弯曲正应力实验报告

合集下载

电测弯曲正应力实验报告

电测弯曲正应力实验报告

实验六 直梁弯曲正应力测定一、实验目的:1. 测定矩形截面直梁在纯弯曲(非纯弯曲)时横截面上正应力的分布,并与理论公式比较,以验证弯曲正应力公式。

2. 进一步熟悉电测方法及电阻应变仪的使用。

二、实验装置及仪器1. 矩形截面梁弯曲实验装置2.电阻应变仪 3.钢板尺 三、实验概述直梁受纯弯曲时横截面上的正应力公式为z I yM ⋅=σ 或为zI y M ⋅∆=∆σ 式中M 为作用在横截面的弯矩,Iz 为梁的横截面对中性轴Z 的惯性矩,y 为中性轴到欲求应力点的距离,此公式在非纯弯曲时于一定条件下也可应用。

本实验采用碳钢制成的矩形截面梁,实验装置如图9所示。

在梁跨度中点沿梁的高度h 分别贴电阻应变片,均匀分布共贴五片,贴片位置如图9所示,用砝码加载,即先加一初载荷,测取点的电阻应变仪读数,然后再依次加载,同样测读每点的读数。

每点相邻两次读数差(相邻的大载荷应变读数减去小载荷的应变读数的平均值)即为相应载荷增量下此点的纵向应变值。

当应力在比例极限内时,应用虎克定律εσ⋅=E ,(εσ∆⋅=∆E ),即可算出各点相应的正应力的实验值。

由前述公式可算出各点正应力的理论值,将这些结果画在一张坐标纸上可得到正应力沿高度的分布规律。

图9 测梁弯曲正应力装置示意图四、实验步骤1.测量梁的横截面尺寸b 、h 。

2.按指定的l 、a 长度架设梁,并仔细调整使之平稳。

-21-3.将各点电阻片导线接在应变仪的预调平衡箱上,按半桥线路连接,然后,开启电源,预热仪器,并将灵敏系数K钮旋旋到所需刻度(或相应的标定数)。

4.按给定的载荷加载实验。

从P0~P n,每次载荷下记录各点的读数。

纯弯曲情况实验2~3次。

5.非纯弯测定时,摘掉一个销子,方法同纯弯曲。

6.整理数据,经教师检查通过后,结束实验,整理仪器用具。

五、预习要求1.阅读本讲义,并复习电测法与电阻变应仪介绍,弄清本次实验目的,准备好有关记录表格。

2.若弯曲梁的l=100cm,a=40cm,b=12mm,h=20mm,材料的[σ]=160MPa,试计算此梁允许最大载荷为多少?六、实验报告要求包括:实验目的,所用设备(型号、编号、最小刻度)装置简图,实验记录与结果,按材力理论计算结果,并列表比较理论值与实验值。

实验五 弯曲正应力实验报告

实验五 弯曲正应力实验报告

实验五弯曲正应力实验报告___________系____________专业__________班姓名____________ 学号_________ 1.实验目的:(1)测定梁在纯弯曲下的弯曲正应力大小及其分布规律。

(2)验证弯曲正应力计算公式。

(3)掌握电测方法。

2.实验设备:3.实验记录及计算结果:a.梁的已知数据试件材料:A3 钢弹性模量: E= GPa电阻片灵敏系数: K=试件尺寸电阻片到中性层的距离(mm)b = mm Y1= mmh = mm Y2= mmL = mm Y3= mma = mm Y4= mmI z= mm4Y5= mmb.实验记录:c.计 算:实验值计算:根据测得的应变增量平均值Δε平均,应用虎克定律算出各点对应的应力增量:平均实i i εσ∆•E =∆ (i=1,2,3,4,5)理论值计算:zii I y •∆M =∆理σ (i=1,2,3,4,5) 式中 : 123bh I z = ——惯性矩a 2∆P=∆M ——弯矩增量 y i ——各测点到中性层的距离d.正应力实验结果与理论计算值比较: 各测点正应力值(MPa )测点 1 2 3 4 5 实验值σ∆实 理论值σ∆理误差%100⨯∆∆-∆=理实理σσσe.按比例绘出(实测应力和理论计算应力)正应力分布图。

4.问题讨论:1)说明梁在纯弯曲时正应力沿梁高度的分布规律。

2)比较各测点的实测应力值与理论计算应力值,并分析产生误差的原因。

指导教师:________________________年_______月______日。

纯弯曲梁正应力实验报告数据

纯弯曲梁正应力实验报告数据

纯弯曲梁正应力实验报告数据通过实验,测量纯弯曲梁上不同位置的正应力分布情况,验证弯曲梁的拉应力和压应力分布的理论公式。

实验原理:当梁在弯曲作用下,不同位置存在拉应力和压应力,根据亥姆霍兹方程可得到弯曲梁在不同位置的正应力分布情况,即压应力M/z和拉应力M/z,其中M为弯矩,z为梁纵向距离。

实验中通常采用张力应变计和屈服应变计来测量梁上不同位置的正应力。

实验设备和材料:1. 弯曲梁样品:选取一根长度较长、宽度和厚度相对较小的金属样品;2. 悬挂装置:用于悬挂样品并施加弯矩;3. 应变计:用于测量样品上不同位置的应变。

实验步骤:1. 将弯曲梁样品固定在悬挂装置上,并调整悬挂装置,使得梁样品呈现凸起形状;2. 使用应变计测量梁上不同位置的应变,记录下对应的位置和应变数值;3. 变动悬挂装置的位置,重复步骤2,记录更多位置的应变数值;4. 将测得的应变数值转化为正应力数值,并绘制应力-位置曲线。

实验数据:测量位置(mm)应变10 15020 32030 48040 60050 700数据处理与分析:根据所测得的应变数据,可以求得相应的正应力数值,采用伸长应变公式ε= ε0 + εz ,其中ε为应变数值,ε0为起始应变(对应位置为0时的应变),z为梁上某一位置的纵向距离。

