水轮机调节系统机组孤立电网运行特性仿真1

水轮机调节系统机组孤立电网运行特性仿真1
水轮机调节系统机组孤立电网运行特性仿真1

水轮机调节系统机组孤立电网运行特性仿真

魏守平

一.水轮机调节系统机组孤立电网运行特性

1 水轮机调节系统孤立电网运行

水轮发电机组有多种工作状态:机组开机、机组停机、同期并网前和从电网解列后的空载、小电网或孤立电网运行、以频率 (转速)调节和功率调节并列于大电网运行、水位和/或流量控制等。被控机组在小(孤立)电网运行称为孤立电网运行( Isolated Grid Operation),孤立电网运行是指电网中只有一台机组或本台机组容量占电网容量比重相当大的运行方式。

孤立电网运行工况,对于绝大多数大中型机组,这是一种事故性的和暂时的工况,当被控机组与大电网事故解列时,水轮机微机调速器会根据电网频差超差自动转为频率调节模式-工作于频率调节器方式(频率死区E f=0)。由于被控机组容量占小电网总容量的比例、小电网突变负荷大小和小电网负荷特性等因素的影响,使得这种情况下的调速器的工作条件十分复杂,只能尽量维持电网频率在一定范围内。如果突变负荷超过小电网总容量的(10~20)%,由于接力器开启时间T q和关闭时间T f的存在,则大的动态频率下降或上升是不可避免的。

对于孤立电网运行工况,调速器应工作于频率调节模式的PID调节。PID参数的整定则更为复杂了,必需在现场根据机组容量、突变负荷的容量、负荷性质等加以试验整定。PID 参数的选择原则是:在保证孤立电网运行动态稳定的前提下,尽量选取较大的比例增益K p(较小的暂态转差系数b t)和较大的积分增益K I(较小的暂态转差系数b t和较小的缓冲时间常数T d,使得电网频率动态变化峰值小、向额定频率恢复时间短。GB/T 9652.2—2007“水轮机控制系统试验规程”规定:“水头在额定值的±10%范围内,机组带孤立的、约为90%额定功率的电阻负荷的条件下,突然改变不大于5%额定功率的负载,用自动记录仪记录频率变化过程。频率变化的衰减度(与起始偏差符号相同的第二个转速偏差峰值与起始偏差峰值之比)应不大于25%。”这在实际中是很难实施的。

孤立负载的转速控制一般被定义为对额定频率的最大偏差,是由孤立负载的功率变化引起的。在通常情况下,经常发生的负荷变化的等级在设计过程和仿真研究中就能被鉴定出来,仿真研究的目的是确定不同数值的发电机惯性、水流惯性、接力器开启时间T q和关闭时间T f对频率变化影响,以及验证频率偏差是否保持在所要求的限制范围内。

对接力器运动过程中起到速率限制的接力器开启时间T g和接力器关闭时间T f、对接力器运动过程中起到极端位置限制的接力器完全开启位置(y=1.0)和接力器完全关闭位置(y=0)等,是接力器运动过程中的主要非线性因素。如果按照水轮机调节系统运行和试验中的动态过程中,接力器运动是否进入了上述接力器的非线性区域,来划分水轮机调节系统动态过程特征,我们可以将水轮机调节系统运行和试验中的动态过程划分为大波动(大扰动)和小波动(小扰动)动态过程。水轮机调节系统的孤立电网运行特性是具有大波动特征的动态过程。

2 对孤立电网运行的水轮机调节系统动态特性的技术要求

1). GB/T 9652.2-2007 《水轮机控制系统试验规程》有关机组带孤立负荷(机组孤立

电网运行)试验的规定:

“6.22孤立负荷试验

水头在额定值的±10%范围内,机组带孤立的、约为90%额定功率的电阻负荷的条件10

下,突然改变不大于5%额定功率的负载,用自动记录仪记录频率变化过程。频率变化的衰

减度(与起始偏差符号相同的第二个转速偏差峰值与起始偏差峰值之比)应不大于25%。

当不具备真实孤立负荷试验条件时,如用户要求,可采用孤立电网运行仿真试验,此

时发电机组并入真实电网运行,将机组数字模型(机组模型应计入机组惯性、负荷惯性和

被调节系统的自调节系数)的频率输出信号引至电调频率输入口,代替被测电网频率信号。

这种在线仿真已包括真实的水力系统动态响应,仅忽略了被测机组转速变化对水轮机流量

的影响。”

2). 工程实际对孤立电网运行的水轮机调节系统的技术要求

(1). 应该保证孤立电网运行的电力系统稳定运行。

(2).电网突减或突加负荷的动态过程应该满足下列要求:

①. 对于电网突加负荷的工况,尽量增大电网突加负荷动态过程中的电网频率谷值f min (最小值),对于电网突减负荷的工况,尽量减小电网突减负荷动态过程中的电网频率峰值

f max (最大值)。

②. 对于电网突加负荷的工况,在电网突加负荷动态过程中,尽量缩短电网频率从频

率谷值f min (最小值)至稳定值的调节时间。对于电网突减负荷的工况,在电网突减负荷动

态过程中,尽量缩短电网频率从频率峰值f max (最大值)

二.孤立电网运行特性仿真结果

1.仿真策略

在进行水轮机调节系统孤立电网运行特性的每一次仿真中,我们的仿真策略是“1个(组)仿真目标参数的3个(组)数值仿真”,也就是说,在每次仿真中,采用选择的1个(组)

仿真目标参数的3个(组)数值进行,将这3个仿真的动态过程的仿真变量波形和全部仿真

参数在1个仿真图形中表示。

在本章的水轮机调节系统机组孤立电网运行仿真中,显示了电网频率f(也就是孤立电

网频率)和接力器行程y的动态波形和所有的仿真参数。动态波形的纵坐标显示了电网频率

f和接力器行程y等2个变量,电网频率f是以赫芝(Hz)为单位,接力器行程y是以相对值

显示;动态波形的横坐标是时间坐标t,单位是秒s。为了便于比较、分析和研究某一个(组)

参数的取值对水轮机调节系统动态特性的作用,在其他的水轮机调节系统参数相同的条件下,选定1个或1组(数个)仿真目标参数,并选择各自3个不同的数值进行仿真,同时得

到与之对应的3个仿真结果。第1个(组)变量对应的仿真曲线是红色点画线,第2个(组)

变量对应的仿真曲线是黑色实线,第3个(组)变量对应的仿真曲线是蓝色虚线。在仿真波

形图中的仿真参数显示区,标示了仿真采用的水轮机调节系统全部参数,在参数显示区的

下部用红色、黑色和蓝色标示了3个(组)仿真目标参数,它们分别与红色、黑色和蓝色的

仿真动态仿真波形对应。

2.仿真标注

在仿真项目中设置了“仿真标注”变量。“仿真标注”变量为空时,仿真结果中没有显示;针对具体水电站的某台机组仿真,可以键入“[###水电厂#号机]”、“[仿真人员]”或[仿真简要说明],在仿真结果波形图上会显示相应内容。

3.水轮机调节系统机组单调节和双调节动态特性

1).调节方式变量K

12

考虑了水轮机调节系统的单调节和双调节特性,引入了调节方式变量K12。仅仅在水轮机调节系统的大波动(机组1段导叶接力器关闭甩负荷、机组2-3段导叶接力器关闭甩负荷和机组在孤立电网运行等工况)仿真中考虑了机组的单调节和双调节特性并使用调节方式变量K12。

(1).K12=1:仿真系统在单调节方式运行,仿真人机对话界面上的桨叶接力器参数(桨叶关闭时间Tjf、桨叶开启时间Tjg和桨叶延迟关闭时间Tjys)不起作用,仿真结果中也不显示和双调节有关的参数。

(2). K12=2.0-3.7:仿真系统在双调节方式运行,仿真结果中会显示与双调节有关的

参数(桨叶关闭时间Tjf、桨叶开启时间Tjg和桨叶延迟关闭时间Tjys)。

由于桨叶关闭时间Tjf和桨叶开启时间Tjg均明显分别小于桨叶关闭时间Tj和桨叶开启时间Tj,所以,双调节机组在波动大的动态过程中(例如机组甩负荷动态过程和孤立电网大负荷变化)的机组效率,将随着偏离协联工况的程度而下降,软件中设置了18种体现协联特性导致的机组效率下降的协联特性系数K12可供选择;K12的数值愈大,在同样偏离协联工况程度的工况下,水轮机在非协联工况下的机组效率下降愈大。

