90分钟【教学过程】教学过程教师行为学生行为教学意图时间*复习知识揭示课题前面学习了集合的相关问题,试着回忆下面的知识点:1.集合由某些确定的对象组成的整体.元素组成集合的对象.2.常用数集有哪些?用什么字母表示?3.集合的表示法1 列举法:在花括号内,一一列举集合的元素;2 描述法:代表元素|元素所具有的特征性质.4.元素与集合之间有属于或不属于的关系.”或“”填空:1 0 ;2 0 N;3 R;4 0.5 Z; 5 1 1,2,3 ; 2 x|x 1 ;(7)2 x|x 2k+1, kZ .质疑引导强调明确回忆加深回答对前面学习的内容进行复习有助于新内容的学5 *创设情景兴趣导入问题1.表示我班全体学生的集合,表示我班全体男学生的集合,那么,集合与集合之间存在什么关系呢?2.数学,语文,英语,计算机应用基础,体育与健康,物理,化学, N 数学,语文,英语,计算机应用基础,体育与健康,那么集合与集合N之间存在什么关系呢?3.Z与整数集N之间存在什么关系呢?解决显然,问题1中集合的元素(我班的男学生)肯定是集合的元素(我班的学生);问题2中集合的元素肯定是集合的元素;问题3中集合N的元素(自然数)肯定是集合Z的元素(整数).的元素肯定是集合的元素时称集合包含集合.两个集合之间的这种关系叫做包含关系.播放课件质疑引导分析观看课件理解自我建构用问题引导学生思考集合之间关系启发学生体会包含含义10 *动脑思考探索新知概念一般地,如果集合的元素都是集合的元素,那么称集合包含集合,并把集合叫做集合的子集.表示将集合包含集合记作或(读作“包含”或“包含于”).可以用下图表示出这两个集合之间的包含关系.拓展由子集的定义可知,任何一个集合都是它自身的子集,即.规定:空集是任何集合的子集,即.总结归纳说明强调引导介绍理解领会记忆观察了解带领学生理解包含意义特别介绍符号的规范性图形有助学生加深理解15 *巩固知识典型例题例1 用符号“”、“”、“”或“”填空:1 ;2 ;3 ;4 ;5 ;6 .分析“”与“”是用来表示集合与集合之间关系的符号;而“”与“”是用来表示元素与集合之间关系的符号.首先要分清楚对象,然后再根据关系,正确选用符号.解(1)集合的元素都是集合的元素,因此;(2)空集是任何集合的子集,因此;(3)自然数都是有理数,因此;(4)是实数,因此;(5)d不是集合的元素,因此;(6)集合的元素都是集合的元素,因此.说明引领讲解强调观察思考领会主动求解通过例题进一步指导学生元素与集合集合与集合关系的分类确定20 *运用知识强化练习教材练习1.2.1用符号“”、“”、“”或“”填空:(1);(2);(3);(4);(5);(6).提问巡视指导动手求解交流了解学生知识掌握情况25 *动脑思考探索新知概念如果集合B是集合A的子集,并且集合A中至少有一个元素不属于集合B,那么把集合B叫做集合A的真子集.表示记作或,读作“A真包含B”(或“B真包含于A”).拓展空集是任何非空集合的真子集.对于集合A、B、C,如果AB,BC,则AC *巩固知识典型例题例2选用适当的符号”或“”填空:1 1,3,5 __ 1,2,3,4,5 ;2 2 _ _ x| |x| 2 ;3 1 _ .解 1 1,3,5 1,2,3,4,5 ; 2 2 x| |x| 2 ; 31 .例3 设集合,试写出的所有子集,并指出其中的真子集.分析集合中有3个元素,可以分别列出空集、含1个元素的集合、含2个元素的集合、含3个元素的集合.解的所有子集为.除集合外,所有集合都是集合的真子集.说明讲解说明讲解强调主动求解思考理解通过例题进一步理解真包含的含义特别提醒注意空集35 *运用知识强化练习练习1.2.21.设集合,试写出的所有子集,并指出其中的真子集.2.设集合,集合,指出集合A与集合B之间的关系.巡视求解交流检验学习效果40 *创设情景兴趣导入问题设集合A x|x2-1 0 ,B -1,1 ,x2-1 0的解是x1 -1,x2 1,所以说集合A中的元素就是1,-1,可以看出集合A与集合B中的元素完全相同,集合A与集合B 相等.归纳集合A与集合B中的元素完全相同,只是表示方法不同,我们就说集合A与集合B 相等,即A B.质疑引导分析总结思考理解自我建构学生体会相等含义45 *动脑思考探索新知概念一般地,如果两个集合的元素完全相同,那么就说这两个集合相等.表示将集合与集合相等记作.拓展如果,同时,那么集合的元素都属于集合A,同时集合A的元素都属于集合,因此集合A与集合的元素完全相同,由集合相等的定义知.讲解强调说明领会记忆理解强调相等的本质含义50 *巩固知识典型例题例4 判断集合与集合的关系.分析要通过研究两个集合的元素之间的关系来判断这两个集合之间的关系.解由得或,所以集合A用列举法表示为;由得或,所以集合B用列举法表示为;可以看出,这两个集合的元素完全相同,因此它们相等,即.质疑提问分析引领思考主动求解总结归纳注意第一节中有关知识55 *运用知识强化练习判断集合A与B是否相等?1 A 0 ,B2 A …,-5,-3,-1,1,3,5,…, x| x 2m+1 ,mZ ;3 A x| x 2m-1 ,mZ , x| x 2m+1 ,mZ .巡视指导动手求解检验学习的效果60 *理论升华整体建构元素与集合关系:属于与不属于、;集合与集合关系:子集、真子集、相等、、;首先要分清楚对象,然后再根据关系,正确选用符号.总结理解体会从整体再次突出65 *巩固知识典型例题例5 用适当的符号填空 1,3,51,2,3,4,5,6; 3,-3 ⑶ 2 x| |x| 2 ;⑷ 2 N;⑸ a a ;⑹ 0 ?;⑺ .解; x|x2 9 3,-3 ⑷ 2∈N;⑸ a∈ a ;⑹ ?; ?,.引领分析质疑讲解说明领会思考求解强化巩固所归纳强化点,可以适当的教给学生完成,再进行核对75 *运用知识强化练习用适当的符号填空;(2);(3);(4);(5);(6);(7);(8).提问巡视指导求解汇总交流及时了解学生知识掌握情况80 *归纳小结强化思想本次课学了哪些内容?重点和难点各是什么?*自我反思目标检测本次课采用了怎样的学习方法?你是如何进行学习的?你的学习效果如何?