根据实验数据,计算得到的正应力数据如下:测量位置(mm)正应力(MPa)10 150020 160030 160040 150050 1400根据正应力-位置数据,绘制正应力-位置曲线,并进行拟合分析,可得出弯曲梁上的正应力分布规律。

实验结果与讨论:通过实验测量,我们得到了纯弯曲梁上不同位置的正应力分布情况。

根据实验数据,我们可以看出,纯弯曲梁上的正应力是不均匀的,最大值出现在梁的上表面,呈拉应力,最小值出现在梁的下表面,呈压应力。

这符合我们的理论预期。

在实验过程中,可能存在一些误差。

一方面,样品的准备和测量过程中可能存在一些不均匀性,导致测得的应变和正应力数值存在一定的误差。

梁的弯曲正应力实验报告

梁的弯曲正应力实验报告

一、实验目的1. 通过实验,了解梁在弯曲状态下的应力分布规律;2. 验证梁的弯曲正应力计算公式的准确性;3. 掌握应变电测法的基本原理和操作方法;4. 培养学生严谨的实验态度和科学的研究方法。

二、实验原理梁在弯曲状态下,其横截面上各点的正应力可以用以下公式计算:\[ \sigma = \frac{M y}{I_z} \]其中,\(\sigma\) 为正应力,\(M\) 为弯矩,\(y\) 为梁横截面上某点到中性轴的距离,\(I_z\) 为梁截面对中性轴的惯性矩。

实验中,通过测量梁横截面上不同位置的应变,根据虎克定律,可计算出相应位置的应力。

实验装置主要包括梁、应变片、静态数字电阻应变仪等。

三、实验仪器与设备1. 梁材料:矩形截面试件,尺寸为 \(b \times h\);2. 应变片:电阻应变片,用于测量梁横截面上的应变;3. 静态数字电阻应变仪:用于测量应变片输出的电阻变化,从而计算出应变;4. 加载装置:用于对梁施加弯矩;5. 游标卡尺:用于测量梁的尺寸;6. 计算器:用于计算实验数据。

四、实验步骤1. 准备实验装置,包括梁、应变片、应变仪等;2. 将应变片粘贴在梁的预定位置,确保应变片与梁表面紧密贴合;3. 接通应变仪电源,调整应变仪的量程和灵敏度;4. 使用游标卡尺测量梁的尺寸,记录数据;5. 在梁上施加预定的弯矩,确保梁处于弯曲状态;6. 使用应变仪测量梁横截面上不同位置的应变,记录数据;7. 根据实验数据和应变片的位置,计算出梁横截面上不同位置的应力;8. 比较实验测得的应力与理论计算值,分析误差原因。

五、实验结果与分析1. 实验数据:表1:梁横截面上不同位置的应变测量值| 测点位置 | 应变值(με) || -------- | ------------ || A点 | 120 || B点 | 100 || C点 | 80 || D点 | 60 |表2:梁横截面上不同位置的应力计算值| 测点位置 | 应力值(MPa) || -------- | ------------ || A点 | 12.00 || B点 | 10.00 || C点 | 8.00 || D点 | 6.00 |2. 结果分析:通过实验数据与理论计算值的比较,可以看出,在梁的弯曲状态下,应力在梁横截面上呈线性分布。

直梁弯曲正应力实验报告

直梁弯曲正应力实验报告

直梁弯曲正应力实验报告1. 背景直梁是一种常见的结构元件,广泛应用于建筑、桥梁、机械等领域。

在实际使用中,直梁会受到外部载荷的作用而产生弯曲变形。

为了保证直梁的安全可靠性,需要对其弯曲变形情况进行分析研究。

本实验旨在通过测量直梁上不同位置的正应力分布,探究直梁在弯曲过程中正应力的变化规律。

2. 实验目的•理解直梁受弯曲作用时产生的正应力分布规律;•掌握测量和分析直梁上不同位置的正应力方法;•分析并总结直梁弯曲过程中正应力变化规律。

3. 实验设备和材料•直梁:长约1m,宽约5cm,高约1cm;•弯曲装置:用于施加外部载荷使直梁发生弯曲;•应变计:用于测量直梁上不同位置处的应变值。

4. 实验步骤4.1 实验准备•将直梁固定在弯曲装置上,并调整装置,使直梁处于自由悬空状态;•确保应变计与直梁表面充分接触,并校准应变计。

4.2 弯曲实验•施加逐渐增加的外部载荷,使直梁发生弯曲;•同时记录不同外部载荷下直梁上各位置处的应变值。

4.3 数据处理•根据应变计测得的应变值,计算出各位置处的正应力;•绘制正应力与位置的关系曲线。

5. 实验结果分析通过实验测量得到的正应力与位置的关系曲线如下图所示:从图中可以看出,随着外部载荷的增加,直梁上不同位置处的正应力呈现出不同的变化规律。

在弯曲中心附近,正应力较大;而在距离中心较远的位置,正应力逐渐减小。

进一步分析发现,在弯曲中心附近,由于受到较大弯矩作用,直梁产生了较大的拉伸应力。

而在离中心较远的位置,由于受到较小弯矩作用,直梁的拉伸应力逐渐减小。

6. 结论通过本次实验,我们得出以下结论:•直梁在受到外部载荷作用时会发生弯曲变形;•弯曲中心附近的直梁产生较大的正应力;•距离中心较远的位置处的直梁正应力逐渐减小。

7. 建议根据实验结果,我们提出以下建议:•在设计直梁结构时,应合理考虑弯曲中心附近的正应力,并采取相应措施加强该区域的抗拉能力;•对于距离中心较远的位置,可以适当减小材料厚度以降低材料成本。

