地基处理 第9章强夯法

合集下载

第九章 强夯法

第九章  强夯法

第九章强夯法(Dynamic Consolidation Method,Dynamic Compaction Method)第一节概述一强夯法的沿革与发展夯实法加固地基是一种古老的施工方法,远在6000年以前的原始公社母系氏族社会时期,人类生活的西安半坡遗址中,即发现其原始建筑的柱基垫土经过夯实。

进入文明社会几千年以来,中国就一直用夯实法,用夯(木夯、抬夯)、硪(石硪、铁硪,wo砸地基或打桩等用的一种工具。

通常是一块圆形石头,周围系着几根绳子。

如:硪筑(用石硪夯筑))加固地基,并用其修建土工建筑物,如堤、坝、台、墙(小至建筑墙壁、大至城墙),秦阿房宫前殿遗址即为东西宽1300m,南北长500m,面积60万平方米的大夯土台基,最初的万里长城及以后的长城心墙也多用土夯实筑成。

进入20世纪40年代以来,由于处理湿陷性黄土的需要和机具的发展,前苏联发展了重锤夯实法,并在50年代介绍到我国。

这种方法适用于加固地下水位0.8m以上稍湿的粘性土、砂类土、湿陷性黄土、杂填土地基。

对于含水量过高的土夯实效果差,形成“橡皮土”,不宜使用。

强夯法又名动力固结法(Dynamic Consolidation Method)或动力压实法(Dynamic Compaction Method)。

强夯法处理地基是60年代末由法国Menard(麦那)技术公司首先创用的。

这种方法是反复将很重的锤(一般为10~40t)提到高处使其自由落下(落距一般为10~40m)给地基以冲击和振动,从而提高地基的强度并降低其压缩性,改善地基的受力性能。

此法应用初期,仅用于加固砂土、碎石土地基。

强夯法的第一工程用于处理滨海填土地基。

该场地表层为新近填筑的厚度约为9m的碎石填土,其下是12m厚的疏松砂质粉土,场地上要建20栋8层住宅楼,由于碎石是新近堆积的,如采用桩基,负摩擦阻力很大,将占单桩承载力的60%~70%,不经济。

采用堆载预压法处理地基,堆载历时3m,仅夯击—遍,整个月,堆载高度为5m,只沉降200mm。

3.强夯法

3.强夯法

三、施工要点
⑴为减少对周边环境和建筑物的影响,应采取 防振措施; ⑵按规定起锤高度、锤击数的控制指标施工, 或按试夯后的沉降量控制; ⑶注意含水量对强夯效果的影响; ⑷注意夯锤上部排气孔的畅通 ; ⑸注意施工安全,防止石块伤人; ⑹雨季施工注意排水。
作业题2
1.重锤夯实法和强夯法有什么不同?
2.夯击点间距
夯击点间距一般根据地基土的性质和加固深度 确定。 第一遍一般可取5~9m,对于处理深度较深 或单击夯击能较大的工程,夯击点间距应适当增大。 3.夯击点布置范围 由于基础应力扩散作用,夯击点范围应大于建 筑物基础范围。对于一般建筑物,每边超出基础外 缘的宽度宜为设计加固深度的1/2~1/3,并不小于 3m。
应根据地基土类别结构类型、荷载大小和要求处理的深度
等综合考虑并通过试夯确定。
3.最佳夯击能(最佳夯击次数)
⑴最佳夯击能: 由动力固结理论,使地基中产生的孔隙水压力达 到土的覆盖压力时的夯击能称为最佳夯击能。 ⑵最佳夯击次数: 当单击夯击能一定时,与最佳夯击能相对应的夯 击次数称为最佳夯击数。
⑶最佳夯击能(最佳夯击次数)的确定
①由孔隙水压力确定 a.对于粘性土地基,可根 据有效影响深度孔隙水压力的 叠加值来确定最佳夯击能。 b.对砂性土地基,可根据 最大孔隙水压力增量与夯击次 数的关系曲线来确定最佳夯击 次数。
②由夯沉量与夯击次数关系曲线确 定
a.确定原则:夯坑的压缩量最大,而夯坑的隆 起最小。 b.确定方法:当△S-N趋向趋于稳定,接近常 数,且同时满足以下条件时,可取相应夯击次数为 最佳夯击次数。
①锤重与落距
对于某一单击夯击能,夯锤在接触土体瞬间 冲量的大小是影响土体压缩变形的关键因素,冲 量越大,加固效果越好。 夯锤着地时的冲量

强夯法-很实用的地基处理方法精选全文

强夯法-很实用的地基处理方法精选全文

可编辑修改精选全文完整版强夯法,很实用的地基处理方法1、简介任何建筑物的荷载最终将通过基础传递到地基上。

凡是基础直接建造在未经加式。

2强夯法处理地基是六十年代末由法国Menard技术公司首先创造的。

这种方法是将很重的锤(一般为100-400kN)从高处自由落下落(落距一般为6-40m)给地基以冲击力和振动,从而提高土的强度并降低土的压缩性,改善土的振动液化条件和消除湿陷性黄土的湿陷性等作用。