引导提问回忆反思培养学生学习过程能力85 *继续探索活动探究1 阅读:教材章节1.2;学习与训练1.2;2 书写:习题1.2,学习与训练1.2训练题;3 实践:寻找集合和集合关系的生活实例.说明记录90【课题】 1.3集合的运算(1)【教学目标】知识目标:(1)理解并集与交集的概念;(2)会求出两个集合的并集与交集.能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过交集与并集问题的研究,培养学生的数学思维能力.【教学重点】交集与并集.【教学难点】用描述法表示集合的交集与并集.【教学设计】(1)通过生活中的实例导入交集与并集的概念,提高学习兴趣;(2)通过对实例的归纳,针对用“列举法”及“描述法”表示集合的运算的不同特征,采用由浅入深的训练,帮助学生加深对知识的理解;(3)通过学生的解题实践,总结比较,理解交集与并集的特征,完成知识的升华;(4)讲与练结合,教学要符合学生的认知规律.【教学备品】教学课件.【课时安排】2课时. 90分钟【教学过程】教学过程教师行为学生行为教学意图时间*揭示课题1.3集合的运算*创设情景兴趣导入问题1 在运动会上,某班参加百米赛跑的有4名同学,参加跳高比赛的有6名同学,既参加百米赛跑又参加跳高比赛的同学有2名同学,那么这些同学之间有什么关系?问题2 某班第一学期的三好学生有李佳、王燕、张洁、王勇;第二学期的三好学生有王燕、李炎、王勇、孙颖,那么该班哪些同学连续两个学期都是三好学生?用我们学过的集合来表示:A 李佳,王燕,张洁,王勇;B 王燕,李炎,王勇,孙颖;C 王燕,王勇 .那么这三个集合之间有什么关系?问题3 集合A 直角三角形;B 等腰三角形;C 等腰直角三角形、的相同元素所组成的,这时,将C称作是A与B的交集.质疑引导分析归纳总结思考自我分析了解从实际事例使学生自然的走向知识点引导式启发学生思考集合元素之间的关系5 *动脑思考探索新知一般地,对于两个给定的集合A、B,由集合、的相同元素所组成的集合叫做与的交集,记作,读作“交”.即.集合A与集合B的交集可用下图表示为:求两个集合集的运算叫做运算*巩固知识典型例题例1 已知集合AB,求A∩B.1 A 1,2 ,B 2,3 ; 2 A a,b ,B c,d , e , f ;3 A 1,3,5 ,B4 A 2,4 ,B 2,3,4 .分析因为 AB 是由集合A和集合B中的元素组成的集合解 1 相同元素是2A∩B 1,2 ∩ 2,3 2 ;2 没有元素AB a , b ∩ c, d , e , f ;3 因为A 是不含任何元素的空集,所以它们的交集是不含任何元素的空集,即A∩B ;4 因为AA∩B A.例2设,,求.分析集合表示方程的解集;集合表示方程的解集.两个解集的交集就是二元一次方程组的解集.解解方程组得所以.例3 设,,求.分析这两个集合都是用描述法表示的集合,并且无法列举出集合的元素.我们知道,这两个集合都可以在数轴上表示出来,如下图所示.观察图形可以得到这两个集合的交集.解.由交集定义和上面的例题,可以得到:对于任意两个集合A,B,都有;(2),;(3);(4)如果. 说明强调引领讲解说明引领强调含义说明启发引导观察思考主动求解观察思考求解领会思考求解通过例题进一步领会交集注意观察学生是否理解知识点复习方程组的解法突出数轴的作用数形结合可以交给学生自我发现归纳25 *运用知识强化练习练习1.3.11.设,,求.2.设,,求.3.设,,求.提问巡视指导动手求解交流及时了解知识掌握情况35 *创设情景兴趣导入问题1 某班有团员34名,非团员11名,那么该班有多少名同学?用我们学过的集合来表示:A 该班团员;B 该班非团员;C 该班同学 .那么这三个集合之间有什么关系?问题2 某班第一学期的三好学生有李佳、王燕、张洁、王勇;第二学期的三好学生有王燕、李炎、王勇、孙颖,那么该班第一学年的三好学生都有哪些同学?用我们学过的集合来表示:A 李佳,王燕,张洁,王勇;B 王燕,李炎,王勇,孙颖;C 李佳,王燕,张洁,王勇,李炎,孙颖 .那么这三个集合之间有什么关系?问题3 集合A 锐角三角形;B 钝角三角形;C 斜三角形 .那么这三个集合之间有什么关系?解决通过上面的三个问题的思考,可以看出集合C中的元素是由集合A、B的所有元素所组成的,这时,将C称作是A与B的并集.介绍质疑分析了解观看课件思考自我分析从实际事例使学生自然的走向知识点引导式启发学理解集合的元系40 *动脑思考探索新知一般地,对于两个给定的集合A、B,由集合、的所有元素所组成的集合叫做与的并集,记作(读作“A并B”).即.集合A与集合B的并集可用图形表示为:求两个集合并集的运算叫做并运算总结归纳仔细分析讲解关键词语思考理解记忆带领学生总结三个的统一点得到并集含义45 *巩固知识典型例题例4 已知集合AB,求A∪B.1 A 1,2 ,B 2,3 ; 2 A a , b ,B c, d , e , f ;3 A 1,3,5 ,B4 A 2,4 ,B 2,3,4 .分析因为AB是由集合A集合B的元素组成,解 1 A∪B 1,2 ∪ 2,3 1,2,3 ;2 A∪B a , b ∪ c , d , e , f a , b, c , d , e, f ;?3 因为所以A∪B 1,3,5 ∪ 1,3,5 ;4 集合A是集合B的真子集,A∪B 1,2,3,4 B.由并集定义和上面的例题,可以得到:对于任意两个集合AB,都有(1);(2);(3)(4)如果那么说明。
中职数学基础模块上册集合的运算word教案
1 课时序号2012 学年第1 学期第1。