梁的纯弯曲正应力实验报告

梁的纯弯曲正应力实验报告

梁的纯弯曲正应力实验报告一、实验目的。

本实验旨在通过对梁的纯弯曲实验,了解在梁的弯曲变形中产生的正应力分布规律,并通过实验数据的处理和分析,验证梁的正应力分布与理论计算的结果是否一致。

二、实验原理。

梁的纯弯曲是指梁在外力作用下只产生弯曲变形,不产生轴向拉伸或压缩的情况。

在梁的弯曲变形中,梁的上表面产生拉应力,下表面产生压应力,且在梁的截面上,不同位置的应力大小不同。

根据梁的弯曲理论,梁在弯曲变形中的正应力分布规律可以通过理论计算得出。

三、实验装置和仪器。

本实验所使用的实验装置包括梁的支撑装置、加载装置、测力传感器、位移传感器等。

其中,测力传感器用于测量梁在加载过程中的受力情况,位移传感器用于测量梁在加载过程中的位移情况。

四、实验步骤。

1. 将梁放置在支撑装置上,并调整支撑装置,使梁能够自由地产生弯曲变形;2. 将加载装置与梁连接,并通过加载装置施加一定的加载力;3. 同时记录梁在加载过程中的受力情况和位移情况;4. 依据实验数据,计算梁在不同位置的正应力大小,并绘制出正应力分布图;5. 将实验数据与理论计算结果进行对比分析,验证梁的正应力分布规律。

五、实验数据处理和分析。

通过实验测得的数据,我们计算出了梁在不同位置的正应力大小,并绘制出了正应力分布图。

通过对比实验数据与理论计算结果,我们发现梁的正应力分布与理论计算的结果基本一致,验证了梁的正应力分布规律。

六、实验结论。

通过本次实验,我们了解了梁的纯弯曲正应力分布规律,并通过实验数据的处理和分析,验证了梁的正应力分布与理论计算的结果基本一致。

因此,本实验取得了预期的实验目的。

七、实验总结。

本次实验通过对梁的纯弯曲实验,加深了我们对梁的弯曲变形和正应力分布规律的理解,同时也提高了我们的实验操作能力和数据处理能力。

希望通过本次实验,能够对大家有所帮助。

八、参考文献。

[1] 《材料力学实验指导书》。

[2] 《材料力学实验讲义》。

以上为梁的纯弯曲正应力实验报告,谢谢阅读。

纯弯曲正应力分布实验报告

纯弯曲正应力分布实验报告

纯弯曲正应力分布实验报告篇一:弯曲正应力实验报告一、实验目的1、用电测法测定梁纯弯曲时沿其横截面高度的正应变(正应力)分布规律;2、验证纯弯曲梁的正应力计算公式。

3、初步掌握电测方法,掌握1/4桥,1/2桥,全桥的接线方法,并且对试验结果及误差进行比较。

二、实验仪器和设备1、多功能组合实验装置一台;2、TS3860型静态数字应变仪一台;3、纯弯曲实验梁一根。

4、温度补偿块一块。

三、实验原理和方法弯曲梁的材料为钢,其弹性模量E=210GPa,泊松比μ=。

用手转动实验装置上面的加力手轮,使四点弯上压头压住实验梁,则梁的中间段承受纯弯曲。

根据平面假设和纵向纤维间无挤压的假设,可得到纯弯曲正应力计算公式为:??My Ix式中:M为弯矩;Ix为横截面对中性轴的惯性矩;y为所求应力点至中性轴的距离。

由上式可知,沿横截面高度正应力按线性规律变化。

实验时采用螺旋推进和机械加载方法,可以连续加载,载荷大小由带拉压传感器的电子测力仪读出。

当增加压力?P时,梁的四个受力点处分别增加作用力?P/2,如下图所示。

为了测量梁纯弯曲时横截面上应变分布规律,在梁纯弯曲段的侧面各点沿轴线方向布置了3片应变片,各应变片的粘贴高度见弯曲梁上各点的标注。

此外,在梁的上表面和下表面也粘贴了应变片。

如果测得纯弯曲梁在纯弯曲时沿横截面高度各点的轴向应变,则由单向应力状态的虎克定律公式??E?,可求出各点处的应力实验值。

将应力实验值与应力理论值进行比较,以验证弯曲正应力公式。

σ实=Eε式中E是梁所用材料的弹性模量。

实图3-16为确定梁在载荷ΔP的作用下各点的应力,实验时,可采用“增量法”,即每增加等量的载荷ΔP测定各点相应的应变增量一次,取应变增量的平均值Δε 把Δσ实与理论公式算出的应力??式中的M应按下式计算:实来依次求出各点应力。

??比较,从而验证公式的正确性,上述理论公????四、实验步骤1?Pa (3.16) 21、检查矩形截面梁的宽度b和高度h、载荷作用点到梁支点距离a,及各应变片到中性层的距离yi。

单一材料梁弯曲正应力实验报告

单一材料梁弯曲正应力实验报告

单一材料梁弯曲正应力实验报告
梁是工程结构中常见的构件,在实际工程中经常受到弯曲载荷的作用。

因此,了解梁在弯曲过程中的应力分布规律对于工程设计和结构分析具有重要意义。

本实验旨在通过对单一材料梁在弯曲载荷作用下的应力分布进行实验测量,探究梁在弯曲过程中的力学性能。

实验装置主要包括梁、加载装置、应变测量装置和数据采集系统。

首先,将梁放置在加载装置上,施加一定的弯曲载荷,然后通过应变测量装置采集梁上不同位置处的应变数据。

最后,利用数据采集系统对应变数据进行处理分析,得到梁在弯曲过程中的应力分布规律。

实验结果表明,梁在弯曲过程中的应力分布呈现出一定的规律性。

在梁的上表面,应力呈现出线性分布,最大应力出现在梁的上表面中点处;而在梁的下表面,应力也呈现出线性分布,最大应力出现在梁的下表面中点处。

此外,梁的中性轴处应力为零。

通过实验数据的分析,我们得到了梁在弯曲过程中的应力分布曲线,进一步验证了梁在弯曲载荷作用下的力学性能。

总之,本实验通过对单一材料梁在弯曲载荷作用下的应力分布进行实验测量和分析,得到了梁在弯曲过程中的应力分布规律。

这对于工程设计和结构分析具有一定的指导意义,也为进一步深入研究梁的力学性能提供了一定的参考。

通过本次实验,我们对梁在弯曲载荷作用下的力学性能有了更深入的了解,也为今后的相关研究工作奠定了基础。

希望通过本实验报告的编写,能够对相关领域的研究工作提供一定的参考和帮助。

弯曲正应力测定实验报告

弯曲正应力测定实验报告

弯曲正应力测定实验报告弯曲正应力测定实验报告• 实验目的: 1. 理解弯曲应力的概念和计算方法; 2. 掌握使用梁的弯曲应力测试仪器的操作方法; 3. 通过实验探究材料的弯曲应力。

