废水的微生物脱氮除磷共39页文档

合集下载

废水的生物脱氮除磷

废水的生物脱氮除磷

废水的生物脱氮除磷生物脱氮的理论污水中氮的存在形态:有机氮、氨氮、硝态氮和亚硝态氮。

生活污水中:有机氮约占60%,氨氮约占40%。

二级处理进水中:TN为20-50mg/L。

N为植物营养物质水体富营养化污水脱氮的目的和方法:防治水体富营养化及对水生生物的毒害。

化学法、生物法。

污水传统生物脱氮的原理:在微生物作用下,将有机氮和氨态氮转化为N2的过程。

96%的硝态氮经异化过程还原成N2,有4%经同化合成微生物体。

硝化过程中亚硝化是限制性步骤。

亚硝化是指将氨氮氧化为亚硝酸盐的反应,通常由亚硝化细菌完成。

亚硝化反应速率较慢,主要取决于亚硝化细菌的活性和数量。

亚硝化细菌对环境条件比较敏感,例如温度、pH值、氧含量等都会对其活性产生影响。

当这些条件不稳定或不适宜时,亚硝化细菌的活性受到限制,导致亚硝化反应缓慢进行,成为硝化过程的瓶颈。

相比之下,硝化是将亚硝酸盐进一步氧化为硝酸盐的反应,通常由硝化细菌完成。

相对于亚硝化反应,硝化反应的速率较快,且硝化细菌相对较耐受环境变化。

因此,在硝化过程中,亚硝化反应往往是限制性步骤,决定整个硝化过程的效率和速度。

总凯氏氮(total kjeldahl nitrogen)是有机氮和氨氮之和。

常被用来判断污水好氧生物处理时氮素的量是否适宜,根据C:N:P=100:5:1的比例,若氮的比例偏低则要补氮,反之则要脱氮。

污水生物脱氮工艺的控制条件:硝化和反硝化的控制条件BOD5/TKN =1-3时,生物相中硝化菌的比例为8.3-21%,而大部分污泥中的此比例远小于8.3%;BOD5/TKN >5时,可看作碳化和硝化相结合的过程。

理论上C/N比为2.86时,反硝化1mg的硝酸盐氮理论消耗2.87mg的COD。

一般AO脱氮工艺的C/N比控制在4-6之间。

当BOD5/TKN <3时,应补充碳源:外加碳源(甲醇);原水中含有的碳;内源呼吸碳源。

An/O工艺:优势:流程简单;基建投资大大减少;不需要外加碳源;运行费用降低,可实现碱度内部补充。

污水处理方法之除磷、脱氮

污水处理方法之除磷、脱氮

污水处理方法之除磷、脱氮污水处理方法之除磷、脱氮:除磷:城市废水中磷的主要来源是粪便、洗涤剂和某些工业废水,以正磷酸盐、聚磷酸盐和有机磷的形式溶解于水中。

常用的除磷方法有化学法和生物法。

A、化学法除磷:利用磷酸盐与铁盐、石灰、铝盐等反应生成磷酸铁、磷酸钙、磷酸铝等沉淀,将磷从废水中排除。

化学法的特点是磷的去除效率较高,处理结果稳定,污泥在处理和处置过程中不会重新释放磷造成二次污染,但污泥的产量比较大。

B、生物法除磷:生物法除磷是利用微生物在好氧条件下,对废水中溶解性磷酸盐的过量吸收,沉淀分离而除磷。

整个处理过程分为厌氧放磷和好氧吸磷两个阶段。

含有过量磷的废水和含磷活性污泥进人厌氧状态后,活性污泥中的聚磷商在厌氧状态下,将体内积聚的聚磷分解为无机磷释放回废水中。

这就是“厌氧放磷”。

聚磷菌在分解聚磷时产生的能量除一部分供自己生存外,其余供聚磷菌吸收废水中的有机物,并在厌氧发酵产酸菌的作用下转化成乙酸背,再进一步转化为PHB (聚自-短基丁酸)储存于体内。