在机组导叶接力器1段、2-3段关闭甩负荷仿真及机组在小电网运行方式的仿真界面中,包含有桨叶接力器开启时间Tjg和桨叶接力器关闭时间Tjf(单位为秒(s),均为折算为桨叶接力器全行程时间);在2段和3段关闭甩负荷仿真的“桨叶延迟关闭时间”仿真项目中,还有桨叶延迟关闭时间(Tjys)的仿真变量。

4.动态过程稳定时间

我们定义,从突变负荷开始,到机组转速进入机组转速相对偏差小于±0.2%(绝对值为±0.1Hz)为止的时间,也就是电网频率恢复到 (49.9Hz ~50.1Hz)之内的时间称之为突加负荷的调节稳定时间t E。在仿真结果的波形图中,分别标出了电网频率49.9Hz和50.1Hz

等2条蓝色实线,这2条蓝色实线之间的宽带,就是突加负荷后,电网频率调节稳定区域。图中还还标出了电网频率49.8Hz和50.2Hz这2条黑色实线供参考。

在水轮机调节系统机组孤立电网运行仿真中,采用下列主要变量及参数符号:

p-发电机有功功率;f-孤立电网运行频率 (Hz);t-时间s;Δy PI-突加负荷后,接力器开度的直线段调节分量。f m-突加负荷后机组最小频率(Hz),M p=(50.0- f m)/50.0-甩负荷后机组最小转速下降率,最大频率下降相对值,t M-从突加负荷开始至转速降至最低转速所经历的时间s,t E-从机组突加负荷时起,到机组转速相对偏差小于±0.2%(绝对值为±0.1Hz) 为止的调节时间s,即电网频率恢复到 (49.9Hz ~50.1Hz)之内的时间。

为了适应孤立电网运行动态过程的向上向下扰动的工况,在仿真参数中,设置了可以修改的仿真结果动态波形图的坐标最大值fmax和坐标最小值fmin。仿真结果动态波形图中的仿真参数显示区,会随着坐标最小值fmin的设定而跟随移动。恰当地选择波形图的坐标最大值fmax和坐标最小值fmin的数值,可以使仿真结果动态波形图的显示布局更为合理和清晰。

6. STXTFZ-1水轮机调节仿真决策支持系统的决策支持

根据工程实际中出现的问题, STFZXT-1水轮机调节仿真决策支持系统可以进行有针对性问题的水轮机调节系统仿真,为解决实际问题和改善其动态特性提供决策支持;特别是对于水电站从事水轮机调节的技术人员和水轮机调速器生产厂家的现场调试技术人员,提供了一种快速简单可靠的仿真分析手段;也是调速器生产厂家的设计人员的理想工具。

在仿真中对仿真的动态过程的动态特性性能指标进行了分析,并对其动态特性类型进行了分类(迟缓型、优良型、振荡型等),为如何修改PID参数以优化系统动态性能提供了决策支持。

7. 双调节机组在小电网中运行特点

*电网突加20%额定负荷的单调节机组动态特性

单调节机组:K12=1.0,导叶接力器关闭时间Tf=10.0s,导叶接力器开启时间Tg=20.0s。

*电网突加20%额定负荷的双调节机组动态特性

桨叶接力器关闭时间Tjf=30s,桨叶接力器开启时间Tjg=30s。

*电网突减20%额定负荷的单调节机组动态特性

单调节机组:K12=1.0,导叶接力器关闭时间Tf=10.0s,导叶接力器开启时间Tg=20.0s。

*电网突减20%额定负荷的双调节机组动态特性

桨叶接力器关闭时间Tjf=30s,桨叶接力器开启时间Tjg=30s。

桨叶接力器关闭时间Tjf要明显大于导叶接力器关闭时间Tf,桨叶接力器开启时间Tjg 要明显大于导叶接力器开启时间Tg。所以,在小电网运行的双调节机组,在电网中负荷变化过程中的导叶接力器行程和桨叶接力器行程处于非协联状况,机组效率下降,使得水轮机处于非协联运行工况。

(1).小电网突然增加负荷:机组导叶接力器开启、机组桨叶接力器开启,但是二者处于非协联状态,机组效率下降,这使得导叶接力器开启的幅度加大,不利于电网恢复正常,电网动态过程波动大,电网稳定时间长。

(2).小电网突然减少负荷:机组导叶接力器关闭、机组桨叶接力器关闭,但是二者处于非协联状态,机组效率下降,这使得导叶接力器开启的幅度减小,有利于电网恢复正常,电网动态过程波动较小,电网稳定时间短。

7.仿真波形及其数据存储

1).仿真动态波形在线显示的同时,系统还将仿真结果存储在c:\figure中,其上标注有仿真进行的年、月、日、时、分;仿真波形图中还有包括相应国家标准规定的性能指标在内的的辅助线,便于使用者根据国家标准判断仿真结果波形的动态性能指标。

2).与仿真波形对应的数据自动存储在C:\SDATA\XW\的相应同名子文件夹下仿真项目的*.xlsx文件,可以供使用者参考使用。

7.仿真参数显示选项DS

在仿真中引入了“仿真参数显示选项DS”变量,用于选择仿真图形中是否显示全部仿真参数:

DS=1(显示比例1.0:1.0)

* DS=1:显示全部仿真动态波形和仿真参数,适合显示比例1.0:1.0。

DS=0(显示比例0.5:0.5)

* DS< >1:显示全部仿真动态波形和仿真过程特征值,适当增大动态波形曲线粗度、坐标数字字体和文字字体,便于使用者将仿真波形图缩小尺寸,以便用撰写文章的插图和某些技术资料,适合显示比例0.66:0.66或0.5:0.5,在仿真结果右上角显示了仿真项目名称的代号(仿真目标参数), XW(PID):小网(PID参数)。

DS< >1(显示比例0.66:0.66)

DS< >1(显示比例0.5:0.5)

三.机组孤立电网运行动态特性的3种典型动态过程

基于对众多水轮机调节系统的现场试验资料和仿真结果的整理和分析,我们将水轮机调节系统孤立电网运行的典型动态过程的形态,划分为迟缓型(Slow Type,以下简称S型(迟缓型))、优良型(Better Type,以下简称B型(优良型))和振荡型(Oscillatory Type,以下简称O型(振荡型))等3个典型形态的动态过程,以便于进一步研究水轮机调节系统扰动型动态过程的机理和寻求改善其动态过程性能的方法。

