超纯水设备工艺等介绍
二级反渗透EDI超纯水设备工艺流程介绍
二级反渗透EDI超纯水设备工艺流程介绍EDI超纯水设备是一种应用于电子、化工、制药等领域的反渗透纯水设备。
其工艺流程包括预处理、反渗透、EDI、精处理等环节。
下面我来详细介绍EDI超纯水设备工艺流程的每个环节。
一、预处理环节:预处理环节的主要作用是去除水中的悬浮物、有机物、胶体物和部分溶解物等杂质,以减少对反渗透膜的污染,保护膜的使用寿命。
预处理设备通常包括砂滤器、活性炭过滤器和软化器等。
首先,水经过砂滤器,通过物理过滤作用去除较大的颗粒物;然后,水进入活性炭过滤器,去除水中的有机物和残留的氯;最后,水进入软化器,去除水中的硬度物质,例如钙、镁离子等。
二、反渗透环节:反渗透环节是实现水的初步纯化,使大部分离子和溶解物被拦截,产生低盐度的RO水。
反渗透设备通常由膜组件、高压泵和控制系统等组成。
在反渗透膜作用下,水中的动力学压力将驱使水分子通过膜的微孔,而溶质则被阻拦在膜的一侧。
这样,大部分盐离子、微生物、有机物等杂质被拦截在膜的一侧,产生的RO水具有较低的电导率和溶质浓度。
三、EDI环节:四、精处理环节:精处理环节主要是对经过EDI的超纯水进行精确控制和调整,以确保所需的纯度和质量。
精处理设备通常包括精密过滤器、紫外线杀菌器、臭氧发生器和加热杀菌装置等。
首先,超纯水经过精密过滤器,去除水中的微小颗粒和细菌;然后,通过紫外线杀菌器进行杀菌消毒;接着,使用臭氧发生器进行进一步的杀菌和氧化处理;最后,超纯水经过加热杀菌装置,以确保水的温度和卫生要求。
以上就是EDI超纯水设备工艺流程的介绍。
通过预处理、反渗透、EDI和精处理等环节的连续作用,EDI超纯水设备能够将普通自来水中的杂质和溶质进行有效去除,得到电阻率高、离子含量低的纯净水,从而满足不同领域对高纯水质的要求。
edi超纯水设备制作工艺
edi超纯水设备制作工艺EDI超纯水设备是一种高纯度水处理设备,其工艺是利用电化学反应原理,通过阴/阳离子交换膜的作用、电势力驱动、离子分离等多重步骤,将水中的离子和杂质去除,生产出极佳的高纯度水。
制作EDi超纯水设备首先要进行原水处理,也就是水源的预处理。
一般来说,原水处理的标准要根据最终使用的水质决定,以保证出水质量的稳定性和一致性。
原水预处理的步骤包括混凝、沉淀、过滤、活性炭吸附、反渗透等过程。
接下来,需要进行离子交换静态混合,它是基于阴/阳离子交换原理和电荷原则进行的。
水经过阴阳离子交换树脂的过滤,可去除残留的阴离子和阳离子污染物,提高水的质量。
然后,进行电去离子,该步骤是整个EDI设备的核心部分。
电去离子相当于一个具有较小孔径的离子交换膜,通过交换膜的作用,水中的离子被分离成两部分,正离子被吸附在阴离子交换层上,负离子被吸附在阳离子交换层上,两个反应相互重复进行,不断驱动以达到去离子的效果。
其间如果出现严重的闪耀放电等工作失误,需要进行维护或保养。
最后,进行在线TOC监测和红外线消毒两道工序,确保产出水的高纯度、优质、安全。
TOC(total organic carbon)是指水中有机碳总量,通过在线测量,对生产的高纯水进行监测,以确保该水无机有机杂质偏低,质量稳定。
红外线消毒可以用尤里龙灯或紫外线消毒等方法进行,这些都是非化学消毒手段,无二次污染,确保产水的无菌性。
整个EDI超纯水设备制作工艺复杂,其中每一个步骤都至关重要。
通过不断优化设备的工艺流程、技术创新和设备改进,构建出更加稳定、可靠的超纯水设备,为实际应用提供了保障。
超纯水制备工艺
超纯水制备工艺超纯水是指经过多重净化和处理后,几乎不含任何杂质的水。
其制备工艺是一项非常复杂的过程,需要经过多个步骤和设备的协同作用,以确保最终获得高纯度的水。
超纯水的制备需要从原水中去除各种固体颗粒和悬浮物。
这一步骤通常通过预处理设备,如过滤器和沉淀池来完成。
过滤器能够有效地去除大部分固体颗粒,而沉淀池则可将较大的悬浮物沉淀至底部。
接下来,超纯水的制备需要去除水中的溶解性无机盐和有机物。
这一步骤通常采用离子交换器和活性炭过滤器来完成。
离子交换器能够去除水中的钠、钙、镁等离子,而活性炭过滤器则可去除水中的有机物和部分溶解性无机盐。
然后,超纯水的制备需要进一步去除水中的微量离子和有机物。
为此,通常需要采用反渗透膜和电离交换树脂等设备。
反渗透膜能够通过半透膜的作用,将水中的溶质和溶剂分离,从而实现对微量离子和有机物的去除。
而电离交换树脂则可以选择性地去除水中的特定离子。
超纯水的制备还需要进行最终的精处理,以确保水的质量达到超纯级别。
这一步骤通常采用电极深度处理和臭氧消毒等手段。
电极深度处理能够通过电解的方式去除水中的细菌和微生物,而臭氧消毒则可以消除水中的异味和杂质。