进入好氧状态后,聚磷菌将储存于体内的PHB进行好氧分解,并释放出大量能量,一部分供自己增殖,另一部分供其吸收废水中的磷酸盐,以聚磷的形式积聚于体内。

这就是“好氧吸磷”。

在此阶段,活性污泥不断增殖。

除了一部分含磷活性活泥回流到厌氧池外,其余的作为剩余污泥排出系统,达到除磷的目的。

脱氮:生活废水中各种形式的氮占的比例比较恒定:有机氮50%~60%,氨氮40%~50%,亚硝酸盐与硝酸盐中的氮占 0~5%。

它们均来源于人们食物中的蛋白质。

脱氮的方法有化学法和生物法两大类。

A、化学法脱氮:包括氨吸收法和加氯法。

a、氨吸收法:先把废水的pH值调整到10以上,然后在解吸塔内解吸氨b、加氯法:在含氨氮的废水中加氯。

通过适当控制加氯量,可以完全除去水中的氨氮。

为了减少氯的投加量,此法常与生物硝化联用,先硝化再除去微量的残余氨氮。

B、生物法脱氮:生物脱氮是在微生物作用下,将有机氮和氨态氮转化为氮气的过程,其中包括硝化和反硝化两个反应过程。

02-6.5 污水微生物脱氮除磷原理 课件

02-6.5 污水微生物脱氮除磷原理 课件
水华
赤潮
水体中氮的危害
水体富 营养化
1.氮在水体中的存在形态
➢ 有机氮 总氮 (TN)
➢ 无机氮
蛋白质 (C, O, N, H, N=15~18%)
多肽
H
氨基酸
R C COOC
尿素[CO(NH2)2]
NH2
硝基、胺及铵类化合物
氨氮(NH3-N, NH4+-N) 亚硝态氮(NO2- -N)
硝态氮(NO3--N)
NO2--N
(碳源)
N2
短程硝化反硝化 (Shortcut Nitrification-Denitrification)
实现短程硝化反硝化的关键在于促进氨氧化的同时 将NH4+的氧化控制在NO2−阶段。 NH4++1.5O2 →NO2-+H2O+2H+ NH4++2O2→NO3-+H2O+2H+ 6NO2-+3CH3OH → 3N2+6OH-+3H2O+ 3CO2 6NO3-+5CH3OH → 3N2 + 6OH-+ 7H2O +5CO2
有机基质
厌氧区
产酸菌
部分回流 做种
好氧区
水中P
大部分 (P)去除
乙酸 P
聚释 P 聚/释磷菌
PHB 释磷菌
PHB O2 聚磷菌
聚聚P聚PP
聚P
聚磷菌
➢ 厌氧区是聚磷菌的生物选择器,聚磷菌能在短暂性的厌氧条件
下,优先于非聚磷菌吸收发酵产物,并快速同化和贮存,厌氧
区为聚磷菌提供竞争优势。
➢ 生物除磷过程
4.2 厌氧氨氧化(ANAMMOX) (ANaerobic AMMonium OXidation)

污水生物脱氮除磷原理及工艺

污水生物脱氮除磷原理及工艺

一般用Al2(SO4)3,聚氯化铝(PAC)和铝酸钠(NaAlO2) 2)铁盐除磷:FePO4 、 Fe(OH)3
一般用FeCl2、FeSO4 或 FeCl3 、Fe2(SO4)3
3)石灰混凝除磷:
2 5Ca 2 4OH 3HPO4 Ca5 (OH )(PO4 ) 3 3H 2O
二、生物除磷过程的影响因素
①溶解氧: l厌氧池内:绝对的厌氧,即使是NO3-等也不允许存在; l好氧池内:充足的溶解氧。 ②污泥龄: l剩余污泥对脱磷效果有很大影响,泥龄短的系统产生的剩余
污泥多,可以取得较好的除磷效果;
l 有报道称:污泥龄为 30d ,除磷率为 40%;污泥龄为 17d,
除磷率为50%;而污泥龄为5d时,除磷率高达87%。
一、巴颠甫(Bardenpho)同步脱氮除磷工艺
工艺特点: 各项反应都反复进行两次以上,各反应单元都有其首要 功能,同时又兼有二、三项辅助功能; 脱氮除磷的效果良好。 工艺复杂,反应器单元多,运行繁琐,成本高
二、A—A—O(A2/O)同步脱氮除磷工艺
工艺特点: l工艺流程比较简单;总的水力停留时间短 l厌氧、缺氧、好氧交替运行,不利于丝状菌生长,污泥膨胀 较少发生; l无需投药,两个A段只需轻缓搅拌, 只有O段供氧, 运行费用低。
3
2
2 反硝化反应的影响因素
• 碳源:
①废水中有机物,若BOD5/TKN>3~5时,即可; ②外加碳源,多为甲醇; ③内源呼吸碳源—细菌体内的原生物质及其贮存 的有机物。 • 适宜pH:6.5~7.5; • 溶解氧应控制在0.5mg/l以下;
• 适宜温度:20~40C
生物脱氮的基本原理
二、Phostrip除磷工艺——生物除磷和化学除磷相结合