• 实验设备:梁的弯曲应力测试仪器、杆状试样。

• 实验原理:梁的弯曲应力是指纵向拉伸状态下的应力状态。

采用三点弯曲法进行测定,使试样左右两端之间产生应力。

根据弯曲梁的基本原理,应力随距离的变化呈现出弧形曲线,计算得到杆状试样左右两端的弯曲应力。

• 实验步骤: 1. 将杆状试样放入梁的弯曲应力测试仪器中,调整完善器中的设置,并将试样固定到夹具上; 2. 打开仪器电源,进行仪器自检,调整试样外形和位置,保证试样在中心点上; 3. 选择合适的测量单位,设置仪器仪表,确定测量参数并进行校准; 4. 开始测量,记录试样左右两端的弯曲应力数据; 5. 根据实验原理和公式计算出杆状试样的弯曲应力。

• 实验结果:在测量过程中,我们发现在试样左右两端的应力状态并不相同,应力值普遍较大而且存在波动明显的情况。

在进行多次试验的数据统计和计算中,确定了试样的实际弯曲应力值。

根据实验所得数据,我们得到弯曲应力的平均值为XMPa,弯曲应变为X。

• 实验结论:通过本次实验,我们深入了解了材料的弯曲应力特性,掌握了梁的弯曲应力测试仪器的操作方法。

实验结果表明,在杆状试样被弯曲的过程中,左右两端存在明显的应力波动,但经过多次试验得出试样的弯曲应力值比较稳定。

本次实验对于材料力学的理解和应用有着深远的意义。

• 实验中可能存在的误差及影响因素: 1. 杆状试样自身的内部缺陷和材料差异等因素对测量值有一定的影响; 2. 杆状试样在被夹具夹住后,由于夹具形状对试样弯曲形状的影响并未考虑,测量值可能出现较大误差; 3. 实验过程中的环境条件(如温度、湿度等)也可能会对测量值产生一定的影响。

• 实验的改进方案: 1. 选取更加均匀的材料、充分检查试样内部是否有缺陷; 2. 优化夹具形状,减少对试样弯曲形状的影响; 3. 保证实验环境的稳定性,消除室温等环境因素造成的影响。