总的来说,超纯水的制备工艺涉及到多个步骤和设备,每个步骤都起着关键的作用。
通过预处理、离子交换、反渗透和精处理等步骤的有机组合,可以有效地去除水中的固体颗粒、溶解性无机盐、有机物和微量离子,从而获得高纯度的超纯水。
需要注意的是,在超纯水制备工艺中,设备的选型和使用条件非常重要。
不同的设备具有不同的工作原理和适用范围,正确选择和操作设备可以提高超纯水的制备效果。
此外,对于超纯水的储存和输送也需要采取相应的措施,以确保超纯水的质量不受污染。
超纯水在许多领域都有广泛的应用,例如电子、制药、化工等行业。
在这些领域中,超纯水的纯度对产品的质量和性能有着重要的影响。
因此,超纯水的制备工艺的研究和优化对于提高产品的质量和竞争力具有重要意义。
超纯水处理原理,工艺及技术简介
超纯水处理原理, 工艺流程及技术简介1.超纯水制备原理威立雅实验室超纯水器通常由原水预处理系统、反渗透纯化系统、超纯化后处理系统三部分组成。
预处理的目的主要是使原水达到反渗透膜分离组件的进水要求,保证反渗透纯化系统的稳定运行。
反渗透膜系统是一次性去除原水中98%以上离子、有机物及100%微生物(理论上)最经济高效的纯化方法。
超纯化后处理系统通过多种集成技术进一步去除反渗透纯水中尚存的微量离子、有机物等杂质,以满足不同用途的最终水质指标要求。
2.原水预处理系统预处理系统通常由聚丙烯纤维(PP)过滤器和活性炭(AC)过滤器组成。
对硬度较高的原水还需加装软化树脂过滤器。
PP滤芯可高效去除原水中5μm以上的机械颗粒杂质、铁锈及大的胶状物等污染物,保护后续过滤器,其特点是纳污量大, 价格低廉。
AC活性炭滤芯可高效吸附原水中余氯和部分有机物、胶体,保护聚酰胺反渗透复合膜免遭余氯氧化。
软化树脂可脱除原水中大部分钙镁离子,防止后续RO膜表面结垢堵塞,提高水的回收率。
3.反渗透纯化系统反渗透(Reverse Osmosis,简称RO)是以压力差为推动力的一种高新膜分离技术,具有一次分离度高、无相变、简单高效的特点。
反渗透膜“孔径”已小至纳米(1nm=10-9m),在扫描电镜下无法看到表面任何“过滤”小孔。
在高于原水渗透压的操作压力下,水分子可反渗透通过RO半透膜,产出纯水,而原水中的大量无机离子、有机物、胶体、微生物、热原等被RO膜截留。
通常当原水电导率<200μS/cm时,一级RO纯水电导率≤5μs/cm,符合实验室三级用水标准。
对于原水电导率高的地区,为节省后续混床离子交换树脂更换成本,提高纯水水质,客户可考虑选择二级反渗透纯化系统,二级RO纯水电导率约1~5μS/cm,与原水水质有关。
4.超纯化后处理系统①混床离子交换纯化柱混床离子交换纯化柱由阴离子交换树脂和阳离子交换树脂按比例混合而成。
阳离子交换树脂用其H+交换去除水中的阳离子,阴离子交换树脂用其OH-交换去除水中的阴离子,在混床树脂中被交换出来的H+和OH-结合生成H2O,因此混床离子交换纯化柱可用来深度去除RO纯水中尚存的微量离子。
EDI超纯水设备工艺介绍与操作说明
EDI超纯水设备工艺介绍与操作说明1. 引言EDI(Electrodeionization)技术是一种高效、低成本的水处理技术,通过电场和离子交换膜的作用,将离子从水中去除,从而获得超纯水。
本文将介绍EDI超纯水设备的工艺流程,以及该设备的操作方法和注意事项。
2. 设备工艺流程EDI超纯水设备的工艺流程如下所示:1.预处理:首先,需要对进水进行预处理,包括去除悬浮物、有机物和游离氯等。
这可以通过沉淀、过滤和活性炭吸附等步骤来实现。
2.反渗透:接下来,将预处理后的水进一步处理,使用反渗透(RO)膜去除大部分的离子和溶解物质。
RO膜是一种半透膜,能够过滤掉离子和溶解物,但保留水分子。
3.电去离子:RO膜后的水进入EDI单元,EDI单元由一个阳离子交换膜和一个阴离子交换膜组成。
水分子在膜间通过强电场作用下离子交换膜,从而将阳离子和阴离子分离开。
最终获得高纯度的超纯水。
4.消毒:得到的超纯水需要进行消毒处理,以确保无菌纯净。
常见的消毒方法包括紫外线照射和臭氧处理。
3. 设备操作说明EDI超纯水设备的操作步骤如下:1.开机准备:检查设备是否完好,并确保其连接正常。
检查预处理系统和反渗透系统的运行状态。
2.开启预处理系统:按照预处理系统的操作说明,将预处理设备打开。
确保预处理设备正常运行,对进水进行必要的处理。
3.开启反渗透系统:按照反渗透系统的操作说明,将反渗透设备打开。
调整系统参数,确保RO膜的正常运行。
监测压力、流量和浓度等指标,确保系统工作正常。
4.开启EDI单元:打开EDI单元,并调整电场强度。
根据设备的说明书设置电场强度和运行参数。