污水生物脱氮除磷教程PPT课件

污水生物脱氮除磷教程PPT课件
第32页/共65页
• ANAMMOX微生物的增长率与产率是非常低的。 • 但是氮的转换率却为0.25mgN/(mgSS·d),这与传
统好氧硝化的转换率相当。
第33页/共65页
• ANAMMOX反应在10~43℃的温度范围内具有活 性,适宜的pH为6.7~8.3。
• ANAMMOX无需有机碳源存在,碳酸盐/二氧化碳 是ANAMMOX微生物生长所需的无机碳源。
• 虽然目前CANON工艺在世界范围内仍处于研发阶段,还没有真正的工程应用,但是它必将会给污水脱氮技 术带来革命性的变革。
第46页/共65页
•2.2 除磷新工艺
• 反硝化除磷细菌 • 反硝化除磷工艺
第47页/共65页
反硝化除磷细菌
• 脱氮要经历好氧(硝化)/厌氧(反硝化), • 除磷要经历厌氧(释放磷)/好氧(积聚 磷). • 如果能使反硝化细菌同时具有生物摄/ 放磷作用则可以将反硝化脱氮与生物除 磷有机地合二为一。
+
CO2
→→→→ 2 3N + 6HCO3- + 7H2O
• 节约 CH3OH 40%
第25页/共65页
图3 亚硝化细菌和硝化细菌的 最小污泥龄与温度关系
0.8d 0.4d
第26页/共65页
• SHARON工艺的基本工作原理便是利用温度高有 利于亚硝化细菌增殖这一特点,使硝化细菌失去 竞争。
第27页/共65页
第59页/共65页
▪(缺氧/好氧)混合池 ▪主要功能是脱氮,正常情况 下该池可不充氧,缺氧条件可 通过好氧池回流的混合液来维 持。
第60页/共65页
• 好氧池 • 同常规的处理工艺一样,其主要功能是去除COD、BOD及氨氮的硝化。
第61页/共65页

污水生物脱氮除磷新工艺(共41张PPT)

污水生物脱氮除磷新工艺(共41张PPT)
响厌氧产物PHB的合成,进而影响到后续除磷效果。
▪ 一般而言,要同时达到氮磷的去除目的,城 市污水中碳氮比(COD/TKN)至少为 9。当城 市污水中碳源低于此要求时,由于大多数处 理工艺流程都把缺氧反硝化置于厌氧释磷之 后,反硝化效果受到碳源量的限制,大量的 未被反硝化的硝酸盐随回流污泥进入厌氧区 ,干扰厌氧释磷的正常进行,最终影响到整 个营养盐去除系统的稳定运行。
▪ 一、脱氮除磷的传统工艺
▪ 1、 脱氮的传统工艺 ▪ 2 、除磷的传统工艺
▪ 1、 脱氮的传统工艺 ▪ 自然界中氮一般有四种形态:
▪ 有机氮、
▪ 氨氮、 ▪ 亚硝酸盐氮 ▪ 硝酸盐氮
▪ 生活污水中的氮主要形态是有机氮和氨氮。
▪ 有机氮占生活污水含氮量的40-60%, ▪ 氨氮占50-60%,
▪ 亚硝酸盐和硝酸盐氮仅占0-5%。
▪ 总反应
▪ NH4+ + O2 + HCO3- →

NO3- + H2O + H2CO3 + 微生物细胞
▪ 反硝化反应如下:

▪ NO3- + CH3OH + H2CO3 → ▪ N2↑+H2O + HCO3-+微生物细胞 ▪
生物脱氮工艺
▪ 传统生物脱氮存在问题?
▪ 首先,需要充分地氧化氨氮到硝酸氮,要消
内回流
污泥回流
图3 MUCT工艺
▪ MUCT工艺有两个缺氧池,前一个接受二沉池回流污泥,后一个接受好 氧区硝化混合液,使污泥的脱氮与混合液的脱氮分开,进一步减少硝酸 盐进入厌氧区的可能。
OWASA工艺
进水
初沉池 污泥
混合液内回流
厌氧
缺氧