同时,夯击能还可以提高土层的均匀程度,减少将来可能出现的差异沉降。

强夯法开始时仅用于加固砂土和碎石,经过几十年的发展,它以适用从砾石到粘性土的各种地基土,这主要是由于施工方法的改进和排水条件的改善。

强夯法由于具有地基加固效果显著、设备简单、施工方便、适用范围广、经济易行和节省材料等优点,很快传播到世界各地。

目前已经有几十个国家的数千项工程采用强夯法加固地基。

6月3强夯法虽然已经在实践中证实了是一种比较好的地基处理方法,但到目前为止还没有一套成熟和完善的理论和设计计算方法。

在第十界国际土力学和基础工程会议上,美国Menard教授在“地基处理”的科学发展水平报告中精辟的论述强夯法的传统固结机理:强夯法目前已经发展到地基土的大面积加固,深度可达30m。

当应用于非饱和土时,压密过程基本上同实验室中的击实实验相同。

在饱和无粘性土的情况下,可能会产生液化,其压密过程同爆破和振动密实的过程相似。

这种方法对饱和细粒土的效果,成功和失败的例子都有报道。

对这类土需要破坏土的结构、产生超空隙水压力以及通过裂隙形成排水通道。

而强夯法对杂填土特别有效。

实践证明,在夯击的工程中,土体的瞬时沉降可达几十厘米;土中产生液化后使土的结构破坏,土的强度下降到最小值;随后在夯击点出现径向裂隙,成为加速强。

%。

(2)、产生液化在重复夯击作用下,施加在土体的夯击能量,使气体逐渐受到压缩。

因此,土体的沉降量与夯击能成正比。

当气体按百分比接近于零时,土体变成不可压缩的。

强夯法

强夯法

强夯法强夯法,又称动力固结法,是用起重机械(起重机或起重机配三角架、龙门架)将8——40t夯锤起吊到6——25m高度后,自由落下,给地基以强大的冲击能量的夯击,使土中出现冲击波和冲击应力,迫使土体孔隙压缩,土体局部液化,在夯击点周围产生裂隙,形成良好的排水通道,孔隙水和气体逸出,使土粒重新排列,经时效压密达到固结,从而提高地基承载力,降低其压缩性的一种有效地基加固方法,也是我国目前最为常用和最经济的深层地基处理方法之一。

20世纪60年代,强夯法首次由法国的梅那公司应用于法国嘎纳(Cannes)附近纳普而(Napoule)海滨在采石场废土石围海造地的场地内,经强夯法施工后,建造了20幢8层公寓建筑。

强夯法上世纪70年代初传入我国。

经过几十年的推广和应用,在建筑工程、水利工程、公路工程中得到了广泛的应用,取得了良好的效果和效益。

强夯法是在极短的时间内对地基土体施加一个巨大的冲击能量,使得土体发生一系列的物理变化,如土体结构的破坏或液化、排水固结压密以及触变恢复等。

其作用结果使得一定范围内地基强度提高,孔隙挤密并消除湿陷性。

根据地基处理的原理、目的、性质、时效及动机等有很多地基处理方法。

其中强夯法由于在工程实践中具有加固效果显著、适用土类广、设备简单、施工方便、节省劳力、节约材料、施工工期短、施工文明和施工费用低等优点,在建筑地基处理中得到了广泛的应用。

目前使用的夯锤重100——400kN,提升高度大约在10—30m。

一、强夯法的设计强夯法适用于处理碎石土、砂土、低饱和的粉土与粘性土、湿陷性黄土、杂填土和素填土等地基。

对高饱和的粉土与粘性土等地基,当采用在夯坑内回填块石、碎石或其他粗颗粒材料进行强夯置换时,应通过现场试验确定其使用性。

其主要设计参数包括有效加固深度、单位夯击能、夯击次数、夯击遍数、间隔时间、夯击点布置和处理范围等。

现分别阐述如下:(1)强夯法的有效加固深度既是反映地基处理效果的重要参数,又是选择地基方案的重要依据。

地基处理技术之强夯法设计要点课件

地基处理技术之强夯法设计要点课件

03
CATALOGUE
强夯法施工流程
施工前的准备工作
现场勘查
对施工场地进行实地勘 察,了解场地地形、地 质条件、地下管线等情
况。
制定施工方案
根据勘察结果,制定详 细的施工方案,包括夯 点布置、夯击能、夯击
次数等。
准备机具和材料
根据施工方案,准备必 要的机具和材料,如夯 锤、起重机、垫层材料
等。
清理场地
与换土垫层法相比,强夯法处 理深度更大,效果更可靠。
与预压法相比,强夯法施工周 期短,适用范围广。
02
CATALOGUE
强夯法设计要点
确定夯实能量与夯实次数
• 夯实能量与夯实次数是强夯法设计的核心参数,直接影响 夯实效果
确定夯实能量与夯实次数
夯实能量
夯实能量是指每次夯实所施加的重力,通常以吨为单位。根据地基土的性质和要 求处理的深度,选择合适的夯实能量是至关重要的。对于较软的地基土,需要较 大的夯实能量;而对于较硬的地基土,则可选择较小的夯实能量。
在强夯法中,通常使用的是重锤或巨石等重物作为夯实材料。选择合适的夯实材料对于达到理想的夯 实效果至关重要。一般来说,应根据地基土的特性和所需的夯实能量来选择合适的夯实材料。
夯实机械
夯实机械是实施强夯法的关键设备,其性能和效率直接影响着夯实效果。在选择夯实机械时,应考虑 其额定功率、夯击能量、夯击次数以及适用性等因素。此外,还应考虑其运行成本和维护要求,以确 保工程的可行性和经济性。
对于岩溶地基,应根据具体情采用适当的方法如填筑、压力注浆 等,以提高地基的稳定性和承载能力。
THANKS
感谢观看
控制填料质量
保证填料的含水量、粒径 、级配等符合设计要求, 以提高夯实质量。