5.监测参数:定期监测超纯水输出的参数,包括电导率、溶解氧等。
确保超纯水质量符合要求。
6.设备维护:定期维护设备,包括清洗预处理系统、反渗透系统和EDI单元。
定期更换膜元件和离子交换树脂,以保证设备的正常运行。
7.关闭设备:当设备不再使用时,按照操作规程关闭设备。
先关闭EDI单元,再关闭反渗透系统和预处理系统。
EDI超纯水设备工艺介绍与操作说明资料下载
EDI超纯水设备工艺介绍与操作说明资料下载EDI(Electrodeionization)超纯水设备是一种利用电渗析和离子膜选择性渗透的工艺,通过电场和离子交换树脂的协同作用,将水中的离子聚集在一个位置上,以达到提高水质的目的。
EDI工艺主要由三个步骤组成:前处理、EDI和后处理。
下面是EDI超纯水设备工艺的详细介绍和操作说明。
一、前处理前处理是将水源进行初步处理,去除大颗粒悬浮物、有机物和部分溶解性离子,以减少对EDI模块的负担。
常见的前处理工艺包括砂滤、活性炭吸附、反渗透等。
工艺流程如下:1.砂滤:将水源经过砂滤系统,去除较大颗粒悬浮物和杂质。
2.活性炭吸附:将水源通过活性炭吸附系统,去除有机物质和部分溶解性气体。
3.反渗透:将水源通过反渗透系统,去除溶解性离子和微量有机物。
二、EDI工艺EDI工艺是超纯水制备的核心步骤,主要通过电场和离子交换树脂来去除水中离子。
EDI工艺一般包括两个部分:首先是阳离子交换器,通过离子交换树脂吸附水中的阳离子;然后是阴离子交换器,通过离子交换树脂吸附水中的阴离子。
工艺流程如下:1.阳离子交换器:将进水通过阳离子交换器,去除大部分阳离子。
2.阴离子交换器:将阳离子交换后的水通过阴离子交换器,去除大部分阴离子。
3.电渗析:将阴离子交换后的水通过电场作用,使水中的离子在电场力的推动下向电极聚集。
4.清洗:定期清洗EDI设备,保证其正常运行。
三、后处理后处理是对EDI产出水进行最后的处理,以确保水质达到超纯水的要求。
常见的后处理工艺包括在线杀菌、紫外线消毒、TOC(总有机碳)去除等。
工艺流程如下:1.在线杀菌:通过加入杀菌剂或采用其他杀菌方法,对EDI产出水进行杀菌处理。
2.紫外线消毒:将EDI产出水通过紫外线灯照射,以杀灭细菌和病毒。
3.TOC去除:采用吸附剂或其他方法,去除EDI产出水中的有机物。
操作说明:1.启动前处理系统,确保砂滤、活性炭吸附和反渗透系统正常运行。
生化仪检测用超纯水机设备工艺原理
生化仪检测用超纯水机设备工艺原理背景介绍生化仪是生物学、医学等领域中常用的分析实验仪器,能够对生物样品中的分子及其结构进行精细分析。
而在分析过程中,需要使用各种实验液体,其中包含的杂质及离子浓度会对实验结果产生较大影响。
而超纯水是生化实验中最常用的实验液之一,因其无色、无味、无臭,不含有机物和微生物,具有很好的清洁性和稳定性。
因此,超纯水机设备在现代生化实验领域中得到了广泛应用,本文将详细介绍其工艺原理。
超纯水机设备介绍超纯水机设备是一种能够通过一系列的处理工艺,将自来水中的杂质、离子和生物质等完全去除,获得纯净度非常高的水的设备,也称为纯水机。
超纯水机设备主要由进水系统、预处理系统、纯化系统和储水系统等组成,整个系统采用封闭式设计,可以有效地保障水质的纯度和稳定性。
进水系统进水系统是超纯水机设备中的第一步,其主要作用是将自来水中的大颗粒杂质和悬浮物去除。
进水系统包括滤芯和预处理,滤芯是一种物理过滤器,通常采用聚酯纤维等材质制成,可以有效防止难以溶解的固体颗粒和浮游生物的进入。
预处理则是采用荷电颗粒、树脂和活性炭等材料对进水进行化学分离和吸附过滤,有效去除水中的大部分离子和金属离子等杂质,为后续的纯化工艺提供了必要的保障。
预处理系统进过进水系统的水将会被送入预处理系统,预处理系统主要采用反渗透技术,将水源中尤其是含有大量离子的自来水进行强烈的过滤和分离,其中的原理和设备与膜分离技术相似。
反渗透膜是一种半透性膜,其孔径非常细小,在1纳米左右,只允许水分子通过,而不允许离子、金属离子、有机物等大分子穿过,因此可以有效地分离纯水和杂质水。
反渗透膜的设备大多采用压力泵进行泵送,将水液从其表面硬性压入并通过滤膜,其后我们可以获得剩余的纯水。
预处理系统内的反渗透技术能够去除水中的大部分无机离子,包括硅、锰、铁、锌等,同时还能去除水中的99%以上的细菌、病毒、异物和胶体等。
纯化系统纯化系统是超纯水机设备中最重要的部分。
二级反渗透EDI超纯水设备工艺流程介绍
二级反渗透EDI超纯水设备工艺流程介绍一、工艺简介二级反渗透EDI超纯水设备工艺是基于反渗透水处理工艺和电离交换技术的结合,用于制备超纯水的一种高效工艺。
其特点是能够将反渗透水处理后的水品质再次提高,去除更多的离子和微量有机物,生产出更纯净的超纯水。