1 孤立电网运行的S型(迟缓型)动态过程

1). 在孤立电网运行动态过程中,接力器的运动特性

接力器运动幅度小,出现一个较小的超调量后,即单调而缓慢地趋近于稳定开度,接力器稳定时间长。

2). 在孤立电网运行动态过程中,机组频率(机组转速)的运动特性

机组频率从机组突加(或突甩)甩负荷后的峰值,以单调的规律极为缓慢地趋近机组额

定频率,或者在靠近机组额定频率时,机组频率运动速度放慢、出现了一个小的高于(或低于)额定频率的超调后,再向机组额定频率缓慢趋近的过程,机组频率调节稳定时间长。

3).产生这种现象的主要原因是,调速器的PID参数选择不合理:比例增益K P取值过小和/或积分增益K I取值过小,或者2者搭配不当。

过小的比例增益K P和/或积分增益K I取值,水轮机调节系统孤立电网运行特性的缓慢特征加重,系统稳定时间加长。

2. 孤立电网运行的B型(优良型)动态过程

1). 在孤立电网运行动态过程中,接力器的运动特性

接力器运动幅度适中,出现一个较大的超调量后,即单调而快速地趋近于稳定开度,接力器调节稳定时间短。

2). 在孤立电网运行动态过程中,机组频率(机组转速)的运动特性

电网频率从谷值(或峰值)向稳定值恢复的速度适中,在出现一个很小的频率超调量后,电网频率即单调而快速地趋近稳定频率,电网频率调节稳定时间短。

3).能够具有这种优良动态特性的关键是,调速器的PID参数选择合理:比例增益K P 和/或积分增益K I取值合理和搭配恰当。

3. 孤立电网运行的O型(振荡型)动态过程

1). 在孤立电网运行动态过程中接力器的运动特性

接力器运动幅度过大,出现一个较大的超调量后,即以振荡而缓慢的形态趋近于接力器稳定开度,接力器调节稳定时间长。

2). 在孤立电网运行动态过程中,机组频率(机组转速)的运动特性

电网频率从谷值(或峰值)向稳定值恢复的速度过快,在出现一个很大的频率超调量后,电网频率即以振荡而缓慢的形态趋近稳定频率,电网频率调节稳定时间长。

3).产生这种现象的主要原因是,调速器的PID参数选择不合理:比例增益K P取值过大和/或积分增益K I取值偏大,或者2者搭配不当。

过大的比例增益K P和/或积分增益K I取值,水轮机调节系统孤立电网运行特性的振荡趋势加强,有可能使得系统出现不稳定状态。

水轮机调节系统孤立电网运行动态特性的分类见表11-1。

四.水轮机调节系统孤立电网运行特性仿真项目

1). 调速器比例增益(K P)对水轮发电孤立电网运行特性影响仿真

2). 调速器积分增益(K I)对水轮发电孤立电网运行特性影响仿真

3). 调速器微分增益(K D)对水轮发电孤立电网运行特性影响仿真

4). 水流修正系数(ky)对水轮发电孤立电网运行特性影响仿真

5). 电网惯性时间常数(T a)对水轮发电孤立电网运行特性影响仿真

6). 机组水流惯性时间常数(T w)对水轮发电孤立电网运行特性影响仿真

7). 机组突变不同负荷对水轮发电孤立电网运行特性影响仿真

五.孤立电网运行特性仿真结果综合分析

1 对孤立电网运行特性的主要要求

1). 应该保证孤立电网运行的电力系统稳定运行。

2). 孤立电网突减或突加负荷的动态过程应该满足下列要求:

(1). 对于电网突加负荷的工况,尽量增大电网突加负荷动态过程中的电网频率谷值

f min(最小值);对于电网突减负荷的工况,尽量减小电网突减负荷动态过程中的电网频率峰值f max (最大值)。

(2). 对于电网突加负荷的工况,在电网突加负荷动态过程中,尽量缩短电网频率从频率谷值f min (最小值)至频率稳定值的调节时间;对于电网突减负荷的工况,在电网突减负荷动态过程中,尽量缩短电网频率从频率峰值f max (最大值)至频率稳定值的调节时间。

2 被控制对象特性对孤立电网运行特性的影响

如果记电网突加或突减负荷后电网频率最大偏差为Δf m(Hz),则Δf m=∣50Hz-f m∣,其中,f m(Hz)为电网突加或突减负荷后电网频率的最小值或最大值。

1). 机组惯性时间常数T a

机组惯性时间常数T a愈小,在其他参数相同的条件下,电网突加或突减负荷后,电网频率最大偏差为Δf m愈大;机组惯性时间常数T a愈大,在其他参数相同的条件下,电网突加或突减负荷后,电网频率最大偏差为Δf m愈小。

机组惯性时间常数T a愈小,在其他参数相同的条件下,电网突加或突减负荷后,电网频率向稳定值恢复的速度愈快;机组惯性时间常数T a愈大,在其他参数相同的条件下,电网突加或突减负荷后,电网频率向稳定值恢复的速度愈慢。

2). 水流惯性时间常数T w

水流惯性时间常数T w愈小,在其他参数相同的条件下,电网突加或突减负荷后,电网频率最大偏差为Δf m愈小;水流惯性时间常数T w愈大,在其他参数相同的条件下,电网突加或突减负荷后,电网频率最大偏差为Δf m愈大。

水流惯性时间常数T w愈小,在其他参数相同的条件下,电网突加或突减负荷后,电网频率向稳定值恢复的速度愈慢;水流惯性时间常数T w愈大,在其他参数相同的条件下,电网突加或突减负荷后,电网频率向稳定值恢复的速度愈快。

3). 机组惯性比率R I

(1). 机组惯性比率R I愈小,在其他参数相同的条件下,电网突加或突减负荷后,电网频率最大偏差为Δf m愈小;机组惯性比率R I愈大,在其他参数相同的条件下,电网突加或突减负荷后,电网频率最大偏差为Δf m愈大。

(2). 机组惯性比率R I愈小,在其他参数相同的条件下,电网突加或突减负荷后,电网频率向稳定值恢复的速度愈慢;机组惯性比率R I愈大,在其他参数相同的条件下,电网突加或突减负荷后,电网频率向稳定值恢复的速度愈快。

3 孤立电网运行工况下的调速器PID参数选择

1).电站运行经验和仿真结果表明,对于一个相同的被控制系统,孤立电网运行工况下调速器的PID参数,与机组空载扰动工况和机组甩100%额定负荷工况时调速器的PID参数有很大的差别。一般的规律是,孤立电网运行工况下调速器的比例增益K P和积分增益K I,都要显著大于机组孤立电网运行工况和机组甩100%额定负荷工况下调速器的比例增益K P和积分增益K I。

2). 理论分析和水电站试验经验表明,孤立电网突减或突加负荷工况下,调速器的PID 参数的选择与被控制系统的特性有关,也就是与机组水流时间常数T w、机组惯性时间常数T a和机组惯性比率R I=(T w/T a)有关。

理论分析、电站试验和仿真结果表明:

机组惯性比率R I小,换言之,水流惯性时间常数T w小和机组惯性时间常数T a大,应该选用较大的比例增益K P数值和较大的调速器积分增益K I数值。

机组惯性比率R I大,换言之,水流惯性时间常数T w大和机组惯性时间常数T a小,应该选用较小的比例增益K P数值和较小的调速器积分增益K I数值。

调速器微分增益K D对于电网突加(或突减)负荷的动态过程的大波动作用不大,但是能够对系统稳定起较大的作用。

3). 仿真结果表明,如果根据孤立电网功率突变20%机组额定功率的工况则选择调速器的PID参数,使得孤立电网突变功率的动态特性具有B型(优良型)的特征;那么,在这组PID参数下,电网突变10%机组额定功率工况下的动态特性仍然可能是属于B型(优良型);但是,在这组PID参数下,电网突变30%机组额定功率工况下的动态特性就很有可能是属于O型(振荡型)。所以,在设置孤立电网运行工况下的调速器PID参数时,应该对该孤立电网用电负荷进行调查和分析,确定该电网通常最大的突变功率与机组额定功率的比值,根据这个最大的突变功率来选择调速器PID参数。例如,某孤立电网通常最大的突变功率是机组额定功率的30%,则应该根据孤立电网功率突变30%机组额定功率的工况则选择调速器的PID参数,使得对应的电网动态特性具有B型(优良型)的特征。

4 关于接力器开启时间和关闭时间对孤立电网突减或突加负荷过程动态特性的影响

1). 电网突加负荷后,接力器开启时间T g短,对应的接力器开启速度加快了,接力器开度的直线段调节分量Δy PI明显减小了。电网突减负荷后,接力器关闭时间T f短,对应的接力器关闭速度加快了,接力器开度的直线段调节分量Δy PI明显减小了

2).电网突加负荷后,接力器开启时间T g短,对应的电网频率下降谷值f m提高了。电网突减负荷后,接力器关闭时间T f短,对应的电网频率上升峰值f m减小了。

3).电网突加负荷后,接力器开启时间T g短,对应的电网频率下降谷值时间t M减小了。电网突减负荷后,接力器关闭时间T f短,对应的电网频率上升峰值时间t M减小了。

4). 电网突加负荷后,接力器开启时间T g短,对应的电网频率稳定时间t E加大了。电网突减负荷后,接力器开启时间T g短,对应的电网频率稳定时间t E加大了。

水轮机调节仿真决策支持系统主要参数

六. 参考文献

1 中华人民共和国国家标准GB/T 9652.1-2007《水轮机控制系统技术条件》

2 中华人民共和国国家标准GB/T 9652.2-2007《水轮机控制系统试验规程》

3 中华人民共和国机械行业标准JB/T 8191-2008 电工术语《水轮机控制系统》4.魏守平著水轮机调节系统仿真华中科技大学出版社20011年9月5.魏守平编著水轮机调节华中科技大学出版社2009年7月