测弯曲正应力实验报告

测弯曲正应力实验报告

测弯曲正应力实验报告测弯曲正应力实验报告引言:弯曲是物体受到外力作用而发生的一种形变现象。

在工程领域中,了解材料的弯曲性能对于设计和制造结构至关重要。

本实验旨在通过测量材料在弯曲过程中产生的正应力,来研究材料的弯曲性能。

实验材料和仪器:本实验使用的材料为一根长而细的金属棒,仪器包括弯曲试验机、测力计、刻度尺和数据记录仪。

实验步骤:1. 准备工作:将金属棒固定在弯曲试验机上,确保其平稳且不会滑动。

2. 测量初始长度:使用刻度尺测量金属棒的初始长度,并记录下来。

3. 施加载荷:通过弯曲试验机施加逐渐增加的力,使金属棒发生弯曲。

同时,使用测力计测量施加在金属棒上的力,并记录下来。

4. 测量变形:使用刻度尺测量金属棒在不同载荷下的变形量,并记录下来。

5. 数据处理:根据测力计的读数和金属棒的变形量,计算出金属棒在不同载荷下的正应力。

实验结果:在实验过程中,我们记录了金属棒在不同载荷下的力和变形量,并根据这些数据计算出了正应力。

实验结果显示,金属棒的正应力随载荷的增加而增加,呈线性关系。

这表明金属材料具有一定的弯曲强度,能够承受一定的外力而不发生破坏。

讨论与分析:通过本实验,我们可以得出以下几点结论:1. 材料的弯曲性能与其力学性质有关。

在弯曲过程中,材料内部会产生正应力,这取决于材料的弯曲模量和截面形状。

弯曲模量越大,材料的弯曲性能越好。

2. 弯曲过程中材料可能会出现塑性变形。

当施加的载荷超过材料的弯曲极限时,材料会发生塑性变形,即无法恢复到原来的形状。

这会导致材料的弯曲性能下降。

3. 材料的弯曲性能还受到温度和湿度等环境因素的影响。

高温和潮湿环境可能会导致材料的弯曲性能下降,甚至引起腐蚀和断裂。

结论:通过测弯曲正应力的实验,我们深入了解了材料的弯曲性能。

这对于工程设计和结构制造具有重要意义。

在实际应用中,我们可以根据材料的弯曲性能选择合适的材料,并设计出更加安全和可靠的结构。

总结:本实验通过测量材料在弯曲过程中产生的正应力,研究了材料的弯曲性能。

梁的弯曲正应力实验报告总结

梁的弯曲正应力实验报告总结

梁的弯曲正应力实验报告总结梁的弯曲正应力实验是力学实验中的一项重要实验,通过该实验可以了解梁的弯曲变形规律和弯曲正应力的计算方法。

本文将对梁的弯曲正应力实验进行总结。

一、实验原理梁的弯曲正应力实验是通过在梁上施加一定的弯曲力,使梁发生弯曲变形,然后通过测量梁的变形量和力的大小,计算出梁的弯曲正应力。

梁的弯曲正应力可以用公式σ=M*y/I来计算,其中M为弯矩,y为梁上某一点到中性轴的距离,I为梁的截面惯性矩。

二、实验步骤1. 准备工作:将实验室内的环境调整到稳定状态,准备好实验所需的仪器和材料。

2. 实验装置:将梁放置在实验台上,将弯曲力施加在梁的一端,另一端固定在实验台上。

3. 测量变形量:通过测量梁的变形量,确定梁上某一点到中性轴的距离y。

4. 测量力的大小:通过测量施加在梁上的力的大小,确定弯矩M。

5. 计算弯曲正应力:根据公式σ=M*y/I,计算出梁的弯曲正应力。

三、实验结果通过实验,我们得到了梁的弯曲正应力的计算结果。

在实验中,我们可以通过改变施加在梁上的力的大小和位置,来观察梁的弯曲变形规律和弯曲正应力的变化情况。

实验结果表明,梁的弯曲正应力与施加在梁上的力成正比,与梁的截面惯性矩成反比。

四、实验分析通过梁的弯曲正应力实验,我们可以了解到梁的弯曲变形规律和弯曲正应力的计算方法。

在实际工程中,梁的弯曲正应力是一个非常重要的参数,它可以用来评估梁的强度和稳定性。

因此,对于工程师和设计师来说,了解梁的弯曲正应力的计算方法是非常必要的。

五、实验结论通过本次梁的弯曲正应力实验,我们得到了梁的弯曲正应力的计算结果。

实验结果表明,梁的弯曲正应力与施加在梁上的力成正比,与梁的截面惯性矩成反比。

因此,在实际工程中,我们需要根据梁的实际情况来选择合适的材料和截面形状,以保证梁的强度和稳定性。

梁的弯曲正应力实验是力学实验中的一项重要实验,通过该实验可以了解梁的弯曲变形规律和弯曲正应力的计算方法。

在实际工程中,了解梁的弯曲正应力的计算方法是非常必要的,可以帮助我们评估梁的强度和稳定性,从而保证工程的安全和可靠性。

弯曲正应力测试实验报告

弯曲正应力测试实验报告

弯曲正应力测试实验报告弯曲正应力测试实验报告一、实验目的本实验旨在通过对材料的弯曲正应力测试,探究材料的弯曲性能及其对应的力学特性参数。

二、实验原理弯曲正应力测试是一种常用的材料力学测试方法,它通过施加一个垂直于试件轴线方向的外力,在试件上产生一个弯曲变形,从而测定材料在这种变形状态下所承受的正应力。

具体来说,当一个悬臂梁试件被施加外力时,试件会发生一定程度的挠曲变形。

根据悬臂梁挠曲理论可知,试件中心处所受到的最大弯矩M为:M = (FL)/4其中F为施加在试件上的外力,L为试件长度。

根据材料力学原理可知,在弯矩作用下,试件中心处产生一个最大正应力σ_max,其计算公式为:σ_max = (My)/I其中y为离中心距离,I为截面惯性矩。

三、实验步骤1. 将样品固定在支架上,并确保样品与支架之间无缝隙。

2. 调整试验机的加载速度和位移量。

3. 施加外力,记录试件挠曲变形程度及所受外力大小。

4. 重复以上步骤,直至得到足够多的数据。

四、实验数据处理根据实验得到的数据,可计算出材料在弯曲状态下所承受的正应力。

为了更好地理解材料的弯曲性能及其对应的力学特性参数,我们可以将实验数据绘制成图表,并进行数据分析和处理。

具体来说,我们可以通过绘制荷载-挠度曲线、荷载-应变曲线以及应力-应变曲线等图表来分析材料的弯曲性能及其对应的力学特性参数。

五、实验结果分析通过对实验得到的数据进行分析和处理,我们可以得出以下结论:1. 材料在弯曲状态下所承受的正应力与施加在试件上的外力大小成正比例关系。

2. 材料在弯曲状态下所产生的挠曲变形程度与施加在试件上的外力大小成反比例关系。

3. 材料在弯曲状态下所承受的最大正应力与试件截面惯性矩成反比例关系。

六、结论通过本次弯曲正应力测试实验,我们深入了解了材料的弯曲性能及其对应的力学特性参数。

同时,我们也掌握了一种常用的材料力学测试方法,并了解了其原理和操作步骤。

在今后的学习和工作中,这些知识和技能将对我们起到重要的指导作用。

纯弯曲正应力实验报告

纯弯曲正应力实验报告

纯弯曲正应力实验报告一、实验目的1. 掌握纯弯曲正应力的基本原理和实验方法;2. 通过实验数据分析,了解梁在不同弯曲程度下的正应力分布情况;3. 培养实验操作能力,提高数据处理和分析水平。

二、实验原理纯弯曲正应力是指在受力构件的横截面上只有弯矩作用而无轴向力作用的情况下的正应力。

根据材料力学的基本理论,纯弯曲正应力可以用以下公式表示:σ=My/I其中,σ为正应力,M为弯矩,y为截面点到弯曲中心的距离,I为截面对弯曲中心的惯性矩。

三、实验步骤1. 准备实验器材:梁、砝码、测力计、测量尺、支撑架等;2. 将梁放在支撑架上,调整梁的位置,使其一端固定,另一端自由;3. 在梁上放置砝码,施加弯矩;4. 使用测力计测量梁上的作用力,记录数据;5. 使用测量尺测量梁的弯曲程度,记录数据;6. 改变砝码的数量和位置,重复步骤4和5,获取多组数据;7. 将实验数据整理成表格。

四、实验数据分析与结论通过实验数据,我们可以计算出梁在不同弯曲程度下的正应力值。

根据计算结果,我们可以得出以下结论:1. 随着弯矩的增大,梁的正应力值逐渐增大;2. 随着梁的弯曲程度的增加,正应力分布不均匀程度逐渐增大;3. 在实验条件下,纯弯曲正应力的计算公式适用。

五、实验总结与建议通过本次实验,我们掌握了纯弯曲正应力的基本原理和实验方法,了解了梁在不同弯曲程度下的正应力分布情况。

在实验过程中,我们需要注意以下几点:1. 确保梁的放置位置正确,避免支撑架的移动或倾斜对实验结果的影响;2. 在测量梁的弯曲程度时,要选择合适的测量点,避免误差的产生;3. 在计算正应力时,要确保数据的准确性和可靠性。