二、工艺流程1.原水处理原水处理是将原水进行预处理,去除其中的悬浮物、有机物、胶体、微生物、硬度物质等杂质。
一般包括混凝、絮凝、沉淀、过滤等处理工艺。
这一步的目的是保护后续处理设备,避免被污染和堵塞。
2.一级反渗透处理一级反渗透处理是通过反渗透设备(RO设备)进一步去除原水中的大分子有机物、无机盐、微生物等。
RO设备通过将水推动通过半透膜,使水从高浓度背景溶液向低浓度背景溶液扩散,实现了去除溶解物质的目的。
这一步的主要产物是反渗透水(RO水)。
3.再生反洗再生反洗是对RO设备进行清洗和恢复脱盐能力的步骤。
通过对RO设备进行反洗,可以去除设备表面的污垢和颗粒,恢复膜的通透性,并增加RO设备的使用寿命。
4.二级反渗透处理5.EDI处理EDI(Electrodeionization)处理是指通过电化学去离子技术进一步去除水中的离子。
EDI设备由正负电极和离子交换膜组成,在电场作用下,水中的离子会向正负极运动,通过离子交换膜的作用,离子会被高效地去除,从而实现水的去离子。
这一步的主要产物是EDI水。
6.产水处理产水处理是对EDI水进行净化和消毒的步骤。
通常会采用活性炭过滤、微孔滤膜和紫外线灭菌等工艺,以保证最终产水的纯净度和安全性。
经过产水处理后,最终得到的产物就是符合超纯水标准的EDI超纯水。
三、工艺优势1.高处理效率:二级反渗透EDI超纯水设备工艺相比单级反渗透设备工艺,可以进一步提高水的纯净度。
2.低成本:相对于其他超纯水处理工艺,二级反渗透EDI超纯水设备工艺的投资和运行成本相对较低。
3.环保可持续:工艺中没有化学药剂的使用,不会造成二次污染,符合环保要求。
超纯水水处理工艺
超纯水是一种极度纯净的水,通常用于半导体制造、医药、实验室研究等对水质要求极高的领域。
以下是一个常见的超纯水处理工艺:
1. 预处理:超纯水处理系统通常包括一系列的预处理步骤,如过滤、软化和反渗透等,以去除水中的固体颗粒、有机物、金属离子等杂质。
2. 反渗透(RO):通过高压将水推过半透膜,将其中的溶解固体、有机物质、细菌、病毒等去除,产生相对纯净的水。
3. 阳离子交换器:用于去除水中的阳离子,如钠、钙、镁等,以进一步提高水的纯度。
4. 阴离子交换器:用于去除水中的阴离子,如硫酸根离子、硝酸根离子等。
5. 混床离子交换器:混合了阳离子交换树脂和阴离子交换树脂,用于进一步去除水中的离子,产生极为纯净的水。
6. 紫外灭菌:利用紫外光的杀菌作用,去除水中的微生物,确保水质的纯净度。
7. 管路和储存:超纯水需要在整个输送过程中尽量避免与空气接触,
因此需要采用高纯度的管路和容器进行输送和储存。
超纯水处理工艺的每个步骤都需要严格控制和监测,以确保水质符合相关标准和要求。
同时,设备的维护和管理也至关重要,以保证长期稳定地提供超纯水。
EDI超纯水工艺详解
EDI超纯水工艺详解EDI超纯水工艺正在电子行业得到认可并应用于实践中给为人类服务给我们创造价值。
一、EDI超纯水设备工艺Electropure EDI 的设计包括了两个成熟的水净化技术—电渗析和离子交换树脂除盐。
通过这种革命性的技术,用较低的能源成本就能去除溶解盐,而且不需要化学再生;它能产生好几个兆欧( M Ω? cm )电阻率的高质量纯水,且能够连续稳定大流量的生产。
Electropure EDI 通过一个电势迫使离子从进水流中分离出来,再进入与进水流毗连的水流中。
EDI 与 ED 不同的是在淡水室中使用了树脂——这种树脂允许离子在很低电导率的水中更快地迁移。
树脂在稳定状态下工作,它们的工作不像一个离子汇聚库,而更像是一个离子输送的导体。
电去离子( EDI )工艺采用一种离子选择性膜和离子交换树脂夹在直流电压下两个电极之间(阳极( + )和阴极 (-) ),在两极间的直流电源电场从 RO 预处理过的水中去除离子。
离子选择性膜同离子交换树脂有着相同的工作原理和原材料,他们用于将某种特定的离子进行分离。
阴离子选择性膜允许阴离子透过而不能透过阳离子,阳离子选择性膜允许阳离子透过而不能透过阴离子,这两种膜不允许水透过。
通过在一个层状、框架式的组件中放置不同的阴离子选择性膜和阳离子选择性膜,就建立了并列交替的淡水室和浓水室。
离子选择性膜被固定在一个惰性的聚合体框架上,框架内装填混合树脂就形成淡水室,淡水室之间的层就形成了浓水室。
EDI 基本重复单元叫做“膜对”。
模块的膜对放置在两个电极之间,两电极提供直流电场给模块。
在提供的直流电场推动下,离子通过膜从淡水室被输送到浓水室。
因此,当水通过淡水室流动时,逐步达到无离子状态,这股水流就是产品水流。