6.魏守平著水轮机控制工程华中科技大学出版社2005年7月

7.魏守平著现代水轮机调节技术华中科技大学出版社2002年.1月

工业电力系统动态建模和仿真分析

工业电力系统动态建模和仿真分析 (Industrial power system dynamic modeling and simulation analysis) 一、概述 工业电力系统: 大型电力系统复杂性:本身有发电机、电动机 中型工业电力系统:即使无发电机,也包括大量中压电动机 意义、内容: 1、确定通过动态建模与仿真分析验证: 1、机组的暂态稳定(极限切除时间) 2、特定的大容量电动机的电压稳定 3、校验电流电压型保护的定植 4、确定低频减载与孤网运行 二、介绍原件与组成: (一)、同步电机实用模型: 1、意义:对于dq0坐标下同步电机方程,如果单独考虑与定子d绕组、q绕组相独立的零轴绕组,则在计及d,q,f,D,Q5个绕组的电磁过渡过程(以绕组磁链或电流为状态量)以及转子机械过渡过程(以ω及δ为状态量)时,电机为七阶模型。对于一个含有上百台发电机的多机电力系统,若再加上其励磁系统、调速器和原动机的动态方程,则将会出现“维数灾”给分析计算带来极大的困难。因此在实际工程问题中,常对同步电机的数学模型作不同程度的简化,以便在不同的场合下使用。 2、对派克方程中的转子变量 若,则 可用定子侧等效量取代原来的转子量,得到用这些实用等效量表示的同步电机实用方程。原派克方程中的定子量,保留易测量及计算的和及和,而消去和两个变量。 3、三阶实用模型 其简单而又能计算励磁系统动态,因而广泛的应用于精度要求不十分高,但仍需计及励磁系统动态的电力系统动态分析中,较适用于凸极机。 模型导出基于: (1)、忽略定子d绕组、q绕组的暂态,即定子电压方程中取P=P=0 (2)、在定子电压方程中,设ω≈(p.u.)在速度变化不大的过渡过程中,其引起的误差很小。 (3)、忽略D绕组、Q绕组,其作用可在转子运动方程补入阻尼项来近似考虑。 及以下三个定子侧等效实用变量: 为消除转子励磁绕组的变量 、 定子励磁电动势 电机(q轴)空载电动势 电机瞬变电动势 (二)、励磁系统数学模型: 描述同步发电机励磁系统(包括励磁调节器)物理过程的数学方程。是电力系统机电暂态过程数学模型的重要组成部分,主要应用于电力系统稳定计算。

Matlab通信系统仿真实验报告

Matlab通信原理仿真 学号: 2142402 姓名:圣斌

实验一Matlab 基本语法与信号系统分析 一、实验目的: 1、掌握MATLAB的基本绘图方法; 2、实现绘制复指数信号的时域波形。 二、实验设备与软件环境: 1、实验设备:计算机 2、软件环境:MATLAB R2009a 三、实验内容: 1、MATLAB为用户提供了结果可视化功能,只要在命令行窗口输入相应的命令,结果就会用图形直接表示出来。 MATLAB程序如下: x = -pi::pi; y1 = sin(x); y2 = cos(x); %准备绘图数据 figure(1); %打开图形窗口 subplot(2,1,1); %确定第一幅图绘图窗口 plot(x,y1); %以x,y1绘图 title('plot(x,y1)'); %为第一幅图取名为’plot(x,y1)’ grid on; %为第一幅图绘制网格线 subplot(2,1,2) %确定第二幅图绘图窗口 plot(x,y2); %以x,y2绘图 xlabel('time'),ylabel('y') %第二幅图横坐标为’time’,纵坐标为’y’运行结果如下图: 2、上例中的图形使用的是默认的颜色和线型,MATLAB中提供了多种颜色和线型,并且可以绘制出脉冲图、误差条形图等多种形式图: MATLAB程序如下: x=-pi:.1:pi; y1=sin (x); y2=cos (x); figure (1); %subplot (2,1,1); plot (x,y1); title ('plot (x,y1)'); grid on %subplot (2,1,2); plot (x,y2);

电路分析实验报告

电压源与电流源的等效变换 一、实验目的 1、加深理解电压源、电流源的概念。 2、掌握电源外特性的测试方法。 二、原理及说明 1、电压源是有源元件,可分为理想电压源与实际电压源。理想电压源在一定的电流 范围内,具有很小的电阻,它的输出电压不因负载而改变。而实际电压源的端电压随着电流变化而变化,即它具有一定的内阻值。理想电压源与实际电压源以及它们的伏安特性如图4-1所示(参阅实验一内容)。 2、电流源也分为理想电流源和实际电流源。 理想电流源的电流是恒定的,不因外电路不同而改变。实际电流源的电流与所联接的电路有关。当其端电压增高时,通过外电路的电流要降低,端压越低通过外电路的电 并联来表示。图4-2为两种电流越大。实际电流源可以用一个理想电流源和一个内阻R S 流源的伏安特性。

3、电源的等效变换 一个实际电源,尤其外部特性来讲,可以看成为一个电压源,也可看成为一个电流源。两者是等效的,其中I S=U S/R S或 U S=I S R S 图4-3为等效变换电路,由式中可以看出它可以很方便地把一个参数为U s 和R s 的 电压源变换为一个参数为I s 和R S 的等效电流源。同时可知理想电压源与理想电流源两者 之间不存在等效变换的条件。 三、仪器设备 电工实验装置: DG011、 DG053 、 DY04 、 DYO31 四、实验内容 1、理想电流源的伏安特性 1)按图4-4(a)接线,毫安表接线使用电流插孔,R L 使用1KΩ电位器。 2)调节恒流源输出,使I S 为10mA。, 3)按表4-1调整R L 值,观察并记录电流表、电压表读数变化。将测试结果填入表4-1中。 2、实际电流源的伏安特性 按照图4-4(b)接线,按表4-1调整R L 值,将测试的结果填入表4-1中。

电力系统建模及仿真课程设计

某某大学 《电力系统建模及仿真课程设计》总结报告 题目:基于MATLAB的电力系统短路故障仿真于分析 姓名 学号 院系 班级 指导教师

摘要:本次课程设计是结合《电力系统分析》的理论教学进行的一个实践课程。 电力系统短路故障,故障电流中必定有零序分量存在,零序分量可以用来判断故障的类型,故障的地点等,零序分量作为电力系统继电保护的一个重要分析量。运用Matlab电力系统仿真程序SimPowerSystems工具箱构建设计要求所给的电力系统模型,并在此基础上对电力系统多中故障进行仿真,仿真波形与理论分析结果相符,说明用Matlab对电力系统故障分析的有效性。实际中无法对故障进行实验,所以进行仿真实验可达到效果。 关键词:电力系统;仿真;短路故障;Matlab;SimPowerSystems Abstract: The course design is a combination of power system analysis of the theoretical teaching, practical courses. Power system short-circuit fault, the fault current must be zero sequence component exists, and zero-sequence component can be used to determine the fault type, fault location, the zero-sequence component as a critical analysis of power system protection. SimPowerSystems Toolbox building design requirements to the power system model using Matlab power system simulation program, and on this basis, the power system fault simulation, the simulation waveforms with the theoretical analysis results match, indicating that the power system fault analysis using Matlab effectiveness. Practice can not fault the experiment, the simulation can achieve the desired effect. Keywords: power system; simulation; failure; Matlab; SimPowerSystems - 1 - 目录 一、引言 ............................................ - 3 -

成都理工电力系统实验报告

电力系统自动化报告 学院: 核技术与自动化学院 专业: 电气工程及其自动化 班级: 1班 学号: 201202060227 姓名: 徐茁夫 指导老师: 罗耀耀 完成时间: 2015年7月6日

填写说明 1、适用于本科生所有的实验报告(印制实验报告册除外); 2、专业填写为专业全称,有专业方向的用小括号标明; 3、格式要求: ①用A4纸双面打印(封面双面打印)或在A4大小纸上用蓝黑色水笔书写。 ②打印排版:正文用宋体小四号,1.5倍行距,页边距采取默认形式(上下2.54cm,左右2.54cm, 页眉1.5cm,页脚1.75cm)。字符间距为默认值(缩放100%,间距:标准);页码用小五号字底端居中。 ③具体要求: 题目(二号黑体居中); 摘要(“摘要”二字用小二号黑体居中,隔行书写摘要的文字部分,小4号宋体); 关键词(隔行顶格书写“关键词”三字,提炼3-5个关键词,用分号隔开,小4号黑体); 正文部分采用三级标题; 第1章××(小二号黑体居中,段前0.5行) 1.1 ×××××小三号黑体×××××(段前、段后0.5行) 1.1.1小四号黑体(段前、段后0.5行) 参考文献(黑体小二号居中,段前0.5行),参考文献用五号宋体,参照《参考文献著录规则(GB/T 7714-2005)》。