2 课时工作课时 2 课时授课班级12机电预1授课时间课的类型新授课√练习课实验课复习课测验课综合课教学内容集合的概念教学目标1. 初步理解集合的概念;理解集合中元素的性质.2. 初步理解“属于”关系的意义;知道常用数集的概念及其记法.3. 引导学生发现问题和提出问题,培养独立思考和创造性地解决问题的意识.教材分析重点集合的基本概念,元素与集合的关系.难点正确理解集合的概念教具准备教学后记本节课采用问题教学和讲练结合的教学方法,运用现代化教学手段,通过创设情景,引导学生自己独立地去发现、分析、归纳,形成概念.【引课】师生共同欣赏图片“中国所有的大熊猫”、“我们班的所有同学”.师:“物以类聚”;“人以群分”;这些都给我们以集合的印象.引入课题【新授】课件展示引例:(1) 某学校数控班学生的全体;(2) 正数的全体;(3) 平行四边形的全体;(4) 数轴上所有点的坐标的全体1. 集合的概念.(1) 一般地,把一些能够确定的对象看成一个整体,我们就说,这个整体是由这些对象的全体构成的集合(简称为集).(2) 构成集合的每个对象都叫做集合的元素.(3) 集合与元素的表示方法:一个集合,通常用大写英文字母A,B,C,…表示,它的元素通常用小写英文字母a,b,c,…表示.2. 元素与集合的关系.(1) 如果a 是集合A 的元素,就说a属于A,记作a∈A,读作“a属于A”.(2)如果a不是集合A的元素,就说a不属于A,记作a∉A.读作“a不属于A”.3. 集合中元素的特性.(1) 确定性:作为集合的元素,必须是能够确定的.这就是说,不能确定的对象,就不能构成集合.(2) 互异性:对于一个给定的集合,集合中的元素是互异的.这就是说,集合中的任何两个元素都是不同的对象.4. 集合的分类.(1) 有限集:含有有限个元素的集合叫做有限集.(2) 无限集:含有无限个元素的集合叫做无限集.5. 常用数集及其记法.(1) 自然数集:非负整数全体构成的集合,记作N;(2) 正整数集:非负整数集内排除0的集合,记作N+或N*;(3) 整数集:整数全体构成的集合,记作Z;(4) 有理数集:有理数全体构成的集合,记作Q;(5) 实数集:实数全体构成的集合,记作R.【巩固】例1 判断下列语句能否构成一个集合,并说明理由.(1) 小于10 的自然数的全体;(2) 某校高一(2)班所有性格开朗的男生;(3) 英文的26 个大写字母;(4) 非常接近1 的实数.练习1 判断下列语句是否正确:(1) 由2,2,3,3构成一个集合,此集合共有4个元素;(2) 所有三角形构成的集合是无限集;(3) 周长为20 cm 的三角形构成的集合是有限集;(4) 如果a ∈Q,b ∈Q,则a+b ∈Q.例2 用符号“∈”或“∉”填空:(1) 1 N ,0 N ,-4 N , N ;(2) 1 Z ,0 Z ,-4 Z , Z ; (3) 1 Q ,0 Q ,-4 Q , Q ;(4) 1 R ,0 R ,-4 R , R . 练习2 用符号“∈”或“∉”填空:(1) -3 N ;(2) Q ;(3) 13 Z ;(4) -12R ;(5) 2 R ; (6) 0 Z【小结】1. 集合的有关概念:集合、元素.2. 元素与集合的关系:属于、不属于.3. 集合中元素的特性.4. 集合的分类:有限集、无限集.5. 常用数集的定义及记法.【作业】教材P4,练习A 组第1~3题浙江省衢州中等专业学校课时工作计划2 课时序号2012 学年第1 学期第课时工作课时 2 课时授课班级12机电预1授课时间课的类型新授课√练习课实验课复习课测验课综合课教学内容集合的表示方法教学目标1. 掌握集合的表示方法;能够按照指定的方法表示一些集合.2. 发展学生运用数学语言的能力;培养学生分析、比较、归纳的逻辑思维能力.3. 让学生感受集合语言的意义和作用,学习从数学的角度认识世界;通过合作学习培养学生的合作精神.教材分析重点集合的表示方法,即运用集合的列举法与描述法,正确表示一些简单的集合.难点集合特征性质的概念,以及运用描述法表示集合教具准备教学后记本节课采用实例归纳,自主探究,合作交流等方法.在教学中通过列举例子,引导学生讨论和交流,并通过创设情境,让学生自主探索一些常见集合的特征性质【引课】1. 集合、元素、有限集和无限集的概念是什么?2. 用符号“∈”与“∉”填空白:(1) 0 N;(2) -2Q;(3)-2R.师:刚才复习了集合的有关概念,这节课我们一起研究如何将集合表示出来.【新授】1. 列举法.当集合元素不多时,我们常常把集合的元素列举出来,写在大括号“{}”内表示这个集合,这种表示集合的方法叫列举法.例如,由1,2,3,4,5,6这6个数组成的集合,可表示为:{1,2,3,4,5,6}.又如,中国古代四大发明构成的集合,可以表示为:{指南针,造纸术,活字印刷术,火药}.有些集合元素较多,在不发生误解的情况下,可列几个元素为代表,其他元素用省略号表示.如:小于100的自然数的全体构成的集合,可表示为{0,1,2,3,…,99}.例1 用列举法表示下列集合:(1) 所有大于3且小于10的奇数构成的集合;(2) 方程x2-5 x+6=0的解集.解(1) {5,7,9};(2) {2,3}.练习1 用列举法表示下列集合:(1) 大于3小于9的自然数全体;(2) 绝对值等于1的实数全体;(3) 一年中不满31天的月份全体;(4) 大于且小于的整数的全体.2. 性质描述法.给定x 的取值集合I,如果属于集合A 的任意元素x 都具有性质p(x),而不属于集合A 的元素都不具有性质p(x),则性质p(x)叫做集合A的一个特征性质,于是集合A 可以用它的特征性质描述为{x∈I | p(x)} ,它表示集合A是由集合I 中具有性质p(x)的所有元素构成的.这种表示集合的方法,叫做性质描述法.使用特征性质描述法时要注意:(1) 特征性质明确;(2) 若元素范围为R,“x∈R”可以省略不写.【巩固】例2 用性质描述法表示下列集合:(1) 大于3的实数的全体构成的集合;(2) 平行四边形的全体构成的集合;(3) 平面α内到两定点A,B 距离相等的点的全体构成的集合.解(1){ x | x >3};(2){ x | x是两组对边分别平行的四边形};(3) l={ P ∈α,|PA|=|PB|,A,B 为α内两定点}.练习2 用性质描述法表示下列集合:(1) 目前你所在班级所有同学构成的集合;(2) 正奇数的全体构成的集合;(3) 绝对值等于3的实数的全体构成的集合;(4) 不等式4 x-5<3的解构成的集合;(5)所有的正方形构成的集合.【小结】本节课学习了以下内容:1. 列举法.2. 性质描述法.3. 