这是这套科学的工艺流程使其成为行业的新星在电子超纯水设备得到历史性的改革。
EDI超纯水设备工艺介绍与操作说明资料下载
该技术资料由莱特莱德西宁超纯水设备厂家提供 硬度能在反渗透和 EDI 单元中引起结垢。 结垢一般在浓水室 膜的表面发生,该处 pH 值较高。此时,浓水入水和出水间的压 力差增加,电流量降低。坎贝尔?组件设计采取了避免结垢的措 施。不过,使入水硬度降到最小将会延长清洗周期并且提高 EDI 系统水的利用率。 悬浮物和胶体会引起膜和树脂的污染和堵塞, 树脂间隙的堵 塞导致 EDI 组件的压力损失增加。 有机物被吸引到树脂和膜的表面导致其被污染, 使得被污染 的膜和树脂迁移离子的效率降低,膜堆电阻将增加。 二氧化碳有两种效果。首先,CO32-和 Ca2+、Mg2+形成碳酸 盐类结垢,这种垢的形成与给水的离子浓度和 pH 有关。其次, 由于 CO2 的电荷与 pH 值有关, 而其被 RO 和 EDI 的去除都依赖于 其电荷,因此它的去除效率是变化的。即使较低的 CO2 都能显著 地降低产品水的电阻率。 细菌导致藻类生长和粘垢形成,使模块的压力损失增大,水 质下降。 2.1 EDI 的应用领域
超纯水经常用于微电子工业、半导体工业、发电工业、制药 行业和实验室。EDI 纯水也可以作为制药蒸馏水、食物和饮料生 产用水、发电厂的锅炉补给水,以及其它应用超纯水的工业。 EDI 组件单件流量范围从 2 gpm 到 16 gpm。每个组件都有一 个推荐的流量范围。 组件并行排列可以产生一个几乎无限规模的 系统。根据给水和运行的条件,组件可生产出电阻率达 10-18.2 MΩ•cm 的纯水。 2.2 EDI 的组件结构 EDI 主要由以下几个部分组成: (1)淡水室 将离子交换树脂填充在阴、 阳离子交换膜之间形 成淡水单元。 (2)浓水室 用网状物将每个 EDI 单元隔开,形成浓水室。 (3)极水室 (4)绝缘板和压紧板 (5)电源及水路连接 2.3 EDI 组件优势 独特的淡水室、浓水室和极水室设计。
无菌超纯水生产工艺
无菌超纯水生产工艺
无菌超纯水是一种严格管控的除菌境界,广泛应用于制药、实验室、电子、化工等领域。
下面简要介绍无菌超纯水的生产工艺。
无菌超纯水生产工艺的主要步骤有进水处理、预处理系统、反渗透系统、EDI系统、除菌和配制系统等。
首先,进水处理环
节是为了去除水中的杂质和微生物,主要通过活性炭吸附、过滤、臭氧消毒等处理方式。
在预处理系统中,水会经过软水器或反渗透预处理系统等设备,去除溶解性固体颗粒和高浓度离子等,以提高水的纯度。
之后,水经过反渗透系统,通过高压泵将水推进包裹了半透膜的反渗透膜元件中,膜元件的孔径小于溶质和离子的直径,所以它们不能通过半透膜,只有水分子才能穿过膜元件,达到目的是为了给水处理成可用于生产的超纯水。
接下来是EDI系统,EDI是电离交换技术的简称,它是利用电渗析和离子交换的原理,通过设置电场和特殊的离子交换树脂来去除水中离子,以进一步提高水的纯度。
最后,在除菌和配制系统中,超纯水会经过紫外线灯照射和臭氧消毒等方式进行除菌处理,以确保水的无菌性。
之后,配制系统会根据需要调节水的pH值、电导率等参数,以便适应不
同的应用。
在整个生产过程中,应控制水的温度、流速、压力等参数,并
定期检测水的质量,以保证生产出的水符合要求。
同时,生产环境也要保持洁净,防止外来污染对水质的影响。
总的来说,无菌超纯水的生产工艺包括进水处理、预处理系统、反渗透系统、EDI系统、除菌和配制系统等环节,通过一系列
的物理、化学和电离交换技术等手段,使水的纯度达到极高的要求,以满足不同领域对无菌超纯水的需求。
超纯水技术过程
超纯水技术过程1. 引言超纯水技术是一种用于制备高纯度水的工艺,广泛应用于电子、光电、制药、化工等领域。
它通过去除水中的杂质和离子,使得水达到极高的纯度,从而满足各种特殊工艺对水质的要求。
本文将详细介绍超纯水技术的过程和相关设备。
2. 超纯水技术过程超纯水技术主要包括预处理、反渗透、电离交换和混床等步骤。
下面将逐一介绍每个步骤的原理和操作。
2.1 预处理预处理是超纯水技术的第一步,其目的是去除原水中的悬浮物、胶体物质、有机物和部分无机盐等杂质。
常见的预处理方法包括沉淀、过滤和活性炭吸附等。
2.1.1 沉淀沉淀是利用重力作用使固体颗粒从悬浮液中沉降下来的方法。
常见的沉淀剂有铁盐、铝盐等。
在沉淀过程中,杂质颗粒会与沉淀剂发生凝聚,形成较大的颗粒,从而易于沉降。
2.1.2 过滤过滤是利用过滤介质(如砂子、活性炭等)对悬浮物进行拦截的方法。
通过选择合适的过滤介质和控制过滤速度,可以有效去除悬浮物和胶体物质。
2.1.3 活性炭吸附活性炭吸附是利用活性炭对有机物和部分无机盐进行吸附的方法。