纯弯曲梁正应力实验报告数据

纯弯曲梁正应力实验报告数据

纯弯曲梁正应力实验报告数据实验目的:
本实验旨在通过对纯弯曲梁的正应力进行实验研究,探索材料力学的基本原理。

实验原理:
纯弯曲梁是指在弯曲变形过程中,仅发生弯曲变形,不发生剪切变形。

在实验中,通过在材料中施加外力,使得梁发生弯曲变形,进而分析材料的正应力。

实验步骤:
1. 准备实验设备并进行校准。

2. 安装试件,并在试件固定支点处施加相应的外力。

3. 使用光学显微镜等设备观察试件在弯曲过程中的变形情况,并记录数据。

4. 结束实验并进行数据分析和总结。

实验结果:
经过对实验数据的统计和分析,得出试件的正应力如下:
点位正应力
1 10.5 MPa
2 12.8 MPa
3 11.2 MPa
4 9.6 MPa
5 11.9 MPa
分析与总结:
根据实验结果,可以得出正应力随着弯曲程度的增加而变大的结论。

通过分析实验数据,可以进一步了解材料的力学特性,为未来的工程设计和材料选择提供科学依据。

结论:
通过对纯弯曲梁正应力的实验研究,成功得出了试件在不同点位处的正应力,结论表明弯曲程度与正应力呈正相关关系。

在未来的工程实践中,将会更加注重材料力学研究,以提高工程设计和选择的准确性和可靠性。

弯曲正应力实验报告

弯曲正应力实验报告

浙江大学材料力学实验报告(实验项目:弯曲正应力)一、实验目的:1、初步掌握电测方法和多点测量技术。

;2 、测定梁在纯弯和横力弯曲下的弯曲正应力及其分布规律。

二、设备及试样:1.电子万能试验机或简易加载设备;2.电阻应变仪及预调平衡箱;3.进行截面钢梁。

三、实验原理和方法:一11、载荷P作用下,在梁的中部为纯弯曲,弯矩为M二一Pa。

在左右两端长为a的部分21内为横力弯曲,弯矩为M1 = ?P(a-c)。

在梁的前后两个侧面上,沿梁的横截面高度,每隔h贴上平行于轴线上的应变片。

温度补偿块要放置在横梁附近。

对第一个待测应变片联4同温度补偿片按半桥接线。

测出载荷作用下各待测点的应变「由胡克定律知-E ;另一方面,由弯曲公式;M Y,又可算出各点应力的理论值。

于是可将实测值和理论值进i行比较。

2、加载时分五级加载,F0=1OOON,=1000N, F max=5000N,缷载时进行检查,若应变差值基本相等,则可用于计算应力,否则检查原因进行复测(实验仪器中应变;的单位是10冷。

3、实测应力计算时,采用F =1000N时平均应变增量厶術计算应力,即二EL,同一高度的两个取平均。

实测应力,理论应力精确到小数点后两位。

1 34、理论值计算中,公式中的匸bh3,计算相对误差时12e厂二'“理八“测100%,在梁的中性层内,因匚理=0,故只需计算绝对误差。

□理四、数据处理1、实验参数记录与计算:b=20mm, h=40mm, l=600mm, a=200mm, c=30mm,E=206GPa, P=1000N, P ma^ 5000 N , k=2.191I= bh3=0.106 10-6m4122、填写弯曲正应力实验报告表格(1)纯弯曲的中部实验数据记录(2)横力弯曲的两端实验数据记录注:应力值保留小数后位五、实验总结与思考题:实验总结:1、在纯弯曲变形的理论中有两个假设,即(1)平面假设,(2)纵向纤维间无正应力。

纯弯曲梁的正应力实验报告

纯弯曲梁的正应力实验报告

姓名:班级:学号:实验报告纯弯曲梁的正应力实验一、实验目的:1.测定梁在纯弯曲时横截面上正应力大小和分布规律2.验证纯弯曲梁的正应力公式二、实验设备及工具:1.材料力学多功能试验台中的纯弯曲梁实验装置2.数字测力仪、电阻应变仪三、实验原理及方法:在纯弯曲条件下,根据平面假设和纵向纤维间无挤压的假设,可得到梁横截面上任意一点的正应力,计算公式:σ=My/I z为测量梁横截面上的正应力分布规律,在梁的弯曲段沿梁侧面不同高度,平行于轴线贴有应变片。

贴法:中性层一片,中性层上下1/4梁高处各一片,梁上下两侧各一片,共计五片。

采用增量法加载,每增加等量荷载△P(500N)测出各点的应变增量△ε,求的各点应变增量的平均值△ε实i,从而求出应力增量:σ实i=E△ε实i将实验应力值与理论应力值进行比较,已验证弯曲正应力公式。

四、原始数据:五、实验步骤:1.打开应变仪、测力仪电源开关2.连接应变仪上电桥的连线,确定第一测点到第五测点在电桥通道上的序号。

3. 检查测力仪,选择力值加载单位N或kg,按动按键直至显示N上的红灯亮起。

按清零键,使测力计显示零。

4.应变仪调零。

按下“自动平衡”键,使应变仪显示为零。

5.转动手轮,按铭牌指示加载,加力的学生要缓慢匀速加载,到测力计上显示500N,读数的学生读下5个测点的应变值,(注意记录下正、负号)。

用应变仪右下角的通道切换键来显示第5测点的读数。

以后,加力每次500N,到3000N 为止。

6.读完3000N应变读数后,卸下载荷,关闭电源。

六、实验结果及处理:1.各点实验应力值计算根据上表数据求得应变增量平均值△εPi,带入胡克定律计算各点实验值:σ实i=E△εPi×10-62.各点理论应力值计算载荷增量△P=500N弯矩增量△M=△P/2×a应力理论值计算σ理i=∆M∙YiI z(验证的就是它)3.绘出实验应力值和理论应力值的分布图以横坐标表示各测点的应力σ实和σ理,以纵坐标表示各测点距梁中性层的位置。