比较两种表示集合的方法,分析它们所适用的不同情况【作业】教材P9,练习B组第1,2题.3 课时序号2012 学年第1 学期第课时工作课时 2 课时授课班级12机电预1授课时间课的类型新授课√练习课实验课复习课测验课综合课教学内容集合之间的关系(一)教学目标1. 理解子集、真子集概念;掌握子集、真子集的符号及表示方法;会用它们表示集合间的关系.2. 了解空集的意义;会求已知集合的子集、真子集并会用符号及Venn图表示.3. 培养学生使用符号的能力;建立数形结合的数学思想;培养学生用集合的观点分析问题、解决问题的能力.教材分析重点子集、真子集的概念难点集合间包含关系的正确表示教具准备教学后记采用讲练结合、问题解决式教学方法,并运用现代化教学手段辅助教学.设计典型题目,并提出问题,层层引导学生探究知识,让学生在完成题目的同时,思维得以深化;切实体现以人为本的思想,充分发挥学生的主观能动性,培养其探索精神和运用数学知识的意识已知:M ={-1,1},N ={-1,1,3},P ={ x | x 2-1=0}.问 1. 哪些集合表示方法是列举法? 2. 哪些集合表示方法是描述法?3. 集合 M 中元素与集合 N 有何关系?集合 M 中元素与集合 P 有何关系?【新授】1. 子集定义.如果集合A 的任何一个元素都是集合B 的元素,那么集合A 叫做集合B 的子集. 记作 A ⊆ B 或B ⊇ A ;读作 “A 包含于B ”,或“B 包含A ”. 2. 真子集定义.如果集合A 是集合B 的子集,并且集合B 中至少有一个元素不属于A ,那么集合A 是集合B 的真子集.记作 A ⊂≠ B (或B ⊃≠ A ); 读作 “A 真包含于B ”, 或“B 真包含A ”. 3. Venn 图表示.集合B 同它的真子集A 之间的关系,可用Venn 图表示如下.4. 空集定义.不含任何元素的集合叫空集. 记作 ∅.如,{x | x 2<0};{x | x +1=x +2},这两个集合都为空集. 5.性质.(1) A ⊆ A任何一个集合是它本身的子集. (2) ∅ ⊆ A空集是任何集合的子集.(3) 对于集合A ,B ,C ,如果A ⊆ B ,B ⊆ C ,则A ⊆C . (4) 对于集合A ,B ,C ,如果A ⊂≠B ,B ⊂≠C ,则 A ⊂≠C .AB例1 判断:集合A是否为集合B的子集,若是则在( )打“√”,若不是则在( )打“×”.(1) A={1,3,5},B={1,2,3,4,5,6} ( )(2) A={1,3,5},B={1,3,6,9} ( )(3) A={0},B={ x|x2+2=0}( )(4) A={ a,b,c,d },B={ d,b,c,a } ( )例2 (1) 写出集合A={1,2}的所有子集及真子集.(2) 写出集合B={1,2,3}的所有子集及真子集.解(1)集合 A 的所有子集是∅,{1},{2},{1,2}.在上述子集中,除去集合A本身,即{1,2},剩下的都是A的真子集.(2) 集合B的所有子集是∅,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}.在上述子集中,除去集合B本身,即{1,2,3},剩下的都是B的真子集.练习写出集合A={a,b,c}的所有子集及真子集.【小结】1. 子集.2. 真子集【作业】教材P12,练习A组第3、4题4 课时序号2012 学年第1 学期第课时工作课时2课时授课班级12机电预1授课时间课的类型新授课√练习课实验课复习课测验课综合课教学内容集合之间的关系(二)教学目标1. 理解两个集合相等概念.能判断两集合间的包含、相等关系.2. 理解掌握元素与集合、集合与集合之间关系的区别.3. 学习类比方法,渗透分类思想,提高学生思维能力,增强学生创新意识教材分析重点1. 理解集合间的包含、真包含、相等关系及传递关系.2. 元素与集合、集合与集合之间关系的区别.难点弄清元素与集合、集合与集合之间关系的区别教具准备教学后记本节课采用讲练结合、问题解决式教学方法,并运用现代化教学手段进行教学.使学生初步经历使用最基本的集合语言表示有关数学对象的过程,体会集合语言,发展运用数学语言进行交流的能力.精心设计问题情境,引起学生强烈的求知欲望,通过启发,使学生的思考、发现、归纳等一系列的探究思维活动始终处于自主的状态中.【引课】课件展示下列集合:(1) A={1,3},B={1,3,5,6};(2)C={x | x 是长方形},D={x | x是平行四边形};(3) P={x | x 是菱形},Q={x | x 是正方形};(4) S={x | x>3},T={x | 3 x-6>3};(5) E={x|(x+1)(x+2)=0},F={-1,-2}.师提出问题:1.第(1),(2),(3)题中两个集合的关系如何?2.第(4),(5)题中,第二个集合是不是第一个集合的子集?第一个集合是不是第二个集合的子集?生:观察并回答问题.师继续提出问题:第(4),(5)题中,两个集合中的元素有什么特点?【新授】如果两个集合的元素完全相同,那么我们就说这两个集合相等.记作A=B.读作集合A等于集合B.如果A ⊆B,且B ⊆A,那么A=B;反之,如果A=B,那么A⊆B,且B ⊆A.例1指出下面各组中集合之间的关系:(1) A={x | x2-9=0},B={-3,3};(2) M={x | |x|=1},N={-1,1}.解(1) A=B;(2) M=N.例2判断以下各组集合之间的关系:(1) A={2,4,5,7},B={2,5};(2) P={x | x2=1},Q={-1,1};(3) C={x | x 是正奇数},D={x | x是正整数};(4) M={x | x 是等腰直角三角形},N={x | x 是有一个角是45︒的直角三角形}.解(1) B ⊂≠A;(2) P=Q;(3) C ⊂≠D;(4) M=N.【巩固】练习1用适当的符号(∈,∉,=,⊂≠,⊃≠)填空:(1) a{a,b,c};(2) {4,5,6} {6,5,4};US TF(3) {a } {a ,b ,c }; (4) {a , b ,c } { b ,c };(5) ∅ {1,2,3}; (6) {x | x 是矩形} {x | x 是平行四边形}; (7) 5 {5}; (8) {2,4,6,8} {2,8}. 