活性炭具有较大的比表面积和孔隙结构,能够吸附水中的有机物和部分溶解性无机盐。
2.2 反渗透反渗透是超纯水技术中最常用的一种方法,其原理是利用半透膜将水分子从溶液中分离出来。
反渗透设备通常由压力容器、半透膜和压力泵组成。
在反渗透过程中,原水被加压送入压力容器内,经过半透膜后变为两部分:一个是富含溶质的浓水,另一个是几乎不含溶质的纯水。
通过调节压力和流速,可以控制反渗透膜对溶质的截留率,从而实现对溶质的去除。
2.3 电离交换电离交换是利用树脂对水中离子进行选择性吸附和交换的过程。
树脂通常是一种高分子化合物,具有许多可交换离子基团。
在电离交换设备中,水通过树脂床层时,正、负离子与树脂上的交换基团发生吸附和释放反应。
通过选择合适的树脂和控制操作条件,可以实现对水中特定离子(如钠、钙、镁等)的去除或富集。
2.4 混床混床是将阳离子交换器和阴离子交换器结合在一起使用的方法。
edi超纯水设备制作工艺
edi超纯水设备制作工艺超纯水设备是一种能够去除水中杂质、微生物和离子等物质的高纯度水制备设备。
它通常应用于电子、光伏、半导体、医药等行业中,以满足对水质要求非常高的生产和实验需求。
超纯水的制备工艺非常重要,其设备制作工艺需要严格控制各个环节的参数和流程,以确保最终产出的水质符合要求。
本文将从超纯水设备的工艺流程、主要设备制作过程和关键工艺参数等方面进行详细介绍。
一、超纯水设备的工艺流程超纯水设备的工艺流程通常包括原水处理、预处理、反渗透膜分离、超纯化、储水等主要环节。
下面将对这些环节进行详细介绍。
1.原水处理超纯水制备的第一步是原水处理,主要是去除水中的大颗粒杂质、悬浮物和有机物。
通常采用过滤器或沉淀器进行处理,以确保进入后续处理环节的水质较为清洁。
2.预处理预处理是为了进一步去除水中的杂质和溶解固体,通常采用活性炭吸附、离子交换树脂吸附等方法进行处理,以提高水的纯度和稳定性。
3.反渗透膜分离反渗透膜分离是超纯水制备的关键步骤,通过高压将水推入反渗透膜,将水中的离子、微生物和有机物等有害物质分离出去,从而得到较为纯净的水。
4.超纯化超纯化是在反渗透膜分离后进一步提高水质的过程,主要是通过电离交换树脂的吸附和再生、混床交换器的处理等手段,获得极高纯度的水。
5.储水储水是最后一步,目的是将处理好的超纯水进行储存,以备后续使用。
需要注意的是,储水容器和管道系统要求无菌和无污染,以确保水质不受污染。
二、超纯水设备的制作工艺超纯水设备的制作工艺主要包括设备选型、组装、调试和检验等环节。
下面将对每个环节进行详细介绍。
1.设备选型超纯水设备的选型是非常重要的,需要根据生产需求、水源水质、所需水质等因素进行选择。
一般来说,要考虑设备的适用性、性能稳定性、维护保养成本等因素进行选择。
2.组装组装是超纯水设备制作的重要环节,需要将各个组件按照设计图纸和要求进行组装,保证各个部件之间的连接紧密可靠,不漏水不泄气。
3.调试设备组装完成后,需要进行调试,检查整个系统的运行情况,保证设备正常工作。
edi超纯水设备方案
EDI超纯水设备方案1. 引言EDI(电离子交换)是一种常用于超纯水处理的技术,能够去除水中的离子、溶剂和有机物等杂质,从而得到高纯度、超纯水。
本文档将介绍EDI超纯水设备的方案,包括设备的工作原理、组成部分和应用范围等。
2. EDI超纯水设备工作原理EDI超纯水设备是通过电离子交换膜将水中的离子分离出去的一种高效净化技术。
其工作原理包括电离、电渗透和电去离子三个关键步骤:1.电离:电离膜在电场的作用下,将水中的盐类离子分解为带电的阳离子和阴离子。
2.电渗透:带电的离子在电场作用下通过离子交换膜,同时水分子穿过渗透膜,形成离子和水的混合溶液。
3.电去离子:混合溶液通过电场的作用,经过去离子膜进一步去除离子,从而得到纯净水。
由于EDI技术不需要再生酸碱溶液,因此避免了传统离子交换技术中再生液的使用,使设备操作更加简便和环保。
3. EDI超纯水设备组成部分EDI超纯水设备一般由以下几个主要组成部分构成:1.预处理系统:包括过滤器、活性炭吸附器和反渗透膜等。
预处理系统的作用是去除水中的悬浮物、有机物和微生物等杂质,以保护EDI设备的正常运行。
2.EDI核心部分:包括电离子交换膜组件、电渗透膜组件和电去离子膜组件等。
EDI核心部分是实现水的电离、电渗透和电去离子的关键部件,用于净化水并产生超纯水。
3.电源与控制系统:提供电压和电流给EDI核心部分,并对设备进行监测和控制。
电源与控制系统能够实现EDI设备的自动化运行和远程监控。
4.超纯水贮存和分配系统:用于储存和分配EDI产生的超纯水。
贮存和分配系统可根据需要配置不同的储水罐和管路,以满足不同用户的用水需求。