强夯法地基处理

强夯法地基处理

强夯法地基处理
地基夯实就是指对地基进行处理和加固,使其具有较好的抗压性能和稳定性,从而满足后期建设施工要求。

它是建筑施工中必不可少的一项技术操作。

夯实地基包括用夯子或其他重型车辆压实地面,使软弱地基层变比较紧密;挖掘地基再夯实,使新地基达到设计要求;对地基进行夯实后,可以及早发现桩基础、深层地表不稳定,以防止破坏施工和建设的安全。

夯实地基的方法有多种,一般用机械夯实法和强夯法两种。

机械夯实法利用推土机、压路机、振动压实机等机械夯实地基,使地基面平整紧实。

强夯法是在弯矩桩基础施工前,对地基层进行机械夯实以上不足的,采用夯锤搅拌和粉碎处理。

首先在弯矩基础施工前,选择合适的地点,使用推土机推移;然后推开泥土,要求開挖到一定深度,然后放入夯锤,勾碎和粉碎土壤,再将剩下的大块物料进行破碎,再使用夯锤粉碎,最后使用湿石砂或泥砂与泥土混合填充,再进行夯实,使地基具有良好的稳定性和抗压性能。

此外,夯实地基也可以配合施工现场实施场地加固处理,提高地基的抗压强度。

在加固处理中,可以采用钢筋混凝土箍筋、地基加固桩、土质混合料或其他类型的加固构件来改善地基的坚硬度和稳定性,以满足后期施工要求。

夯实地基是建筑施工前期必不可少的技术操作,既能确保后续施工安全,又能使后续施工完成时间更短。

各种地基夯实方法和加固措施都有一定的独特之处,施工者应对不同之处和技术要求具有准确认识和全面分析,以合理使用各种方法。

地基处理 第9章强夯法

地基处理 第9章强夯法

1

由大量工程实践证明,强夯法适用于处理碎石 土、砂土、低饱和度的粉土与粘性土、湿陷性黄土、 杂填土和素填土等地基; • 强夯置换法适用于高饱和度的粉土与软塑~ 流塑的 粘性土等地基上对变形控制要求不严的工程。
• 强夯置换法在设计前必须通过现场试验确定其适用性和处理 效果。
• 对高饱和度的粉土与粘性土地基,尤其是淤泥与淤 泥质土,处理效果较差,使用要慎重。若在夯坑内 回填块石、碎石或其它粗粒材料进行强夯置换时, 应根据现场试验确定其适用性。 •
3
9.1 强夯加固机理
强夯法虽然在工程中得到广泛应用,但由于其 加固机理比较复杂,至今还没有一套成熟的理论和 设计计算方法。根据工程实际实践和试验研究成果, 对不同的土质条件和施工工艺,其加固机理有所不 同。目前,强夯法加固机理概括起来有三个方面, 即动力固结、动力夯实和动力置换。 一、动力固结 Menard根据饱和土经强夯后瞬时沉降数十厘米这 一事实,对传统的固结理论提出不同看法,认为饱 和土是可压缩的,并提出了一个新的动力固结模型。 图9.1-1为静力固结理论与动力固结理论的模型对比 图,表9.1-1为两种模型对比表。
强夯法又称为动力固结法或动力压密法。这种方 法 是 将 100~400kN 的 重 锤 ( 最 重 达 2000kN ) , 以 6~40m的落距落下给地基以冲击和振动,从而达到提高 土的强度,降低其压缩性,改善土的振动液化条件,消除 湿陷性黄土的湿陷性等目的。 强夯法由法国Menard技术公司于1969年首创,当 时,仅用于加固砂土和碎石土地基,但随着施工方法 的改进,其应用范围已扩展到细粒土地基。
30
(二)拟定初步施工方案
(1) 根据加固目的,土质情况及建筑物的变形要求,确定处理深度。由处理 深度根据表 9.2-2 或下式估算单击夯击能 E:

地基强夯法处理施工方案_

地基强夯法处理施工方案_

地基强夯法处理施工方案_一、概述二、处理施工方案1.前期准备工作在进行地基强夯处理之前,需要对地基进行充分的勘测和地质分析,确定地基的参数和土层结构。

同时,需要进行相应的场地平整和辅助施工设施的搭建。

2.设备选择和准备采用地基强夯法进行处理时,需要选择合适的夯锤设备。

夯锤设备应具备稳定的冲击能量和合适的冲击频率。

同时,需要储备足够的夯锤配重质量和夯锤掉落高度。

3.处理方案设计根据地基强夯的处理目标和地基参数,确定夯锤的冲击频率、冲击能量和夯锤掉落高度。

同时,根据地基的现状和要求,确定强夯区域和强夯点的布置。

4.施工操作a.充实夯锤:将夯锤与配重的质量调节到合适比例。

保证夯锤的重量与掉落高度满足设计参数要求。

b.确定夯锤掉落位置:根据强夯点的布置,确定每个强夯点的夯锤掉落位置,确保每个强夯点的覆盖范围。

c.进行强夯处理:将夯锤按照设计要求落下,对地基进行强夯处理。

夯击的频率和能量要根据不同的土层特性进行调整。

d.后期处理:在强夯处理完成后,及时对施工现场进行清理。

并对处理效果进行初步评估。

5.处理效果评估根据地基处理的目标和实际情况,对强夯处理后的地基进行效果评估。

可以采用地基承载力试验和动力观测等方法来评估地基处理的效果。

三、处理方案优势1.处理效果显著:地基强夯法是一种有效的地基处理方法,可以显著提高地基的承载力和稳定性。

2.施工速度快:地基强夯法施工简便,工期短,可以快速完成地基处理的任务。

3.适用范围广:地基强夯法适用于各种土层,包括软土、弱黏土和砂土等。

4.成本较低:相比其他地基处理方法,地基强夯法具有较低的施工成本。

四、安全注意事项在进行地基强夯处理时,需要注意以下安全事项:1.施工现场要进行合理的划分和隔离,确保施工人员和设备的安全。

2.严禁在强夯区域内作业,以免发生伤人事故。

3.施工前要对设备进行检查和维护,确保夯锤的工作正常。

4.施工过程中要注意土体的反弹和侧漏现象,及时调整处理参数。

强夯法

强夯法

(3)试夯
3.2 强夯法
(九)现场测试设计
(1)地面沉降观测
3.2.2 强夯法设计计算
每夯击一次应及时测量夯击坑及夯坑周围地面的沉降、隆起; 用以控制夯击击数,估计夯击效果。 (2)孔隙水压力 测量在夯击作用下,孔隙水压力沿深度和水平距离的增长和消散的分布。从而 确定两个夯击点间的夯距、夯击的影响范围、间歇时间以及饱和夯击能等参数。 (3)强夯振动影响范围 测试地面振动加速度了解强夯振动的影响范围。 为了减小强夯振动对周围建筑物的影响,可在夯区周围设置隔振沟。 (4)深层沉降和侧向位移测试 在地基中设置深层沉降标测量不同深度土体的竖向位移和侧向位移沿深度变化。 有效了解强夯处理的有效加固深度和影响范围。
3.2 强夯法
(五) 夯击击数与遍数 (1)夯击击数
3.2.2 强夯法设计计算
ቤተ መጻሕፍቲ ባይዱ
应按现场试夯得到的夯击击数和夯沉量关系曲线 确定,且应同时满足下列条件: ①最后两击的平均夯沉量不大于50mm,当单击 夯击能量较大时不大于100mm; ②夯坑周围地面不应发生过大隆起; ③不因夯坑过深而发生起锤困难。
(2)夯击遍数
***到目前为止,国内外还没有一套成熟和完善的理论和设计计算方法。
3.2 强夯法
(二)机理分类
3.2.1 加固机理
目前,强夯法加固地基有三种不同的加固机理:动力密实(Dynamic Compaction) 、动力 固结(Dynamic Consolidation)和动力置换(Dynamic Replacement),它取决于地基土的类 别和强夯施工工艺。
3.2 强夯法
(一)施工设备 (二)施工工艺
3.2 强夯法
加固机理
3.2.0 概述
《地基处理技术规范》(JGJ79-2002)