例3 指出下列各集合之间的关系,并用Venn 图表示:A ={x |x 是平行四边形},B ={x |x 是菱形},C ={x |x 是矩形},D ={x |x 是正方形}. 解 练习2集合U ,S ,T ,F 如图所示,下列关系中哪些是对的?哪些是错的?(1) S ⊂≠ U ; (2) F ⊂≠ T ; (3) S ⊂≠ T ; (4) S ⊃≠ F ; (5) S ⊂≠ F ; (6) F ⊃≠ U .【小结】1. 子集,真子集,集合相等.2. 元素与集合、集合与集合的关系.【作业】教材P12,练习B 组第1、2、3题5课时序号2012 学年第1 学期 第 课时工作课时2 课时ABCD授课班级12机电预1授课时间9. 28课的类型新授课√练习课实验课复习课测验课综合课教学内容集合的运算(一)教学目标1. 理解交集与并集的概念与性质.2. 掌握交集和并集的表示法,会求两个集合的交集和并集.3. 发展学生运用数学语言进行表达、交流的能力;培养学生观察、归纳、分析的能力教材分析重点交集与并集的概念与运算难点交集和并集的概念、符号之间的区别与联系教具准备教学后记主要采用发现式教学法和自学法.运用现代化教学手段,通过创设情景,提出问题,引导学生自己独立地去发现问题、分析归纳、形成概念.并通过对比,自学相似概念,深化对概念的理解【引课】实例引入,以我校食堂每天买菜的品种构成的集合为例,引出集合运算的定义.第一天买菜的品种构成的集合记为A={黄瓜,冬瓜,鲫鱼,虾,茄子};第二天买菜的品种构成的集合记为B={黄瓜,猪肉,毛豆,芹菜,虾,土豆}.师:提出问题:1. 两天所买相同菜的品种构成的集合记为C,则集合C 等于什么?2. 两天买过的所有菜的品种构成的集合记为D,则集合D 等于什么?生:思考,感知集合运算【新授】一、集合的交1. 交集的定义.给定两个集合A,B,由既属于A又属于B的所有公共元素所构成的集合,叫做A,B 的交集.记作A∩ B,读作“A交B”.2. 交集的Venn图表示.A B A BA (B) A B3. 交集的性质.(1) A ∩ B B ∩ A;(2) (A ∩ B) ∩ C A ∩ (B ∩ C);(3) A ∩ A=;(4)A ∩ ∅=∅A=.例1(1) 已知:A={1,2,3},B={3,4,5},C={5,3},则 A ∩ B=;B ∩ C=;(A∩ B)∩ C=.例2(1)已知A={x | x 是奇数},B={x | x 是偶数},Z={x | x 是整数},求A∩ Z,B∩ Z,A∩ B.解A∩ Z={x | x 是奇数} ∩ {x | x是整数}={x | x 是奇数}=A;B∩ Z={x | x 是偶数} ∩ {x | x是整数}={x | x 是偶数}=B;A∩ B={x | x 是奇数} ∩ {x | x是偶数}=∅.二、集合的并1. 并集的定义.给定两个集合A,B,把它们所有的元素合并在一起构成的集合,叫做A与B的并集记作A∪B,读作“A并B”.2. 并集的Venn图表示.A B A B3. 并集的性质.(1) A ∪B B ∪A;(2) (A∪B)∪C A∪(B∪C);(3) A ∪A=;(4)A ∪∅=∅A=.例1(2) 已知:A={1,2,3},B={3,4,5},C={5,3}.则 A ∪B=;B ∪C=;(A∪B)∪C=.例2(2)已知A={x | x 是奇数},B={x | x 是偶数},Z={x | x 是整数},求A ∪Z,B∪Z,A∪B.解A∪Z={x | x 是奇数} ∪{x | x 是整数}={x | x 是整数}=Z;B∪Z={x | x 是偶数} ∪{x | x是整数}={x | x 是整数}=Z;A ∪B={x | x 是奇数} ∪{x | x是偶数}={x | x 是整数}=Z.【巩固】例3已知C={x | x≥1},D={x | x<5},求 C ∩ D,C∪D.解 C ∩ D={x | x≥1} ∩ {x | x<5}={x | 1≤x<5};C∪D={x | x≥1}∪{x | x<5}=R.练习1 已知A={x | x是锐角三角形},B={x | x 是钝角三角形}.求A∩ B,A∪B.练习2 已知A={x | x是平行四边形},B={x | x 是菱形},求A∩ B,A∪B.练习3 已知A={x | x 是菱形},B={x | x 是矩形},求A∩ B.例4 已知A={(x,y) | 4 x+y=6},B={(x,y)| 3 x+2 y=7},求A∩ B.解A∩ B={(x,y)| 4 x+y=6} ∩ {(x,y)| 3 x+2 y=7}}={(x,y)|⎩⎨⎧4 x+y=63 x+2 y=7={(1,2)}.【小结】定义记法图示性质交集并集【作业】教材P16,练习A组第1~4题。
中职数学教案:集合的运算
中等专业学校2024-2025-1教案
为研究方便,用序号代表学生.例如,“1”代表学生“李瑞凯”.
女生组成的集合为M={5,6,7,8} , 共青团员组成的集合为N={1,3,5,7,8} .
那么, 集合M 与集合N 有什么关系?可
以看出,女生共青团员组成的集合
S={5,7,8}.这个集合的元素既在女生集合M={5,6,7,8}中,又在团员集合N={1,3,5,7,8}
例1 设集合A ={2,4,6}, 集合B ={0,1,2}, 求
A∩B.
分析 2 是集合A 与集合B 的公共元素. 解A∩B={2,4,6}∩{0,1,2}={2}.
例2 设集合A ={(x,y) |x -y=1},集合B ={(x,y)
|x+y=5}.求A∩B.
分析集合A表示方程x-y=1的解集,集合B表示方程x+y=5的解集.所以两个集合的交集就
是方程组⎧x -y =1 的解集.
⎨
⎩x+y = 5
解解方程组⎧x -y =1
得到
⎧x =3
,所以
⎨⎨
一般地,如果集合A 是全集U 的一个子集,则由集合U 中不属于集合A 的所有元素组成的集合称为集合A 在全集U 中的补集,记作∁U A.即∁U A={x|x∈U 且x A}.