实验一:典型方式下的同步发电机起励实验 一、实验目的 ⒈了解同步发电机的几种起励方式,并比较它们之间的不同之处。 ⒉分析不同起励方式下同步发电机起励建压的条件。 二、原理说明 同步发电机的起励方式有三种:恒发电机电压Ug 方式起励、恒励磁电流Ie 方式起励和恒给 定电压UR 方式起励。其中,除了恒UR 方式起励只能在他励方式下有效外,其余两种方式起励 都可以分别在他励和自并励两种励磁方式下进行。 恒Ug 方式起励,现代励磁调节器通常有“设定电压起励”和“跟踪系统电压起励”两种起 励方式。设定电压起励,是指电压设定值由运行人员手动设定,起励后的发电机电压稳定在手动 设定的给定电压水平上;跟踪系统电压起励,是指电压设定值自动跟踪系统电压,人工不能干预, 起励后的发电机电压稳定在与系统电压相同的电压水平上,有效跟踪范围为85%~115%额定电 压;“跟踪系统电压起励”方式是发电机正常发电运行默认的起励方式,可以为准同期并列操作 创造电压条件,而“设定电压起励”方式通常用于励磁系统的调试试验。 恒Ie 方式起励,也是一种用于试验的起励方式,其设定值由程序自动设定,人工不能干预, 起励后的发电机电压一般为20%额定电压左右。 恒UR(控制电压)方式只适用于他励励磁方式,可以做到从零电压或残压开始人工调节逐渐 增加励磁而升压,完成起励建压任务。 三、实验内容与步骤 常规励磁装置起励建压在第一章实验已做过,此处以微机励磁为主。 ⒈选定实验台上的“励磁方式”为“微机控制”,“励磁电源”为“他励”,微机励磁装置菜 单里的“励磁调节方式”为“恒Ug”和“恒Ug 预定值”为400V。 ⑴参照第一章中的“发电机组起励建压”步骤操作。 ⑵观测控制柜上的“发电机励磁电压”表和“发电机励磁电流”表的指针摆动。 ⒉选定“微机控制”,“自励”,“恒Ug”和“恒Ug 预定值”为400V。 操作步骤同实验1。 ⒊选定“微机控制”,“他励”,“恒Ie”和“恒Ie 预定值”为1400mA。 操作步骤同实验1。 ⒋选定“微机控制”,“自励”,“恒Ie”和“恒Ie 预定值”为1400mA。 操作步骤同实验1。 ⒌选定“微机控制”,“他励”,“恒UR”和“恒UR 预定值”为5000mV。 操作步骤同实验1。 四、实验报告 ⒈比较起励时,自并励和他励的不同。 答:他励直流电机的励磁绕组与电枢绕组无联接关系,而由其他直流电源对励磁绕组供电的直流电机称为他励直流电机,永磁直流电机也可看作他励直流电机。并励直流电机的励磁绕组与电枢绕组相并联,作为并励电动机来说,励磁绕组与电枢共用同一电源,从性能上讲与他励直流电动机相同。他励直流电动机起动时,必须先保证有磁场(即先通励磁电流),而后加电枢电压。否则在加励磁电流之前,电枢中一直为起动电流(或理解为电能只以电枢绕组中热量的形式释放)

PSCAD的电力系统仿真大作业3

仿真计算 1、在PSCAD中建立典型的同步发电机模型,对同步发电机出口三相短路进行仿真研究。要求: (1)运行“同步发电机短路”模型,截取定子三相短路电流波形,并对波形进行分析,验证与理论分析中包含的各种分量是否一致; 图一同步发电机短路模型

图二、定子三相短路电流 定子三相短路电流中含有直流分量和交流分量,其中周期分量会衰减。三相短路电流直流分量大小不等,但衰减规律相同,均按指数规律衰减,衰减时间常数为Ta,由定子回路电阻和等值电感决定,大约在0.2s。交流分量也按指数规律衰减,它包括两个衰减时间常数,分为次暂态过程、暂态过程和稳态过程。 (2)修改电抗参数Xd(Xd’,X’’d),增加或者减小,截取定子三相电流,并与第一步结果对比分析; 图一是Xd`=0.314 p.u,Xd``=0.280 p.u情况下的定子电流波形;图二是Xd`=0.514 p.u, Xd``=0.280 p.u情况下的定子电流波形。显然,随着Xd`的增大定子的电流在减少。

图三、定子三相短路电流 (3)修改时间常数Td(Td’,T’’d),增加或者减小,截取定子三相电流,并与第一步结果对比分析。 参数Td’=6.55s ,Td”=0.039s时定子电流如图一所示;当参数变为Td’=3.55s ,Td”=0.039s是定子电流如图三所示,显然

图四、定子三相短路电流 2、利用暂态仿真软件对下面的简单电网进行建模,对模型中各元件参数进行详细说明,并进行短路计算。将故障点的电流电压波形及线路M端的电流电压波形、相量图粘贴到课程报告上。 要求:

(1)短路类型为①三相故障;②A相接地;③BC两相故障。 (2)两端系统电势夹角取15o δ=。 (3)故障点设置为线路MN中点(25km处)。 (4)仿真结果包括M、N两侧和短路点处的三相电压、电流的瞬时值波形和短路发生后时刻的三相电压、电流相量图。 三、课程学习心得 通过本课程的学习,你有哪些体会和心得,请写出来。可以从以下几个方面考虑,但不局限于这些方面:通过课程你学到了哪些知识;学会了哪些方法;对电力系统的认识;对课程的建议等。 课程的开始复习了一下简单的电力系统稳态分析部分,然后就进行了课程的重点就是电力系统的暂态分析,其中包括PARK变换、标么值下的磁链方程和电压方程、同步发电机各种电势的表达式、发电机阻抗的概述、(次)暂态电抗和(次)暂态电势、发电机三相短路电流、对称分量法、叠加定理、电力系统简单故障分析。学习了几种电力系统分析中的方法,例如分析同步发电机短路时PARK变换将静止三相坐标系的量转化为旋转坐标系dq0的量,还有分析不对称故障时对称分量法转化到相对简单的对称故障分析中。

MATLAB通信系统仿真实验报告1

MATLAB通信系统仿真实验报告

实验一、MATLAB的基本使用与数学运算 目的:学习MATLAB的基本操作,实现简单的数学运算程序。 内容: 1-1要求在闭区间[0,2π]上产生具有10个等间距采样点的一维数组。试用两种不同的指令实现。 运行代码:x=[0:2*pi/9:2*pi] 运行结果: 1-2用M文件建立大矩阵x x=[0.10.20.30.40.50.60.70.80.9 1.11.21.31.41.51.61.71.81.9 2.12.22.32.42.52.62.72.82.9 3.13.23.33.43.53.63.73.83.9] 代码:x=[0.10.20.30.40.50.60.70.80.9 1.11.21.31.41.51.61.71.81.9 2.12.22.32.42.52.62.72.82.9 3.13.23.33.43.53.63.73.83.9] m_mat 运行结果: 1-3已知A=[5,6;7,8],B=[9,10;11,12],试用MATLAB分别计算 A+B,A*B,A.*B,A^3,A.^3,A/B,A\B. 代码:A=[56;78]B=[910;1112]x1=A+B X2=A-B X3=A*B X4=A.*B X5=A^3 X6=A.^3X7=A/B X8=A\B

运行结果: 1-4任意建立矩阵A,然后找出在[10,20]区间的元素位置。 程序代码及运行结果: 代码:A=[1252221417;111024030;552315865]c=A>=10&A<=20运行结果: 1-5总结:实验过程中,因为对软件太过生疏遇到了些许困难,不过最后通过查书与同学交流都解决了。例如第二题中,将文件保存在了D盘,而导致频频出错,最后发现必须保存在MATLAB文件之下才可以。第四题中,逻辑语言运用到了ij,也出现问题,虽然自己纠正了问题,却也不明白错在哪了,在老师的讲解下知道位置定位上不能用ij而应该用具体的整数。总之第一节实验收获颇多。

电路分析实验报告-第一次

电路分析实验报告

实验报告(二、三) 一、实验名称实验二KCL与KVL的验证 二、实验目的 1.熟悉Multisim软件的使用; 2.学习实验Multisim软件测量电路中电流电压; 3.验证基尔霍夫定理的正确性。 三、实验原理 KCL为任一时刻,流出某个节点的电流的代数和恒等于零,流入任一封闭面的电流代数和总等于零。且规定规定:流出节点的电流为正,流入节点的电流为负。 KVL为任一时刻,沿任意回路巡行,所有支路电压降之和为零。且各元件取号按照遇电压降取“+”,遇电压升取“-”的方式。沿顺时针方向绕行电压总和为0。电路中任意两点间的电压等于两点间任一条路径经过的各元件电压降的代数和。 四、实验内容 电路图截图:

1.验证KCL: 以节点2为研究节点,电流表1、3、5的运行结果截图如下: 由截图可知,流入节点2的电流为2.25A,流出节点2 的电流分别为750mA和1.5A。2.25=0.75+1.5。所以,可验证KCL成立。 2.验证KVL: 以左侧的回路为研究对象,运行结果的截图如下:

由截图可知,R3两端电压为22.5V,R1两端电压为7.5V,电压源电压为30V。22.5+7.5-30=0。所以,回路电压为0,所以,可验证KVL成立。 一、实验名称实验三回路法或网孔法求支路电流(电压) 二、实验目的 1.熟悉Multisim软件的使用; 2.学习实验Multisim软件测量电路中电流电压; 3.验证网孔分析法的正确性。 三、实验原理 为减少未知量(方程)的个数,可以假想每个回路中有一个回路电流。若回路电流已求得,则各支路电流可用回路电流线性组合表示。这样即可求得电路的解。回路电流法就是以回路电流为未知量列写电路方程分析电路的方法。网孔电流法就是对平面电路,若以网孔为独立回

基于MATLABsimulink的船舶电力系统建模与故障仿真【开题报告】

开题报告 电气工程及其自动化 基于MATLAB/simulink的船舶电力系统建模与故障仿真 一、综述本课题国内外研究动态,说明选题的依据和意义 1、本课题国内外研究动态 船舶电力系统是一个独立的、小型的完整电力系统,主要由电源设备、配电系统和负载组成。船舶电站是船上重要的辅助动力装置,供给辅助机械及全船所需电力。它是船舶电力系统的重要组成部分,是产生连续供应全船电能的设备。船舶电站是由原动机、发电机和附属设备(组合成发电机组)及配电板组成的。最近几年,船舶电站采用电子技术、计算机控制技术,实现船舶电站自动化和船舶电站的全自动控制,实现无人值班机舱。船舶自动化技术正朝着微机监控、全面电气、综合自动化方向发展。船舶电站运行的可靠性、经济性及其自动化程度对保证船舶的安全运营具有极其重要的意义。 国外的某些造船业发达的国家在二十世纪中叶就着手船舶电力系统领域的探索,在船舶电力系统稳态、暂态过程等方面进行了细致的研究。近些年来,挪威挪控公司困.R.co咖l)、英国船商公司(TRANSS)、德国西门子公司(SIEMENS)、-日本三菱公司(MITSUBISHD等大公司开始进行船舶电力系统的建模与分析方面的研究工作。国内针对船舶电力系统的研究起步相对较晚,虽然取得了一定成果,但在理论先进性、系统完整性等方面还存在一定差距,这也在一定程度上导致了目前国产船电设备与世界主要造船国家船电设备存在一定差距、装船率偏低等一系列问题。 目前,国内外最常用的建模软件有四中:分别是:matlab、lingo、Mathematica 和SAS。MATLAB用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。Matlab开发效率高,自带很多数学计算函数,对矩阵支持好。Lingo可以用于求解非线性规划,也可以用于一些线性和非线性方程组的求解等,功能十分强大,是求解优化模型的最佳选择。Mathematica是一款科学计算软件,很好地结合了数值和符号计算引擎、图形系统、编程语言、文本系统、和与其他应用程序的高级连接。SAS 是一个模块化、集成

电力系统实验报告

电力系统实验报告 实验名称:简单电力系统的短路计算 实验人:王新博 学号:20091141003 指导教师:赵宏伟 实验日期:2012-5-4 一、实验目的:掌握用PSCAD进行电力系统短路计算的方法。 二、实验原理 在电力系统三相短路中,元件的参数用次暂态参数代替,画出电路的等值电路,短路电流的计算即相当于稳态短路电流计算。单相接地,两相相间,两相接地短路时的短路电流计算中,采用对称分量法将每相电流分解成正序、负序和零序网路,在每个网络中分别计算各序电流,每种短路类型对应了不同的序网连接方式,形成了不同复合序网,再在复合序网中计算短路电流的有名值。在并且在短路电流计算中,一般只需计算起始次暂态电流的初始值。 三、实验内容及步骤 图示电力系统, G T 已知:发电机:Sn=60MV A,Xd”=0.16,X2=0.19 ; 变压器:Sn=60MV A,Vs%=10.5 ; 1)试计算f点三相短路,单相接地,两相相间,两相接地短路时的短路电流 有名值。 2)若变压器中性点经30Ω电抗接地,再作1)。 3)数据输入 4)方案定义

5)数据检查 6)作业定义 7)执行计算 8)输出结果 四、实验结果与分析(包括实验数据记录、程序运行结果等) 1、手算过程: 1)、三相短路短路电流有名值(有接地电抗): 2)、三相短路短路电流有名值(无接地电抗): 3)、单相接地短路电流有名值(有接地电抗): 4)、单相接地短路电流有名值(无接地电抗): 5)、两相相间短路电流有名值(有接地电抗): 6)、两相相间短路电流有名值(无接地电抗): 7)、两相接地短路时短路电流有名值(有接地电抗): 8)、两相接地短路时短路电流有名值(无接地电抗): 2、通过PSCAD仿真所得结果为: 1)、三相短路(有接地电抗):

电力系统仿真作业(电子版)

电 力 系 统 仿 真 作 业 论 文 电控学院 电气0903 刘娟 0906060301

离散可编程三相电压源PLL和可变频率正序电压和功率测量 the Discrete 3-Phase Programmable Voltage Source PLL and Variable-Frequency Positive-Sequence Voltage and Power Measurements 线路图: 线路结构: 一个25KV,100MVA的短路等效电路网络给一个5MW,5Mvar的负载供电。电源的内部电压通过离散的三相可编程电压源装置来提供。三相电压电流测量装置用来检测三个负载电压和电流。 离散的三相PLL装置用来测量频率,也产生一个基于频率变化的系统电压信号。PLL用来驱动两个测量装置,并把变化的频率考虑在内。其中一个用来计算正序负载电压的标幺值,另外一个用来计算负载的有功和无功功率。这两个装置和PLL必须初始化,以保证初始处在稳态。 PLL和两个测量装置分别在Extras/Discrete in the Control Block 和 Extras/Discrete Measurements中可以找到。 整个系统(包括网络,PLL和测量装置)以50us的采集时间来离散。仿真时间4.0秒,仿真参数ode45(Dormand-Prince)。

基本原理: PLL的概念 PLL其实就是锁相环路,简称为锁相环。许多电子设备要正常工作,通常需要外部的输入信号与内部的振荡信号同步,利用锁相环路就可以实现这个目的。锁相环路是一种反馈控制电路,简称锁相环(PLL)。目前锁相环主要有模拟锁相环,数字锁相环以及有记忆能力(微机控制的)锁相环。 PLL的特点 锁相环的特点是:利用外部输入的参考信号控制环路内部振荡信号的频率和相位。因锁相环可以实现输出信号频率对输入信号频率的自动跟踪,所以锁相环通常用于闭环跟踪电路。锁相环在工作的过程中,当输出信号的频率与输入信号的频率相等时,输出电压与输入电压保持固定的相位差值,即输出电压与输入电压的相位被锁住,这就是锁相环名称的由来。 PLL的组成 锁相环通常由鉴相器(PD)、环路滤波器(LF)和压控振荡器(VCO)三部分组成,锁相环组成的原理框图如下图所示。 锁相环中的鉴相器又称为相位比较器,它的作用是检测输入信号和输出信号的相位差,并将检测出的相位差信号转换成uD(t)电压信号输出,该信号经低通滤波器滤波后形成压控振荡器的控制电压uC(t),对振荡器输出信号的频率实施控制。

通信工程系统仿真实验报告

通信原理课程设计 实验报告 专业:通信工程 届别:07 B班 学号:0715232022 姓名:吴林桂 指导老师:陈东华

数字通信系统设计 一、 实验要求: 信源书记先经过平方根升余弦基带成型滤波,成型滤波器参数自选,再经BPSK ,QPSK 或QAM 调制(调制方式任选),发射信号经AWGN 信道后解调匹配滤波后接收,信道编码可选(不做硬性要求),要求给出基带成型前后的时域波形和眼图,画出接收端匹配滤波后时域型号的波形,并在时间轴标出最佳采样点时刻。对传输系统进行误码率分析。 二、系统框图 三、实验原理: QAM 调制原理:在通信传渝领域中,为了使有限的带宽有更高的信息传输速率,负载更多的用户必须采用先进的调制技术,提高频谱利用率。QAM 就是一种频率利用率很高的调制技术。 t B t A t Y m m 00sin cos )(ωω+= 0≤t ≤Tb 式中 Tb 为码元宽度t 0cos ω为 同相信号或者I 信号; t 0s i n ω 为正交信号或者Q 信号; m m B A ,为分别为载波t 0cos ω,t 0sin ω的离散振幅; m 为 m A 和m B 的电平数,取值1 , 2 , . . . , M 。 m A = Dm*A ;m B = Em*A ; 式中A 是固定的振幅,与信号的平均功率有关,(dm ,em )表示调制信号矢量点在信号空