强夯法处理地基说明

强夯法处理地基说明

强夯法处理地基说明1. 引言地基处理是建筑工程中至关重要的一环,它直接影响着建筑物的稳定性和耐久性。

强夯法是一种常用的地基处理方法,通过利用冲击力改良地基的力学性质,以提高地基的承载能力和稳定性。

本文将详细介绍强夯法处理地基的原理、施工步骤和注意事项。

2. 强夯法原理强夯法是一种通过振动和冲击地基来改良其力学性质的方法。

其原理可以分为以下几个方面:•增加地基密实度:强夯机通过自身重量的冲击力和振动作用,使地基颗粒重新排列,填充隙缝,从而增加地基的密实度。

这样可以提高地基的承载能力和稳定性。

•改善地基排水性能:强夯机的振动作用能够破坏地基颗粒之间的毛细管力,改善地基的排水性能。

这对于水分较多的地基尤为重要,可以防止地基变软或产生液化现象。

•改善地基的力学性质:强夯机的冲击力可以改变地基颗粒的排列方式,增加颗粒间的摩擦力和内聚力。

这样可以提高地基的抗剪强度和抗沉降性能。

3. 强夯法施工步骤强夯法处理地基通常包括以下几个步骤:3.1 地基勘测和设计在进行强夯法处理地基之前,需要进行地基勘测和设计。

勘测的目的是确定地基的类型、土层厚度、水位情况等,以便进行合理的施工设计。

3.2 建立临时工地在施工前,需要建立临时工地,包括搭建施工设施和道路,确保施工过程的顺利进行。

3.3 强夯机的布置和调试选择适当的强夯机型号,并根据设计要求进行布置。

在布置完成后,需要进行强夯机的调试,确保其正常运行。

3.4 强夯施工根据设计要求和施工方案,进行强夯施工。

施工时需要注意以下几点:•施工区域的划分:将地基划分为若干区域,按照施工顺序依次进行强夯施工。

•冲击次数和冲击能量的控制:根据地基的类型和设计要求,合理控制冲击次数和冲击能量,以达到预期的处理效果。

•施工质量的监控:施工过程中,需要进行质量监控,包括冲击次数、冲击能量、沉降观测等,以确保施工质量符合设计要求。

3.5 施工验收施工完成后,需要进行施工验收。

验收内容包括地基的承载能力、沉降情况等,以确定地基处理效果是否符合设计要求。

强夯法,很实用的地基处理方法

强夯法,很实用的地基处理方法

强夯法,很实用的地基处理方法1、简介任何建筑物的荷载最终将通过基础传递到地基上。

凡是基础直接建造在未经加固的天然土层上时,这种地基称为天然地基。

若天然地基很软弱,则事先要经过人式。

2冲击力和振动,从而提高土的强度并降低土的压缩性,改善土的振动液化条件和消除湿陷性黄土的湿陷性等作用。

同时,夯击能还可以提高土层的均匀程度,减少将来可能出现的差异沉降。

强夯法开始时仅用于加固砂土和碎石,经过几十年的发展,它以适用从砾石到粘性土的各种地基土,这主要是由于施工方法的改进和排水条件的改善。

强夯法由于具有地基加固效果显著、设备简单、施工方便、适用范围广、经济易行和节省材料等优点,很快传播到世界各地。

目前已经有几十个国家的数千项工程采用强夯法加固地基。

2.2、国内外发展情况强夯法是法国Menard技术公司于1969年首创并创用的。

由于强夯法特有的优6月3议上,美国Menard教授在“地基处理”的科学发展水平报告中精辟的论述强夯法的传统固结机理:强夯法目前已经发展到地基土的大面积加固,深度可达30m。

当应用于非饱和土时,压密过程基本上同实验室中的击实实验相同。

在饱和无粘性土的情况下,可能会产生液化,其压密过程同爆破和振动密实的过程相似。

这种方法对饱和细粒土的效果,成功和失败的例子都有报道。

对这类土需要破坏土的结构、产生超空隙水压力以及通过裂隙形成排水通道。

而强夯法对杂填土特别有效。

实践证明,在夯击的工程中,土体的瞬时沉降可达几十厘米;土中产生液化后使土的结构破坏,土的强度下降到最小值;随后在夯击点出现径向裂隙,成为加速空隙水压力消散的主要通道;因粘性土具有触变性,使降低的强度得到恢复和增强。

Menard教授实践,并结合传统的固结机理,提出了饱和土是可以压缩的新的机%。

体的沉降量与夯击能成正比。

当气体按百分比接近于零时,土体变成不可压缩的。

相应于空隙水压力上升到覆盖压力相等的能量级,土体即产生液化。

如图1所示,液化度为空隙水压力与液化压力之比,而液化压力即为覆盖压力。

第九章 强夯法

第九章  强夯法

第九章强夯法(Dynamic Consolidation Method,Dynamic Compaction Method)第一节概述一强夯法的沿革与发展夯实法加固地基是一种古老的施工方法,远在6000年以前的原始公社母系氏族社会时期,人类生活的西安半坡遗址中,即发现其原始建筑的柱基垫土经过夯实。

进入文明社会几千年以来,中国就一直用夯实法,用夯(木夯、抬夯)、硪(石硪、铁硪,wo砸地基或打桩等用的一种工具。

通常是一块圆形石头,周围系着几根绳子。

如:硪筑(用石硪夯筑))加固地基,并用其修建土工建筑物,如堤、坝、台、墙(小至建筑墙壁、大至城墙),秦阿房宫前殿遗址即为东西宽1300m,南北长500m,面积60万平方米的大夯土台基,最初的万里长城及以后的长城心墙也多用土夯实筑成。

进入20世纪40年代以来,由于处理湿陷性黄土的需要和机具的发展,前苏联发展了重锤夯实法,并在50年代介绍到我国。

这种方法适用于加固地下水位0.8m以上稍湿的粘性土、砂类土、湿陷性黄土、杂填土地基。

对于含水量过高的土夯实效果差,形成“橡皮土”,不宜使用。

强夯法又名动力固结法(Dynamic Consolidation Method)或动力压实法(Dynamic Compaction Method)。

强夯法处理地基是60年代末由法国Menard(麦那)技术公司首先创用的。

这种方法是反复将很重的锤(一般为10~40t)提到高处使其自由落下(落距一般为10~40m)给地基以冲击和振动,从而提高地基的强度并降低其压缩性,改善地基的受力性能。