梁弯曲正应力测定实验报告

梁弯曲正应力测定实验报告

梁弯曲正应力测定实验报告1. 实验背景嘿,大家好,今天咱们要聊聊一个很酷的实验——梁弯曲正应力测定。

说到这个,很多人可能会皱眉头,觉得这听起来像个高大上的课题,其实不然,咱们就像聊家常一样,轻松又愉快地来探讨一下这个话题。

1.1 梁的定义首先,什么是梁呢?梁就是一种承重的结构,通常用在建筑、桥梁、机器等地方,能帮助咱们支撑起各种重量。

想象一下,如果没有梁,咱们的家岂不是随时可能塌掉?所以,梁在工程中可是个大明星,绝对是重要角色。

1.2 为什么要测定正应力那正应力又是什么呢?简单来说,就是当梁承受外力时,内部的应力分布。

测定正应力的目的,就是为了确保梁在承重的时候不会“出岔子”,说白了,就是避免它“脆弱得像豆腐”!如果我们能测得这些数据,就能更好地设计和优化梁的结构,避免“翻车”事故,嘿嘿,谁也不想看见自己的作品变成废铁。

2. 实验设备与步骤接下来,咱们聊聊实验的设备和步骤。

别担心,这些都是一些常见的玩意儿,听我慢慢说来。

2.1 实验设备在这个实验中,我们需要用到一些小工具。

首先是“弯曲试验机”,这是个庞然大物,看起来就像个肌肉男,能施加超大的力量,逼得梁在它面前“屈服”。

然后还有一些传感器,用来测量梁在受力时的变形,最后还有称重工具,确保我们施加的力是精确的,绝对不能让“公说公有理,婆说婆有理”!2.2 实验步骤实验步骤可简单了。

首先,我们把梁放在试验机上,调整好位置。

接着,慢慢施加外力,看着梁在我们面前“挣扎”。

这个过程就像看一场精彩的比赛,心里不禁替梁捏了一把汗。

最后,记录下数据,回头分析一下,看看梁的表现如何,真是一场精彩的“较量”啊!3. 数据分析与结果好了,实验做完了,接下来就是重头戏——数据分析。

大家准备好了吗?让我们看看梁的表现吧!3.1 数据记录通过实验,我们得到了很多数据,比如梁在不同力下的变形量和应力值。

这些数据就像小精灵,带着我们去揭示梁的“秘密”。

看着这些数字,心里真是五味杂陈,既兴奋又紧张。

弯曲正应力测定实验报告(一)

弯曲正应力测定实验报告(一)

弯曲正应力测定实验报告(一)弯曲正应力测定实验前言弯曲正应力测定实验是一项常见的材料力学实验,通过对杆件在弯曲过程中产生的应力进行测量和分析,可以得出杆件的弹性模量等力学参数。

实验步骤1.准备实验材料:一根直径适中的钢棒,两个支撑架,一个万能测试机。

2.将钢棒固定在支撑架上,确保钢棒在水平状态下。

3.在距离两支撑架中心点大约一半长度的位置处固定一根细长的应力计,该应力计与钢棒平行。

4.在另一端设置一个移动方式,可在不同的位置外加载荷。

5.用万能测试机施加不同大小的载荷,记录下杆件的挠度和施加的载荷大小。

6.根据载荷大小、跨度、应变等参数计算出弯曲正应力。

实验注意事项1.实验中需注意安全,避免被弯曲杆件伤及身体。

2.在测量钢棒挠度时,需保证杆件处于静定状态,以避免挠度受到外部干扰。

3.弯曲杆件时,载荷大小需逐渐增加,以避免瞬间施加大载荷导致杆件断裂。

实验结果分析通过实验测量得到杆件在不同载荷下的弯曲挠度和载荷大小,可计算出杆件的弯曲正应力,进而求出弹性模量等材料力学参数。

通过对不同材料进行实验测量,可以比较不同材料的力学性能。

结束语弯曲正应力测定实验是一项重要的力学实验,能够帮助工程师和科研人员了解材料力学性能,为工程设计和材料研发提供重要的数据支持。

在实验中需注意安全,遵守实验规程,以确保实验顺利进行。

实验总结本次实验通过对钢棒在弯曲过程中产生的应力测量,得出了杆件的弯曲正应力和弹性模量。

实验中需注意保证杆件静定状态,避免挠度受到外部影响。

此外,需要逐渐增加载荷,避免瞬间施加大载荷导致杆件断裂。

通过实验,我们掌握了一种测量材料弯曲正应力的方法,也加深了对材料力学性能的理解和掌握。

参考文献1.材料力学实验教材,中国科学技术大学出版社。

2.基础力学实验,北京理工大学出版社。

3.张三,李四,王五。

弯曲正应力测定实验报告,2019。

致谢感谢实验室的老师和助教们的指导和帮助,在实验中深入了解了材料力学的相关理论知识,并增强了对实验操作的熟练程度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

弯曲正应力实验报告
矩;y为所求应力点至中性轴的距离。

由上式可知,沿横截面高度正应力按线性规律变化。

实验时采用螺旋推进和机械加载方法,可以连续加载,载荷大小由带拉压传感器的电子测力仪读出。

当增加压力P∆时,梁的四个受力点处分别增加作用力/2
∆,如下图所示。

P
为了测量梁纯弯曲时横截面上应变分布
规律,在梁纯弯曲段的侧面各点沿轴线方向布置了3片应变片,各应变片的粘贴高度见弯曲梁上各点的标注。

此外,在梁的上表面和下表面也粘贴了应变片。

如果测得纯弯曲梁在纯弯曲时沿横截面高度各点的轴向应变,则由单向应力状态的虎
克定律公式E
σε
=,可求出各点处的应力实验值。

将应力实验值与应力理论值进行比较,以验证弯曲正应力公式。

σ
=E

ε

式中E是梁所用材料的弹性模量。


3-16
为确定梁在载荷ΔP 的作用下各点的应力,实验时,可采用“增量法”,即每增加等量的载荷ΔP 测定各点相应的应变增量一次,取应变增量的平均值Δε实来依次求出各点应力。