微生物在污水处理中的应用—废水的生物脱氮除磷技术

微生物在污水处理中的应用—废水的生物脱氮除磷技术

废水脱氮
1.微生物脱氮原理 2.生物脱氮的影响 因素 3.生物脱氮工艺及 应用
废水除磷
1.微生物除磷原理 2.典型的除磷工艺
同步脱 氮除磷
1.同步脱氮除磷典 型工艺 2.废水同步脱氮除 磷技术的工程应用
53
1.生物脱氮除磷的原理
在生物脱氮除磷工艺中,厌氧池的主要功能是释放磷, 使污水中的磷浓度升高,溶解性的有机物被微生物细胞吸收 而是无水肿的BOD下降,另外,氨氮因细胞的合成而被去除 一部分,是水中氨氮浓度下降,但硝态氮含量没有变化。
无机氮 N.H,N.O
NH3 铵盐(NH4+) 硝酸盐
7
1.3废水中氮的来源、状态
状态
污染物
有机氮 复杂蛋白质、尿 素、核酸等
无机氮 NH3、铵盐等 硝酸盐等
污染来源
生活污水、农业固体废物 (养殖粪便)和食品加工 等工业废水
农田灌溉、化肥厂等工业 废水
8
1.4水中氮磷的危害
(1)过量氮、磷容易导致水体富营养化; (2)增加水处理成本、降低消毒、脱色等处理效率, (3)增加药剂药剂用量; (4)氨氮消耗水中溶解氧; (5)含氮化合物对人、生物有毒害作用。
小结
废水生物除磷原理 废水生物除磷影响因素 废水生物除磷工艺及应用
废水同步生物脱氮除磷 原理及工艺
主要内容
生物同步脱氮除磷的原理 生物同步脱氮除磷工艺及应用
随着经济的发展,大量含氮、磷物质排入环境,导致水 体污染日益加剧,给水体生态系统和人群健康造成极大的危 害,当磷大与0.01mg/l,氮大于0.1 mg/l,水体开始发生富营 养化。因此,需对废水脱氮除磷,以保护水生生态系统。
40
2.生物除磷原理
因此,在好氧厌氧交替条件下,活性污泥中的聚磷 菌以“厌氧释磷”和“好氧聚磷” 的机制,将磷最终以 剩余污泥的形式排出,彻底去除水中的磷。

《生物脱氮除磷》课件

《生物脱氮除磷》课件

有机物浓度和泥龄对生物除磷的影响也 较大,适宜的有机物浓度和泥龄需要针 对不同的工艺进行优化。
溶解氧浓度对生物除磷的影响较大,适 宜的溶解氧浓度范围为0.5-3mg/L。
温度对生物除磷的影响较大,适宜的温 度范围为10-30℃。
pH值对生物除磷的影响也较大,适宜的 pH值范围为6.5-8.5。
04 生物脱氮除磷技 术案例分析
温度
温度对生物脱氮效率有显著影 响,适宜的温度范围是20-30℃

pH值
pH值对硝化细菌和反硝化细菌 的生长和活性有重要影响,适 宜的pH值范围是7.0-8.0。
溶解氧
溶解氧对硝化反应和反硝化反 应均有影响,适宜的溶解氧浓 度是2-4mg/L。
碳源
碳源的种类和浓度对反硝化反 应有重要影响,常用的碳源有
某污水处理厂生物脱氮除磷运行管理
运行管理要点
为确保生物脱氮除磷工艺的稳定运行,需要定期对工艺参数进行监测与调整,如溶解氧、 pH值、温度等。同时,需要加强设备维护与保养,确保设备的正常运行。
应急处理措施
针对可能出现的异常情况,如污泥膨胀、污泥流失等,制定相应的应急处理措施,确保工 艺的可靠性。
人员培训与安全管理
某污水处理厂生物脱氮除磷效果分析
1 2 3
脱氮效果
通过合理的工艺控制,该污水处理厂的生物脱氮 效率较高,总氮去除率达到85%以上,满足国家 排放标微生物的聚磷作用,有效去除 磷元素,总磷去除率达到90%以上,显著降低水 体富营养化的风险。
经济效益与社会效益
该工艺的运行不仅提高了污水处理效果,减少了 污染物排放,同时也为污水处理厂带来了经济效 益和社会效益。
原理
生物脱氮基于硝化反硝化原理,通过好氧硝化和缺氧反硝化过程实现氮的去除 ;生物除磷则通过聚磷菌在厌氧和好氧环境下的代谢作用实现磷的去除。