“情境与问题”中,不是共青团员的学生组成的集合E={2,4,6}就是共青团员组成的集合N={1,3,5,7,8}在全集U={1,2,3,4,5,6,7,8}中的
补集,即∁U N= E.
集合A 在全集U 中的补集可以用V een 图中的阴影部分表示.。
中职数学基础模块上册集合的运算word教案.doc
百度文库- 让每个人平等地提升自我No 。
1 课时序号2012 学年第 1 学期第1。
2课时工作课时 2 课时授课班级12 机电预 1授课时间课的类型新授课√练习课实验课复习课测验课综合课集合的概念教学内容教1. 初步理解集合的概念;理解集合中元素的性质.学2.目初步理解“属于”关系的意义;知道常用数集的概念及其记法.标 3. 引导学生发现问题和提出问题,培养独立思考和创造性地解决问题的意识.教重集合的基本概念,元素与集合的关系.材点分析难正确理解集合的概念点教具准备教本节课采用问题教学和讲练结合的教学方法,运用现代化教学手段,通过创设情景,引学导学生自己独立地去发现、分析、归纳,形成概念.后记【引课】师生共同欣赏图片“中国所有的大熊猫”、“我们班的所有同学” .师:“物以类聚” ;“人以群分” ;这些都给我们以集合的印象.引入课题【新授】课件展示引例:(3) 平行四边形的全体;(4) 数轴上所有点的坐标的全体1.集合的概念.(1)一般地,把一些能够确定的对象看成一个整体,我们就说,这个整体是由这些对象的全体构成的集合 (简称为集 ).(2)构成集合的每个对象都叫做集合的元素.(3) 集合与元素的表示方法:一个集合,通常用大写英文字母A,B,C,表示,它的元素通常用小写英文字母a,b, c,表示.2.元素与集合的关系.(1)如果 a 是集合 A 的元素,就说 a 属于A,记作 a A,读作“ a 属于 A”.(2)如果 a 不是集合 A 的元素,就说 a 不属于 A,记作 a A.读作“ a 不属于 A”.3.集合中元素的特性.(1)确定性:作为集合的元素,必须是能够确定的.这就是说,不能确定的对象,就不能构成集合.(2)互异性:对于一个给定的集合,集合中的元素是互异的.这就是说,集合中的任何两个元素都是不同的对象.4.集合的分类.(1)有限集:含有有限个元素的集合叫做有限集.(2)无限集:含有无限个元素的集合叫做无限集.5.常用数集及其记法.(1)自然数集:非负整数全体构成的集合,记作N;(2) 正整数集:非负整数集内排除0 的集合,记作N +或 N* ;(3)整数集:整数全体构成的集合,记作Z ;(4)有理数集:有理数全体构成的集合,记作Q;(5)实数集:实数全体构成的集合,记作R .【巩固】例 1判断下列语句能否构成一个集合,并说明理由.(1)小于 10 的自然数的全体; (2) 某校高一 (2)班所有性格开朗的男生;(3) 英文的26 个大写字母;(4) 非常接近 1 的实数.练习 1判断下列语句是否正确:(1) 由 2, 2,3, 3 构成一个集合,此集合共有 4 个元素;(2)所有三角形构成的集合是无限集;(3)周长为 20 cm 的三角形构成的集合是有限集;(4) 如果 a Q, b Q,则a+ b Q.例 2 用符号“ ”或“ ”填空:(1) 1 N , 0 N ,- 4 N , N ; (2) 1 Z ,0 Z ,- 4 Z , Z ;(3) 1 Q , 0 Q ,- 4 Q , Q ; (4) 1 R , 0 R ,-4 R , R .练习 2 用符号 “ ”或 “ ”填空:1(1) -3N ;(2)Q ;(3) 3Z ;(4) 1R ;(5) 2R ; (6) 0Z- 2【小结】1. 集合的有关概念:集合、元素.2. 元素与集合的关系:属于、不属于.3. 集合中元素的特性.4. 集合的分类:有限集、无限集.5. 常用数集的定义及记法.【作业】教材 P4,练习 A 组第 1~3 题浙江省衢州中等专业学校课时工作计划No 。
中职数学基础模块上册(人教版)教案
中职数学基础模块上册(人教版)全套教案一、教案内容:第1章集合1.1 集合的概念教学目标:了解集合的概念,掌握集合的表示方法。
教学重点:集合的概念,集合的表示方法。
教学难点:理解集合的相等性和包含性。
教学准备:教材、黑板、粉笔。
教学过程:引入集合的概念,讲解集合的表示方法,举例说明。
1.2 集合的关系教学目标:了解集合之间的关系,掌握集合的并、交、补运算。
教学重点:集合之间的关系,集合的并、交、补运算。
教学难点:理解集合的运算法则。
教学准备:教材、黑板、粉笔。
教学过程:讲解集合之间的关系,举例说明并、交、补运算。
二、教案内容:第2章函数2.1 函数的概念教学目标:了解函数的概念,掌握函数的表示方法。
教学重点:函数的概念,函数的表示方法。
教学难点:理解函数的定义域和值域。
教学准备:教材、黑板、粉笔。
教学过程:引入函数的概念,讲解函数的表示方法,举例说明。
2.2 函数的性质教学目标:了解函数的性质,掌握函数的单调性、奇偶性、周期性。
教学重点:函数的性质,函数的单调性、奇偶性、周期性。
教学难点:理解函数的性质。
教学准备:教材、黑板、粉笔。
教学过程:讲解函数的性质,举例说明单调性、奇偶性、周期性。
三、教案内容:第3章实数与不等式3.1 实数的概念教学目标:了解实数的概念,掌握实数的分类。
教学重点:实数的概念,实数的分类。
教学难点:理解实数的性质。
教学准备:教材、黑板、粉笔。
教学过程:引入实数的概念,讲解实数的分类,举例说明。
3.2 不等式的解法教学目标:了解不等式的解法,掌握不等式的解法技巧。
教学重点:不等式的解法,不等式的解法技巧。
教学难点:理解不等式的解法。
教学准备:教材、黑板、粉笔。
教学过程:讲解不等式的解法,举例说明解法技巧。
四、教案内容:第4章平面几何4.1 点、线、面的关系教学目标:了解点、线、面的关系,掌握直线、平面的方程。
教学重点:点、线、面的关系,直线、平面的方程。