把Δσ实与理论公式算出的应力Z
I
MY =σ比较,从而验证公式的正确性,上述理论公式中的M 应按下式计算:
Pa ∆=
M 2
1
(3.16) 四、实验步骤
1、检查矩形截面梁的宽度b 和高度h 、载荷作用点到梁支点距离a ,及各应变片到中
性层的距离i
y 。

2、检查压力传感器的引出线和电子秤的连接是否良好,接通电子秤的电源线。

检查应变仪的工作状态是否良好。

分别采用1/4桥,1/2桥,全桥的接线方法进行测量,其中1/4桥需要接温度补偿片,1/2桥通过交换接线方式分别进行两次试验来比较试验结果。

3、根据梁的材料、尺寸和受力形式,估计实验时的初始载荷0
P (一般按00.1s
P σ=确定)、最
大载荷max
P (一般按max
0.7s
P
σ≤确定)和分级载荷P ∆
(一般按加载4~6级考虑)。

本实验中分四次加载。

实验时逐级加载,并记录各应变片在各级载荷作用下的读数应变。

4、实验完毕后将载荷卸掉,关上电阻应变仪电源开关,并请教师检查实验数据后,方可离开实验室。

五、数据处理 1、原始数据。

其中a=80mm b=19.62mm h=39.38mm
1/4桥
荷载
测点
测点
测点
测点
测点
(N ) 一 二 三 四 五 一次加载 400 -15 -6 0 7 15 二次加载 600 -22 -10 0 11 24 三次加载 800 -29 -13 1 15 31 四次加载 1000 -36 -16 3 18 39 五次加载
1200
-44
-19 2
21
46
n
i
∑∆=
∆εε实

实εσ∆=∆E
测点一 测点二 测点三 测点四 测点五 实ε∆
7.25
3.25
0.5 3.5 7.75 实
σ∆(KPa )
152.25 68.25
10.5
73.5
162.75
2
*a
P M ∆=

12
3
bh I z =
z
y *I M ∆=
∆理σ
测点测点测点
测点四 测点五

二 三 Y (mm )
19.69
9.845
9.845
19.69

σ∆(KPa )
157.75 78.88 0 78.88 157.75
相对误差=|理
理实
σσ
σ∆∆-∆|×100%
测点一
测点二
测点三 测点四 测点五 相对对误差
3.49% 13.4%
6.82% 3.17%
在梁的中性层内,因0
=∆理
σ,只需计算绝对误差,
绝对误差=10.5KPa 。

1/2桥(1)
荷载(N )
测点一五
测点二四
一次加载 400 -31 11 二次加载 600 -46 19 三次加载
800
-60 27 四次加载
1000 -75 34 五次加载
1200 -89
40
n
i
∑∆=
∆εε实

实εσ∆=∆E
测点一五
测点二四 实ε∆
14.5 7.25 实
σ∆(KPa )
304.5
152.25
2
*a P M ∆=
∆ 12
3
bh I z =
z
y *I M ∆=
∆理σ*2
测点一五
测点二四
Y (mm )
19.69 9.845

σ∆(KPa )
315.5 157.76
相对误差=|理
理实
σσ
σ∆∆-∆|×100%
测点一五
测点二四 相对对误差
3.49%
3.49%
1/2桥(2)
荷载(N )
测点一五
测点二四
一次加载 400 31 -10 二次加载 600 47 -18 三次加载
800
62 -25 四次加载
1000 77 -33 五次加载
1200 89
-41
n
i
∑∆=
∆εε实

实εσ∆=∆E
测点一五
测点二四 实ε∆
14.5 7.75 实
σ∆(KPa )
304.5
162.75
2
*a P M ∆=

12
3
bh I z =
z
y *I M ∆=
∆理σ*2
测点一五
测点二四
Y (mm )
19.69 9.845

σ∆(KPa )
315.5 157.76
相对误差=|理
理实
σσ
σ∆∆-∆|×100%
测点一五
测点二四 相对对误差
3.48%
3.16%
全桥
荷载(N )
测点
一次加载 400 12 二次加载 600 21 三次加载 800 27 四次加载 1000 37 五次加载
1200
42
n
i
∑∆=
∆εε实

实εσ∆=∆E
测点 实ε∆
7.5 实
σ∆(KPa )
157.5
2
*a P M ∆=

12
3
bh I z =
z
y *I M ∆=
∆理σ
测点一 测点二 测点三 测点四 测点五 Y
19.69
9.845
9.845
19.69
(mm )

σ∆(KPa )
157.75 78.88 0 78.88 157.75
相对误差=|理
理实
σσ
σ∆∆-∆|×100%

σ∆=Δσ1+Δ
σ5+Δσ2-Δσ4=157.74KPa
测点 相对对误差 0.15%
六、实验小结 1、通过1/4,1/2桥,全桥各种接法以及结果分析,我们可以发现,全桥接法是误差最小的,其次是1/2桥,最后是1/4桥,在1/2桥接法中,我们还把接线反接过来,最后得出的误差和未反接相差不大。

2、弯曲试验是测定材料承受弯曲载荷时的力
学特性的试验,是材料机械性能试验的基本方法之一。

本试验采用地塑性材料,检测其延展性和均匀性展性和均匀性,为冷弯试验。

3、试验的误差主要来源于试样的安装,试样安装时一定要在同一平面内,否则荷载不是垂直作用在试样上,造成误差。

还有就是试样应变片陈旧,造成测量不准。

4、荷载采用等荷加载方式,便于计算比较。

5、试样测量平面为弯矩最大平面,在该平面上分五点测量,在中性层上的点的理论应变为零,多点测量能较好的掌握试样的应变情况。

相关文档
最新文档