间上的坐标,有输入数据决定。 m A 和m B 确定QAM 信号在信号空间的坐标点。称这种抑制载波的双边带调制方式为 正交幅度调制。 图3.3.2 正交调幅法原理图 Pav=(A*A/M )*∑(dm*dm+em*em) m=(1,M) QAM 信号的解调可以采用相干解调,其原理图如图3.3.5所示。 图3.3.5 QAM 相干解调原理图 四、设计方案: (1)、生成一个随机二进制信号 (2)、二进制信号经过卷积编码后再产生格雷码映射的星座图 (3)、二进制转换成十进制后的信号 (4)、对该信号进行16-QAM 调制 (5)、通过升余弦脉冲成形滤波器滤波,同时产生传输信号 (6)、增加加性高斯白噪声,通过匹配滤波器对接受的信号滤波 (7)、对该信号进行16-QAM 解调 五、实验内容跟实验结果:

电力系统分析实验报告

五邑大学 电力系统分析理论 实验报告 院系 专业 学号 学生姓名 指导教师

实验一仿真软件的初步认识 一、实验目的: 通过使用PowerWorld电力系统仿真软件,掌握电力系统的结构组成,了解电力系统的主要参数,并且学会了建立一个简单的电力系统模型。学会单线图的快捷菜单、文件菜单、编辑菜单、插入菜单、格式菜单、窗口菜单、仿真控制等菜单的使用。 二、实验内容: (一)熟悉PowerWorld电力系统仿真软件的基本操作 (二)用仿真器建立一个简单的电力系统模型: 1、画一条母线,一台发电机; 2、画一条带负荷的母线,添加负荷; 3、画一条输电线,放置断路器; 4、写上标题和母线、线路注释; 5、样程存盘; 6、对样程进行设定、求解; 7、加入一个新的地区。 三、电力系统模型: 按照实验指导书,利用PowerWorld软件进行建模,模型如下: 四、心得体会: 这一次试验是我第一次接触PWS这个软件,刚开始面对一个完全陌生的软件,我只能听着老师讲解,照着试验说明书,按试验要求,在完成试验的过程中一点一点地了解熟悉这个软件。在这个过程中也遇到了不少问题,比如输电线的画法、断路器的设置、仿真时出现错误的解决办法等等,在试验的最后,通过请教老师同学解决了这些问题,也对这个仿真软件有了一个初步的了解,为以后的学习打了基础。在以后的学习中,我要多点操作才能更好地熟悉这个软件。

实验二电力系统潮流分析入门 一、实验目的 通过对具体样程的分析和计算,掌握电力系统潮流计算的方法;在此基础上对系统的运行方式、运行状态、运行参数进行分析;对偶发性故障进行简单的分析和处理。 二、实验内容 本次实验主要在运行模式下,对样程进行合理的设置并进行电力系统潮流分析。 选择主菜单的Case Information Case Summary项,了解当前样程的概况。包括统计样程中全部的负荷、发电机、并联支路补偿以及损耗;松弛节点的总数。进入运行模式。从主菜单上选择Simulation Control,Start/Restart开始模拟运行。运行时会以动画方式显示潮流的大小和方向,要想对动画显示进行设定,先转换到编辑模式,在主菜单上选择Options,One-Line Display Options,然后在打开的对话框中选中Animated Flows Option选项卡,将Show Animated Flows复选框选中,这样运行时就会有动画显示。也可以在运行模式下,先暂停运行,然后右击要改变的模型的参数即可。 三、电力系统模型

基于Matlab的电力系统自动重合闸建模与仿真讲解

实践课程设计报告 课程名称:Matlab上机 题目:基于MATLAB的电力系统自动重合闸 所在学院: 学科专业: 学号: 学生姓名: 指导教师: 二零一五年四

摘要 分析了单相自动重合闸的工作特性,并利用MATLAB软件搭建了220kv电力系统的自动重合闸的仿真模型,模拟系统发生单相接地、三相相间短路故障,断路器跳闸后自动重合闸的工作过程。 关键词:电力系统自动重合闸MATLAB 短路故障

目录 1 引言 (1) 2 模型中主要模块的选择和参数 (2) 2.1同步发电机模块 (2) 2.2 变压器模块 (2) 2.3 输电线路模块 (3) 2.3.1 150km线路模块 (3) 2.3.2 100km线路模块 (4) 2.1 电源模块 (5) 2.3 负载模块 (6) 2.3.1 三相串联RLC负载Load1 (6) 2.3.2 三相串联RLC负载Load4 (7) 2.4 断路器模块 (8) 2.5 测量模块 (9) 2.6 显示模块 (9) 2.7 其他模块 (9) 2.8 仿真参数设置 (10) 3 仿真结果及波形分析 (10) 3.1 线路单相重合闸 (10) 3.2 线路三相重合闸 (12) 总结 (13) 参考文献 (14)

基于Matlab的电力系统自动重合闸 1 引言 随着技术的发展,电力系统的规模越来越复杂。从实际条件与安全角度考虑,不太可能进行电力系统科研实验,因而电力系统数字仿真成为了电力系统研究、规划和设计的重要手段。电力系统仿真软件如BPA,EMTP,PSCAD/ EMTDC ,NETOMAC,PSASP,MATLAB等,正向着多功能,具有更高的可移植性方向发展。其中在MATLAB 中,电力系统模型可以在Simulink环境下直接搭建,Simulink电力系统元件库中有多种多样的电气模块,电力系统大多数元件都包含。其中,可以直接调用。电力系统大部分故障是瞬时性故障,因此采用自动重合闸后,电力系统发生瞬时性故障时供电的连续性、系统的稳定性得到很大的提高。此外,自动重合闸有效纠正由于断路器或继电保护误动作引起的误跳闸。 本文以MATLAB为工具,对简单系统的线路单相重合闸和线路三相重合闸进行分析与研究。 1.1 仿真模型的设计和实现 电力系统正常运行时可以认为是三相对称的,即电压、电流对称,且具有正弦波形。下图为理想情况下220kv电力系统的模型。 图 1 220kv电力系统模型

OFDM系统仿真实验报告

无线通信——OFDM系统仿真

一、实验目的 1、了解OFDM 技术的实现原理 2、利用MATLAB 软件对OFDM 的传输性能进行仿真并对结论进行分析。 二、实验原理与方法 1 OFDM 调制基本原理 正交频分复用(OFDM)是多载波调制(MCM)技术的一种。MCM 的基本思想是把数据流串并变换为N 路速率较低的子数据流,用它们分别去调制N 路子载波后再并行传输。因子数据流的速率是原来的1/N ,即符号周期扩大为原来的N 倍,远大于信道的最大延迟扩展,这样MCM 就把一个宽带频率选择性信道划分成N 个窄带平坦衰落信道,从而“先天”具有很强的抗多径衰落和抗脉冲干扰的能力,特别适合于高速无线数据传输。OFDM 是一种子载波相互混叠的MCM ,因此它除了具有上述毗M 的优势外,还具有更高的频谱利用率。OFDM 选择时域相互正交的子载波,创门虽然在频域相互混叠,却仍能在接收端被分离出来。 2 OFDM 系统的实现模型 利用离散反傅里叶变换( IDFT) 或快速反傅里叶变换( IFFT) 实现的OFDM 系统如图1 所示。输入已经过调制(符号匹配) 的复信号经过串P 并变换后,进行IDFT 或IFFT 和并/串变换,然后插入保护间隔,再经过数/模变换后形成OFDM 调制后的信号s (t ) 。该信号经过信道后,接收到的信号r ( t ) 经过模P 数变换,去掉保护间隔以恢复子载波之间的正交性,再经过串/并变换和DFT 或FFT 后,恢复出OFDM 的调制信号,再经过并P 串变换后还原出输入的符号。 图1 OFDM 系统的实现框图 从OFDM 系统的基本结构可看出, 一对离散傅里叶变换是它的核心,它使各子载波相互正交。设OFDM 信号发射周期为[0,T],在这个周期内并行传输的N 个符号为001010(,...,)N C C C -,,其中ni C 为一般复数, 并对应调制星座图中的某一矢量。比如00(0)(0),(0)(0)C a j b a b =+?和分别为所要传输的并行信号, 若将

通信系统仿真实验报告(DOC)