此法应用初期,仅用于加固砂土、碎石土地基。

强夯法的第一工程用于处理滨海填土地基。

该场地表层为新近填筑的厚度约为9m的碎石填土,其下是12m厚的疏松砂质粉土,场地上要建20栋8层住宅楼,由于碎石是新近堆积的,如采用桩基,负摩擦阻力很大,将占单桩承载力的60%~70%,不经济。

采用堆载预压法处理地基,堆载历时3m,仅夯击—遍,整个月,堆载高度为5m,只沉降200mm。

[PPT]地基处理方法——强夯法_ppt

[PPT]地基处理方法——强夯法_ppt

动力置换 (Railway track, Malaysia)
桩式置换
动力置换
ALEXANDRIA CITY CENTER (Shopping center - Egypt)
3 机具设备
强夯法的主要设备为夯锤、吊钩和起重机械等。
(1)夯锤
装配式钢夯锤 混凝土夯锤
40T夯锤
排气孔
排气孔 15T夯锤
美国加州某工程 夯点布置 (正方形)
NICE AIRPORT (France)
Abu Dhabi Corniche (United Arab Emirates)
5)夯击击数与遍数 强夯夯点的 夯击击数 按现场试夯得到的夯击击 数和夯沉量关系曲线确定 还要满足
夯 击 击 数
1.最后两击平均夯沉量不宜大于下列数值:单击夯击 能量小于4000kN*m时为50mm;夯击能为4000~6000kN*m 时为100mm;夯击能大于6000kN· m时为200mm; 2.夯坑周围地面不应发生过大隆起; 3.不因夯坑过深而发生起锤困难。
4)最佳夯击能
在这样的夯击能作用下,地基中出现的孔隙水压力达到土的自重压力。
粘性土中的确定 砂性土中的确定
根据孔隙水压力的叠加值 绘制孔隙水压力增量与夯击 击数(夯击能)的关系曲线
5) 夯击点布置及间距 等边三角形或正方形布置夯击点。条形基础,夯点可成 行布置;工业厂房可根据柱网来布置夯击点。
夯距通常为5—15m
巨大的冲击能量在土中产生很大的 应力波,破坏了土体原有的结构, 使土体局部发生液化并产生许多裂 隙,增加了排水通道,使孔隙水顺 利逸出,待超孔隙水压力消散后,
土体固结。由于软土的触变性,强
度得到提高。
从右图可以看出,每夯击一遍时,体积变化有 所减少,而地基承载力有所增长,但体积的变化和 承载力的提高,并不是遵照夯击能的算术级数规律 增加的。