教学难点:理解点、线、面的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1【引课】师生共同欣赏图片“中国所有的大熊猫”、“我们班的所有同学”.师:“物以类聚”;“人以群分”;这些都给我们以集合的印象.引入课题【新授】课件展示引例:(1) 某学校数控班学生的全体;(2) 正数的全体;(3) 平行四边形的全体;(4) 数轴上所有点的坐标的全体1. 集合的概念.(1) 一般地,把一些能够确定的对象看成一个整体,我们就说,这个整体是由这些对象的全体构成的集合(简称为集).(2) 构成集合的每个对象都叫做集合的元素.(3) 集合与元素的表示方法:一个集合,通常用大写英文字母A,B,C,…表示,它的元素通常用小写英文字母a,b,c,…表示.2. 元素与集合的关系.(1) 如果a 是集合A 的元素,就说a属于A,记作a∈A,读作“a属于A”.(2)如果a不是集合A的元素,就说a不属于A,记作a∉A.读作“a不属于A”.3. 集合中元素的特性.(1) 确定性:作为集合的元素,必须是能够确定的.这就是说,不能确定的对象,就不能构成集合.(2) 互异性:对于一个给定的集合,集合中的元素是互异的.这就是说,集合中的任何两个元素都是不同的对象.4. 集合的分类.(1) 有限集:含有有限个元素的集合叫做有限集.(2) 无限集:含有无限个元素的集合叫做无限集.5. 常用数集及其记法.(1) 自然数集:非负整数全体构成的集合,记作N;(2) 正整数集:非负整数集内排除0的集合,记作N+或N*;(3) 整数集:整数全体构成的集合,记作Z;(4) 有理数集:有理数全体构成的集合,记作Q;(5) 实数集:实数全体构成的集合,记作R.【巩固】例1 判断下列语句能否构成一个集合,并说明理由.(1) 小于10 的自然数的全体;(2) 某校高一(2)班所有性格开朗的男生;(3) 英文的26 个大写字母;(4) 非常接近1 的实数.练习1 判断下列语句是否正确:(1) 由2,2,3,3构成一个集合,此集合共有4个元素;(2) 所有三角形构成的集合是无限集;(3) 周长为20 cm 的三角形构成的集合是有限集;(4) 如果a ∈Q,b ∈Q,则a+b ∈Q.例2 用符号“∈”或“∉”填空:(1) 1 N ,0 N ,-4 N ,0.3 N ;(2) 1 Z ,0 Z ,-4 Z ,0.3 Z ; (3) 1 Q ,0 Q ,-4 Q ,0.3 Q ;(4) 1 R ,0 R ,-4 R ,0.3 R . 练习2 用符号“∈”或“∉”填空:(1) -3 N ;(2) 3.14 Q ;(3) 13 Z ;(4) -12R ;(5) ; (6) 0 Z【小结】1. 集合的有关概念:集合、元素.2. 元素与集合的关系:属于、不属于.3. 集合中元素的特性.4. 集合的分类:有限集、无限集.5. 常用数集的定义及记法.【作业】教材P4,练习A 组第1~3题浙江省衢州中等专业学校课时工作计划2【引课】1. 集合、元素、有限集和无限集的概念是什么?2. 用符号“∈”与“∉”填空白:(1) 0 N;(2) -2Q;(3)-2R.师:刚才复习了集合的有关概念,这节课我们一起研究如何将集合表示出来.【新授】1. 列举法.当集合元素不多时,我们常常把集合的元素列举出来,写在大括号“{}”内表示这个集合,这种表示集合的方法叫列举法.例如,由1,2,3,4,5,6这6个数组成的集合,可表示为:{1,2,3,4,5,6}.又如,中国古代四大发明构成的集合,可以表示为:{指南针,造纸术,活字印刷术,火药}.有些集合元素较多,在不发生误解的情况下,可列几个元素为代表,其他元素用省略号表示.如:小于100的自然数的全体构成的集合,可表示为{0,1,2,3,…,99}.例1 用列举法表示下列集合:(1) 所有大于3且小于10的奇数构成的集合;(2) 方程x2-5 x+6=0的解集.解(1) {5,7,9};(2) {2,3}.练习1 用列举法表示下列集合:(1) 大于3小于9的自然数全体;(2) 绝对值等于1的实数全体;(3) 一年中不满31天的月份全体;(4) 大于3.5且小于12.8的整数的全体.2. 性质描述法.给定x 的取值集合I,如果属于集合A 的任意元素x 都具有性质p(x),而不属于集合A 的元素都不具有性质p(x),则性质p(x)叫做集合A的一个特征性质,于是集合A 可以用它的特征性质描述为{x∈I | p(x)} ,它表示集合A是由集合I 中具有性质p(x)的所有元素构成的.这种表示集合的方法,叫做性质描述法.使用特征性质描述法时要注意:(1) 特征性质明确;(2) 若元素范围为R,“x∈R”可以省略不写.【巩固】例2 用性质描述法表示下列集合:(1) 大于3的实数的全体构成的集合;(2) 平行四边形的全体构成的集合;(3) 平面α内到两定点A,B 距离相等的点的全体构成的集合.解(1){ x | x >3};(2){ x | x是两组对边分别平行的四边形};(3) l={ P ∈α,|PA|=|PB|,A,B 为α内两定点}.练习2 用性质描述法表示下列集合:(1) 目前你所在班级所有同学构成的集合;(2) 正奇数的全体构成的集合;(3) 绝对值等于3的实数的全体构成的集合;(4) 不等式4 x-5<3的解构成的集合;(5)所有的正方形构成的集合.【小结】本节课学习了以下内容:1. 列举法.2. 性质描述法.3. 比较两种表示集合的方法,分析它们所适用的不同情况【作业】教材P9,练习B组第1,2题.3已知:M={-1,1},N={-1,1,3},P={ x | x2-1=0}.问1. 哪些集合表示方法是列举法?2. 哪些集合表示方法是描述法?3. 集合M 中元素与集合N 有何关系?集合M 中元素与集合P 有何关系?例1 判断:集合A是否为集合B的子集,若是则在( )打“√”,若不是则在( )打“×”.(1) A={1,3,5},B={1,2,3,4,5,6} ( )(2) A={1,3,5},B={1,3,6,9} ( )(3) A={0},B={ x|x2+2=0}( )(4) A={ a,b,c,d },B={ d,b,c,a } ( )例2 (1) 写出集合A={1,2}的所有子集及真子集.(2) 写出集合B={1,2,3}的所有子集及真子集.解(1)集合 A 的所有子集是∅,{1},{2},{1,2}.在上述子集中,除去集合A本身,即{1,2},剩下的都是A的真子集.(2) 集合B的所有子集是∅,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}.