通信系统实验报告——基于SystemView的仿真实验 班级: 学号: 姓名: 时间:

目录 实验一、模拟调制系统设计分析 -------------------------3 一、实验内容-------------------------------------------3 二、实验要求-------------------------------------------3 三、实验原理-------------------------------------------3 四、实验步骤与结果-------------------------------------4 五、实验心得------------------------------------------10 实验二、模拟信号的数字传输系统设计分析------------11 一、实验内容------------------------------------------11 二、实验要求------------------------------------------11 三、实验原理------------------------------------------11 四、实验步骤与结果------------------------------------12 五、实验心得------------------------------------------16 实验三、数字载波通信系统设计分析------------------17 一、实验内容------------------------------------------17 二、实验要求------------------------------------------17 三、实验原理------------------------------------------17 四、实验步骤与结果------------------------------------18 五、实验心得------------------------------------------27

电力系统分析实验报告

本科生实验报告 实验课程电力系统分析 学院名称核技术与自动化工程学院 专业名称电气工程及其自动化 学生姓名 学生学号 指导教师顾民 实验地点6C901 实验成绩

二〇一五年十月——二〇一五年十二月 实验一MATPOWER软件在电力系统潮流计算中的应用实例 一、简介 Matlab在电力系统建模和仿真的应用主要由电力系统仿真模块(Power System Blockset 简称PSB)来完成。Power System Block是由TEQSIM公司和魁北克水电站开发的。PSB是在Simulink环境下使用的模块,采用变步长积分法,可以对非线性、刚性和非连续系统进行精确的仿真,并精确地检测出断点和开关发生时刻。PSB程序库涵盖了电路、电力电子、电气传动和电力系统等电工学科中常用的基本元件和系统仿真模型。通过PSB可以迅速建立模型,并立即仿真。PSB程序块程序库中的测量程序和控制源起到电信号与Simulink程序之间连接作用。PSB程序库含有代表电力网络中一般部件和设备的Simulink程序块,通过PSB 可以迅速建立模型,并立即仿真。 1)字段baseMVA是一个标量,用来设置基准容量,如100MVA。 2)字段bus是一个矩阵,用来设置电网中各母线参数。 ①bus_i用来设置母线编号(正整数)。 ②type用来设置母线类型, 1为PQ节点母线, 2为PV节点母线, 3为平衡(参考)节点母线,4为孤立节点母线。 ③Pd和Qd用来设置母线注入负荷的有功功率和无功功率。 ④Gs、Bs用来设置与母线并联电导和电纳。 ⑤baseKV用来设置该母线基准电压。 ⑥Vm和Va用来设置母线电压的幅值、相位初值。 ⑦Vmax和Vmin用来设置工作时母线最高、最低电压幅值。 ⑧area和zone用来设置电网断面号和分区号,一般都设置为1,前者可设置范围为1~100,后者可设置范围为1~999。 3)字段gen为一个矩阵,用来设置接入电网中的发电机(电源)参数。 ①bus用来设置接入发电机(电源)的母线编号。 ②Pg和Qg用来设置接入发电机(电源)的有功功率和无功功率。 ③Pmax和Pmin用来设置接入发电机(电源)的有功功率最大、最小允许值。 ④Qmax和Qmin用来设置接入发电机(电源)的无功功率最大、最小允许值。 ⑤Vg用来设置接入发电机(电源)的工作电压。 1.发电机模型 2.变压器模型 3.线路模型 4.负荷模型 5.母线模型 二、电力系统模型 电力系统中输送和分配电能的部分称为电力网,它包括升降压变压器和各种电压等级的输电线路、动力系统、电力系统和电力网简单示意如图

电力系统仿真及建模课程设计任务书(v)

昆明学院 《电力系统建模及仿真》课程设计 任务书 适用于:电气工程及其自动化专业 (电气工程方向) 自动控制与机械工程学院电子电气教研室 2015年6月

一、课程设计的目的 该课程设计是在完成《电力系统分析》的理论教学之后安排的一个实践教学环节。其目的在于巩固和加深对电力系统潮流和短路电流计算基本原理的理解,学习和掌握应用计算机进行电力系统设计和计算的方法,培养学生独立分析和解决问题的能力。 二、课程设计的基本要求 掌握电力系统等值模型和参数计算,以及潮流和短路计算的基本原理,学会应用计算机计算系统潮流分布和短路电流的方法。 三、课程设计选题原则 该课程设计是根据电力系统分析课程内容,结合实际工程和科研的电力系统网络进行系统的潮流和短路电流计算。 四、课程设计的任务及要求 1、基本要求 (1)用Matlab中Simulink组件的SimPowerSystems工具箱构建设计要求所给的电力系统模型,在所给电力系统中K处选取不同故障类型(三相短路、单相接地短路、两相短路、两相接地短路进行仿真,比较仿真结果,给出自己的结论。(电力系统接线图见附录1,选做一题) (2)基于Matlab/Simulink,搭建附录2所示电力网络模型,并进行潮流计算。 2、课程设计论文编写要求 纸张A4、要求书写整齐,字数不少于2000字。 (1)封面包括:《电力系统建模与仿真课程设计》总结报告、专业、班级、学号、姓名、指导教师(具体格式附后) (2)论文包括目录、摘要、正文、参考文献、心得体会等。 要求:画出完整电路图、参数标注清楚;按照具体项目要求,完成仿真内容并记录仿真结果,给出自己的结论。 五、时间分配 1、查阅资料、熟悉Matlab中Simulink组件的SimPowerSystems工具箱(1天); 2、基于Matlab/Simulink的电力系统短路故障的仿真与分析(3天);

2PSK通信系统仿真实验报告

2PSK通信系统仿真实验报告 班级: 姓名: 学号:

、实验目的 1.了解通信系统的组成、工作原理、信号传输、变换过程; 2.掌握通信系统的设计方法与参数设置原则; 3.掌握使用SystemView软件仿真通信系统的方法; 4.进行仿真并进行波形分析; 二、实验任务 使用Systemview进行系统仿真任务,要经过以下几个步骤: 1.系统输入正弦波频率:500 Hz;码元传输速率:64kBd; 2.设计一通信系统,并使用SystemView软件进行仿真; 3.获取各点时域波形,波形、坐标、标题等要清楚;滤波器的单位冲击相应和幅频特性曲线; 4.获取主要信号的功率谱密度; 5.获取眼图; 6.提取相干载波; 7.数据分析及心得体会要求手写。 三、原理简介 1.PCM系统原理 .脉冲编码调制 通常把从模拟信号抽样、量化,直到变换成二进制符号的基本过程,称为脉冲编码调制(Pulse Code Modulation PCM,简称脉码调制。原理框图如图1-1所示: PCM信号 输出 A 冲激脉冲 图1-1 PCM编码方框图 .编码过程 由冲激脉冲对模拟信号进行抽样,抽样信号虽然是时间轴上离散的信号,但仍是模拟信号。为了实现以数字码表示样值必须采用“四舍五入” 的方法将抽样值量化为整数,量化后的抽样信号与量化前的抽样信号相比较,有所失真且不再是模拟信号,这种量化失真在接收端还原成模拟信号时表现为噪声,称为量化噪声。量化噪声的大小取决于把样值 分级取整”的方式,分的级数越多,即量化级差或间隔越小,量化噪声也越小。

在量化之前通常用保持电路将其作短暂保存,以便电路有 时间对其进行量化。然后在图 1-1中的编码器中进行二进制编码。这 样,每个二进制码组就代表了一个量化后的信号抽样值,即完成了 PCM 编码的过程。译码过程与编码过程相反。如图 1-2所示。 2. 二进制移相键控(2PSK 的基本原理: 2PSK 二进制移相键控方式,是键控的载波相位按基带脉冲序列的规律而改 变的一 种数字调制方式。就是根据数字基带信号的两个电平 (或符号)使载波相 位 在两个不同的数值之间切换的一种相位调制方法。两个载波相位通常相差 180 度,此时称为反向键控(PSK )也称为绝对相移方式。在2psk 中,通常用初始相位 0和 n 分别表示二进制“ 1”和“ 0”。其表达式如下: Acos wct 发送1时 Fpsk (t)= -Acos Wct 发送0时 2psk 的典型波形如图: 由于表示信号的两种码元的波形相同,极性相反,故 2psk 信号的一般可以 表述为一个双极性非归零的矩形波脉冲序列与一个正弦载波相乘,即 ?aP5K (t)=S(t)COSW Ct 图1-2 PCM 译码原理图 PCM 信号 输入 模拟信号 输出

相关文档
最新文档