《强夯法介绍》课件

《强夯法介绍》课件
强夯法介绍
汇报人:
目录
添加目录标题
强夯法的定义
强夯法的原理
强夯法的施工工艺
强夯法的优缺点
强夯法的应用实例
添加章节标题
强夯法的定义
通过重锤对地基进行强力夯 实
强夯法是一种地基处理方法
提高地基的承载力和稳定性 适用于各种土质和地形条件
提高地基承载力
减少地基沉降
改善地基土的物理力学性质
提高地基的抗震性能
适用于处理软弱地基,如淤 泥、淤泥质土、砂土等
适用于处理湿陷性黄土、素 填土、杂填土等地基
适用于处理地基不均匀沉降, 如建筑物倾斜、沉降等
适用于处理地基承载力不足, 如建筑物荷载过大、地基承载
力不足等
强夯法的原理
强夯法是一种通过重锤对地基进行强力夯实的方法 原理:通过重锤的冲击能量,使地基土得到压实和加固 作用:提高地基的承载力,减少沉降和不均匀沉降 应用:广泛应用于各类工程地基处理,如公路、铁路、桥梁、港口等
智能化:采用先进的传感器和计算机技术,实现设备的智能化控制和监测 环保化:采用环保材料和工艺,减少施工过程中的污染和噪音 高效化:提高设备的工作效率和性能,降低施工成本和时间 安全化:加强设备的安全防护措施,确保施工人员的安全
技术进步:强夯法技术不断进步,提高施工效率和质量 应用领域扩大:强夯法在更多领域得到应用,如建筑、交通、水利等 环保要求提高:强夯法在环保方面得到重视,减少对环境的影响 智能化发展:强夯法与智能化技术相结合,提高施工智能化水平
强夯法的应用实例
强夯法在高速公路建设中的作用:提高地 基承载力,减少沉降,提高路基稳定性
强夯法在高速公路建设中的应用效果:提 高了高速公路的使用寿命,减少了维护成 本,提高了行车安全性
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(一)饱和土的压缩性 传统的固结理论以孔隙水的排出是饱和细颗粒土出现 沉降的前提为条件。但在进行强夯施工时,在瞬时荷载作 用下,孔隙水不能迅速排出,显然这就无法解释强夯时立 即发生沉降这一现象。 Menard以为,由于土中有机物的分解,第四纪土中 大多数都含有微气泡形式出现的气体,其含气量大约在 1%~4%,强夯时,气体压缩,孔隙水压力增大,随后气 体有所膨胀,孔隙水排出,液相、气相体积减少,即饱和 土具有可压缩性。根据试验,每夯击一遍,气体体积可减 少40%。 强夯时,含气孔隙水不能消散而具有滞后现象,气相 体积不能立即膨胀,这一现象由动力固结模型中活塞与筒 体间存在摩擦来模拟。
20
ห้องสมุดไป่ตู้ (三)夯击遍数
• 夯击遍数应根据地基土的性质确定,可 采用点夯 2~ 3遍,对于渗透性较差的细 颗粒土,必要时夯击遍数可适当增加。 最后再以低能量满夯 2遍,满夯可采用轻 锤或低落距锤多次夯击,锤印搭接。
21
(四)两遍夯击之间的时间间隔
• 两遍夯击之间应有一定的时间间隔,间 隔时间取决于土中超静孔隙水压力的消 散时间。当缺少实测资料时,可根据地 基土的渗透性确定,对于渗透性较差的 粘性土地基,间隔时间不应少于 3~ 4周; 对于渗透性好的地基可连续夯击。
15
9.2 强夯法设计计算 一、强夯参数选择 (一)有效加固深度 强夯法的有效加固深度是指起夯面以 下,经强夯加固后,土的物理力学指标已 达到或超过设计值的深度。其判别标准可 参考表9.2-1。 强夯法的有效加固深度应根据现场试 夯或当地经验确定,在缺少资料或经验时 可按表9.2-2预估。
16
表 9.2-1
2
• 强夯和强夯置换施工前,应在施工现场 有代表性的场地上选取一个或几个试验 区,进行试夯或试验性施工。试验区数 量应根据建筑场地复杂程度、建筑规模 及建筑类型确定。 • 由于强夯法施工方法简单、快速经济、 目前被广泛地应用于工业与民用建筑、 仓库、油罐、贮仓、公路和铁路路基、 飞机场跑道及码头等工程。
26
27
28
29
二、施工方案的制定
(一)应取得的资料 (1) 场地地层分布、土层的均匀性及承载能力; (2) 土的物理力学性质、地下水类型及埋藏条件; 场地周围建筑物的情况,离场地的距离以及场地内各种地 下管线的位置和标高。 (3) 场地周围建筑物的情况,离场地的距离以及场地内 各种地下管线的位置和标高。
(六)强夯处理范围
• 强夯处理范围应大于建筑物基础范围, 每边超出基础外缘的宽度宜为基底下设 计处理深度的 1/2至 2/3,并不宜小于 3m。
24
(七)现场试夯
• 根据初步确定的强夯参数,提出强夯试 验方案,进行现场试夯。应根据不同土 质条件待试夯结束一至数周后,对试夯 场地进行检测,并与夯前测试数据进行 对比,检验强夯效果,确定工程采用的 各项强夯参数。
22
(五)夯击点位置
• 夯击点位置可根据基底平面形状,采用等 边三角形、等腰三角形或正方形布置。第 一遍夯击点间距可取夯锤直径的 2. 5~ 3. 5 倍,第二遍夯击点位于第一遍夯击点之间。 • 以后各遍夯击点间距可适当减小。对处理 深度较深或单击夯击能较大的工程,第一 遍夯击点间距宜适当增大。
23
F=m· 2 gh
(9.2-3)
31
式中:F——夯锤着地时的冲量;g——重力加速度;m——夯 锤质量;h——落距。将 h=E/m 代入上式得: F= 2 E M / g (9.2-4) 即:夯锤越重,冲量越大,加固效果越好。根据有关单位在湿 陷性黄土地基上进行的对比试验表明,20t 锤 5m 落距比 10t 锤 10m 落距加固效果要好,见表 9.2-3。 表 9.2-3 重锤低落距与轻锤高落距加固效果对比 干密度平 孔隙比 锤重 (t) × 压缩量 Es1-2 湿陷系数 均值 平均值 落距(m) 平均值 (MPa) 3 (g/cm ) (%) 20×5 1.657 66.8 13.38 0.0032 10×10 1.584 72.0 12.3 0.0041 改善幅度 4.6% 7.2% 8.8% 22%