污水脱氮除磷

污水脱氮除磷
微生物分解有机氮化合物产生氨的过程称为氨化作 用,很多细菌、真菌和放线菌都能分解蛋白质及其含氮 衍生物,其中分解能力强并释放出氨的微生物称为氨化 微生物,在氨化微生物的作用下,有机氮化合物分解、 转化为氨态氮,以氨基酸为例:
水解 RCHNH 2COOH H2O RCOHCOOH NH 3
细菌分解 RCHNH 2COOH O2 RCOCOOH CO 2 NH3
设立两个缺氧段,第一段利用原水中的有机物 为碳源和第一好氧池中回流的含有硝态氮的混合液 进行反硝化反应。
为进一步提高脱氮效率,废水进入第二段反硝 化反应器,利用内源呼吸碳源进行反硝化。
曝气池用于吹脱废水中的氮气,提高污泥的沉 降性能,防止在二沉池发生污泥上浮现象。
第19页/共53页
曝气池2 第20页/共53页
太湖的富营养化
第2页/共53页
第3页/共53页
第4页/共53页
一 氮、磷的去除
第5页/共53页
(一)氮的生物 去除
废水中的氮以有机氮、氨氮、亚硝酸氮和硝酸氮 四种形式存在。
(1) 生物脱氮机理
同化作用去除的氮依运行条件和水质而定,如果 微生物细胞中氮含量以12.5%计算,同化氮去除占原 污水BOD的2%~5%,氮去除率在8%~20%。
(5)温度:在适宜温度范围内,温度越高释磷速 度越快;温度低时应适当延长厌氧区的停留时间或 投加外源VFA。
(6)其他:影响系统除磷效果的还有污泥沉降性 能和剩余污泥处置方法等。
第31页/共53页
(三) 生物除磷及生物脱氮除磷工艺 1.A/O生物除磷工艺
(1) A/O法是由厌氧池和好氧池组成的同时去除 污水中有机污染物及磷的处理系统。
在硝化反应过程中,释放H+,使pH下降,硝化 菌对pH的变化十分敏感,为保持适宜的pH,应当在污 水中保持足够的碱度,以调节pH的变化,lg氨态氮 (以N计)完全硝化,需碱度(以CaCO3计)7.14g。 对硝化菌的适宜的pH为8.0~8.4。

废水脱氮除磷处理工艺 教学PPT课件

废水脱氮除磷处理工艺 教学PPT课件
硝化和反硝化两个生化过程构成。 ► 单级A/O工艺是用一个缺氧反应器和一个好
氧反应器组成的联合系统。
10
活性污泥回流







好好 氧氧 脱硝 碳化
回流
二沉池
出水
混合液回流
A/O脱氮工艺
11
(一) A/O(anoxic oxic)工艺
► A/O工艺流程中,原水先进入缺氧池,再进 入好氧池。
► A/O工艺将好氧池的混合液与沉淀池的污泥 一起回流到缺氧池,为缺氧池提供了丰富的 硝酸盐氮和充足的微生物,保证了反硝化过 程的顺利进行。
生物吸收法无害物质。常用的固体颗粒有土壤和 生物洗涤法堆肥。 生物过利滤用法微生物利和用培污养水液处组理成厂的剩微余生的物活吸性收污液
处理废气,泥然配后置在混进合行液好,氧作处为理吸,收去剂除处液 体中吸收的理污废染气物。。这种方法适合于处理 可溶性的气态污染物。
21
依靠固自体然界废广弃泛分物布的处微理生物方,法人为地促
► 厌氧生物分解有机物的过程
水解阶段 发酵(酸化)阶段 产乙酸阶段 产甲烷阶段
27
内源代谢残留物
内源代谢产物(CO2 内源 、H2O、NH3)+能 代谢 量
CO2,H2O,NH3, +能量

分解 SO42-,PO43-
26
厌氧生物处理的基本原理
► 厌氧生物处理(Anaerobic process):在 无氧条件下,利用多种厌氧微生物的代谢活 动,将有机物转化为CH4和CO2以及少量细胞 物质的过程。
4
生物脱氮的基本原理
2、反硝化作用
反硝化由一群异养微生物完成,主要是将 硝酸盐氮还原成气态氮或氮氧化物,反应在 无分子氧的状态下进行。 细菌:反硝化细菌(兼性厌氧菌) 反应:NO3-N反硝化还原为N2,溢出水面释放 到大气中。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档