在上述子集中,除去集合B本身,即{1,2,3},剩下的都是B的真子集.练习写出集合A={a,b,c}的所有子集及真子集.【小结】1. 子集.2. 真子集【作业】教材P12,练习A组第3、4题4【引课】课件展示下列集合:(1) A={1,3},B={1,3,5,6};(2)C={x | x 是长方形},D={x | x是平行四边形};(3) P={x | x 是菱形},Q={x | x 是正方形};(4) S={x | x>3},T={x | 3 x-6>3};(5) E={x|(x+1)(x+2)=0},F={-1,-2}.师提出问题:1.第(1),(2),(3)题中两个集合的关系如何?2.第(4),(5)题中,第二个集合是不是第一个集合的子集?第一个集合是不是第二个集合的子集?生:观察并回答问题.师继续提出问题:第(4),(5)题中,两个集合中的元素有什么特点?【新授】如果两个集合的元素完全相同,那么我们就说这两个集合相等.记作A=B.读作集合A等于集合B.如果A ⊆B,且B ⊆A,那么A=B;反之,如果A=B,那么A⊆B,且B ⊆A.例1指出下面各组中集合之间的关系:(1) A={x | x2-9=0},B={-3,3};(2) M={x | |x|=1},N={-1,1}.解(1) A=B;(2) M=N.例2判断以下各组集合之间的关系:(1) A={2,4,5,7},B={2,5};(2) P={x | x2=1},Q={-1,1};(3) C={x | x 是正奇数},D={x | x是正整数};(4) M={x | x 是等腰直角三角形},N={x | x 是有一个角是45︒的直角三角形}.解(1) B ⊂≠A;(2) P=Q;(3) C ⊂≠D;(4) M=N.【巩固】练习1用适当的符号(∈,∉,=,⊂≠,⊃≠)填空:(1) a{a,b,c};(2) {4,5,6} {6,5,4};US TF(3) {a } {a ,b ,c }; (4) {a , b ,c } { b ,c };(5) ∅ {1,2,3}; (6) {x | x 是矩形} {x | x 是平行四边形}; (7) 5 {5}; (8) {2,4,6,8} {2,8}. 例3 指出下列各集合之间的关系,并用Venn 图表示:A ={x |x 是平行四边形},B ={x |x 是菱形},C ={x |x 是矩形},D ={x |x 是正方形}. 解练习2集合U ,S ,T ,F 如图所示,下列关系中哪些是对的?哪些是错的?(1) S ⊂≠ U ; (2) F ⊂≠ T ; (3) S ⊂≠ T ; (4) S ⊃≠ F ; (5) S ⊂≠ F ; (6) F ⊃≠ U .【小结】1. 子集,真子集,集合相等.2. 元素与集合、集合与集合的关系.【作业】教材P12,练习B 组第1、2、3题5ABCD【引课】实例引入,以我校食堂每天买菜的品种构成的集合为例,引出集合运算的定义.第一天买菜的品种构成的集合记为A={黄瓜,冬瓜,鲫鱼,虾,茄子};第二天买菜的品种构成的集合记为B={黄瓜,猪肉,毛豆,芹菜,虾,土豆}.师:提出问题:1. 两天所买相同菜的品种构成的集合记为C,则集合C 等于什么?2. 两天买过的所有菜的品种构成的集合记为D,则集合D 等于什么?生:思考,感知集合运算【新授】一、集合的交1. 交集的定义.给定两个集合A,B,由既属于A又属于B的所有公共元素所构成的集合,叫做A,B 的交集.记作A∩ B,读作“A交B”.2. 交集的Venn图表示.A B A BA (B) A B3. 交集的性质.(1) A ∩ B B ∩ A;(2) (A ∩ B) ∩ C A ∩ (B ∩ C);(3) A ∩ A=;(4)A ∩ ∅=∅A=.例1(1) 已知:A={1,2,3},B={3,4,5},C={5,3},则 A ∩ B=;B ∩ C=;(A∩ B)∩ C=.例2(1)已知A={x | x 是奇数},B={x | x 是偶数},Z={x | x 是整数},求A∩ Z,B∩ Z,A∩ B.解A∩ Z={x | x 是奇数} ∩ {x | x是整数}={x | x 是奇数}=A;B∩ Z={x | x 是偶数} ∩ {x | x是整数}={x | x 是偶数}=B;A∩ B={x | x 是奇数} ∩ {x | x是偶数}=∅.二、集合的并1. 并集的定义.给定两个集合A,B,把它们所有的元素合并在一起构成的集合,叫做A与B的并集记作A∪B,读作“A并B”.2. 并集的Venn图表示.A B A B3. 并集的性质.(1) A ∪B B ∪A;(2) (A∪B)∪C A∪(B∪C);(3) A ∪A=;(4)A ∪∅=∅A=.例1(2) 已知:A={1,2,3},B={3,4,5},C={5,3}.则 A ∪B=;B ∪C=;(A∪B)∪C=.例2(2)已知A={x | x 是奇数},B={x | x 是偶数},Z={x | x 是整数},求A ∪Z,B∪Z,A∪B.解A∪Z={x | x 是奇数} ∪{x | x 是整数}={x | x 是整数}=Z;B∪Z={x | x 是偶数} ∪{x | x是整数}={x | x 是整数}=Z;A ∪B={x | x 是奇数} ∪{x | x是偶数}={x | x 是整数}=Z.【巩固】例3已知C={x | x≥1},D={x | x<5},求 C ∩ D,C∪D.解 C ∩ D={x | x≥1} ∩ {x | x<5}={x | 1≤x<5};C∪D={x | x≥1}∪{x | x<5}=R.练习1 已知A={x | x是锐角三角形},B={x | x 是钝角三角形}.求A∩ B,A∪B.练习2 已知A={x | x是平行四边形},B={x | x 是菱形},求A∩ B,A∪B.练习3 已知A={x | x 是菱形},B={x | x 是矩形},求A∩ B.例4 已知A={(x,y) | 4 x+y=6},B={(x,y)| 3 x+2 y=7},求A∩ B.解A∩ B={(x,y)| 4 x+y=6} ∩ {(x,y)| 3 x+2 y=7}}={(x,y)|⎩⎨⎧4 x+y=63 x+2 y=7={(1,2)}.【小结】【作业】教材P16,练习A组第1~4题。