第九章 强夯法( 强夯法和强夯置换法)
强夯法又称为动力固结法或动力压密法。这种方 法 是 将 100~400kN 的 重 锤 ( 最 重 达 2000kN ) , 以 6~40m的落距落下给地基以冲击和振动,从而达到提高 土的强度,降低其压缩性,改善土的振动液化条件,消除 湿陷性黄土的湿陷性等目的。 强夯法由法国Menard技术公司于1969年首创,当 时,仅用于加固砂土和碎石土地基,但随着施工方法 的改进,其应用范围已扩展到细粒土地基。
土层 软土 一般粘性土
加固深度判别标准
饱 和 砂 土 和 粉 土
加固深度判别标准 一般要求 fk≥150kPa ps≥500kPa fk≥160kPa ps≥500kPa ①《建筑抗震设计规范》GBJ11-89 标准 N>Ncr Ncr=N0[0.9+0.1(ds-dw)]3
c
式中:N——实测标贯值; ds——饱和砂土或粉土标贯点所处深度(m) ; dw——地下水位埋深(m) ; Ncr——液化判别标准入锤击数临界值; N0——液化判别标准贯入锤击数基准值,对粉砂和粉土,设计烈度 为 70 时分别为 7 和 6;80 时分别为 8 和 7, ;90 时分别为 9 和 8。 c——粘粒含量百分率。当c≤3 时,取c=3,c≥12 时,取c=12。 ② fk=150kPa; ③ N=10~15; ④ ps=5000~10000kPa
12
13
二、动力夯实
强夯加固多孔隙颗粒、非饱和土是基于动力夯 实的机理。夯锤夯击地面的冲击能量是以振动波的 形式在地基中传播,其中对地基加固起作用的主要 是纵波和横波。纵波使土体受拉、压作用,使孔隙 水压力增加,导致土骨架解体;横波使解体的土颗 粒处于更密实的状态。因此,土体在冲击能量作用 下,被挤密压实,强度提高,压缩性降低。 根据工程实践,非饱和土夯击一遍后,夯坑可 达 0.6~1.0m 深 , 坑 底 形 成 一 层 厚 度 为 夯 坑 直 径 1.0~1.5倍的硬壳层,承载力可提高2~3倍。
25
(八)强夯地基承载力特征值
• 强夯地基承载力特征值应通过现场载荷试验 确定,初步设计时也可根据夯后原位测试和 土工试验指标按现行国家标准 《建筑地基基 础设计规范》GB50007有关规定确定。
• (九)强夯变形计算
• 强夯地基变形计算应符合现行国家标准 《建 筑地基基础设计规范》GB50007有关规定。 夯后有效加固深度内土层的压缩模量应通过 原位测试或土工试验确定。
8
9
(三)渗透性变化
在强夯的冲击能量作用下,当土中的超孔 隙水压力大于土颗粒间的侧向压力时,土颗粒 间会出现裂隙并形成树枝状排水通路,使土的 渗透性变好,孔隙水能顺利排出。图9.1-3为土 的渗透系数与液化度关系曲线。 当液化度小于临界液化度ai时,渗透系数成 比例增长,当液化度超过ai时,渗透系数骤增, 夯坑周围出现冒气冒水现象。随着孔隙水压力 消散,土颗粒重新组合,此时土中液体又恢复 到正常状态。 夯击前后土的渗透性的变化,可用一个孔 径可变的排水孔进行模拟。
3
9.1 强夯加固机理
强夯法虽然在工程中得到广泛应用,但由于其 加固机理比较复杂,至今还没有一套成熟的理论和 设计计算方法。根据工程实际实践和试验研究成果, 对不同的土质条件和施工工艺,其加固机理有所不 同。目前,强夯法加固机理概括起来有三个方面, 即动力固结、动力夯实和动力置换。 一、动力固结 Menard根据饱和土经强夯后瞬时沉降数十厘米这 一事实,对传统的固结理论提出不同看法,认为饱 和土是可压缩的,并提出了一个新的动力固结模型。 图9.1-1为静力固结理论与动力固结理论的模型对比 图,表9.1-1为两种模型对比表。
10
11
(四)触变恢复
土体在夯击能量作用下,结构被破坏,当出现液 化时,抗剪强度几乎为零,但随着时间的推移,土的 结构逐渐增长,这一过程称为触变恢复,也称为时效。 饱和土随强度的变化见图9.1-4。 地基土强度增长规律与土体中孔隙水压力有关。 由图9.1-4,液化度为100%时,土的强度降到零;但随 着孔隙水的消散,土的强度逐渐增长,存在一个触变 恢复阶段,这一阶段能持续几个月,据实测资料,夯 击6个月后所测得的强度比一个月所测得的强度增长 20%~30%,而变形模量增长30%~80%。
—小于 1 的修正系数,变动范围为 0.35~0.8,饱和软土取 0.45~0.5,一般粘
19
(二)每次夯点的夯击次数
• 夯点的夯击次数,应按现场试夯得到的夯击 次数和夯沉量关系曲线确定,并应同时满足 下列条件:1 最后两击的平均夯沉量不宜大 于下列数值:当单击夯击能小于 4000kN· m时 为50mm;当单击夯击能为 4000~ 6000kN· m 时为 100mm;当单击夯击能大于 6000kN· m 时为200mm;2 夯坑周围地面不应发生过大 的隆起;3 不因夯坑过深而发生提锤困难。
4
5
表 9.1-1 静力固结与动力固结两种模型对比表
静力固结模型 ①不可压缩的液体; 动力固结模型 ①含有少量气泡的可压缩 液体; ②固结时液体排出的孔径不 ②固结时液体排出的孔径 变; 是变化的; ③弹簧刚度为常数; ③弹簧刚度为常数; ④无摩擦活塞。 ④有摩擦活塞。
6
动力固结理论可概括为以下几方面:
黄土及新近堆 s≤0.015 积黄土
c≥0.87
d≥15kN/m3; 垫层时c =0.93
表中:c——静力触探试验比贯入阻力(kPa); s——湿陷系数;c——压实系数;
17
18
另外,也可按修正后的 Menard 公式进行预估:
H=a·
M h 10
(9.2-1)
式中:H——加固深度(m) ;M——锤重(kN) ;h——落距(m) ;a— 性土取 0.5,砂性土取 0.7,填土取 0.6~0.8,黄土取 0.35~0.5。
相关文档
最新文档