4. EDI超纯水设备的应用范围EDI超纯水设备广泛应用于以下领域:1.制药工业:在制药工艺中,高纯度水是生产优质药物和药品的基础要求。
EDI超纯水设备可以提供高纯度、无杂质的水源,为制药工业提供保障。
2.电子工业:电子芯片的制造过程对水质要求非常高,需要使用超纯水进行清洗和加工。
EDI超纯水设备的工艺说明及标准
EDI超纯水设备的工艺说明及标准EDI超纯水设备根据不同的源水水质采用不同的工艺。
一般自来水经一级反渗透系统处理后,产水电导率<10μS/cm,经二级反渗透系统后产水电导率<5μS/cm甚至更低,在反渗透系统后辅以离子交换设备或EDI设备可以制备超纯水,使电阻率达到18兆欧 (电导率=1/电阻率)。
本文主要介绍EDI水处理设备的工艺及标准。
一、技术工艺分析:1、采用RO反渗透+EDI离子交换系统相结合的成熟工艺,具有运行可靠、操作维护方便;2、与传统工艺相比具有运行稳定优点(离子交换器的再生周期大大延长),与最新工艺相比无须再生,耗材;3、前置RO反渗透工艺技术先进,可靠。
并运用成熟的EDI工艺,使水质出水更趋于稳定安全;二、系统工艺流程预处理系统-反渗透系统-中间水箱-粗混合床-精混合床-纯水箱-纯水泵-紫外线杀菌器-抛光混床-精密过滤器-用水对象(≥18MΩ.CM)(传统工艺)三、工艺出水标准超纯化水标准、医疗生物水标准、显像管、液晶显示器用纯水水质(经验数据)集成电路PCB用纯水水质、光电技术、航空技术、半导体高晶硅制取及化合物提取国家电子级纯水标准美国SEMI协会标准四、设备特点为满足用户需要,达到符合标准的水质,尽可能地减少各级的污染,延长设备的使用寿命、降低操作人员的维护工作量。
在工艺设计上,取达国家自来水标准的水为源水,再设有介质过滤器,活性碳过滤器,钠离子软化器、精密过滤器等预处理系统、RO反渗透主机系统、离子交换混床(EDI电除盐系统)系统等。
系统中水箱均设有液位控制系统、水泵均设有压力保护装置、在线水质检测控制仪表、电气采用PLC可编程控制器,真正做到了无人职守,同时在工艺选材上采用推荐和客户要求相统一的方法,使设备与其它同类产品相比较,具有更高的性价比和设备可靠性。
超纯水制备工艺流程
超纯水制备工艺流程一、引言超纯水是一种几乎不含任何杂质的纯净水,广泛应用于电子、制药、化工等领域。
超纯水的制备工艺流程非常重要,本文将介绍一种常见的超纯水制备工艺流程。
二、原水处理超纯水的制备首先需要对原水进行处理,以去除其中的杂质。
原水一般经过预处理系统,包括颗粒过滤器、活性炭吸附器和反渗透膜等设备,去除其中的悬浮物、有机物和大部分离子,得到初级纯水。
三、电离交换树脂处理初级纯水通过电离交换树脂处理器进行处理,以去除其中的离子杂质。
电离交换树脂是一种能够选择性吸附和释放离子的材料,通过将初级纯水通过电离交换树脂层,可去除其中的阳离子和阴离子,得到更加纯净的水。
四、精密过滤经过电离交换树脂处理后的水通过精密过滤器进行进一步处理。
精密过滤器具有非常细小的孔径,可以去除水中的微小悬浮物和细菌等微生物,确保水质的纯净度。
五、臭氧氧化精密过滤后的水通过臭氧氧化器进行处理,以去除其中的有机物和微生物。
臭氧氧化是一种强氧化剂,能够有效地分解有机物和杀灭微生物,提高水的纯净度。
六、二次电离交换树脂处理臭氧氧化后的水再次经过电离交换树脂处理器进行处理,以进一步去除其中的离子杂质。
这一步骤可以提高水的纯净度,并确保水中的离子浓度达到超纯水的要求。
七、超滤经过二次电离交换树脂处理后的水通过超滤器进行进一步处理。
超滤器具有非常小的孔径,可以去除水中的胶体、大分子有机物和微生物等,确保水的纯净度和透明度。
八、混床离子交换树脂处理超滤后的水通过混床离子交换树脂处理器进行处理,以进一步去除其中的离子杂质。
混床离子交换树脂是一种同时具有阳离子和阴离子交换功能的材料,可以去除水中的所有离子,得到极高纯度的超纯水。
九、臭氧消毒经过混床离子交换树脂处理后的水通过臭氧消毒器进行处理,以杀灭其中的微生物。
臭氧消毒能够高效杀灭水中的细菌、病毒和其他微生物,确保水的卫生安全。
十、精密过滤和活性炭吸附臭氧消毒后的水通过精密过滤器和活性炭吸附器进行最后的处理。
工业超纯水设备工艺和特点说明
工业超纯水设备工艺和特点说明在我国对环境的保护越来越重视,尤其是在工业生产中更是如此。
现代的企业要求清洁生产最终目标能达到无害化,这就需要在生产中用的超纯水能达到国家标准。
本文将主要介绍工业超纯水设备,它的工艺与特点。
工业超纯水设备工艺流程
超纯水设备因其独特的优越性,非常适合用于现代清洁生产要求的用水质。
工业超纯水设备整体结构严谨,主机由RO与EDI 相结合组成。
原水进入加压水泵提高压力,通过多介质过滤器除肉眼可见物。
精密过滤器过滤余滤经过软水器去除水中硬度,还要经过保安过滤器保护RO主机。
原水通过反渗透和EDI主机,进一步净化原水除杂质。
最后原水通过紫外线消毒器和微孔过滤器最终净化。
工业超纯水设备特点
超纯水设备由主要三种工艺,包括有传统的混床设备、双级反渗透、RO加EDI设备。
我公司的工业超纯水设备采用的是最先进EDI装置,这个设备不会有废酸注液产生减少污染。
工业超纯水设备为全自动控制,可以在线水质检测控制仪表。
设备的可靠性更强更节能,操作简单易于维护。
超纯水设备应用比较广泛
超纯水设备出水水质的电阻率达到18.2兆,纯水不但可以用在生产上还可以用于显示屏的清洗。
在电子工业里超纯水设备做为重要配套使用,也可以用于LED、汽车电镀清洗用水。
也可以用于制药行业中,医院的实验室和血液透析室。
世界上的工业生产越来越趋向于清洁无污染,超纯水设备做为重要的提供高纯度水的设备。
纯水的水质几乎无杂质,对工业企业的环保生产做出贡献。
我公司的工业超纯水设备出水水质稳定,废水的回收率可以90%以上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
传统的纯水方法不能制备出超纯水,化学意义上纯水(液态的 H2O)的理论电导率为18.3MΩ .cm。人们生产的纯水是达不到理 论值的,但18 MΩ .cm似乎是可以达到的,对于这种水,有的 称为高纯水,有的称为超纯水,目前还没有系统的定义。也没 有划分等级界限,从商业观点看叫超纯水似乎比高纯水更好听 一些。
超纯水的概念和区分
超纯水是美国科技界为了研制超纯材料(半导体原件材料、 纳米精细陶瓷材料等)应用蒸馏、去离子化、反渗透技术或其它适 当的超临界精细技术生产出来的水,这种水中除了水分子(H20)外, 几乎没有什么杂质、金属离子,更没有细菌、病毒、含氯二恶英等 有机物。就是运用预处理——吸附杂质、氧化物,反渗透——在进 水(浓溶液)侧施加操作压力以克服自然渗透压,当高于自然渗透压 的操作压力施加于浓溶液侧时,水分子自然渗透的流动方向就会逆 转,进水(浓溶液)中的水分子部分通过膜成为稀溶液侧的净化产水。 可清除源水中的细微杂质、胶体、有机物、重金属、可溶性固体、 细菌、病毒、热源和其它有害杂质,仅仅保留水分子和溶解氧,有 效去除率高达99%。离子交换——运用离子交换树脂的置换和游离, 使得Na+与H+互换位置,这一变化,就称为离子交换。同理,阴树 脂置换出OH-,从而生产H2O。去除残余的离子。以及运用紫外氧化 杀菌、降解TOC和终端修饰等手段获得更纯净的超纯水。
净得瑞宗旨
专业专 注
创造卓 越
客户至 上谢谢!来自测定超纯水中Fe离子的含量
邻菲罗啉(又称邻二氮杂菲)是测定微量铁的一种较好试剂,在 pH=1.5~9.5的条件下,Fe2+与邻菲罗啉生成很稳定的橙红色的络 合物。在显色前,首先用盐酸羟胺把Fe3+还原为Fe2+: 4 Fe3++2NH2OH═4 Fe2++N2O+H2O+4H+。测定时,控制溶液酸度在 pH=2~9较适宜,酸度过高,反应速度慢,酸度太低,则Fe2+水解, 影响显色。Bi3+、Ca2+、Hg2+、Ag+、Zn2+离子与显色剂生成沉淀, Cu2+、Co2+、Ni2+离子则形成有色络合物,因此当这些离子共存时 应注意它们的干扰作用。电厂水质监测中对铁离子含量小于20ppb, 实验室超纯水机对二价和三价的金属离子去除率是很好的,一般做 到5ppb以下肯定没有多大问题。
3、采用EDI方式,其流程如下:
原水→原水加压泵→多介质过滤器→活性炭过滤器→软水器→ 精密过滤器→一级反渗透机→中间水箱→中间水泵→EDI系统→微孔 过滤器→用水点
超纯水设备应用范围
① 动、植物细细胞培养用水 ② 各种医疗用生化仪、分析仪、血液透 析仪用水 ③ 分析试剂及药品配置稀释用水 ④ 生理、病理、毒理学实验用水 ⑤ 医院、医药制剂室及中心实验室用纯 化水和高纯水 ⑥ 原子吸收光谱用水 ⑦ 试管婴儿用水 ⑧ 各种高效液相色谱、离子色谱用 水 ⑨ 其他各种实验室用水和医药用 水。 ⑩在半导体中的应用:半导体原材料生 产加工、检测和半导体器件的制备用水。
超纯水设备工艺等介绍
一、纯水的工艺大致分成以下几种
1、采用离子交换方式,其流程如下: 原水→原水加压泵→多介质过滤器→活性炭过滤器→软水 器→精密过滤器→阳树脂过滤床→阴树脂过滤床→阴阳树脂混床 →微孔过滤器→用水点
2、采用两级反渗透方式,其流程如下: 原水→原水加压泵→多介质过滤器→活性炭过滤器→软水 器→精密过滤器→第一级反渗透 →PH调节→中间水箱→第二级 反渗透(反渗透膜表面带正电荷)→纯化水箱→纯水泵→微孔过滤 器→用水点